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Abstract— Many applications require sorting a table over
multiple sort orders: generation of multiple reports from a table,
evaluation of a complex query that involves multiple instances
of a relation, and batch processing of a set of queries. In
this paper, we study how multiple sortings of a table can be
efficiently performed. We introduce a new evaluation technique,
called cooperative sort, that exploits the relationships among
the input set of sort orders to minimize I/O operations for
the collection of sort operations. To demonstrate the efficiency
of the proposed scheme, we implemented it in PostgreSQL
and evaluated its performance using both TPC-DS benchmark
and synthetic data. Our experimental results show significant
performance improvement over the traditional non-cooperative
sorting scheme.

I. INTRODUCTION

Sorting is a frequently used and expensive operation in
database systems. It is employed not only to produce sorted
output, but also in many sort-based algorithms for aggregation,
duplicate removal, join, and set operations. As such, it has
been extensively studied [1], [2], [3], [4], [5], [6]. The standard
technique adopted in most commercial systems is based on the
external merge-sort algorithm.

In this paper, we investigate the problem of efficiently
sorting a table in multiple sort orders. It turns out that such
multiple sortings of a table is not uncommon in many ap-
plications. For example, in many organizations, many reports
are generated at the end of the day/week/month. Typically,
these reports contain the same content but in different sort
orders. A bank may produce reports ordered by amount de-
posited/withdrawn/balance, date, branch, and so on. Similarly,
examination schedules are usually printed in different orders
- order by course number, dates, examiners, and invigilators.
Yet another example arises in decision making applications
where a complex query typically contains multiple instances
of a base relation or view [7].

Now, in all these examples, the queries can be processed
by sorting a table multiple times, once per sorting order.
This seems to be wasteful of resources especially since we
are sorting a single table (or materialized view) albeit over
multiple sort orderings. Intuitively, if we can somehow salvage
the (partial) work done to sort a table on a particular order
for a subsequent sort order on the same table, then we may
reduce the overall processing cost for multiple sortings. This
is exactly what we set out to achieve in this paper.

We begin by considering the scenario of sorting a table T
in two different sort orders o1 and o2, where o1 and o2 are
sequences of some attributes of T . Based on the relationships
between o1 and o2, we identify four cases in which we can
exploit the (partial) results of sorting T on o1 to speed up the
sorting of T on o2. In case 1, o2 is a (strict) prefix of o1,
and in case 2, o1 and o2 share a common prefix. Under these
situations, the sorted T on o1 can be re-used directly (for case
1) or via a light-weight reorganization (for case 2) to sort T
on o2. As a result, the cost to sort T on o2 is totally eliminated
(case 1) or significantly reduced (case 2). We refer to these
cases as result sharing of instance sorts.

While cases 1 and 2 are straightforward, cases 3 and 4 offer
sharing opportunities that have not been previously explored.
As an example of case 3, a prefix of o2 appears as a substring
of o1, e.g., o2 is the attribute a2 and o1 is a composite of
two attributes (a1, a2). In this case, the sorted T on o1 can
be viewed as a concatenation of tuple clusters each of which
contains records ordered on o2. Thus, each tuple cluster of the
sorted T on (a1, a2) corresponds to a distinct a1 value. Within
this cluster, the a2 values are sorted. Thus, we could treat
these tuple clusters as initial runs for the sort on o2, and re-
use them to facilitate the run merging phase of the merge-sort
algorithm without having to perform the (initial) run formation
phase. However, a naive exploitation of these readily available
runs may not be beneficial as there may be too many of such
tuple clusters. To handle this, we propose a cooperative sort
procedure. It first organizes tuples of T into an intermediate
form T ′ such that (a) T ′ can be used to produce sorted T on
o1 efficiently with only (possibly) in-memory sorting; (b) T ′

can be used as initial runs for the sort on o2 efficiently as T ′ is
structured such that the total number of initial runs for sorting
T on o2 has been significantly reduced (compared to that of
using the tuple clusters from the sorted T on o1). Cooperative
sort tries to keep as much the benefit of avoiding scanning
T and initial run formation for the sort on o2 as possible by
minimizing the cost of the corresponding run merging.

Finally, case 4 covers the most general scenarios where none
of the prefixes of o2 appear as substrings of o1 and vice versa.
As a simple example, we may want to sort T on attribute a1

as well as attribute a2. This case can be easily handled by first
sorting T on (a1, a2) and so reducing this case to case 3.

When a table has to be sorted on more than two orders, we
have further opportunity to optimize the performance. Given a



table with multiple sorts, we model it as the minimum directed
Steiner tree problem. As the number of sortings is manageable,
we adopt a brute force algorithm to find the optimal solution
on how each sort will be sequenced and completed.

Another direction that our work can be applied is in en-
riching the plan space for query optimization. For some query
plan, it is possible that replacing a hash-join (in an optimal
plan) with a sub-optimal sort-merge join can lead to an overall
lower cost due to the sort-sharing opportunities either within
the same query or among a batch of queries.

In this paper, we make the following key constributions: (1)
We systematically study the problem of evaluating multiple
sortings on a relation beginning with an analysis of the
relationships for two sort orders and generalizing to multiple
sort orders; (2) We propose a novel evaluation technique,
cooperative sort, that optimizes the evaluation of two sort
orders by deriving an intermediate hybird sort order; (3)
We perform a comprehensive experimental evaluation of our
proposed techniques with an implementation in PostgreSQL.
Our performance results show that cooperative sort outper-
forms conventional sort on average by 25% and up to 35%.
Moreover, our study shows the potential benefit of enriching
the optimizer search space with cooperative sort.

The rest of this paper is organized as follows. In Section II,
we present some preliminaries. Section III formally discusses
the techniques of result sharing and cooperation between two
instance sorts. We elaborate the details of cooperative sort
in Section IV. Further discussions about general sort sharing
are presented in Section V. In Section VI, we generalize
cooperative sort to evaluate more than two sort operations.
Our experimental study presented in Section VII validates the
effectiveness of our proposed techniques. We discuss relevant
work in Section VIII and finally conclude in Section IX.

II. PRELIMINARIES

Sort orders are referred as o, o1, o2 etc., each of which is
a sequence of distinct attributes (a1, a2, · · · an), n ≥ 1, of the
relation T 1 to be sorted. In this paper we utilize the following
main notations, some of which are borrowed from [8]:

• si = sort(T, oi): a sort operation si on T , with order oi.
• cost(s): the I/O cost (in number of accessed blocks) for

sort operation s.
• attrs(o): the set of attributes in sort order o.
• |o|: number of attributes in the sort order o.
• o1 < o2: o1 is a proper prefix of o2.
• o1 ≤ o2: o1 is a prefix of o2.
• o1 ∧ o2: the longest common prefix between o1 and o2.
• o1 + o2: sort order obtained by concatenating o1 and o2.
• o − A: sort order obtained by removing from o those

attributes that also appear in the set of attributes A.
• o-segment: the cluster of tuples in T that have the same

value for attrs(o).
• B(e): size of tuples of expression e, in number of blocks.

1For simplicity, our discussion assumes T to be a relation, but our
techniques also apply when T is the output of some query subplan.

• D(e, o): number of distinct values for attrs(o) in tuples
of expression e; i.e., D(e, o) = |πo(e)|.

