
Interactive SQL Query Suggestion: Making

Databases User-Friendly

Ju Fan 1, Guoliang Li 2, Lizhu Zhou 3

Department of Computer Science and Technology, Tsinghua University

Tsinghua University, Beijing 100084, China
1fan-j07@mails.tsinghua.edu.cn

{2liguoliang,3dcszlz}@tsinghua.edu.cn

Abstract— SQL is a classical and powerful tool for querying
relational databases. However, it is rather hard for inexperienced
users to pose SQL queries, as they are required to be proficient in
SQL syntax and have a thorough understanding of the underlying
schema. To give users gratification, we propose SQLSUGG, an
effective and user-friendly keyword-based method to help various
users formulate SQL queries. SQLSUGG suggests SQL queries
as users type in keywords, and can save users’ typing efforts
and help users avoid tedious SQL debugging. To achieve high
suggestion effectiveness, we propose queryable templates to model
the structures of SQL queries. We propose a template ranking
model to suggest templates relevant to query keywords. We
generate SQL queries from each suggested template based on
the degree of matchings between keywords and attributes. For
efficiency, we propose a progressive algorithm to compute top-k
templates, and devise an efficient method to generate SQL queries
from templates. We have implemented our methods on two real
data sets, and the experimental results show that our method
achieves high effectiveness and efficiency.

I. INTRODUCTION

Structured query languages (e.g., SQL) are indispensable

and powerful tools for many kinds of users, e.g., advanced

searchers, database administrators, and SQL programmers.

However, it is hard and tedious for inexperienced users to pose

structured queries that satisfy their query intent, since the users

are required to be proficient in writing the query languages

and have a thorough understanding of the schema. On the

other hand, they may encounter comprehension difficulties,

formulation problems, and unclear error messages while using

SQL. They have to refer to manuals and repeatedly try

different SQL queries to obtain expected results [15], if lucky

enough.

To address these problems, many assistant tools have been

developed to help users formulate structured queries. For

example, SQL Assistant1 is a well-known system which can

suggest table names, attribute names, preserved words in SQL

syntax, etc. However, these tools still have the following

limitations: 1) they cannot support the suggestion of data

instances; 2) they require users to manually join multi-tables

in an appropriate way. In other words, the SQL Assistant

users should be skillful in writing SQL queries based on their

information needs.

In order to reduce the burden of posing queries, the database

community has started to introduce keyword search into re-

1http://www.softtreetech.com/isql.htm

lational databases [2,7,9,13]. This search paradigm allows

users to pose keyword queries without having to understand

the database schema and SQL syntax. Although keyword

search may be acceptable for casual users, it is insufficient

for the users who have to pose SQL queries, e.g., database

administrators and SQL programmers, since keyword search

cannot precisely capture users’ query intent and may involve

irrelevant results. Even worse, keyword search mixes all the

answers together, and even if the answers have different

structures, keyword search cannot group the answers.

count database author

Fig. 1. An SQLSUGG-based system for publication search

To address these limitations, we propose a novel

search paradigm, called interactive SQL query SUGGestion

(SQLSUGG), which combines the convenience of keyword

search and the power of SQL. In our approach, as users

type in query keywords, we on-the-fly suggest the top-k most

relevant SQL queries based on the keywords, and users can

select SQL queries to retrieve the corresponding answers.

For example, Figure 1 provides a screen shot of an SQL-

SUGG-based system for publication search. Consider a query

“count database author”, an SQLSUGG user will obtain a

ranked list of SQL queries. The first SQL query is to find the

number of papers with title containing “database” for each

author. SQLSUGG can provide graphical representation and

sample results to each suggested SQL query. The user can

refine keywords as well as the suggested queries to obtain the

desired results interactively.

An SQLSUGG-based method has the following advantages.

Firstly, it helps users formulate (even complicated) structured

queries based on limited keywords. Therefore, it can not only

TABLE I

AN EXAMPLE DATABASE (JOIN CONDITIONS: PAPER.ID = WRITE.PID AND AUTHOR.ID = WRITE.AID).

(a) PAPER (b) AUTHOR (c) WRITE

id title booktitle year

P1 database ir tois 2009

P2 xml name count tois 2009

P3 evaluation database theory 2008

P4 database ir database theory 2008

P5 database ir xml ir research 2008

id name

A6 lucy

A7 john ir

A8 tom

A9 jim

A10 gracy

id pid aid id pid aid

W11 P2 A6 W16 P3 A6

W12 P1 A7 W17 P4 A7

W13 P5 A7 W18 P4 A8

W14 P2 A9 W19 P5 A9

W15 P3 A10 W20 P5 A10

reduce the burden of posing queries, but also boost SQL

coding productivity significantly. Secondly, SQLSUGG helps

users express their query intent more precisely than keyword

search, especially for users who pose complex queries. Thirdly,

as each SQL query represents a structure of the underlying

data, our method inherently groups the answers and helps users

browse the answers.

We study the research challenges that naturally arise in the

proposed search paradigm. The first challenge is to infer users’

query intent, including structures and aggregations, from lim-

ited keywords. We propose queryable templates (“templates”

for short) to model the structures of promising SQL queries.

We propose a probabilistic model to measure the relevance

between a template and a keyword query for suggesting

relevant templates. The second challenge is to generate SQL

queries from templates. We generate SQL queries by matching

keywords to attributes in templates, and rank the generated

SQL queries based on the degree of matchings between key-

words and attributes, and query abilities of matched attributes.

