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Abstract— Shortest path search in transportation networks is
unarguably one of the most important online search services
nowadays (e.g., Google Maps, MapQuest, etc), with applications
spanning logistics, spatial optimization, or everyday driving
decisions. Often times, the owner of the road network data
(e.g., a transport authority) provides its database to third-party
query services, which are responsible for answering shortest path
queries posed by their clients. The issue arising here is that
a query service might be returning sub-optimal paths either
purposely (in order to serve its own purposes like computational
savings or commercial reasons) or because it has been compro-
mised by Internet attackers who falsify the results. Therefore,
for the above applications to succeed, it is essential that each
reported path is accompanied by a proof, which allows clients to
verify the path’s correctness.

This is the first study on shortest path verification in out-
sourced network databases. We propose the concept of authen-
ticated hints, which is used to reduce the size of the proofs.
We develop several authentication techniques and quantify their
tradeoffs with respect to offline construction cost and proof
size. Experiments on real road networks demonstrate that our
solutions are indeed efficient and lead to compact query proofs.

I. INTRODUCTION

A road network is modeled as a graph G, whose nodes

represent road junctions and whose edges correspond to road

segments. The weight of an edge typically reflects the travel

distance, the driving time, or the toll fee of the respective

road segment. Given a source node vs and a target node vt

on such a graph G, the shortest path query returns the path

between vs and vt, along which the sum of edge weights is

minimal. Figure 1 shows an example of a graph where the

weight of each edge corresponds to its length and is indicated

by a number next to the edge. Suppose that the source node is

v1 and the target node is v4. The shortest path between them

is v1 → v3 → v5 → v6 → v4 with total cost (i.e., total length)

2 + 3 + 2 + 1 = 8.

Shortest path search is crucial to a wide range of ap-

plications. For example, taxi drivers want to find shortest

paths to the target locations specified by passengers. Logistics

companies need to find shortest paths (in a transportation

network) for quickly delivering packages from senders to

receivers. Besides the above daily business operations, shortest
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path computation also finds many applications for personal

use. Prior to a hiking trip or a bike tour, a group of people

wish to find the shortest path from their gathering point to a

particular target location.

Usually, the road network data belong to and are maintained

by a commonly trusted government or transport authority,

referred to as the data owner. On the other hand, the afore-

mentioned business and personal needs are attended to by

third-party online service providers (such as Google Maps,

MapQuest, etc), who download the network information from

the owner and use it to compute shortest paths on demand.

The issue here is that returned paths may be incorrect for

a variety of reasons. Firstly, the service provider may be

returning sub-optimal paths for profit purposes (e.g., favorably

selecting paths that pass by the gas stations of a certain chain),

or in order to save computational resources (e.g., employing

directional heuristics that report fast but approximate results).

Furthermore, even if the provider is legitimate, its servers may

be infiltrated by attackers via the Internet; recent studies show

that multi-step intrusions into online servers are becoming

increasingly common [1]. Should an attacker take over a



server, he may be falsifying the results to serve his own

purposes or to simply be a nuisance to the clients and the

service provider (e.g., sending clients to non-existing roads or

damaging the service provider’s reputation). This risk becomes

more severe as the service providers are gradually using the

low-cost cloud computing environment, where many security

concerns remain unresolved.

The aforementioned reasons necessitate the development of

mechanisms that will allow clients to verify the correctness

of the returned paths. Specifically, a client should be able to

verify that: (i) the returned path P is possible, i.e., P is an

existing path in the original graph G of the data owner, and (ii)

P is the shortest among all possible paths in G between the

source and target nodes. To enable this, we take the following

approach. The data owner constructs an authenticated data

structure (ADS) on top of the network data and uploads them

together to the provider. The provider returns parts of this

authentication information to the clients in the form of a

correctness proof, along with each shortest path reported. This

process is depicted in Figure 2.

Interestingly, the definition of the shortest path itself makes

its verification a challenging problem. A naı̈ve solution would

be to generate all possible paths between the source node and

the target node, and show that none of them can be shorter

than the server’s reported path. Unfortunately, this approach

incurs a prohibitively high communication overhead between

the service provider and the client. In this paper, our challenge

is to minimize the size of the proof, while it is still sufficient

for verification. To achieve this, we propose that the data owner

pre-computes and authenticates some auxiliary information

called authenticated hints from the network. The hints are

collected during query processing and inserted into the proof.

We develop a spectrum of authenticated hints with different

tradeoffs in terms of offline construction cost and proof size.

To the best of our knowledge, this is the first study on the

shortest path verification problem. Most of the existing work

on outsourced database authentication focuses on verifying the

results of range queries in relational databases [2], [3], [4], [5],

[6], and cannot be applied to our problem. Spatial verification

methods, on the other hand, explicitly assume the vector space

model [7], [5]. Goodrich et al. [8] do consider graph data, but

study only the verification of connectivity queries. This is a

different problem from ours; all the nodes are connected in

the network of Figure 1, but no shortest paths may be deduced

from this information.

The rest of the paper is organized as follows. Section II

provides a necessary background and surveys related work.

Section III formalizes the addressed problem and presents

our general framework. Section IV describes two basic so-

lutions: one using no pre-computation, and one using full

pre-computation. Section V designs methods that reduce the

amount of pre-computation required (for scalability with net-

work size), without sacrificing the conciseness of the proof.

Section VI experimentally evaluates our solutions, while Sec-

tion VII concludes the paper with directions for future work.

II. RELATED WORK

In this section we review the cryptographic primitives that

underlie our approach, and survey related work in the areas of

database authentication and shortest path computation.

A. Cryptographic Primitives

One-way hash function: Such a function H maps a message

m of arbitrary length into a fixed-length output H(m), which

is called message digest. It is fast to compute H(m), but it

is computationally infeasible to find a message that maps to

a given digest. SHA-1 [9] is a commonly used one-way hash

function.

Cryptographic signature: A message owner creates a pair

of a private and a public key; the former is kept secret and

the latter is publicly distributed. A message can be signed by

its owner using his private key. The integrity and ownership

of the message can then be verified by any recipient using the

signature and the owner’s public key. The most widely used

public-key signature algorithm is RSA [10].

Merkle Hash Tree (MHT): The MHT [11] is a structure

used for set membership verification. It is a binary tree,

where each node is the digest of the concatenation of its

two children; the leaf level contains the hashes of the set’s

elements (messages). The MHT root is signed by the set’s

owner. The integrity and ownership of an element (message)

can be verified using the element itself and a proof. The proof

contains the signed root and the sibling nodes (hashes) of

the path from the root down to the element. The message is

deemed authentic if its digest combined with the proof hashes

leads to an MHT root that matches the owner’s root signature.