• M : number of memory blocks available for sorting.
In this paper, we assume that initial sorted runs are gener-

ated using replacement selection, and our cost model assumes
that each initial sorted run is of size 2M blocks. The external
sorting of a relation T is done using the well-known F -way
merge sort technique, where F is the merge order (i.e., number
of runs that can be merged using M ). Our cost model for a
sort operation s on T using M blocks of memory is given by

cost(s) = 2 × B(T ) × (dlogF (
B(T )

2M
)e + 1). (1)

III. SORT SHARING TECHNIQUES

In this section, we present an overview of techniques for
optimizing the evaluation of multiple sorts on a relation T .
We will first focus on the basic case involving only two sort
operations, and then explain how our techniques can be easily
extended to the general case in Section VI.

Consider two sort operations s1 = sort(T, o1) and s2 =
sort(T, o2). By exploiting the relationship between o1 and
o2, the total I/O cost of the two sortings can be reduced with
one of two key techniques:

• Result sharing technique: the idea is to leverage the
output of one sort operation to more efficiently evaluate
the other sort operation.

• Cooperative sorting technique: the idea is to create
“hybrid” sorted runs that can benefit the evaluation of
both sort operations.

While the result sharing technique has been previously dis-
cussed in other contexts [9], [8], to the best of our knowledge,
we are the first to investigate the cooperative sorting technique.

The relationships between o1 and o2 that we are interested
in can be classified into four main cases:

• Case 1: o2 is a prefix of o1; i.e., o2 ≤ o1.
• Case 2: o1 and o2 share a non-empty common prefix

which is a proper prefix of o2; i.e, 0 < |o1 ∧ o2| < |o2|.
• Case 3: the set of attributes in o2, where o2 = o21 + o22,

is a subset of the attributes in a prefix, o11 + o12, of
o1 = o11 + o12 + o13, such that o21 = o12, attrs(o22) ⊆
attrs(o11), |o11| > 0, |o13| ≥ 0 and |o22| ≥ 0.

• Case 4: o1 and o2 do not satisfy any of the above cases,
but o1 + (o2 − attrs(o1)) and o2 satisfy Case 3.

Example 3.1 Consider the following sort orders: o1 =
(a1, a2), o2 = (a2), o3 = (a1, a3, a2), o4 = (a2, a3, a6, a7),
and o5 = (a6, a3, a2). The pair o1 and o3 is an example of
case 2 with a common prefix given by (a1). Two examples
of case 3 are: the pair o1 and o2, and the pair o4 and o5. An
example of case 4 is the pair o3 and o5. ¤

The first two cases are the more familiar and simpler cases
which can be efficiently evaluated using the result sharing
technique. The last two cases are the two new scenarios that we
investigate in this paper, and their evaluations can be optimized
by our proposed cooperative sorting technique to be presented
in the next section. Note that although case 3 seems rather



contrived and specialized, this is actually the most fundamental
case to optimize as the most general case 4 is evaluated by
reducing it to case 3.

In the remainder of this section, we discuss how to apply
result sharing technique to evaluate case 1 and case 2.

For the first case, since a relation T sorted on o1 is trivially
also sorted on o2, it is sufficient to perform only sort(T, o1);
therefore, s2 is not evaluated explicitly and cost(s2) = 0.

For case 2, suppose o′ = o1 ∧ o2 such that o1 = o′ + o′1,
o2 = o′ + o′2, |o′1| ≥ 0 and |o′2| > 0. In this case, a relation
T sorted on o1 is also partially sorted on o2: the output of
s1 can be viewed as a concatenation of o′-segments, and each
such segment can be sorted independently on o′2 to form the
sorted output for s2. If the size of each o′-segment is no larger
than M blocks, then the sorting of each segment on o′2 can
be performed efficiently using internal sorting and s2 can be
evaluated with only a single pass of reading the output of
s1. As noted by [8], the strategy to evaluate s2 by sorting
o′-segments also helps to significantly reduce the number of
tuple comparisons: the complexity of independently sorting k
segments each of size n/k tuples is O(k ∗ n/k log(n/k)) =
O(n log(n/k)) in contrast to a complexity of O(n log(n))
for a single sort of all n tuples.

For case 2, s1 is evaluated using conventional external
merge-sort and cost(s1) is given by Equation 1. Follow-
ing [8], cost(s2) =

∑D(T,o′)
i=1 cost(sort(sei, o

′
2)), where

cost(sort(sei, o
′
2)) denotes the cost of sorting the ith o′-

segment sei in the sorted output of s1. If B(sei) ≤ M ,
cost(sort(sei, o

′
2)) is simply the cost of performing an internal

sorting; otherwise, it is given by Equation 1. If we assume that
the values of o′ follow a uniform distribution, then B(sei) =
B(T )/D(T, o′).

IV. COOPERATIVE SORTING

In this section, we present a novel technique, termed co-
operative sorting, to efficiently evaluate two sort operations
s1 = sort(T, o1) and s2 = sort(T, o2), when o1 and o2 satisfy
cases 3 or 4 identified in the previous section. For simplicity,
we assume in this section that all the attributes in a sort order
are to be sorted in ascending order. We discuss how to handle
a combination of ascending and descending sorting orders in
Section V and how to optimize evaluation for more than two
sort operations in Section VI.

We first explain how the most general case 4 can be
evaluated by reducing the problem to case 3. The reduction
is achieved by defining a new sort order o′1 = o1 + (o2 −
attrs(o1)). Now, the pair of sort orders o′1 and o2 satisfy case
3 (by definition), and the sort operations s1 and s2 can be
computed indirectly by evaluating the pair of sort operations
on orders o′1 and o2. Since o1 is a proper prefix of o′1, the
sorted output on o′1 is also sorted on o1.

In the rest of this section, we turn our attention to the
evaluation of case 3 using cooperative sorting.

A. Key Ideas

Recall that for case 3, we have o1 = o11 + o12 + o13 and
o2 = o21 +o22, such that o12 = o21, attrs(o22) ⊆ attrs(o11),
|o11| > 0, |o13| ≥ 0 and |o22| ≥ 0.

Observe that the output of s1 can be viewed as a concate-
nation of o11-segments, each of which is also sorted on o2 and
can be used as an initial sorted run for s2. Thus, the result
sharing technique can actually be applied to evaluate case 3
by first evaluating s1 followed by merging the resulting o11-
segments to compute s2. However, depending on D(T, o11)
and data skew, the number of o11-segments generated by
s1 could be very large with many small segments. In this
situation, merging a large number of small sorted runs to
evaluate s2 could lead to an overall performance that is bad
or even worse than performing a conventional external sorting
of T on o2. The following example illustrates the limitation
of the result sharing technique.

Example 4.1 Consider the relation T (a, b) in Fig. 1, which
is used as a running example in this section. Assume the
following: each tuple occupies one disk block, the available
sorting memory can hold four tuples (i.e., M = 4), and the
merge order F = 2. Consider two sort operations s1 and s2

on T , with orders o1 = (a, b) and o2 = (b), respectively.
Obviously, o1 and o2 satisfy case 3 with o11 = (a). The
output of s1 is a concatenation of six a-segments (se1 to se6),
each of which is sorted on (b). By applying the result sharing
technique to evaluate s2, the six a-segments of s1 can be used
as initial sorted runs for s2 and merged to evaluate s2 using
three merge passes with F = 2. However, this result sharing is
actually more costly than a conventional external sorting: using
replacement selection, three initial sorted runs are generated
which can be merged with only two merge passes. ¤
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Fig. 1. Cooperative Sorting Example: M = 4 and F = 2

To avoid the drawback of result sharing technique, we
propose a novel technique, cooperative sorting, that derives the
outputs of both s1 and s2 from the output of an intermediate
sort operation s12 that is based on a “hybrid” sort order. The
goal is to take into account the available sorting memory M to
generate longer (and thus fewer) initial sorted runs to reduce
the cost of run merging phase for s2.