The third challenge is the search efficiency. We devise a

top-k algorithm to suggest templates relevant to keyword

queries. We also propose a greedy approximation algorithm to

generate SQL queries from templates. We have implemented

our methods on two real data sets, and the experimental results

show that our method achieves high search efficiency and

result quality.

To summarize, we make the following contributions.

1) We propose a template-based framework, which sug-

gests SQL queries as users type in keywords. We first

generate templates by analyzing the query ability of the

underlying schema and data. Then we on-the-fly suggest

relevant templates and generate SQL queries from the

suggested templates.

2) We develop effective ranking functions by considering

the relevance between keywords and templates, the

query abilities of entities and attributes, and the degree

of matchings between keywords and attributes.

3) We devise a fast algorithm to progressively suggest top-

k relevant templates, and a greedy algorithm to generate

SQL queries efficiently.

This paper is organized as follows. The problem formulation

and an overview of SQLSUGG are presented in Section II. We

introduce our method of suggesting templates in Section III

and discuss the method of generating SQL queries from

templates in Section IV. Experimental results are provided in

Section V and the related work is reviewed in Section VI.

Finally, we conclude the paper in Section VII.

II. PROBLEM FORMULATION AND SQLSUGG OVERVIEW

We formulate the problem in Section II-A, and give an

overview of our method in Section II-B.

A. Problem Formulation

Data Model: Our work focuses on suggesting SQL queries

for a relational database D with a set of relation tables,

R1,R2, . . . ,Rn, and each table Ri has a set of attributes,

Ai
1
, Ai

2
, . . . , Ai

m. To represent the schema and underlying data of

D, we define the schema graph and the data graph respectively.

To capture the foreign key to primary key relationships

in the database schema, we define the schema graph as an

undirected graph GS = (VS , ES) with node set VS and edge

set ES : 1) each node is either a relation node corresponding

to a relation table, or an attribute node corresponding to an

attribute; 2) an edge between a relation node and an attribute

node represents the membership of the attribute to the relation;

3) an edge between two relation nodes represents the foreign

key to primary key relationship between the two relation

tables.

Similarly, we define the data graph to represent the data

instances in the database. The data graph is a directed graph,

GD = (VD, ED) with node set VD and edge set ED, where

nodes in VD are data instances (i.e., tuples). There exists an

edge from node v1 to node v2 if their corresponding relation

tables have a foreign key to primary key relationship, and the

foreign key of v1 equals to the primary key of v2.

Paper Write Author

title

booktitle

year

name

id=pid aid=id
id

idaidpid

(a) Schema graph.

P5 A10W20W13A7

W19

(b) Data graph.

Fig. 2. Examples of schema graph and data graph.

Table I provides an example database containing a set of

publication records. The database has three relation tables,

PAPER, AUTHOR, and WRITE, which are respectively abbre-

viated to P, A and W in the rest of the paper for simplicity.

Figure 2(a) shows the schema graph of the example database.

In the graph, the relation PAPER has four attributes (i.e., id,

title, booktitle, and year), and has an edge to another relation

WRITE. Figure 2(b) shows the data graph. In this graph, an

instance of PAPER (i.e., P5) is referred by three instances of

WRITE (i.e., W13 , W19, and W20).

Query Model: We focus on suggesting a ranked list of SQL

queries from limited keyword queries. Note that the query

keywords can be very flexible that they may refer to either

data instances, the meta-data (e.g., names of relation tables or

attributes), or aggregate functions (e.g., the function COUNT).

Formally, Given a keyword query, Q = {k1, k2, . . . , k|Q|} posed

by a user, the answer of Q is a list of SQL queries, each

of which contains all keywords in its clauses, e.g., the

WHERE clause, the FROM clause, the SELECT clause, or

the GROUP-BY clause, etc. Since there may be many SQL

queries corresponding to a keyword query, we propose to

rank SQL queries by their relevance to the keyword query.

For example, consider the example database in Table I and a

keyword query “count database author” . SQLSUGG can

suggest two SQL queries as follows.

1) SELECT COUNT(P.id), A.name
FROM P, W, A
WHERE P.title CONTAIN “database” AND

P.id = W.pid AND A.id = W.aid
GROUP BY A.id

2) SELECT P.title, P.booktitle, A.name
FROM P, W, A
WHERE P.title CONTAIN “database” AND

P.title CONTAIN “count” AND
P.id = W.pid AND A.id = W.aid

where CONTAIN is a user-defined function (UDF) which can

be implemented using an inverted index. Observed from the

above SQL queries, the first one is to group the number of

papers with titles containing “database” by authors, and the

second one is to find a paper as well as its author such that

the title contains the keywords, “database” and “count” .

Comparison with Existing Methods. Some approaches

to keyword search on databases [2,7,9,13] suggest Candi-

date Networks (CN), each of which corresponds to a SPJ

(Selection-Projection-Join) SQL query, from keyword queries.

Compared with these approaches, SQLSUGG has the follow-

ing advantages.

• SQLSUGG cannot only suggest SPJ queries, but also

support aggregate functions, which are extensively used

by SQL programmers.

• SQLSUGG can group the results by their underlying

query structures, rather than mixing all results together.

• SQLSUGG ranks the suggested SQL queries by their

relevance to keyword queries.

• SQLSUGG employs fast ranking algorithms to suggest

SQL queries efficiently.

B. Overview of SQLSUGG

In this section, we present an overview of SQLSUGG and

give an example to show how SQLSUGG works.