The MHT idea can be applied to arbitrary DAGs [12].

B. Query Result Verification

The outsourced database model [13] includes three entities:

data owner, service provider and clients. The data owner

outsources its data to the service provider, who is responsible

for answering the clients’ queries (e.g., equality and range

selection on a specific search key). Along with the answer to

each query, the provider returns a proof that allows the client

to verify that the answer includes those and only those data

tuples that the owner’s database would return, and that these

tuples have not been tampered with. There are two general

approaches to achieve this:

Signature chaining [14], [15], [16]: The owner first sorts

the data tuples. For each tuple, he generates a signature over

its contents and the tuples immediately to its left and to its

right. The proof for an answer contains the signature of every

returned tuple. The chaining achieved by signing consecutive

triples of tuples ensures the completeness of the result and the

authenticity of each returned tuple. To reduce the size of the

proof, the service provider may aggregate all signatures into

one [17].

MHT authentication: An MHT is embedded into the data

index (typically a B+-tree). The MHT structure follows that of

the data index. The proof for a query includes the signed MHT

root, two boundary tuples (i.e., the tuples immediately to the



left and right of the query range), and the left and right sibling

digests of the left and right boundary tuple respectively. Verifi-

cation at the client side includes reconstructing the MHT root

digest (by combining the hashes of the result tuples with those

in the proof) and checking whether it matches the owner’s

root signature. [4] includes an efficient implementation of an

MHT-authenticated B+-tree, and demonstrates its superiority

over signature chaining. [7] further boosts performance, by

separating the authentication information from the data index,

in order to increase B+-tree fanout and use a binary MHT (so

that proof size is near-minimal). MHT techniques have been

used to verify spatial [7], [5], continuous [18], [19], XML

[20], and text search [21] queries.

The only authentication work on graph queries belongs

to the MHT category; [8] considers connectivity queries in

graphs, i.e., it verifies whether two nodes are connected in

the graph and if so, it can additionally return a path (not

the shortest) between them. The data owner computes a

spanning tree for each connected component in the graph, and

authenticates the resulting “forest” (set of spanning trees). Two

nodes are connected if they are in the same spanning tree, and

a path can always be found between them in the tree. This

method is inapplicable to shortest path queries, because paths

in the spanning tree are in general not the shortest, and even

if they happen to be, no proof can be produced for this.

C. Shortest Path Computation

The shortest path between a source node vs and a target

node vt in a graph G is the path between vs and vt with

the minimum sum of edge weights along it. Below we review

shortest path computation schemes, categorizing them based

on the amount of pre-computation required.

No pre-computation: A general and commonly used

method is Dijkstra’s algorithm [22]. Initially, nodes adjacent

to vs are pushed into a min-heap with their graph distance

from vs (i.e., the weights of the corresponding edges) as

sorting key. The top node v in the heap is iteratively popped,

and expanded; i.e., its adjacent nodes v′ that have not been

encountered before are en-heaped with key equal to the key

of v plus the weight of edge (v, v′). The process stops when

vt is popped; the shortest path is formed by tracing backwards

the expansions that lead to vt. The A* algorithm [23] requires

that a lower bound LB(v, vt) can be computed for the graph

distance between an encountered node v and the target node

vt. The only difference from Dijkstra’s algorithm is that the

key of each en-heaped node v is increased by LB(v, vt). This

leads to a smaller search space and an earlier termination. Bi-
directional search [24] is a paradigm which can be integrated

with other methods. The basic idea is to initiate two concurrent

graph expansions at the source and at the target node. The

shortest path is computed when the two expansions meet.

Partial pre-computation: Partial pre-computation methods

accelerate ad-hoc shortest path queries by pre-computing and

materializing some shortest path information. In arc-flag [25]

the graph nodes are first partitioned. Every edge is assigned

a bit-vector (flag), where each bit corresponds to a partition.

In the flag of edge (vi, vj), the bit for a partition is set to 1

only if there is at least one node v in that partition where the

shortest path from vi to v passes through this edge. Given a

target node vt, search only considers edges whose bit for vt’s

partition is 1.

Landmark A* [26], [27] chooses some landmarks (anchor

nodes) and pre-computes for each node v the graph distance

from v to all landmarks. The distances to the landmarks form

a distance vector. Given the distance vectors of two nodes,

a lower bound can be derived for their graph distance. This

bound is then used by A* algorithm to guide the search.

In HiTi [28] the graph is partitioned using a (Euclidean)

grid of cells. The resulting subgraphs are recursively grouped

into higher level subgraphs, thus forming a subgraph tree. All

distances between the subgraph boundary nodes are computed

and stored in the upper level. A shortest path is computed by

A* algorithm, starting from the lowest level cell where the

source node resides, ascending to the root of the tree and then

descending the tree until the target node is reached. HEPV

[29] works similarly to HiTi.

Other schemes include [30] and [31], two embedding meth-

ods, which materialize node distances from selected sets of

nodes and edges respectively. The former supports only ap-

proximate answers. The latter is theoretical in nature, requiring

integer weights and several graph properties to hold.

Full pre-computation: Full pre-computation schemes mate-

rialize the shortest paths between any two nodes in the graph.

The shortest path quadtree scheme [32] stores for each node

v a colored-quadtree, built on the Euclidean coordinates of

the other graph nodes. The nodes v′ for which the shortest

path (from v) passes through the same incident edge of v
are assigned the same color. In distance index [33] the graph

distance spectrum is partitioned into a number of categories.

Each node v stores the distance category for each other node

v′ in the graph, along with the next node information on

the shortest path from v to v′. Full pre-computation methods

are only applicable to small graphs, due to their high pre-

computation cost and storage overhead.

III. PROBLEM SETTING AND FRAMEWORK

We first describe the problem setting, and then we develop

a subgraph authentication technique, which will be employed

as a functional component in subsequent sections. Table I

summarizes the notation used in the paper.

TABLE I

SUMMARY OF NOTATION

Symbol Description
H(·) Secure hash function

v A node in the node set V
(vi, vj) An edge in the edge set E

W (vi, vj) Weight of edge (vi, vj)
dist(vi, vj) Shortest path distance from vi to vj

Φ(v) Extended-tuple of node v
vs, vt The source and target nodes respectively

ΓT , ΓS The integrity and shortest path proofs respectively



A. Problem Setting

Architectural Framework
We assume the traditional three-party model (illustrated in

Figure 2) that comprises a data owner, a service provider, and

the clients. Let G = (V,E,W ) be a weighted graph, where

V is the set of nodes, E is the set of edges, and W is a

function that maps each edge (vi, vj) ∈ E to a non-negative

weight. We focus on general road networks in which the

edge weights could represent measures other than Euclidean

distances (e.g., they could be toll fees, driving times, etc).