The key idea behind cooperative sorting is the use of an
intermediate sort operation s12 that is based on a novel hybrid



sort order. The output of s12 is a sequence of chunks of tuples
which are classified into natural chunks and composite chunks
such that the tuples in the natural chunks are ordered by o1

and the tuples in the composite chunks are ordered by o2. The
chunks are defined in terms of the o11-segments in the output
of s1 as follows. Conceptually, the output of s1 is a sequence
of o11-segments which can be partitioned into a sequence of
chunks each of which consists of a consecutive sequence of
o11-segments. A composite chunk consists of two or more
consecutive o11-segments such that (1) the size of the chunk in
terms of the total number of tuples is at most M , and (2) the
tuples in the chunk are sorted on o2. A natural chunk consists
of exactly one o11-segment and the tuples are sorted on o1;
there is no constraint on the size of a natural chunk.

Example 4.2 Consider again the running example in Fig. 1.
Based on o1 = (a, b) and o2 = (b), the output of s1, which is
partitioned into six a-segments (se1 to se6), can be organized
into four s12 chunks consisting of two composite chunks, ck1

and ck3 (shown shaded), and two natural chunks, ck2 and ck4

(shown non-shaded). The size of each composite chunk is at
most M (i.e., 4 tuples). ¤

The chunks in s12 are defined to satisfy the following three
useful properties. First, the chunks are o1-order preserving in
the sense that if a chunk cki precedes another chunk ckj in
the output of s12, then every tuple in cki has a smaller o1

value than every tuple in ckj . Second, since the size of each
composite chunk is no more than M , which is the size of
the sorting memory, the tuples in a composite chunk can be
sorted very efficiently using internal sorting. The above two
properties enable s1 to be efficiently derived from s12 by a
sequential scan of the chunks. Third, the tuples in each chunk
of s12 are sorted on o2.

We now elaborate on how both s1 and s2 are derived from
the output of s12. To derive s1, the s12 chunks are scanned
and processed sequentially: if the chunk is a natural chunk,
the tuples are already ordered on o1 and can simply be output
sequentially; otherwise, we first load all the tuples in the chunk
into the sorting memory, internally sort the tuples on o1, and
then output the sorted tuples sequentially. To derive s2 from
s12, we treat each chunk as an initial sorted run for s2 (due
to third property) and merge these chunks to derive s2.

Since the derivation of s2 from s12 is more efficient if there
are fewer chunks to be merged, the composite s12 chunks
should be constructed as large as possible (within the size
constraint) to reduce the number of s12 chunks. The minimum
number of s12 chunks can be generated efficiently by a greedy
heuristic that sequentially scans the o11-segments of s1 as
follows: if the size of a segment sei exceeds M , then sei forms
a natural segment; otherwise, determine the longest sequence
of consecutive segments sei, sei+1, · · · sej such that its total
size is no more than M tuples. If i = j, then sei forms a
natural segment; otherwise, create a composite chunk with the
segments sei, · · · , sej .

By deriving both s1 and s2 from the s12 chunks, cooperative
sorting avoids the I/O cost of independently generating two

sets of initial sorted runs for s1 and s2. However, there are
three potential sources of overhead for cooperative sorting.
First, the s12 chunks are actually created by merging the initial
sorted runs of s1 (to be explained in the next subsection),
which requires a non-trivial extension of the conventional run
merging technique. Thus, the total cost of computing s12

chunks could be more costly than computing s1. Second,
the number of s12 chunks generated by cooperative sorting
could still be more than the number of initial sorted runs
for s2 generated by the conventional initial run formation
phase, possibly resulting in a more costly run merging phase
for cooperative sorting. Third, the derivation of s1 from s12

incurs the computation overhead of performing internal sorts
on composite chunks. Therefore, cooperative sorting is not
always superior to conventional sorting. Thus, both approaches
should be considered in a cost-based manner by the query
optimizer for evaluating multiple sorts on a relation.

B. Overview of Hybrid Sort Operation

In this section, we present an overview of our proposed
approach to perform s12, the intermediate sort operation whose
output is used to derive s1 and s2. The computation of s12

consists of four main steps. In the first step, we scan the
relation T to create initial s1 runs (i.e., initial sorted runs
on o1). This step is performed using the conventional run
formation technique. During the first step, we also collect
the following information about T and the initial s1 runs: the
number of distinct o11 values in T , and the number of tuples
corresponding to each distinct o11 value on each initial s1 run.
Thus, at the end of the first step, we know the size of each
o11-segment and the distribution of each o11-segment’s tuples
among the initial s1 runs.

In the second step, based on the information collected
from the first step, we apply the previously described greedy
algorithm to determine a partitioning of the sequence of o11-
segements in T into a minimum number of s12 chunks.
This partitioning provides the following information about the
output of s12: the number and the sequence of s12 chunks, the
size of each chunk, and the o11-segments that comprise each
chunk. Note that the tuples that belong to the same s12 chunk
are generally distributed across several initial s1 runs. Since
the s12 chunks are o1-order preserving, each initial s1 run is
actually partitioned into a sequence of chunklets, where each
chunklet is the subset of tuples in the s1 run that belong to
the same s12 chunk. We use the notation ckli,j to denote the
chunklet in the jth initial s1 run that belongs to the ith chunk
in s12. Similar to chunks, chunklets are classified into natural
and composite chunklets.

Example 4.3 Fig. 2 illustrates the two initial s1 runs (ordered
on o1 = a) generated from the relation T in our running
example in Fig. 1. The first initial run consists of chunklets
ckl1,1, ckl2,1, ckl3,1, and ckl4,1, while the second initial run
consists of chunklets ckl1,2, ckl2,2, ckl3,2, and ckl4,2. ¤

In the third step, we merge the initial s1 runs to generate
the initial s12 runs. Essentially, each initial s12 run is created
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Fig. 2. Initial s1 Runs for Relation T in Example of Fig. 1

by merging a set of F initial s1 runs; specifically, the corre-
sponding chunklets in the F input s1 runs are merged to form a
longer chunklet in the output s12 run. Thus, each initial s12 run
is also a sequence of s12 chunklets, and the chunklets in the
initial s12 runs satisfy the same three properties as s12 chunks.
This merging operation is more complex than the conventional
run merging step and will be elaborated in Section IV-C.

In the fourth step, the initial s12 sorted runs are merged to
generate the output of s12. This is done using the conventional
external run merging technique with a minor extension for the
tuple comparison operator to take into account the different
sorting orders of tuples within natural and composite chunks.
Specifically, when comparing two tuples t1 and t2 during the
merging, if t1 and t2 belong to the same composite (resp.
natural) chunk, then t1 precedes t2 iff t1 has a smaller value
for o2 (resp. o1) compared to t2; otherwise, t1 precedes t2
iff t1 belongs to a chunk that precedes t2’s chunk in s12. To
facilitate the subsequent merging of s12 chunks to derive s2,
the final pass of this merging step organizes the final single
s12 run into separate s12 chunks. Note that the fourth step is
skipped if the the third step produces only one initial s12 run.