Overview: SQL query suggestion is rather challenging, be-

cause the keywords may refer to either data instances of dif-

ferent relation tables, relation or attribute names, or aggregate

functions. Even worse, users may not only be interested in a

single table, but also want to join multiple tables in various

ways. Therefore, given a keyword query, there could be a very

large amount of possibly-relevant SQL queries. To suggest

most relevant SQL queries, we propose a two-step based

method: we first suggest query structures, queryable templates

(“templates” for short), and rank templates by their relevance

to the keyword query. Then, we generate SQL queries from

each suggested template and rank the queries by the degree of

matchings between keywords and attributes in the template.

Thus, the SQL queries are actually grouped by their corre-

sponding templates. A user can firstly select a template, and

then narrow to SQL queries in this template. This strategy

would be more convenient for users to find the desired SQL

queries, since all SQL queries are well organized according to

their structures. In contrast, mixing SQL queries with different

templates together may confuse users. On the other hand, the

two-step framework has performance superiority.

Template

Matcher

Data Source
Template

Repository

SQL

Generator

Translator
&

Visualizer

Template

Generater

Template Index

Template

Indexer

Keywords Templates matchings

SQL queries with graphic representation Online

Offline

Templates Raw data

Templates

User

KeywordToAttribute Mapping

Data

Indexer

Raw data

Schema

Fig. 3. Architecture of an SQLSUGG-based system.

Figure 3 shows the architecture of an SQLSUGG-based

system, which is composed of the offline template indexing

and the online SQL query suggestion. In the offline part,

templates are generated by the Template Generator from

the Data Source, and stored in a Template Repository. Since

the Template Generator may generate many templates, espe-

cially for complex schemata, a Template Index is built for

efficient online template suggestion by a Template Indexer.

Moreover, since keywords may refer to data instances,

meta-data, functions, etc., a Data Indexer preprocesses the

Data Source to construct a KeywordToAttribute Mapping

for mapping keywords to attributes. For online suggestion,

given a keyword query, the Template Matcher suggests rel-

evant templates that reflect user’s query intent. Then, the

SQL Generator takes the matched templates as input, and

produces matchings between keywords and attributes in the

suggested templates to generate SQL queries. Finally, the

Translator & Visualizer presents SQL statements with graph-

ical representation. After users obtain the suggested SQL

queries, they can either modify the keywords or the suggested

SQL statements to refine the query.

Running Example: We give a running example to illustrate

Paper Write Author

title

booktitleyear

name

id=pid aid=id

Fig. 4. An example template for finding a paper with its author

how an SQLSUGG-based system suggests SQL queries for a

keyword query “count database author” . The system first

suggests the relevant templates to infer the query structures

and ranks them by their relevance. Figure 4 shows one of the

suggested templates. We will explain template suggestion in

Section III. Then, the system generates SQL queries from each

template by matching keywords to attributes. For example,

“count” and “database” can be matched to attribute

P.title, and “author” can be matched to attribute A.id

(If a keyword refers to the name of a relation, we map the

keyword to its primary-key). We present the details of SQL

generation from templates in Section IV. Finally, the system

translates the matching between keywords and attributes into

an SQL statement.

III. QUERYABLE TEMPLATE SUGGESTION

To suggest SQL queries from limited keyword queries, it is

very important to infer query structures relevant to the keyword

queries. We introduce the queryable template to model the

query structure in Section III-A. To suggest relevant templates,

we propose a template ranking model to measure the relevance

between keywords and templates in Section III-B and devise

a top-k ranking algorithm for efficient template suggestion in

Section III-C.

A. Queryable Template

Query structure is essential to an SQL query, because it

specifies which entities are involved in the query and how

they are joined together. From the SQL syntax point of view,

the query structure includes relation entities in the FROM

clause and JOIN conditions in the WHERE clause. Some

approaches have been proposed to model the query structure

in the database community. A well-known approach is Candi-

date Network (CN) [8,9,18] for keyword search in relational

databases. Another approach is Simple Query Network in the

context of posing “aggregate queries” [19]. The approaches

model query structures as trees of relation entities, and gen-

erate them from the schema graph. However, they are limited

to measure the relevance between keywords and the structure,

and to analyze the query ability of the structure.

In order to address this problem, we propose the queryable

template to model the query structure. Conceptually, a tem-

plate is a group of joined entities with their attributes, and can

be taken as the skeleton of SQL queries. Formally, a template

is defined as follows.

Definition 1 (Queryable Template): A template is an undi-

rected graph, GT (VT , ET) with the node set VT and the edge

set ET , where nodes in VT are:

• entity nodes: relation tables, or

• attribute nodes: attributes of entities,

and edges in ET are:

• membership edges: edges between an entity node and its

attribute nodes, or

• foreign-key edges: edges between entity nodes with

foreign keys and the entity nodes referred by them.

In particular, templates with only one entity node are called

atomic-templates. 2

For example, Figure 4 provides a template corresponding

to the query structure for finding a paper with its author. This

template has three entities, i.e., P, A and W, as well as their

attributes. The entities are joined according to the foreign-key-

to-primary-key relationships. For simplicity, we represent the

template as P − W − A.

Template Generation. Given a database, there could be a

huge amount of templates that capture various query struc-

tures. We design a method to generate them using the schema

graph. The basic idea of the method is to expand templates to

generate new templates. To this end, the algorithm firstly gen-

erates atomic-templates, and takes them as bases of template

generation. Then, we use an expansion rule to generate new

templates: A template can be expanded to a new template

if it has an entity node that can be connected to a new

entity node via a foreign-key edge. For example, consider an

atomic template, P. It can be expanded to P−W according to

the expansion rule. Since a template may be expanded from

more than one template, we eliminate duplicated templates.