Therefore, Euclidean distance lower bounds are inapplicable

to our target networks.

The data owner possesses a graph G and generates a

public-private key pair. He then builds an authenticated data

structure (ADS) on G. Next, he pre-computes some auxiliary

attributes on G, called authenticated hints, which are utilized

for accelerating the verification process discussed later. In the

last step, he signs on the ADS, and then sends the graph G,

the ADS, and the authenticated hints to the service provider.

At query time, the client submits a shortest path query

(vs, vt) to the service provider, where vs and vt denote the

source and target nodes respectively. The service provider runs

Algorithm 1 to compute the shortest path and the proof. First,

it applies the shortest path algorithm algosp of its choice

to compute a result path Prslt : vz0 , vz1 , · · · , vzk
. The path

distance of Prslt is defined as:

dist(P) =
∑

i∈[1,k]

W (vzi−1 , vzi)

Next, the service provider examines the authenticated hints

and ADS for generating the query proofs ΓS and ΓT (details

are elaborated shortly). Upon receiving the result path Prslt

and the proofs ΓS , ΓT , the client checks whether the returned

path Prslt satisfies both proofs.

Algorithm 1 Service Provider Task

algorithm Service Provider Task(Source vs, Target vt)

1: Prslt := Shortest Path Search(algosp, vs, vt);

2: ΓS := SP Proof Generate(hints,Prslt);

3: ΓT := Integrity Proof Generate(ADS, ΓS);

4: return Prslt, and the proofs ΓS , ΓT , to the client;

Proof Notions
The query proof consists of two components, namely, a

shortest path proof ΓS and an integrity proof ΓT :

• ΓS is used to prove that Prslt is the shortest possible

path, i.e., �P ′ such that dist(P ′) < dist(Prslt).
• ΓT is used to prove that both ΓS and Prslt are authentic,

i.e., vz0 = vs, vzk
= vt, and (vzi−1 , vzi

) ∈ E for each

i ∈ [1, k], where E is the original edge set.

Specifically, at Line 2 of Algorithm 1, the service provider

visits the shortest path Prslt, collects necessary items from the

authenticated hints hints, and inserts them into ΓS . At Line

3, the service provider identifies from the ADS the necessary

items to be included into ΓT for proving the integrity of Prslt

and ΓS .

We distinguish between two different types of the shortest

path proof ΓS : subgraph proof, and distance proof. A subgraph
proof ΓSG

S refers to a subgraph G′ of the original graph G,

such that the client is guaranteed to obtain the actual distance

dist(vs, vt) (for verification) by running a specific shortest

path algorithm on G′. On the other hand, a distance proof
ΓDT

S contains the actual distance value dist(vs, vt) as pre-

computed by the data owner.

The crux of our verification framework is that a path is

correct if (i) the reported path passes through actual nodes

whose connectivity information has not been tampered with

(as proven by ΓT ), and (ii) the distance of the returned path

coincides with the dist(vs, vt) computed by ΓS (either directly

by a distance proof or indirectly by a subgraph proof).

Application Requirements
Our goal is to design a verification solution with the following

two desirable characteristics:

• The proof size should be as small as possible.

• The offline construction cost and storage overhead of

authenticated hints should be low.

B. Subgraph Authentication via a Merkle Tree

The methods where the shortest path proof is a subgraph

proof rely on proving to the user that the corresponding

subgraph G′ contains correct and complete node/connectivity

information, i.e., that G′ contains only existing nodes and that

the full adjacency information for each of them is accurately
reported. On the other hand, in methods where the shortest

path proof is a distance proof, the integrity of nodes compris-

ing the path needs to be proven. Our approach is based on the

MHT authentication paradigm. Note that here we assume that

ΓS is given; ΓS formation is discussed in subsequent sections.

Merkle Tree on Graph Nodes
The data of each node v, including its adjacency information,

are encapsulated into an extended-tuple Φ(v). Specifically,

Φ(v) consists of (i) the attributes of v (e.g., node identifier

v.id, and geo-coordinates v.x, v.y), and (ii) the adjacent node

v′ and edge weight W (v, v′) for each edge incident to v, i.e.:

Φ(v) = 〈v.id, v.x, v.y, {〈v′, W (v, v′)〉 | (v, v′) ∈ E}〉 (1)

For instance, in Figure 3a, the extended-tuple of v16 is:

Φ(v16) = 〈16, 1.0, 6.0, {〈26, 1.0〉, 〈15, 1.0〉}〉. In case graph G
is not a spatial network, its coordinates v.x, v.y are replaced

by null values.

The purpose of our desired network certification ADS would

be achieved if it would be able to authenticate the extended-

tuple Φ(v) of each node v in the subgraph G′ (or in the path)

that corresponds to the shortest path proof ΓS .

Let H(·) be a secure hash function. The digest of a node

v ∈ V is defined as H(Φ(v)). By imposing a particu-

lar graph-node ordering O (to be elaborated shortly), the

data owner is able to build a Merkle tree on Φ(v). For

example, the Merkle tree in Figure 3b is constructed from



the network in Figure 3a. Hash entry h1 is computed as

H( H(Φ(v11)) ◦ H(Φ(v12)) ◦ H(Φ(v13)) ), where ◦ is the

concatenation operator. In a similar fashion, hash entry h13

is defined as H(h1 ◦ h2 ◦ h3). Note that the root entry hroot

needs to be signed by the data owner before the Merkle tree

is sent to the service provider.

y
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v12 v22 v32 v42 v52 v62

v13 v23 v33 v43 v53 v63

v14 v24 v34 v44 v54 v64
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v16 v26 v36 v46 v56 v66
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Fig. 3. Example of a network and its certification

Subgraph Authentication
Having the shortest path proof ΓS , the service provider gen-

erates the integrity proof ΓT as follows. According to [11], a

hash entry hi is inserted into the integrity proof ΓT if: (i) the

subtree of hi contains no tuple Φ(v) in ΓS , and (ii) the parent

hash entry of hi does not satisfy condition (i).

Let us consider the example in Figure 3 again.