C. Generating Initial s12 Runs

In this section, we elaborate on the procedure to merge
initial s1 runs to generate initial s12 runs. Unlike the run
merging procedure in conventional external sorting algorithm,
this procedure in cooperative sorting is more intricate due to
the fact that the input and output runs in our merge operation
are of different “types”: we are merging input runs that are
ordered on o1 to generate longer output runs that that sorted
on the hybrid order for s12 defined in Section IV-A. For
the case where the chunklets in the input runs to be merged
are natural chunklets, the merging procedure is simple and
follows the conventional external merge procedure since the
input and output orders are the same. However, for the case
where the chunklets to be merged are composite chunklets,
the merging requires an internal sorting operation to order the
tuples in the merged chunklet on o2. This requires loading into
memory all the chunklet tuples that belong to the same chunk
for sorting. In this section, we propose an efficient batched
reading strategy to judiciously load tuples from the sorted runs
into the sorting memory to optimize the I/O performance.

To motivate the need for our proposed scheme, consider
the following simple conservative approach to merge F initial
s1 runs into an initial s12 run. The merging processes the
chunklets in the input sorted runs one chunk at a time based
on the chunk order. If the current chunk being processed is
composite, we first read all the tuples in the chunklets from

the F input runs that belong to this chunk into the sorting
memory, perform an internal sorting of the tuples, and output
the merged chunklet. If the current chunk being processed is
natural, we read n tuples from the corresponding chunklet of
each input run, where n = min{size of the chunklet, bM/F c},
and merge them using the conventional merging technique.
While this conservative approach is sound, this approach might
be fragmenting the reading of an input run into too many
short sequential I/O reads. On the other hand, an arbitrary
tuple reading strategy can lead to “deadlock” situations. For
example, consider the two initial s1 runs shown in Fig. 1 and
suppose that we are merging chunklets for the first chunk with
M = 4. If we had read in three tuples from the first initial s1

run into the sorting memory, then a deadlock situation would
arise as the remaining sorting memory space is not adequate
to permit loading in all the tuples from the first chunklet of the
second initial s1 run for sorting. Thus, the goal of our proposed
batched reading strategy is to decompose the reading of each
input run into as few batched reads of the tuples as possible
to maximize sequential I/O without getting into deadlocks.

Our proposed batched read strategy consists of two main
steps. First, we partition each initial s1 run into a sequence of
batches, where each batch corresponds a sequence of tuples in
the run. A run that has been partitioned in n batches will be
read into the sorting memory using n read requests, each time
reading in a complete batch of tuples. The second step then
merges the initial s1 runs based on the schedule of batched
reads produced by the first step.

Since the merging of composite chunklets require an inter-
nal sorting, all the chunklets belonging to the same composite
chunk among the F runs being merged need to fit into the
available sorting memory M along with any previously read
tuples that have yet to be merged. Let RPm

i (resp. RP d
i )

denote the set of tuples that belong to the chunk cki that
are in the sorting memory (resp. still on disk). Thus, for any
composite chunk cki that has some tuple in the sorting memory
which has yet to be merged, cki must satisfy the following
constraint to avoid the previously described deadlock problem:

B(RPm
i ) + B(RP d

i ) +
∑
k>i

B(RPm
k ) ≤ M (2)

We classify a chunk/chunklet as a small chunk/chunket if
its size is no larger than bM/F c; otherwise, it is considered
to be a large chunk/chunket.

For simplicity, our batched read strategy is designed based
on the following two rules:

• Each composite chunklet, as well as each small natural
chunklet will be completely read in one batched read.

• Each large natural chunklet will be read by a series of
batched reads each with size of bM/F c followed by a
final batched read. Moreover, the first batched read will
start from the head of the chunklet.

It follows that each batched read can be classified into one
of four types based on its starting and ending points:

1) the batch starts from the head of a composite/natural
chunklet and ends at the tail of a composite/natural



chunklet.
2) the batch starts from the head of a natural chunklet and

ends inside the same chunklet.
3) the batch starts and ends inside a natural chunklet.
4) the batch starts inside a natural chunklet and ends at the

tail of a composite/natural chunklet.
For both type-2 and type-3 batch reads, their sizes are bM/F c.

a natural 

chunklet

type-2 read

type-3 read

type-4 read

head

tail

type-1 read
a composite or 

natural chunklet

head

tail

a composite or 

natural chunklet

Fig. 3. Illustration of Four Types of Batched Reads

Fig. 3 illustrates the four types of batch reads. A large
natural chunklet is read by batched reads of types 2, 3 and 4,
while a composite or small natural chunklet is read by batched
reads of types 1 and 4. Each type-2 read corresponds to a type-
4 read and a (possibly empty) set of type-3 reads.

Moreover, to balance the reading opportunity among natural
chunklets among the runs being merged, we make two further
restrictions: (1) in a type-1 read, the total size of a natural
chunklet along with any following tuples must not exceed
bM/F c; (2) the size of a type-4 read is at most bM/F c.

For the F initial s1 runs, Algorithm 1 precomputes a
sequence BR of all type-1, type-2 and type-4 reads to be
conducted during the actual merging. The composition of each
type-1 or type-4 read is decided using Algorithm 2. Note
that the start point of a type-4 read is fixed within a natural
chunklet. BR does not record type-3 reads as they are fixed
and can be easily deduced from each pair of type-2 and type-
4 reads. Based on BR, Algorithm 3 performs the merging of
s1 runs by reading each run in batches. Note that although
the runtime merging process follows the static schedule BR
strictly for type-1 and type-2 reads, the actual ordering for
type-3 and type-4 reads for natural chunklets might need to
be determined dynamically at runtime for correctness. More
specifically, a type-3 or type-4 batch read of a run will be
dynamically selected as the next read to be executed if the set
of in-memory tuples S of the most-recently read batch from
this run belong to a natural chunk and S will be earliest batch
of in-memory tuples to be exhausted by the merge.
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F = 2

1      3
2      1
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3      5
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5      1
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1      5
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3      2
3      6
3      9

6      8
6      3
4      9

Fig. 4. Batched Read Sequence for Merging Two Initial s1 Runs in Fig. 2

Fig. 4 shows the sequence of eight batched reads (br1 to
br8) conducted during the merging of the two initial s1 runs

in Fig. 2. br1, br2, br7 and br8 are type-1 reads; br3 and br4 are
type-2 reads, while br6 and br5 are their corresponding type-
4 reads respectively. There is no type-3 read in this example.
Table I shows the calculated BR. Note that since the last tuple
(3, 5) read by br4 is smaller than the last tuple (3, 6) read by
br3, tuples read by br4 will be exhausted first and thus br5 is
actually read before br6 at runtime, which cannot be predicted
according to BR.