Furthermore, we examine the relationship between relation

tables. For example, since the two relation tables, P and W,

have a 1-to-n relationship, i.e., a instance of W has at most

one instance of P. Hence, the template, P−W−P is invalid.

TABLE II

TEMPLATES FOR OUR EXAMPLE DATABASE (γ = 5).

Size ID Template

1
T1 P
T2 A
T3 W

2
T4 P −W
T5 A −W

3
T6 P−W−A
T7 W−P−W
T8 W−A−W

4

T9 P−(W,W,W)
T10 A−(W,W,W)
T11 W−P−W−A
T12 W−A−W−P

5
T13 P−W−A−W−P
T14 A−W−P−W−A
.

Apparently, the above-mentioned expansion rule may lead

to a combinatorial explosion of templates. To address this

problem, we employ a parameter γ to restrict the maximal size

of templates (i.e., the number of entities in a template), which

is also used in CN-based keyword-search approaches [8,9].

The motivation here is that templates with too many entities

are meaningless, since the corresponding query structures are

not of interests to users. Table II provides the templates

generated for our example database under γ = 5, where

P−(W,W,W) represents that P is connected with three W

entities. Further, even though we restrict the maximal size

of templates, there still are many templates due to complex

relationships between tables in schemas. Thus, we devise an

efficient top-k template ranking algorithm to avoid exploring

the entire space of searching templates (See Section III-C).

B. Template Ranking Model

It is very crucial to rank the templates, since there may be

a huge number of templates relevant to the keyword query.

Existing CN-based methods [8,9,18] rank candidate networks

(which also capture query structures as templates do) by

the number of entities involved in them, that is, they prefer

the compact structures to the complicated ones. However,

the compactness of query structures is limited to capture

the relevance between keywords and structures. Consider a

keyword query “database gray” on a publication data set.

Although the keyword “gray” may occur in the title of a

paper, it is conceptually more likely to refer to an author. Thus,

the best template could be P−W−A rather than P, although

the latter is more compact. Moreover, entities in a database

do not have the same importance [20], and users may be

more interested in templates with important entities. However,

existing methods are limited to analyze the entity importance.

To address the limitations of existing methods, we propose

a probabilistic model to rank templates for a given keyword

query2. The basic idea of our model is to prefer the templates

with important entities that are more relevant to the keyword

query. Therefore, we take into account the following two

factors: 1) the relevance between keywords and entities in

a template, and 2) the importance of an entity, called query

ability. Formally, we present the template ranking model as

follows. Consider a keyword query, Q = {k1, k2, . . . , k|Q|} and

a template T which has entities, {R1,R2, . . . ,R|T |}. The task

of our model is to estimate a joint probability P(Q, T) as

relevance between the query Q and the template T .

To estimate the probability P(Q, T), we first assume that the

query keywords are conditionally independent to each other

w.r.t. the template, and thus reduce the problem to estimate

the relevance between each keyword and the template, i.e.,

P(Q, T) = P(T)P(Q | T) = P(T)
∑

k

P(k | T), (1)

where P(T) is the probability that users use T to express

their query intent. It can be either determined by the database

administrator or be learnt from the query logs. In our exper-

iments, we assume that P(T) follows a uniform distribution.

Here, we focus on the estimation of the keyword relevance

to the template, P(k | T) by considering every entity in the

template, and thus obtain

2We have tried other ranking functions, e.g., template query abilities,
template sizes, TF-IDF scores, etc. We have compared them and found that
the ranking model in our paper is the best. However, we cannot include this
comparison in the paper due to the space limitation.

P(k | T) =
∑

R∈T

P(k | R)P(R | T), (2)

where P(k | R) is the keyword relevance to entity R, and P(R |

T) is the query ability of entity R in terms of T . Clearly, we

use the two probabilities, P(k | R) and P(R | T) to represent

the above-mentioned factors for measuring relevance between

keywords and templates. Next, we introduce the estimation

methods for the two probabilities.

Estimation of keyword relevance to entity, P(k | R). We

use the smoothing methods in language model to estimate

P(k | R). Many approaches in language model (see [21] for

a good survey) have been proposed to estimate the relevance

between a keyword and a document, i.e., P(k | D). Borrowing

the idea from them, we treat the entity R as a virtual document

(For simplicity, we use R to represent both an entity and a

virtual document in this section) and estimate the likelihood

of sampling keyword k from the “document” using the Jelinek-

Mercer smoothing technique, i.e.,

P(k | R) = (1 − λ)
count(k,R)

| R |
+ λ
count(k,D)

| D |
(3)

where count(k,R) is the frequency of k in R, | R | is the

number of keywords in R, count(k,D) is the number of

entities having k in the database D, and | D | is the number

of entities in D. Thus, P(k | R) is estimated by the relative

frequency of k in R, interpolated with the (normalized) number

of entities having k. In particular, the virtual document R does

not only have words in tuples, but also contains words in meta-

data (e.g., attribute names, entity names, etc.). We use the

number of tuples to estimate count(k,R), if k refers to the

meta-data of R. For example, consider a keyword “paper” .

Since it is the name of entity PAPER, we incorporate it into the

virtual document, and set its frequency as 5 (number of tuples

in PAPER). Similarly, keywords referring attribute names, e.g.,

“title” , “year” , etc., are also taken into account, and their

frequencies are estimated with number of tuples having the

corresponding attributes.