Suppose that the service provider wishes to send the

client a subgraph G′ that contains nodes v32, v33,

and v42 (and their incident edges). Thus, it builds set

ΓS = {Φ(v32), Φ(v33), Φ(v42)}. It then examines the

Merkle tree and generates the integrity proof as: ΓT =
{H(Φ(v31)), H(Φ(v41)), H(Φ(v43)), h1, h2, h5, h6, h18}. At

the client side, sets ΓS and ΓT are combined to reconstruct

the root hash hroot, which is then checked against the signed

root hash. If it matches, then integrity is proven.

The size of the integrity proof ΓT depends on the graph-

node ordering O used in the Merkle tree. A desirable ordering

should preserve the proximity of graph nodes in the network.

The following are possible ordering choices:

• Random ordering of nodes.

• Hilbert ordering of nodes.

• Spatial partitioning (e.g., kd-tree) ordering of nodes.

• Depth-first ordering of nodes.

• Breadth-first ordering of nodes.

As we will see in the experiments, Hilbert ordering and depth-

first ordering succeed in preserving the proximity of graph

nodes, and consequently lead to a smaller proof size than the

other orderings.

Having elaborated the computation of the integrity proof

ΓT , we turn our focus on building the shortest path proof ΓS

in the subsequent sections.

IV. BASIC SOLUTIONS

This section presents basic solutions for computing the

shortest path proof ΓS . For the sake of convenience, we

overload the use of Γ for representing ΓS .

A. Dijkstra Subgraph Verification (DIJ)

We first develop a method called Dijkstra subgraph verifi-

cation (DIJ). It employs a subgraph proof ΓSG
S for Γ.

Proof Computation
Let vs and vt be the source node and the target node respec-

tively. Recall that the extended-tuple Φ(v) of a node v consists

of both the attributes of v and the full information of its

incident edges. The crucial question is for which nodes should

Φ(v) be inserted into the proof Γ. If every Φ(v) is inserted into

Γ, then Γ contains sufficient information for verification but

its size is too large. We aim at generating a proof that contains

sufficient, yet no unnecessary, information for verification.

Lemma 1 shows that the service provider can generate a

valid proof Γ by including the Φ(v) of each node v that is

within distance dist(vs, vt) from vs.

Lemma 1: Dijkstra subgraph containment.
If Γ = {Φ(v) | v ∈ V, dist(vs, v) ≤ dist(vs, vt)}, then the

shortest path distance from vs to vt (computed by Dijkstra’s

algorithm) in the subgraph defined by Γ is the same as the

shortest path distance dist(vs, vt) in the original graph G.

Proof: Since all edge weights are non-negative, Dijkstra’s

algorithm visits the nodes in ascending order of their distances

from vs (according to [22]). Thus, proof Γ contains all nodes

required by Dijkstra’s algorithm for the computation of the

shortest path distance from vs to vt.

Shortest Path Verification
Note that a malicious service provider could remove some

tuples from the shortest path proof Γ and then insert their

corresponding digests into the integrity proof. This way, the

integrity proof remains correct but the modified Γ is no longer

a valid shortest path proof. It is essential that the client’s

verification method is able to check the validity of Γ.

First, the client applies Dijkstra’s algorithm on the subgraph

defined by proof Γ, in order to compute the shortest path

distance dist(vs, vt). The proof is said to be valid if each

node required by Dijkstra’s algorithm can be found in Γ. If

(i) Γ is valid, and (ii) the shortest path distance dist(vs, vt)
on Γ is the same as the distance of the path reported by the

service provider, then the path is deemed correct.



Example
We illustrate the computation of proof Γ with the example in

Figure 4. Suppose that the weight of each edge equals to 1.0.

The source node vs = v33 and the target node vt = v44 are

shown in black.

Observe that the shortest path distance from v33 to

v44 is 2.0. Thus, each node v that is within distance 2.0

from vs = v33 will have its extended-tuple Φ(v) inserted

into the proof. Note that the incident edges of those

nodes (shown as bold edges) can be found from Φ(v).
Overall, the proof contains the extended-tuples of nodes:

v33, v34, v23, v32, v43, v35, v24, v13, v22, v31, v42, v53, v44

(shown in gray and black colors).

v11 v21 v31 v41 v51 v61

v12 v22 v32 v42 v52 v62

v13 v23 v33 v43 v53 v63

v14 v24 v34 v44 v54 v64

v15 v25 v35 v45 v55 v65

v16 v26 v36 v46 v56 v66

Fig. 4. The subgraph proof of DIJ with vs = v33 and vt = v44

B. Fully Materialized Distances (FULL)

In this section we present the FULL method, which utilizes

materialized network distances among all pairs of graph nodes.

Unlike the DIJ method described earlier, FULL employs a

distance proof ΓDT
S for Γ, which is much more concise than

the subgraph proof used in DIJ.

Building the Authenticated Structure
First, the data owner applies the Floyd-Warshall algorithm to

compute the shortest path distance dist(vi, vj) for each pair

of nodes vi, vj ∈ V . This pre-computation’s time complexity

is O(|V |3) and the total number of materialized distances is

O(|V |2); note that both complexities explode with the number

of nodes and, thus, FULL is only feasible for relatively small

road networks.

Next, these distances are stored as tuples in the form

of 〈vi.id, vj .id, dist(vi, vj)〉 in a Merkle B-tree, using

(vi.id, vj .id) as the composite key. Observe that the height

of the tree is O(f · logf |V |2) = O(f · logf |V |), where f is

the fanout of tree nodes.

In addition to the road network Merkle tree described in

Section III-B, the above distance Merkle tree is also an ADS

and it has to be signed by the data owner and uploaded to the

service provider.

Proof Computation
Let vs and vt be the source and target nodes respectively. The

service provider first inserts tuple 〈vs.id, vt.id, dist(vs, vt)〉
into the proof Γ. Along the tree path from the above tuple to

the Merkle tree root node, the digests of sibling nodes are also

inserted into Γ. Thus, the size of proof Γ is O(f · log|V |).
Shortest Path Verification
The client first combines the digests in Γ into a root digest,

and then checks whether it matches the signed root digest of

the Merkle tree. If so, then the client checks whether value

dist(vs, vt) is identical to the distance of the path returned

by the service provider. In case both conditions are satisfied

and ΓT successfully proves the integrity of all path nodes, the

reported shortest path is considered correct.

V. TOWARDS PRACTICAL AUTHENTICATED HINTS

Although the basic solutions DIJ and FULL presented in

Section IV do succeed in providing verification means for

shortest path queries, they suffer from serious performance

limitations. In particular, DIJ produces very large proofs

(which translates to high communication cost), while FULL

is impractical for large networks because its pre-computation

cost and storage overhead become prohibitively high (O(|V |3)
time and O(|V |2) space respectively, which are unaffordable

even for moderately sized networks). The above shortcomings

motivate us to devise practical verification solutions; the

methods presented in this section require the data owner to

pre-compute a small amount of authenticated hints, and yet

enable the service provider to generate proofs of small size.