TABLE I
THE ENTRIES IN BR FOR EXAMPLE IN FIG. 4

i 1 2 3 4 5 6 7 8
BR[i] br1 br2 br3 br6 br4 br5 br7 br8

Algorithm 1 ComputeBR
Output: a pre-calculated sequence BR of batched reads
1: idx = 1
2: for i = 1 to N do // N is the number of s12 chunks
3: if s12 chunk i is composite then
4: for j = 1 to F do
5: if ckli,j is non-empty and has not been processed yet then
6: BR[idx] = BatchedRead(ckli,j) // determine a type-1 read

starting from ckli,j
7: idx = idx + 1
8: else
9: for j = 1 to F do

10: if ckli,j is non-empty and has not been processed yet then
11: if size(ckli,j) > bM/F c then
12: BR[idx] is a type-2 read starting from ckli,j
13: idx = idx + 1
14: BR[idx] = BatchedRead(ckli,j) // determine the corre-

sponding type-4 read
15: idx = idx + 1
16: else
17: BR[idx] = BatchedRead(ckli,j) // determine a type-1

read starting from ckli,j
18: idx = idx + 1

Algorithm 2 BatchedRead
Input: ckli,j
Output: a type-1 (or type-4) batched read br

1: initialize a type-1 (or type-4) br including complete (or partial) ckli,j
2: k = i + 1
3: while true do // check whether cklk,j can be included in br
4: if cklk,j is a natural chunklet && size(cklk,j) > bM/F c ||

including cklk,j in br violates the further restrictions ||
including cklk,j in br violates Inequation 2 for some composite chunk
j(i ≤ j < k) then

5: break
6: include cklk,j in br
7: k = k + 1

D. Cost Model

In this section, we present a simple analytical cost model for
cooperative sorting. The total cost of using a cooperative sort
s12 to evaluate two sort operations s1 and s2 consists of three
components: (1) the cost Cs12 of generating s12 chunks, which
is assumed to be equal to the cost Cs1 incurred for evaluating
s1 (given by Equation 1), plus the cost Cis of performing
internal sortings on composite chunklets within initial s1 runs;
(2) the cost Cs12→s1 of deriving s1 is equal to the total cost of
performing internal sortings for all the composite s12 chunks;



Algorithm 3 FinalSequence
Input: BR
Output: a batched read sequence during actual run merging
1: initialize an empty batched read pool P
2: i = 1
3: while i ≤ length(BR) do
4: conduct BR[i] when enough memory space is available
5: br = BR[i] // mark the read for later reference
6: if BR[i] is a type-1 read then // otherwise it must be type-2
7: i = i + 1
8: else
9: add into P the corresponding type-4 read BR[i + 1] along with the

set of type-3 reads between BR[i] and BR[i + 1]
10: i = i + 2
11: if br is the last conducted read among the set of type-1 and type-2

reads for tuples of a natural chunk then // check point
12: if P is non-empty then
13: driven by the merge progress, conduct in a specific order all type-3

and type-4 reads in P
14: restore P to be empty

(3) the cost Cs12→s2 of deriving s2 is given by 2 × B(T ) ×
dlogF Ne, where N is the number of s12 chunks.

Assuming a uniform distribution for the values of o11, there
are two cases to be considered.
Case 1: B(T )/D(T, o11) ≤ 0.5M . All s12 chunks are compos-
ite, and

N = dD(T, o11)/ke (3)

where k is the maximal integer such that k ×
B(T )/D(T, o11) ≤ M .

Let cpu cost(S) denote the cost of internally sorting tuples
of total size S. We have

Cis =
B(T )

2M
× N × cpu cost(2M/N) (4)

Cs12→s1 = N × cpu cost(k × B(T )/D(T, o11)) (5)

Case 2: B(T )/D(T, o11) > 0.5M . All s12 chunks are natural,
and

N = D(T, o11) (6)
Cis = Cs12→s1 = 0 (7)

Note that in the second case, the total cost of cooperative
sorting is actually the same as that of applying result sharing
technique. The performance of cooperative sorting depends
partially on D(T, o11) and the relative sizes of o11-segments.
Besides the distinct value cardinality of o11, the statistical
value distribution of o11 has little impact on the performance.

E. Extensions

In this section, we describe two important extensions of
cooperative sorting.

1) Final Merge Optimization: If the external sorting opera-
tion is part of a pipelining query plan, a common optimization
is to stop the run merge phase just before the final merge
step so that the final merge step can be done as part of the
generation of the sorted output. In this way, the final merge
optimization saves one read and one write scan on T .

If the final merge optimization is enabled, the run merging
phase of cooperative sorting will end up with N (1 < N ≤ F )

s12 runs. The output of s1 is derived by merging the N s12

runs on-the-fly, with the batched reading strategy being used

to sort the tuples in composite chunklets based on o1 before
the merging. As for s2, each chunklet within the s12 runs is
treated as an initial run for s2. For the special case where the
number of initial s1 runs generated for s12 is no more than
F , these initial s1 runs can be transformed into initial s2 runs
by simply sorting the composite chunklets based on o2.

2) Adapting to Other Merge Patterns: Our description of
cooperative sorting in Section IV-B has assumed that the
sorted runs are merged using k-way merge pattern for ease of
presentation. The cooperative sorting approach can be easily
adapted to other merge patterns such as polyphase merge and
cascade merge [1]. In the general case, the collection of the
runs to be merged could consist of a combination of initial s1

sorted runs and s12 sorted runs. The batched reading strategy
can be easily modified so that composite chunklets within the
s12 runs, which have already been sorted on o2, need not be
internally sorted again as part of the merging.

V. DISCUSSIONS

A. Ascending/Descending Ordering

In this section, we explain how to extend our proposed
techniques to handle the general case where a sort order
can consist of attributes to be sorted in a combination of
ascending and descending orders. For a sort attribute a, let
a′ and a′′ denote the ascending and descending ordering of a,
respectively. We can treat a′ and a′′ as two different attributes
in sort orders. For two sort orders o1 and o2, we refer to them
as a reverse pair if (1) o1 = o2 when ascending/descending
orderings are ignored; and (2) for each attribute a′ (resp.
a′′) in o1, the corresponding attribute in o2 is a′′ (resp. a′).
Clearly, for a reverse pair, the result of one order can be easily
converted into the result of the other by a backward scan of
the sorted output.

We now revisit the four cases for o1 and o2 with the
additional consideration of ascending/descending order. We
only discuss cases where o1 and o2 satisfy one of the four
cases if all their attributes were to be sorted in ascending order.

For cases 1 and 2, there must exist a longest pair of prefixes,
o11 and o21, from o1 and o2, respectively, such that (o11, o21)
forms a reverse pair. By using a backward scan, we can treat
o11 and o21 as a common prefix; thus, the result sharing
technique is still applicable. For example, o1 = (a′, b′′) and
o2 = (a′′, b′) still satisfy case 1, while o1 = (a′, b′) and
o2 = (a′′, b′) now satisfy case 2.

For case 3, cooperative sorting is still applicable. For a
composite s12 chunk, the ascending/descending orders can be
handled by internal sorting. For a natural chunk, we generate
it as usual with a sorted order o12. To use this natural chunk as
an initial run in s2, its sort order should be o21 (each tuple in
the chunk has the same value for attrs(o22)). With a backward
scan, o12 and o21 satisfy either case 1 or case 2. Therefore,
we can easily convert the order of the natural chunk on-the-fly
from o12 to o21 when it is merged for s2.

Since case 4 is handled by reducing to case 3, the discussion
for case 4 is similar to case 3.