Estimation of entity query ability, P(R | T). Conceptually,

P(R | T) is the comparative importance of entity R in template

T . To estimate P(R | T), we propose to calculate the PageRank

scores [3] for tuples over the data graph (Section II-A), and

aggregate the scores of an entity as P(R | T). PageRank, which

is a classic algorithm to measure comparative importance of

nodes in a graph structure, can be calculated as follows.

PR(ni) =
1 − d

N
+ d ·

∑

n j∈I(ni)

PR(n j)

O(n j)
, (4)

where I(ni) is the set of nodes that link to ni, O(n j) is the

number of outgoing links on the node n j, N is the number

of nodes in the data graph, and d is a damping factor. After

obtaining the converged PageRank score for each tuple, we

average the scores of tuples of the same entity, and normalize

the scores between 0 to 1. For example, the scores of tuples

in the relation PAPER are 0.05, 0.06, 0.08, 0.06 and 0.06. We

average the scores to obtain the importance of PAPER, 0.065.

Similarly, the importance of AUTHOR is 0.065, and that of

WRITE is 0.035. Then, we normalize the scores and obtain

that the query abilities of P, W and A are 0.39, 0.22 and 0.39

respectively.

Take a keyword query “count paper john” and the tem-

plate T6 in Table II as an example. According to Equation (3),

given that λ = 0.3, we have P(paper | P) = 0.16, and

P(paper | A) = P(paper | W) = 0. On the other hand,

P(P | T6) = 0.39 according to query ability of the entity.

Hence, we obtain that P(paper | T6) = 0.06. Similarly,

P(john | T6) = 0.05 and P(count | T6) = 0.04. Then, we

can combine the above-mentioned probabilities according to

Equation (1) to the get ranking score of T6. Next, we discuss

how to deal with a template, say T ′, where “count” does not

occur in either tuples or the meta-data. In template suggestion,

T6 may be more relevant if the scores of “paper john” to

T6 and T ′ are the same, since “count” may refer to either

an aggregate function or data values in T6. In SQL suggestion,

we generate aggregation queries and non-aggregation queries

in template T6, and only aggregation queries in T ′ (See details

in Section IV). Thus, users can select aggregation queries

in template T ′, although “count” does not occur in the

template.

C. Algorithm for Suggesting Top-k Templates

In this section, we study the problem of suggesting top-

k templates for keyword queries. A straightforward way to

address this problem is to calculate the ranking score for

every template according to our template ranking model.

Unfortunately, since the number of templates is exponential,

this approach becomes impractical for real-world databases.

Therefore, an efficient top-k ranking algorithm is rather neces-

sary to avoid exploring all possible templates. To address this

problem, we devise a threshold algorithm (TA) [6] to compute

top-k templates efficiently.

The basic idea of our algorithm is to scan multiple lists

that present different rankings of templates for an entity, and

aggregate scores of multiple lists to obtain P(Q, T) for each

template. For early termination, the algorithm maintains an

upper bound for the scores of all unscanned templates. If there

are k scanned templates whose scores are larger than the upper

bound, the top-k templates have been found. Formally, we

can rewrite the ranking function in Equations (1) and (2) as

follows.

P(Q, T) =
∑

R∈D

αR · P(R | T), (5)

where αR = P(T)·
∑

k∈Q P(k | R) (See Section III-B). If αR is not

equal to 0, we say that the corresponding entity R is associated

with the keyword query Q. Equation (5) illustrates that the

ranking score (P(Q, T)) is an aggregation of P(R | T) for every

entity R in the database D associated with the keyword query.

The aggregation function is monotonous, that is, as P(R |

T) increases, the score P(Q, T) increases accordingly. Thus,

Top-k Ranking Algorithm

T1:1.00

T4:0.65

T7:0.48

T6:0.39

T9:0.38

T11:0.33

T12:0.33

T13:0.25

T14:0.25

…

T2:1.00

T5:0.65

T8:0.48

T6:0.39

T10:0.38

T11:0.33

T12:0.33

T13:0.25

T14:0.25

…

T3:1.00

T4:0.35

T5:0.35

T7:0.26

T8:0.26

T6:0.22

T9:0.21

T10:0.21

T11:0.18

…

Paper Author Write

+ +

aP aA aW (0)

Fig. 5. Top-k ranking algorithm for the query, “count database author”

our TA-based algorithm scans multiple lists corresponding to

probabilities of P(R | T), which are sorted by P(R | T) in

descending order, and produces top-k templates with highest

scores. Next, we introduce indexing schemes which facilitate

fast access to P(R | T), and explain our algorithm in details.

Indexing. We exploit two indexes for fast access to the

probability, P(R | T) of an entity R in a template T , leading to

an efficient calculation of P(Q, T) in Equation (5). We present

the two indexes as follows.

• Inverted Index INV. The index maps an entity R to all

templates containing it, i.e., INV : R → T . In our

example, consider an entity P, the inverted index returns

the templates, T1, T4, T6, etc. in Table II. We sort the

templates in the index by P(R | T) in descending order.

• Forward Index FWD. The index maps a template to all

entities contained in the template, i.e., FWD : T → R. In

our example, consider a template T6, the index returns P,

A and W.

In addition, for calculating αR = P(T) ·
∑

k∈Q P(k | R), we

maintain P(T) for each template and P(k | R) for each

keyword-entity pair. Therefore, with the above-mentioned in-

dexes, we can efficiently rank templates based on the following

threshold-based algorithm.