A. Landmark-based Verification Method (LDM)

We now present the landmark-based verification method

(LDM). It involves three parameters: the number c of land-

marks, the number b of bits for distance quantization, and

the threshold ξ for distance compression. LDM employs a

subgraph proof ΓSG
S for Γ.

This method exploits landmarks [26], [27] for deriving

tight lower bound distances among the nodes, thus effectively

reducing the proof size. Nevertheless, a large number of

landmarks would also incur high overhead in the proof size.

To tackle this challenge, we apply distance quantization and

compression techniques for substantially reducing the size of

landmark information per node, by sacrificing only a small

portion of its utility.

Review on the Landmark Approach
We first briefly describe the notation used in the landmark

approach [26], [27] for shortest path computation.

Let s1, s2, · · · , sc be the (chosen) landmark nodes, where

c is the number of landmarks used. Concrete methods for

choosing landmarks can be found in [26], [27]. The landmark
distance vector of a node v is defined according to its shortest

path distances to the landmarks:

Ψ(v) = 〈dist(s1, v), dist(s2, v), · · · , dist(sc, v)〉 (2)

The lower bound distance between two nodes v and v′ is

defined as follows:

distLB(v, v′) = max
i∈[1,c]

|dist(si, v) − dist(si, v
′)| (3)



Theorem 1 shows that the lower bound distance

distLB(v, v′) is always less than or equal to the actual distance

dist(v, v′) between v and v′.
Theorem 1: Lower bound property (from [26], [27]).

It holds that distLB(v, v′) ≤ dist(v, v′) for any v, v′ ∈ V .
Figure 5a depicts an example of a road network. Suppose

that nodes v2 and v7 are chosen as landmarks. The distances

of each node to the landmarks are shown in Figure 5b. The

lower bound distance between nodes v3 and v8 is computed

as: distLB(v3, v8) = max{|1− 9|, |7− 3|} = max{8, 4} = 8.

Note that distLB(v3, v8) ≤ dist(v3, v8), as dist(v3, v8) = 10.

Digest Hash Verification Framework
In order to capture the landmark distance vector Ψ(v), we re-

define the extended-tuple Φ(v) of a node v to include Ψ(v)
as follows:

Φ(v) = 〈v.id, v.x, v.y,Ψ(v), {〈v′, W (v, v′)〉 | (v, v′) ∈ E}〉
(4)

By utilizing the landmark-based lower bound distance

distLB(·), Lemma 2 shows how to generate proof Γ in the

LDM method.
Lemma 2: A* subgraph containment.

If Γ = {Φ(v), Φ(v′) | (v, v′) ∈ E, v ∈ V, dist(vs, v) +
distLB(v, vt) ≤ dist(vs, vt)}, then the shortest path distance

computed on Γ by the A* search is identical to the shortest

path distance dist(vs, vt) on the original graph G.
Proof: To compute the shortest path between vs and vt,

the A* search needs to access the graph nodes v satisfying

dist(vs, v) + distLB(v, vt) ≤ dist(vs, vt). For each adjacent

node v′ of the node v, the landmark vector of v′ will also be

examined (by the A* search) to check whether v′ satisfies the

above condition. Thus, proof Γ must contain both Φ(v) and

Φ(v′).
The example in Figure 5 illustrates how to build the shortest

path proof Γ. Suppose that the source and target nodes are

vs = v1 and vt = v9 respectively. Note that the shortest

path distance dist(v1, v9) is 12. For node v2, we derive

dist(vs, v2) + distLB(v2, vt) = 2 + 14 = 16 > 12, so

v2 needs not be inserted into Γ at this stage. Similarly,

nodes v3, v4, v5 are not inserted into Γ. On the other hand,

nodes v1, v6, v7, v8, v9 satisfy the inequality dist(vs, v) +
distLB(v, vt) ≤ dist(v1, v9), so the extended-tuples of those

nodes and their adjacent nodes are inserted into Γ. For

instance, v2 is now inserted into Γ because it is adjacent to v1.

In summary, the proof consists of extended-tuples of nodes:

v1, v6, v2, v7, v8, v9.
At the client side, the verification procedure presented in

Section IV-A may also be applied in LDM, with the difference

that Dijkstra’s algorithm must be replaced by A* search using

the landmark-based lower bound distance distLB(·).
Quantization of Distance Vectors
A closer look reveals that the distance vector Ψ(v) incurs

significant overhead in the size of the extended-tuple Φ(v)
in the proof. To reduce the size of the proof, we propose to

quantize each landmark distance by a binary number of b bits,

where the value of parameter b is decided by the data owner.
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Node v dist(v2, v) dist(v7, v)

v1 2 4
v2 0 6
v3 1 7
v4 3 9
v5 4 10
v6 5 1
v7 6 0
v8 9 3
v9 14 8

(a) Network (b) Landmark distances

Fig. 5. Example of LDM with vs = v1 and vt = v9

Let Dmax be an upper bound value of all the landmark

distances. The quantized increment value λ is defined as:

λ =
Dmax

2b − 1
The data owner then converts each landmark distance

dist(si, v) into the following quantized distance distb(si, v),
which can be represented using b bits:

distb(si, v) = λ · round
(

dist(si, v)
λ

)
(5)

where function round returns the nearest integer to its input

value.
Lemma 3 shows that distance distloose

LB (v, v′) (of Equation

6) is always lower than or equal to the original lower bound

distance distLB(v, v′).

distloose
LB (v, v′) = max { 0, −λ + (6)

max
i∈[1,c]

|distb(si, v) − distb(si, v
′)| }

Lemma 3: Quantized distance lower bound.
Given any pair of nodes v and v′, it holds that

distloose
LB (v, v′) ≤ distLB(v, v′).
Proof: Let δi = distb(si, v) − dist(si, v). According to

Equation 5 and the properties of the round function, we have:

|δi| ≤ 0.5 ·λ. Similarly, we let δ′i = distb(si, v
′)−dist(si, v

′),
and derive: |δ′i| ≤ 0.5 · λ.

In Equation 3, term |dist(si, v) − dist(si, v
′)| can be re-

written as |(distb(si, v) − distb(si, v
′)) + (δ′i − δi)|, which

is lower-bounded by |distb(si, v)− distb(si, v
′)| − |δ′i| − |δi|,

using the triangular inequality. Thus, we have: |dist(si, v) −
dist(si, v

′)| ≥ |distb(si, v) − distb(si, v
′)| − λ.