B. Dynamic Optimization for Cases 3 and 4

Recall that for cases 3 and 4, all the three sorting techniques
(conventional sorting, result sharing, and cooperative sorting)
are applicable. The choice of which technique to apply can
actually be determined dynamically at run-time. Note that all
the three techniques share a common step of generating initial
s1 sorted runs. After the initial s1 runs have been computed,
we have precise information on the number of distinct o11

values, the number and sizes of s12 chunks, and the sizes and
distributions of the s12 chunklets among the s1 initial runs.
With this information, we can more accurately determine the
cost estimates of the three competing techniques and choose
the most efficient technique to evaluate s1 and s2 at run-time.

VI. OPTIMIZATION OF MULTIPLE SORTINGS

In this section, we generalize our discussion of evaluating
two sort operations to consider the evaluation of a collection
of sort operations S = {s1, s2, · · · , sk}, k ≥ 2, where each
si = sort(T, oi) is a sort operation on relation T with sort
order oi. We first consider the extension of cooperative sort
to handle more than two sort orders, and then explain how to
optimize the evaluation of multiple sorts on a relation.

A. K-way Cooperative Sort

In Section IV, we develop cooperative sort to evaluate two
sort operations s1 and s2. In general, given a collection of k
sort operations, a natural question to ask is whether it makes
sense to generalize the binary cooperative sort to a k-way
cooperative sort so that all k sort operations can be efficiently
evaluated. We refer to k as the order of cooperative sort.

Given two sort orders oi and oj , let oi · oj denote the
sort order oi + (oj − attrs(oi)) as discussed for case 4 in
Section IV. Generalizing binary cooperative sort to k-way
cooperative sort requires generating k − 1 intermediate sort
operations: {s′2, s′3, · · · , s′k}, where the sort order o′i associated
with each s′i is given by o′i = o1 · o2 · o3 · ... · oi. Each s′i
corresponds to case 3 with sort orders o′i and oi.

k-way cooperative sort works as follows: s1 is derived from
s′2, and each si, i > 1 is derived from s′i. The main idea
of the extension is for all intermediate sorts to be derived
from a single collection of initial runs that is sorted on
o′k. Fortunately, the following analytical result based on our
cost model shows that it is not necessary to consider k-way
cooperative sort for k > 2 (the proof can be found in [10]).

Theorem 6.1: For each query Q involving multiple sorts on
some relation, there exists an optimal query evaluation plan P
for Q where the maximum order of cooperative sort used in
P is at most 2.

Based on Theorem 6.1, we only consider binary cooperative
sort in subsequent discussions and we simply use the term
cooperative sort to refer to it.

B. Multiple Sorting Optimization

Given a collection S of k sort operations, there are many
ways in which these operations can be ordered to exploit
cooperative sort. In this section, we model this optimization

problem as a graph problem. Given S, we construct a directed
search graph G(V,E), where V = Va ∪ Vb, Va represents
the set of sort nodes and Vb represents the set of cooperative
sort operator nodes.

Each sort node u ∈ Va is associated with a sort order,
denoted by order(u). For each sort operation s = sort(T, o)
∈ S, we create a sort node u ∈ Va and set order(u) to o.
Each directed edge (u, v) from sort node u to sort node v is
associated with cost(u, v) equal to the cost of sorting T that
currently satisfies order(u) to satisfy order(v). There are two
types of directed edges between sort nodes, corresponding to
case 1 and case 2 in Section III.

For each pair of sort nodes u and v such that order(u) and
order(v) satisfy case 3 or case 4, we create a new cooperative
sort operator node w ∈ Vb and associate operand(w) = (u, v).
This node represents a cooperative sort operation from which
u and v can be derived. From w, we add two directed edges:
(w, u) and (w, v). Both cost(w, u) and cost(w, v) are labeled
based on the cost model in Section IV.

Finally, an artificial root ∈ Va node is added to represent
the relation T without a particular order. We add an edge from
root to each existing node v in V , with cost(root, v) equal
to the cost of a conventional sorting operation.

Once the search graph has been constructed, the optimal
solution can be found by computing the minimum directed
Steiner tree of G. The terminal nodes of the Steiner tree are
the set of sort nodes in Va.

abc, d

from root case 2 case 4

d, abcab, d

d, ab

dabc ab

root

case 1

(a) The Sample Search Graph G

root

abc d

ab

abc, d

(b) Steiner Tree of G

Fig. 5. An Example of Multiple Sorting Optimization

Example 6.1 Consider three sort operations sort(T, ab),
sort(T, abc) and sort(T, d), where a, b, and c are attributes
of T . The search graph is depicted in Fig. 5(a), where the sort
(resp. cooperative sort) nodes are represented by rectangles
(resp. ellipses). The computed Steiner tree for this search graph
is shown in Fig. 5(b). Based on the Steiner tree, a feasible
evaluation plan is as follows: first perform cooperative sort
between sort(T, abc) and sort(T, d), and derive sort(T, ab)
from sort(T, abc). ¤

Although finding the minimum directed Steiner tree is an
NP-hard problem [11], applying a brute-force algorithm is
actually adequate if |Vb| is small. Basically, we enumerate
every subset of Vb to be used in the spanning tree and find one
with the minimum cost. The complexity of finding the directed
minimum spanning tree is O(N2) where N is the number of
nodes in the graph [12]. Hence, the total complexity of the
algorithm is O(2|Vb||V |2). In our context, since |Va| is small



and |Vb| ≤ |Va|2 is also small, a brute-force solution is reason-
able; otherwise, heuristic/approximation algorithms [13], [14]
can be applied here.

VII. PERFORMANCE STUDY

We validated our ideas using a prototype built in Post-
greSQL 8.3.5 [15]. All experiments were performed on a Dell
workstation with a Quad-Core Intel Xeon 2.66GHz processor,
8GB of memory, one 500G SATA disk and another 750GB
SATA disk, running Linux 2.6.22. Both the operating system
and PostgreSQL system are built on the 500GB disk, while
the databases of PostgreSQL are stored on the 750GB disk.

This performance study focused on the effect of cooperative
sort. In our implementation, the cooperative sort is integrated
into PostgreSQL as a standard operator. It adopts k-way merge
pattern and is capable of final merge optimization. For the
purpose of fair comparison, we also converted the run merge
pattern of the original sort operation in PostgreSQL from
polyphase to k-way (We have evaluated the performance of our
k-way merge implementation against PostgreSQL’s polyphase
merge scheme. Our results showed no significant differences
between the two schemes. Readers may refer to [10] for
details.). Moreover, we added a post-optimizer that implements
the optimization techniques in Section VI. The post-optimizer
receives an execution plan from the original query optimizer,
exploits sharing and cooperation opportunities between sorts
in a cost-based manner and, whenever possible, generates a
cheaper plan enhanced with cooperative sorts. By switching on
and off the post-optimizer, we can easily compare the cost of
processing a query under the cooperative sort operation against
that of the corresponding two independent sort operations.

A. Micro-benchmark Test

In this section, we use a micro-benchmark test to compare
the performance of cooperative sort against two independent
sort operations. We define a query template Q:

(select attr1,attr2 from T order by attr1,attr2)
union all

(select attr1,attr2 from T order by attr2)
This template also serves to simulate two queries in a batch.
The execution plan of Q is an immediate result union of two
sorts, s1 and s2, on the same relational table T . The sort orders
of s1 and s2 are (attr1, attr2) and (attr2) respectively and
thus satisfy case 3.