Threshold-based top-k algorithm. The algorithm uses the

inverted index INV to construct multiple lists that present

different rankings of templates in terms of various entities,

and then scans the lists. In each list, when a new template

becomes seen, we calculate its ranking score, P(Q, T), by

aggregating its partial scores in other lists according to the

ranking function. Here, we exploit the forward index FWD to

enable random access to the lists, which means that FWD is

used to find partial scores, i.e., P(R | T), in other lists for a

specific template. An upper bound B is maintained for overall

scores of unseen templates, and B is calculated by applying

the ranking function to the last seen template in every list. In

addition, we update B to represent the new upper bound of

unseen templates. If the ranking score of a template is larger

than or equal to B, it means that its score is not smaller than

any unseen templates. Hence, we can insert the template to

a result set R, which uses a heap structure to maintain the

order of templates. If the size of R is equal to k, we can

terminate the algorithm, since the top-k templates have been

found. Furthermore, we guarantee that the suggested templates

should have all entities associated with the keywords (such that

αR , 0) in order to prefer the templates that have more entity

information.

Figure 5 provides an example for the keyword query,

“count database author” . Since the probabilities P(k | W)

for these three keywords are 0, we have that αW = 0. Thus,

our ranking algorithm takes the two lists corresponding to the

entities, P and A respectively as input. At the first step, the

algorithm scans the first template in every list and uses the

seen templates, i.e., T1 and T2, to calculate the upper bound

B = αP + αA. Then the algorithm calculates the scores of

the seen templates. Since neither T1 nor T2 covers all entities

associated with the query keywords, i.e., P and A, their scores

are 0. Next, the algorithm scans the following templates in

every list and calculates B. Consider the case of T6. The upper

bound of the corresponding step is B = 0.39 · αP + 0.39 · αA,

which is equal to the score of T6. Hence, we can insert T6 into

the result set and suggest the top-1 template for the query.

IV. SQL GENERATION FROM TEMPLATES

Since a template is only the skeleton of SQL queries, we

further propose a method to generate SQL queries from the

suggested templates in this section. We introduce an SQL

generation model in Section IV-A and design a generation

algorithm in Section IV-B.

A. SQL Generation Model

The essence of SQL generation from templates is to match

query keywords to most-relevant attributes in the templates.

This step is indispensable for SQL suggestion from keyword

queries, because users often use keywords to refer to specific

attributes rather than general templates. However, existing CN-

based methods [8,9,18] are limited to match keywords to

attributes. Instead, they use SQL queries corresponding to

candidate networks to retrieve records from the underlying

database and exploit different functions to rank the records.

Unfortunately, they mix records with different keyword-to-

attribute matchings together. For example, users may want

to use the keyword “database” to refer to the title of

a paper. However, the results returned by existing methods

may have records with either title or booktitle containing

“database” . Therefore, SQL generation from templates by

matching keywords to attributes can produce more accurate

result records, and help users express refined query intent.

Matching keywords to attributes is very difficult due to

combinatorial explosion of mappings between keywords and

attributes. Suppose a keyword can be mapped to n attributes

on average. This leads to nm possible keyword-to-attribute

matchings for m keywords. Therefore, it is quite necessary to

rank the matchings in order to generate SQL queries which are

interested by most users. To address this challenge, we propose

an SQL generation model by considering two factors: 1) the

degree of a mapping between a keyword and an attribute,

and 2) the query abilities of the mapped attributes, that is,

we prefer an SQL query if query keywords are matched to

the more related and more queryable attributes. Formally, we

present the model as follows. Consider a keyword query Q =

{k1, k2, . . . , k|Q|} and a set of attributesA = {A1, A2, . . . , An} in a

template T . Let F = {M1,M2, . . . ,M|F |} be a set of mappings,

where each M ∈ F is a set containing a keyword k mapped to

an attribute A. The objective of SQL generation model is to

produce a matching between keywords and attributes,M ⊆ F ,

which covers all of Q, i.e., ∪M∈MM = Q. We measure the

matching score S as follows.

S (M) =
∑

M∈M

I(A) · ρt(k, A), (6)

where k ∈ M and A are respectively the keyword and the

attribute corresponding to the mapping M. I(A) is the query

ability of A, and ρt(k, A) is the degree of mapping between k

and A with a type t (We will explain t below).

Equation (6) shows that the model takes all possible map-

pings between keywords and attributes as input, and aims to

find a matching, i.e., a set of mappings that covers all keywords

with a best matching score. Next, we explain I(A) and ρt(k, A)

in detail.

Attribute Query Ability, I(A). We measure the query ability

of attribute A by considering the query ability of its entity R

(i.e., P(R | T) in Section III-B) and the importance of A in the

entity R (denoted as P(A | R)), i.e.,

I(A) = P(A | R) · P(R | T) (7)

While P(R | T) has been investigated in Section III-B, we

focus on P(A | R) in this section. We employ the entropy [20]

to estimate the probability. Let V = {v1, v2, . . . , vn} denote

distinct values of A and let fi denote the relative frequency

that A has each value vi. The entropy of A, E(A), is calculated

as follows.

E(A) = −

n∑

i=1

fi · log fi (8)

Then we normalize these entropies between 0 to 1, in order

to incorporate it into our probabilistic model for estimating

P(A | R). Consider the attribute, title, in our example. Its

entropy E(title) = −(2
5
· log 2

5
+3 · 1

5
· log 1

5
) = 1.33. Similarly,

E(booktitle) = 1.05, E(year) = 0.67, and E(id) = 1.61.

Therefore, P(title | Paper) = 1.33/(1.33 + 1.05 + 0.67 +

1.61) = 0.29.