By applying the above derivation for each i ∈ [1, c], we

obtain: distloose
LB (v, v′) ≤ distLB(v, v′).

As an example, we demonstrate how to quantize the land-

mark distances in Figure 5b. Value Dmax = 14 is the

maximum of all landmark distances. Assuming that b = 3,

we have λ = 14/7 = 2. The resulting quantized landmark

distances of the nodes are shown in Figure 6a. For instance,

the original distance vector of v4 is 〈3, 9〉, which is quantized

to 〈2 · round(3/2), 2 · round(9/2)〉 = 〈4, 10〉. Its binary

representation is 〈0102λ, 1012λ〉.
Compression of Distance Vectors
We propose a distance compression technique to further reduce



Node v distb(v2, v)distb(v7, v)

v1 2 0012λ 4 0102λ
v2 0 0002λ 6 0112λ
v3 2 0012λ 8 1002λ
v4 4 0102λ 10 1012λ
v5 4 0102λ 10 1012λ
v6 6 0112λ 2 0012λ
v7 6 0112λ 0 0002λ
v8 10 1012λ 4 0102λ
v9 14 1112λ 8 1002λ

Node v distb(v2, v) distb(v7, v)

v1 (θ, ε) = (v2, 2)
v2 0 6
v3 (θ, ε) = (v2, 2)
v4 4 10
v5 (θ, ε) = (v4, 0)
v6 6 2
v7 (θ, ε) = (v6, 2)
v8 10 4
v9 14 8

(a) Quantized distances, λ = 2 (b) Compressed distances, ξ = 2

Fig. 6. Example of quantized and compressed distances in LDM

the size of the distance vector Ψ(v) in the extended-tuple

Φ(v) in the proof. The data owner specifies a threshold

parameter ξ for distance compression, which in turn controls

the tightness of lower bounds derived from the compressed

distances. The quantized distance difference between nodes v
and v′ is defined as:

ε(v, v′) = max
i∈[1,c]

|distb(si, v) − distb(si, v
′)|

In our distance compression algorithm, each node v is

associated with (i) a reference node v.θ, and (ii) a compression

error v.ε. It is an iterative greedy algorithm that attempts to

maximize the number of nodes whose distance vectors can be

represented by others within an error no larger than ξ. In each

iteration, it first finds a node vrep such that the cardinality of

set S = {v′ ∈ V | ε(v′, vrep) ≤ ξ} is maximized, and then

represents the distance vectors of S by using that of vrep. The

above procedure is repeated on the remaining uncompressed

nodes in V , until no further compression is possible.

The following lemma shows that, after applying our com-

pression method, we need to replace the lower bound distance

distloose
LB (v, v′) by distance distloose

LB (v.θ, v′.θ) − (v.ε + v′.ε)
in the proof computation and verification steps.

Lemma 4: Compressed distance lower bound.
For any pair of nodes v and v′, it holds that

distloose
LB (v.θ, v′.θ) − (v.ε + v′.ε) ≤ distloose

LB (v, v′), where

v.ε = ε(v, v.θ) and v′.ε = ε(v′, v′.θ).
Proof: By the triangular inequality, we have:

ε(v.θ, v′.θ) ≤ ε(v.θ, v)+ε(v, v′)+ε(v′, v′.θ). Thus we obtain:

ε(v.θ, v′.θ) ≤ ε(v, v′) + v.ε + v′.ε. Note that distloose
LB (v, v′)

can be re-written as max{0, ε(v, v′) − λ}.

By subtracting λ from both sides of the above inequality,

we have: distloose
LB (v.θ, v′.θ) ≤ distloose

LB (v, v′) + v.ε + v′.ε.

Thus, the lemma is proven.

According to our compression algorithm described earlier,

we know that values v.ε and v′.ε (in Lemma 4) are upper

bounded by the value of parameter ξ. In other words, ξ
determines the tightness of lower bounds derived from the

compressed distances.

Figure 6b shows an example of compressing the quantized

distances obtained from Figure 6a. Suppose that the distance

compression threshold is set to ξ = 2. For instance, node v2

is a representative node and nodes v1, v3 satisfy ε(v′, v2) ≤ ξ.

Thus, we set v1.θ = v2 and v1.ε = ε(v1, v2) = 2. Similarly, we

set v3.θ = v2 and v3.ε = 2. The other representative nodes are

v4 and v6; they are used for compressing the distance vectors

of v5 and v7 respectively. Note that nodes v8 and v9 are not

compressed as they lie too far away from any representative

node.

B. Hyper-graph Verification Method (HYP)

Our last verification scheme is the hyper-graph verification

method (HYP). To reduce the communication cost, HYP first

generates a subgraph proof ΓSG
S on a concise coarse graph

and then produces a distance proof ΓDT
S on the original fine

graph.

In HYP we use: (i) an adapted version of the graph

node Merkle tree presented in Section III-B (in order to

certify the nodes and edges in the road network), and (ii) a

distance Merkle tree for the hyper-edges in the HiTi graph

[28] reviewed next (which helps authenticate the shortest path

distance between the source and the target node).

Review on HiTi Graph
The HiTi graph is a multi-level hierarchical structure, which

was proposed originally for efficient shortest path distance

computation. Performance investigation in [28] has shown that

a 2-level HiTi graph achieves similar query performance to

higher-level HiTi graphs. Thus, in subsequent discussions we

focus on its 2-level version.

Figure 7a illustrates how to build the HiTi graph. First, the

nodes in the network are partitioned into grid cells Ci based

on their coordinates. Consider a node v in cell Ci. Node v
is called a border node if it is adjacent to a node in another

cell Cj . Otherwise, it is called an inner node. For instance, in

cell C11, v2 and v3 are border nodes (shown in gray color)

whereas v1 is an inner node.

Given any two border nodes v and v′, we define a hyper-
edge E∗(v, v′) between them1, whose weight W ∗(v, v′) is

set to the shortest path distance dist(v, v′). Solutions of [28]

can be applied for pre-computing those W ∗(v, v′) values

and storing them into a disk-based index. In the example

of Figure 7a, nodes v2, v3, v22, v24 are border nodes; the

hyper-edges connecting them are: E∗(v2, v3), E∗(v2, v22),
E∗(v2, v24), E∗(v3, v22), E∗(v3, v24), E∗(v22, v24). For ease

of illustration, the other hyper-edges are not shown here.