We generated six concrete queries with the above query tem-
plate by using three different relations from the TPC-DS [16]
benchmark for T and two different scale factors (denoted by
SF ) to vary the size of T . The statistical information about
three relations, along with their sort attributes, are shown in
Table VII-A. The scale factor SF values used are 40 GB and
100 GB. Another experimental parameter that we varied is the
available sorting memory dedicated to each sorting operation
(denoted by M ) with values ranging from 5 MB to 200 MB.
The sorting memory values are chosen such that at least half
of them will result in a single run merge step.

We compare the performance of two basic evaluation tech-
niques for sorting: the conventional technique of using two
independent sorts (denoted by IS) and our proposed coopera-
tive sort (denoted by CS). We also enable/disable the final
merge optimization to study the combined effectiveness of
this optimization with the basic techniques. We use CS-OPT
and IS-OPT to denote the variants that have the optimization
enabled, and CS and IS to denote the variants that have the
optimization disabled.

Each total execution time reported refers to the total query
evaluation time including the I/O cost of reading the sorted
outputs of s1 and s2. Each query timing is measured with the
query running alone in the database system; and the operating
system is restarted between queries to clear the system cache.
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Fig. 6. Performance Comparison on TPC-DS Dataset

1) General Results: Fig. 6 compares the performance of the
four evaluation strategies as a function of the sorting memory
size; the comparison for each query is shown on a separate
graph. The detailed breakdown of the various cost components
for CS and IS are shown in Table VII-A.1; only SF 40 dataset
is shown due to space limitation, the complete results can be
found in [10]. The meanings of these cost components are
given in Table VII-A.1.

Due to space limitations, we shall not present detailed
query-by-query analysis. Instead, we will summarize the more
interesting findings here.

First, we observe that CS(-OPT) offers significant per-
formance improvement over IS(-OPT) in most queries. The
savings range from a few seconds to 1,033 seconds which is
achieved by CS-OPT over IS-OPT for the query on store sales
with M = 50 and SF = 100 in Fig. 6. In terms of relative



TABLE II
TESTED TPC-DS DATASET

relation attr1 attr2 number of tuples (in million) tuple size (in byte)
web sales ws item sk ws sold time sk 0.72 × SF 226

catalog sales cs item sk cs sold time sk 1.44 × SF 226
store sales ss item sk ss sold time sk 2.88 × SF 164

TABLE III
THE COMPONENT COSTS OF CS AND IS

notation description

CS

RFcs(s12)
initial run formation cost for s12

(i.e., creating initial s1 sorted runs)

RMcs(s12)
run merge cost for s12

(i.e., creating s12 chunks)

RMcs(s2)
run merge cost for s2

(i.e., merging s12 chunks to derive s2)

SCcs(s12)
cost of internal sorting to create

initial s12 runs from initial s1 runs

SCcs(s1)
cost of internal sorting during

the derivation of s1 output from s12

IS

RFis(s1)
initial run formation cost for s1

(i.e., creating initial s1 sorted runs)

RMis(s1)
run merge cost for s1

(i.e., merging s1 sorted runs)

RFis(s2)
initial run formation cost for s2

(i.e., creating initial s2 sorted runs)

RMis(s2)
run merge cost for s2

(i.e., merging s2 sorted runs)

improvement, the average percentage improvement is around
25% and the highest improvement is 35% achieved by CS over
IS for the query on catalog sales with M = 30 and SF = 40.

Second, although operating on the same set of initial runs,
the run merge phase of s12 incurs a higher CPU cost than
that of s1due to the additional tuple comparison steps. Note
that RMcs(s12) does not include the internal sorting cost
SCcs(s12). However, for all six queries, RMcs(s12) is close to
or even less than RMis(s1). This observation validates the I/O
effectiveness and efficiency of our batched reading strategy.

Third, for all six queries, RFcs(s12), RFis(s1) and
RFis(s2) are always more or less the same with any amount
of sorting memory. This is due to the fact that during the
initial run formation phase, the reading and writing of tuples
to the disk files are interleaved and the cost of incurred random
I/O is independent of the size of the sorting memory. On the
other hand, RMcs(s12), RMcs(s2), RMis(s1), and RMis(s2)
all decrease when the sorting memory increases, as the larger
sorting memory makes the run merging more I/O-efficient.

Finally, for all 6 tables, SCcs(s12) and SCcs(s2) increase
along with the size of sorting memory. The reason is two-fold:
on the one hand, the larger sorting memory means that more
tuples will be combined into composite chunks/chunklets and
more tuples need to be internally sorted; on the other hand,
with the fixed total number of tuples, it is cheaper to inde-
pendently sort many smaller composite chunks/chunklets than
independently sort fewer larger composite chunks/chunklets,
which is similar to the analysis of case 2 in Section III.

2) Effect of Result Sharing: As discussed at the beginning
of Section IV-A, the result sharing technique (denoted by RS)
can actually be applied to evaluate case 3. In this section,
we compare the effectiveness of RS against CS for the six
queries. Fig. 7 compares the performance of the query on
web sales with SF 40; the comparison for other quries have
similar trends and are omitted.
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Fig. 7. Comparison of CS with RS on web sales, SF 40

The results clearly demonstrate that CS significantly out-
performs RS in all sorting memory settings. The performance
of RS is just a little better than IS (see Fig. 6(a)).

B. Synthetic Data

We also utilize synthetic data to investigate the sensitivity
of CS. We generated synthetic tables for the web sales relation
in TPC-DS benchmark using SF = 40; each table has
28.8 million tuples. We run template query Q defined in
the previous section on the synthetic tables to compare the
performance of CS and IS.

1) Varying Total Number of s12 Chunks: Under CS, there
will be n initial runs for s2 if n chunks are formed by s12. The
purpose of this experiment is to learn how the total number
of s12 chunks will affect the run merge cost for s2. We vary
the number n of distinct ws item sk (the o11) values inside
a web sales table. Six values of n are used: 15, 25, 50, 100,
150 and 200. A uniform distribution is used for the values of
ws item sk. We fix the sort memory to 20MB, so that even
when n is 200 the tuples with the same ws item sk value
cannot fit in memory and thus will form a natural chunk. As
a result, there will be totally n natural chunks.
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Fig. 8. Varying Total Number of s12 Chunks

The experimental result is shown in Fig. 8. The y-axis
denotes the run merge time for s2. With 20MB sort memory,
the merge order F is 73. Moreover, the number of initial runs
to merge for s2 under IS is 56. Therefore, with all the different
n values, the number of merge passes for IS on s2 is always
1 and the merge costs are more or less the same. As for CS,
the merge cost increases significantly when n becomes larger
than 73. This is because the number of merge passes changes
from 1 to 2. This confirms the expectation that the merge costs
of CS remains largely unchanged with varying n as long as
the number of merge passes required stays the same. We also



TABLE IV
COMPONENTAL COSTS OF SORTS IN MICRO-BENCHMARK TEST (IN SECONDS)

CS IS
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

5MB 129.25 70.29 59.15 3.45 22.98 127.39 70.90 128.71 54.43
15MB 126.62 69.47 32.57 8.30 23.57 126.36 75.54 125.70 71.79

web sales 30MB 129.62 58.64 28.12 11.47 23.80 126.52 60.05 126.24 53.60
SF 40 45MB 130.18 53.87 27.46 15.45 24.51 129.92 55.22 125.84 53.24