Degree of A Mapping, ρt(k, A). We suppose that mappings

between keywords and attributes are of various types, each

of which represents a specific usage of keywords. SQLSUGG

considers three types of mappings:

• selection (denoted as σ): keyword k refers to data in-

stances of attribute A. We use the relative frequency that

k refers to A to estimate ρσ(k, A). For example, consider a

keyword “database” and an attribute title. Since the

keyword occurs 3 times in attribute title, and 2 times

in attribute booktitle, its ρσ(database, title) = 0.6.

• projection (denoted as π): keyword k refers to the name

of attribute A. To estimate ρπ(k, A), we set that ρπ = 1 if

k is the name of A, and ρπ = 0 otherwise.

• aggregation (denoted as φ): keyword k refers to aggregate

functions of attribute A. We maintain a list of keywords

related to aggregate functions (e.g., “count”, “maximal”,

etc.) and set ρφ = 1 if k is contained in the list (otherwise,

ρφ = 0).

After finding a matchingM, we determine which attributes

can be used to group the results (i.e., the GROUP BY

statement in SQL syntax), if there are keywords mapped

to aggregate functions. We assume that users identify the

grouping attributes explicitly by keywords, and thus take

keywords mapped to attributes with π type as candidates. Then

we calculate the grouping abilities of the candidate attributes

according to Equation (9). Finally, we take the attributes with

highest grouping scores as grouping attributes.

G(A) = 1 −
distinct values

values
(9)

B. Best SQL Query Generation

In this section, we focus on the algorithm of generating the

best (top-1) SQL query from a template. The key challenge

here is how to find a matching M ⊆ F that covers all

keywords. As mentioned above, if a keyword can be mapped to

n attributes on average, we have nm mappings for m keywords,

i.e., | F |= nm, leading to a combinatorial explosion. Even

worse, the number of subsets of F covering all keywords

may be exponential to | F |. Our solution is to formulate

this problem as a weighted set-covering problem, which is

presented as follows.

Definition 2 (Weighted Set-Covering Problem (WSC)):

An instance, (X,F , c), of the weighted set-covering problem

consists of a finite set X, a family F of subsets of X, and a

cost function c : F → R+. The problem is to find a cover

C ⊆ F that has all of X and minimizes the cost, i.e.,

min
∑

S∈C

c(S)

st. X = ∪S∈CS

Next, we give Lemma 1 to show the equivalence between

our problem and WSC.

Lemma 1: Generating the best SQL query from a template

is equivalent to a weighted set covering problem. 2

Proof. We formally represent the problem of generating

the best SQL query as the following optimization problem,

max S (M) =
∑

M I(A) · ρt(k, A), st. Q = ∪M∈MM. The

elements in the two problems can be mapped in the following

way: {X ↔ Q,C ↔ M, c(M) ↔ 1 − I(A) · ρt(k, A)}. In

addition, their optimization objectives are equivalent, i.e.,

min
∑

M c(M) = max
∑

M I(A) · ρt(k, A). Thus we prove the

lemma. 2

Since the weighted set-covering problem has been proven

to be NP-complete [16], we devise a greedy approximation

Algorithm 1: Generate the best matching M.

Input: A keyword set Q, a set of mappings F

Output: The best matching M

begin1

Initialize M← Φ ;2

Define f (M) � ∪M∈MM ;3

while f (M) , Q do4

Choose M ∈ F to minimize the following price:5

price(M) =
1 − I(A) · ρt(k, A)

| M − f (M) |
,

where I(A) · ρt(k, A) is the mapping score ;

M←M∪ {M} ;6

Return M ;7

end8

Fig. 6. An approximation algorithm for generating the best SQL query.

algorithm [5] in Figure 6, and provide a logarithmic approxi-

mation ratio. Because the logarithmic function grows slowly,

the algorithm can produce useful results. The algorithm takes

the keyword set Q and a set of mappings F as input and a best

matching M as output. We first initialize an empty matching

M and choose mappings in F iteratively (lines 4-6). At each

iteration, we choose an M ∈ F to minimize the following

heuristic price function price(M) (line 5).

price(M) =
1 − I(A) · ρt(k, A)

| M − f (M) |
, (10)

where I(A) · ρt(k, A) is the mapping score of M and f (M) �

∪M∈MM. We insert M into M (line 6). If the matching M

covers all keywords in Q, we can terminate the loop and output

M as the result. The greedy approximation algorithm is a

polynomial-time ρ(n)-approximation algorithm, where ρ(n) =

1 + 1
2
+

1
3
+ . . . + 1

n
6 ln(n) + 1 [5].

TABLE III

THE SET OF MAPPINGSF FOR THE EXAMPLE QUERY.

ID Keyword k Attribute A Type t Score, I(A) · ρt(k, A)

.

M1 database P.title σ 0.068

M2 database P.booktitle σ 0.035

M3 author A.id π 0.195

M4 count P.id φ 0.133

M5 count P.title φ 0.113

.

To construct the mapping set F , we construct a keyword-

to-attribute mapping index and maintain the corresponding

score, I(A) · ρt(k, A) (see Section IV-A). Take the keyword

query “count database author” and the template P −W

− A as an example. Table III provides the keyword-to-attribute

mapping index corresponding to the three keywords. Our

greedy approximation algorithm can produce a best matching

M = {M1,M3,M4}. Then, since the matching has a M4 which

is of the φ type, we further select an attribute with the π type

as the grouping attribute, i.e., M3.