Digest Hash Verification Framework
As mentioned above, network information is certified using a

modified version of the graph node Merkle tree. The tree is

built identically to Section III-B, the difference being that the

extended-tuple Φ(v) of a graph node v is re-defined as:

Φ(v) = 〈 v.id, v.x, v.y, {〈v′, W (v, v′)〉 | (v, v′) ∈ E},
v.c, v.is border 〉 (7)

where v.c is the cell identifier of v, and v.is border indicates

whether v is a border node or not. Note that the definition of

Φ(v) is not affected by the existence of a HiTi graph.

1An important difference from [28] is that we now maintain a hyper-edge
for any pair of border nodes, not just for borders within the same cell.
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Fig. 7. Example of HYP with vs = v1 and vt = v23

The second ADS utilized in HYP is a distance Merkle tree
which certifies the hyper-edges and their weights. This is a

Merkle B-tree materialized in a fashion similar to the FULL

method.

Subgraph Proof on a Concise Coarse Graph
Let vs and vt be the source and target nodes respectively. The

service provider first generates the proof in a coarse graph (see

Figure 7b).

In the first step, the service provider conceptually formulates

a coarse graph Gcoarse which contains the extended-tuple

Φ(v) for every node v that satisfies either v.c = vs.c or

v.c = vt.c. Consequently, the tuples in Gcoarse cover all

edges in the source and target cells, as well as all hyper-edges

connecting the border nodes in those two cells.

By applying Theorem 2 (proven in [28]), we infer that the

shortest path distance (between vs and vt) on Gcoarse is the

same as the actual distance dist(vs, vt) (on the original graph

G).

Theorem 2: Border node passage (from [28]).
Let P be the actual shortest path from the source node vs to

the target node vt. Let vi be a node on P (if any) such that

vi.c 	= vs.c and vi.c 	= vt.c. It holds that within cell vi.c there

exist two border nodes vh and vj such that vi appears after

vh and vi appears before vj on the path P . The shortest path

distance from vh to vj is identical to the hyper-edge weight

W ∗(vh, vj).
Based on the above theorem, the server includes the follow-

ing information into the shortest path proof: (1) the extended

tuples of all nodes in the source cell and the target cell, (2)

each hyper-edge E∗(vbsi
, vbtj

) where vbsi
is any border node

in the source cell and vbtj
is any border node in the target

cell. Then, the server generates the integrity proof for (1) and

(2) separately, by using the road network Merkle tree and the

distance Merkle tree respectively.

Upon receiving the proof, the client is able to run Dijkstra’s

algorithm on Gcoarse’s source cell and target cell, using the

original graph’s nodes/edges which are within the source cell

and target cell. This step verifies the distances from the source

node to any border node of the source cell and the distances

from any border node of the target cell to the target node.

After that, the client combines these distances with the weights

of hyper-edges that connect border nodes between the source

and target cells. This way, the client is able to obtain the

actual shortest path length between vs and vt, and compare it

against the length of the path reported by the service provider.

Figure 7b shows an example of the coarse proof. The proof

includes (certified information about) the hyper-edges between

the set of source border nodes (v2 and v3) and the set of target

border nodes (v22 and v24), i.e., hyper-edges E∗(v2, v22),
E∗(v2, v24), E∗(v3, v22), E∗(v3, v24). The proof also contains

(the certified information of) all inner nodes in the source and

target cells.

The shaded regions (in cells C11 and C34) correspond to the

subgraphs in the proof for the cells of the source and target

nodes. The shortest path on the hyper-graph, i.e., hyper-edge

E∗(v2, v24), is indicated by a bold line. The weight of this

hyper-edge (26) is shown above it in bold.

Distance Proof on the Original Fine Graph
Having verified the correctness of the coarse proof, in the

second step, the service provider generates a fine proof as the

integrity proof of all nodes on the shortest path. The client

just needs to check whether the path distance of the fine proof

is the same as the shortest path distance of the coarse proof.

If so, then the shortest path returned by the service provider

is considered correct.

Figure 7c depicts an example of the fine proof. It con-

tains the inner nodes (in white color) of the shortest path

in intermediate cells. Let us consider the detailed sub-path

between v2 and v24. The client can check that the sum of

weights along the sub-path is equal to the weight of hyper-edge

W ∗(v2, v24) = 26. Thus, the detailed sub-path is regarded as

correct. The main advantage of the HYP method is that there is

no need to produce subgraph proofs for nodes in intermediate

cells, thus significantly reducing the total size of the proof.

In practice, both the coarse and the fine proof are combined

into a single proof, which can be sent to the client in a single
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Fig. 8. Performance comparison under default setting

step. This way, the size of the integrity proof is reduced.

VI. EXPERIMENTAL STUDY

In this section we study the performance of DIJ, FULL,

LDM and HYP in terms of the communication overhead (i.e.,

the cumulative size of shortest path proof and integrity proof)

and the offline construction time (i.e., the time required to pre-

compute the authenticated hints of each approach). We found

out that the proof generation cost at the service provider and

the proof verification cost at the client are roughly proportional

to the proof size. Thus, we do not report those measurements

here, but need to mention that client verification takes less

than 100msec for FULL, LDM and HYP, and around 1.5sec

for DIJ in our default setting. In the experiments we test the

scalability of all methods under different network sizes, graph-

node orderings, Merkle tree fanouts, and query ranges.

A. Experiment Setup

Table II shows the parameters used in our empirical study;

the default values are shown in bold. In each experiment, we

vary one parameter and set the others to their default values.

We use four different real spatial network datasets, obtained

from http://www.maproom.psu.edu/dcw/. They are:

DE (28,867 nodes and 30,429 edges), ARG (85,287 nodes

and 88,357 edges), IND (149,566 nodes and 155,483 edges)

and NA (175,813 nodes and 179,179 edges). We normalize

each network so that its nodes’ x and y coordinates fall into a

[0..10, 000] range. We investigate the effect of five graph-node

ordering methods: breadth-first (bfs), depth-first (dfs), Hilbert

ordering (hbt), kd-tree based (kd) and random (rand).

The query range (with default value 2,000) represents the

shortest path distance used for the query workload. Specifi-

cally, we generate a workload with 100 source-target (vs, vt)
pairs, such that the shortest path distance between the source

node vs and the target node vt is as close to the query range as

possible. Besides the parameters shown in Table II, LDM does

involve additional settings; we fix the distance compression

threshold ξ and the number of quantization bits b to 50.0 and

12 respectively. Due to lack of space, the effect of ξ and b on

the performance of LDM is not studied here.