60MB 126.27 47.89 28.81 18.41 24.85 126.23 50.96 129.36 47.61
100MB 125.64 34.90 24.52 22.11 25.32 125.93 49.26 129.59 46.88

5MB 256.60 221.96 230.49 7.58 45.38 259.03 219.82 255.64 192.93
15MB 260.75 229.75 91.48 16.65 46.29 263.36 188.90 254.87 164.14

catalog sales 30MB 254.66 121.97 58.62 20.65 47.19 257.42 155.15 260.35 136.16
SF 40 45MB 258.27 149.05 55.25 25.48 47.21 260.98 150.07 258.29 132.78

60MB 255.65 132.31 54.76 32.59 47.71 258.62 137.59 261.16 118.33
100MB 262.61 118.78 51.89 40.62 48.43 261.75 126.01 269.65 106.86
15MB 352.36 934.28 244.45 19.21 70.28 410.03 539.52 399.86 492.84
30MB 377.94 385.95 236.96 28.94 72.11 392.31 399.09 370.46 381.49

store sales 45MB 362.83 195.38 224.75 39.27 72.91 351.04 277.77 358.31 259.73
SF 40 60MB 384.26 291.87 102.73 49.96 73.91 354.45 279.03 384.18 242.23

75MB 377.61 243.56 93.21 64.51 75.17 380.68 256.74 360.36 217.99
100MB 393.62 263.99 99.12 67.59 76.32 385.29 270.82 375.42 232.20

notice that with the same number of merge passes, the merge
cost of CS is always lower than that of IS, which is consistent
with the observation in the micro-benchmark test.

2) Varying Number of Composite s12 Chunks: In this
experiment, we examine the contributions of internal sorting
cost to the total CS cost. These internal sorts are applied to
composite chunklets and chunks. We fix the total number m of
chunks generated and vary the number n of composite chunks.
We set the sort memory to 50 MB and m to 55. Five values
of n are used: 0, 13, 27, 42 and 55.
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Fig. 9. Varying Number of Composite s12 Chunks

Fig. 9 shows the internal sorting cost as well as the overall
CS cost. As expected, the internal sorting cost increases along
with the number of composite chunks. When all the 55 chunks
become composite, this cost takes a non-trivial percentage of
the total CS cost.

C. Synthetic Database and Queries

So far, we have evaluated cooperative sort for the basic
scenario of processing 2 sort operations on different orders.
In this section, we evaluate the effectiveness of cooperative
sort on queries. We generate a synthetic database with three
relations Employee(id, name, country id, supervisor id),
Sales(employee id, item id, quantity, profit) and Item(id,
name). Employee records the information of employed sales-
person and has 10 million 32-byte tuples; Sales records the
transactions and has 50 million 12-byte tuples; Item records
the products on sale and has 10 million 24-byte tuples.

We define two queries on this database:
Q1: Find the name of each salesperson and its supervisor.

Q2: Find each salesperson that has sold more than 1000 units of a
product in a single transaction or his supervisor has done so.

MergeJoin

Sort
(on id)

Sort
(on supervisor_id)

Scan Scan

Employee Employee

(a) Q1

MergeJoin

Sort
(on employee_id)

Sort
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Scan Scan

Employee Sales

MergeJoin

Sort
(on employee_id)

Sort
(on supervisor_id)

Scan Scan

Employee Sales

Append

(b) Q2

Fig. 10. The Optimal Plans for Q1 and Q2

With 50MB sort memory, the optimal plans generated by
PostgreSQL for these two queries are shown in Fig. 10.
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Fig. 11. Query Execution Times of Q1 and Q2

We run Q1 and Q2 with both CS and IS. For Q2, one
redundant sort on sales is also skipped by the post-optimizer,
which contributes about 90 seconds’ saving. The overall query
execution times are shown in Fig. 11. The results clearly show
that both queries can be processed in lesser time under CS.

D. Impact on Optimizer Search Space

In this experiment, we study the potential benefit of en-
riching the optimizer search space with cooperative sort. We
make use of the synthetic database and Q1 from Section VII-
C. In PostgreSQL, each sorting and hashing operation has a
dedicated operator memory. We vary this operator memory
and compare various execution plans for Q1: Hybrid Hash
Join (HHJ), Sort Merge Join (SMJ) and Sort Merge join with
Cooperative Sort (SMJ-CS). As shown in Fig. 12, the original
optimizer of PostgreSQL generates either SMJ or HHJ as the
optimal plan for Q1. We can find that with 10MB operator



memory, SMJ-CS beats the optimal HHJ, which indicates that
a cooperative-sort-aware query optimizer is promising.
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VIII. RELATED WORK

Sorting is one of the most extensively studied problems in
computing. Knuth’s classical text [1] provides extensive cover-
age of the fundamentals of sorting, including both replacement
selection for run formation and run merge patterns.

Larson [17] introduced a cache-aware replacement selection
that works for various length keys. There are also lots of
techniques to speed up the run merge phase [4], [5], [6],
focusing on how to improve I/O performance during the
merge phase because this phase is typically I/O bound. These
techniques are however complementary to our batched reading
strategy, which relies more on the pre-collected knowledge
about input data distribution. Our current implementation only
applies simple forecasting technique to the type-3 reads. But
it is possible to incorporate other optimization techniques like
double buffering [1], read-ahead [5], etc. Much research has
been done on adaptive sorting [18] exploiting near-sortedness.
Graefe’s survey [19] discussed how sorting is implemented in
database systems with many tricks and optimizations.

Simmen et.al [20] described how to determine the ordering
propagation from the inputs to the outputs of joins, based on
functional dependencies and selection conditions. Their work
was followed and extended by [21], [22], [23], which are all
independent and complementary to our work.

In [8], Sudarshan et. al observed that the order requirements
of operators are often partially satisfied by the inputs. They
proposed to maximize the benefit of such partial sort order
by modifying the standard replacement selection algorithm
and improving the selection of interesting orders. We instead
consider the opportunity of partial sorting sharing between
two distinct sort operations (case 2 in Section III). A similar
idea to partial sorting was considered previously in [9] for the
CUBE operator, which computes group-bys corresponding to
all possible combinations of a list of attributes. Consider two
group-bys B = {a1, a2, . . . , aj} and S = {a1, a2, . . . , al−1,
al+1, . . . , aj}. With sort-based aggregation, the result of B
can be viewed as a concatenation of one or more partitions
and the result of S is the union of independently computing
aggregation within each partition.

Finally, there have been a few previous works on optimizing
multiple scans on the same table, such as MAPLE [7] and
cooperative scan [24], etc.

IX. CONCLUSION

In this paper, we have examined the problem of sorting
a relational table on multiple sort orders. Such collections of
sortings are common in many applications. We have identified
several cases in which the (partial) work done in sorting a
table on a particular order can be re-used for a subsequent
sort of the same table on a different order. We proposed the
cooperative sort technique to efficiently handle sorting of a
table on two orders. We also proposed a post-optimizer to
exploit cooperative sort in a traditional query evaluation plan.
We have implemented our techniques in PostgreSQL, and our
extensive performance study indicated a performance gain of
upto 35% over the naive strategy of processing each sort
independently.
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