B. Performance Study

Performance comparison under default setting
In this experiment we set all the parameters to their default val-

ues and study the performance of the four methods. Figure 8a

TABLE II

EXPERIMENT PARAMETERS

Parameter Value Range
Dataset DE, ARG, IND, NA

Graph-node ordering bfs, dfs, hbt, kd, rand
Query range (x1000) 0.25, 0.5, 1, 2, 4, 8
Merkle tree fanout 2, 4, 8, 16, 32

Number of landmarks (c) - LDM 50, 100, 200, 400, 800
Number of cells (p) - HYP 25, 49, 100, 225, 400, 625

shows the communication overhead (i.e., the size of proofs in

KBytes), while Figure 8b shows the total number of items in

ΓS and ΓT . Since DIJ results in very large communication

overhead, we truncate its bars and present its measurements

as plain numbers next to the bars. We decompose the com-

munication overhead into two parts: the size of the shortest

path proof ΓS (S-prf, lower part of each bar) and that of the

integrity proof ΓT (T-prf, upper part of each bar). DIJ incurs

a huge total communication overhead which is about 10 times

that of LDM, 18 times of HYP and 40 times of FULL; the

reason is that DIJ expands all the nodes which are within the

shortest path distance between vs and vt, and includes them

into the proof. Unlike DIJ, the other three methods benefit

from the pre-computed information and thus avoid thorough

expansion. FULL incurs the smallest communication overhead

since its ΓS proof verifies a single value (in the distance

Merkle B-tree), while ΓT verifies only the extended-tuples of

nodes along the shortest path (in the network Merkle tree).

On the other hand, since HYP shares the advantages of FULL

on the coarse graph (which is much smaller than the original

graph), it incurs a smaller communication overhead than LDM.

Figure 8c shows the offline construction time (in logarithmic

scale); DIJ is omitted since it requires no pre-computation of

authenticated hints. FULL is about 60 to 150 times slower

than LDM and HYP, which confirms our claims in Section

IV-B that it is impractical for large road networks. HYP has

longer construction time than LDM because it materializes the

distances between any pair of border nodes.

Performance comparison under different datasets
In Figure 9 we compare the performance of our verification

methods for different datasets. Figure 9a shows that the

relative performance of FULL, LDM and HYP in terms of

communication overhead is similar for different datasets. DIJ

always incurs very large communication overheads, while the



proofs of LDM and HYP are much smaller and only slightly

larger than FULL. Figure 9b depicts the offline construction

time (in logarithmic scale). When the network size increases,

the pre-computation time of FULL explodes due to its O(|V |3)
complexity.

Effect of graph-node ordering methods
Next, we experiment with different graph-node orderings (see

Table II). Unlike conventional database query verification, in

which the result is either a single tuple (equality search) or

a set of tuples (range search) residing contiguously in the

authenticated structure (e.g., a Merkle B-tree), in shortest path

query verification, the nodes involved in the verification are

not necessarily placed close to each other in the Merkle tree.

Figure 10 shows the proof size of our methods for different

graph-node orderings. rand leads to the largest communication

overhead, while bfs is the second worst ordering. hbt, kd
and dfs demonstrate similar performance with each other. The

reason is that hbt, kd and dfs all preserve to a decent (and

similar) degree the locality of the network, which implies that

proof items tend to share many sibling digests in the internal

levels of the corresponding Merkle tree.

Effect of Merkle tree fanout
This experiment investigates the impact of the Merkle tree

fanout, i.e., of the number of children each Merkle tree node

can have. Figure 11a shows that the proof size of each method

increases when the fanout increases. The reason is that the

larger the fanout, the larger the number of sibling Merkle tree

digests that need to be included in ΓT . All methods achieve

their best performance when the Merkle tree fanout is 2. On

the other hand, the relative performance of the methods is not

affected by the Merkle tree fanout. LDM and HYP consistently

outperform DIJ in terms of communication overhead (about

10-18 times smaller), while they are just 2.5-4 times worse

than FULL.

Effect of query range
Next, we study the effect of query range on the communication

overhead. A larger query range leads to a larger search space,

a larger number of edges in the reported shortest path, and

thus an increase in proof size. Figure 11b shows that as

the query range expands, all the methods’ communication

overhead increases, but the performance gap between HYP

and FULL shrinks from 2.8 (query range=1,000) to 1.7 times

(query range=8,000). On the other hand, the proof of LDM is

from 3.5 (query range=1,000) to 6.6 times (query range=8,000)

larger than FULL. Note that the proof of DIJ is 3.9MBytes

for query range=8,000, which is a prohibitive communication

burden for most applications.

Performance evaluation of LDM
Next, we focus on LDM, and specifically on the effect of the

number of landmarks c. Figure 12a plots the communication

overhead versus c. When the number of landmarks increases,

the proof size decreases, because the more the landmarks, the

tighter the distance lower bound, and thus the smaller the

search space. Figure 12b shows that the offline construction

time of LDM is slightly superlinear to c.

Performance evaluation of HYP
Our final experiment evaluates the performance of HYP in

terms of communication overhead and offline construction

time with respect to the number of cells p used to create the

HiTi graph. The increase of p means a decrease in the extent

of the cells and a decrease in the number of border nodes in

each cell. Thus, it results in smaller search spaces in the source

cell and the target cell (for generating ΓS). Also, the number

of hyper-edges between source cell and target cell decreases

dramatically. Hence, the communication overhead decreases

with p (see Figure 13a). On the other hand, as shown in Figure

13b, the construction time increases in a sublinear way.
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Summary
In summary, the experimental evaluation shows that although

DIJ requires no pre-computation, it incurs the largest commu-

nication overhead. On the other hand, FULL has the smallest
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proof, but it is impractical for large networks due to its exces-

sive pre-computation cost. LDM and HYP achieve graceful

tradeoffs between pre-computation time and communication

overhead. We expect HYP’s tradeoff to be more desirable than

LDM for most real applications.

VII. CONCLUSION

In this paper we introduce the shortest path verification

problem and identify its important applications in online

search services. After examining the shortcomings of two basic

verification solutions (DIJ and FULL), we propose the concept

of authenticated hints and develop two methods (LDM and

HYP) for efficient shortest path verification. LDM utilizes

distance quantization and distance compression techniques for

reducing the overall proof size, whereas HYP exploits a 2-level

graph structure for generating a compact proof. Experiment

results suggest that both LDM and HYP strike a good balance

between offline construction time and proof communication

overhead, with HYP typically being preferable over LDM. A

promising future direction is to develop a model for estimating

the proof size for shortest path verification.
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