Finally, we can translate the matching mentioned above into

the following SQL statement, which is used to find the number

of papers with title containing “database” and group the

numbers by authors.
SELECT COUNT(Paper.id), Author.name
FROM Paper, Write, Author
WHERE Paper.title CONTAIN “database” AND

Paper.id = Write.pid AND
Author.id = Write.aid

GROUP BY Author.id

Extension. We can extend the algorithm in Figure 6, and

devise an approximation algorithm for generating top-k SQL

queries according to our scoring function in Equation (6).

The top-k algorithm also iteratively chooses mappings in

F according to the price function, and examines whether a

matching that covers all keywords has been found. However,

different to the algorithm in Figure 6, when a matching is

found, the top-k algorithm backtracks by removing a mapping

M with lowest price, and try other mappings in F whose score

is lower than price(M). When k matchings have been found,

the algorithm terminates.

V. EXPERIMENTS

We have implemented our methods and conducted extensive

experiments on two real data sets to evaluate the effectiveness

and efficiency of our proposed methods. We employed a CN-

based keyword-search algorithm DISCOVER-II as baseline.

All the programs were implemented in JAVA and all the

experiments were run on the Ubuntu machine with an Intel

Core 2 Quad X5450 3.00GHz processor and 4 GB memory.

A. Experiment Setup

Data Sets: 1) DBLP3. It contains more than one million

publication records. The schema and the number of rows in

each table of DBLP are listed in Table IV. 2) DBLIFE [4]. It

contains activity information for more than 500, 000 people

in the database community. The schema and numbers of rows

in each table of DBLIFE are listed in Table V.

Query Sets: We used 10 keyword queries for the each data

set, as shown in Table VI and Table VII. The average lengths

of the two query sets are 2.8 and 3.2 respectively.

Implementation of the existing methods: We used the source

code of DISCOVER-II [8] as the baseline. DISCOVER-II gen-

erates candidate networks (i.e., CNs) from keywords, which

is similar to our template generation, because both methods

infer query structures from keywords. Thus, we examined the

performance of template generation of SQLSUGG, compared

with the CN generation of DISCOVER-II in Section V-B.1.

In addition, DISCOVER-II retrieves all records containing the

keywords ranked by a ranking function, rather than matching

keywords to attributes. Thus, we compared the effectiveness

of record retrieval of both methods to examine if users can

find better records using SQLSUGG in Section V-B.3.

B. Evaluation of Effectiveness

To evaluate the effectiveness, we asked six experts in SQL

syntax to judge whether the suggested SQL queries are rele-

vant to corresponding keyword queries. We conducted some

3http://dblp.uni-trier.de/xml/

TABLE IV

THE SCHEMA OF THE DBLP DATA SET

Table Attributes # rows

Paper ID Title BookTitle Year 1109727

Author ID Name 653980

Paper-Author AuthorID PaperID 2766266

TABLE V

THE SCHEMA OF DBLIFE DATA SET

Table Attributes # rows

Person ID Name Homepage Title . . . 68459

Org ID Name 163

Pubs ID Title BookTitle Year . . . 108970

Topic ID Name 736

Conf ID Name 170

ServeConf PID CID 3591

GiveConfTalk PID CID 131

GiveTutorial PID CID 132

GiveOrgTalk PID OID 913

RelatedOrg PID OID 2436

RelatedTopic PID TID 114196

WritePub PID PUBID 328410

CoAuthor PID1 PID2 56370

RelatedPeople PID1 PID2 115436

TABLE VI

QUERIES FOR THE DBLP DATA SET.

IDs Queries IDs Queries

Q1 keyword search icde Q6 count paper icde

Q2 database gray Q7 count paper jiawei

Q3 li wang data Q8 count author mining

Q4 paper icde 2005 Q9 max year gray

Q5 sequence itemset Q10 count paper author

TABLE VII

QUERIES FOR THE DBLIFE DATA SET.

IDs Queries IDs Queries

Q1 jim gray Q6 count person stanford

Q2 database jim gray Q7 count conf sigmod jim gray

Q3 person database Q8 max year jim gray

Q4 topic jim gray Q9 count conf person

Q5 jim gray alexander szalay Q10 count person topic

experiments to evaluate the effectiveness. In these experiments,

the experts were presented with keyword queries in Table VI

and Table VII, as well as SQL queries or the retrieved

records. They labeled their relevance in a blind-test manner.

We examined the performance of two important techniques

of our approach, i.e. template suggestion in Section V-B.1

and SQL generation in Section V-B.2. The former examines

if users satisfy the suggested query structures, and the latter

examines if the generated SQL queries in each template are

useful. In addition, we also examined the effectiveness of

record retrieval of our method to investigate if users satisfy

the records retrieved by the suggested SQL queries.

1) Effectiveness of Template Suggestion: We first investi-

gated the effectiveness of template suggestion, and compared

our method with DISCOVER-II. The experts labeled whether

the templates (or candidate networks) suggested by SQLSUGG

and DISCOVER-II were relevant to the corresponding keyword

queries. We qualified the effectiveness through standard mea-

sures of precision and recall4.

Figures 7(a) and 8(a) provide the experiment results on the

4We use all relevant SQL queries from the two approaches as the whole
relevant query set to compute the recall.

DBLP and DBLIFE data sets respectively. Our method outper-

forms DISCOVER-II significantly, especially on the DBLIFE

data set. For example, the precision of our method is much

better than that of DISCOVER-II at each rate of recall in

Figure 8(a). The improvement of our method is due to the

following reasons. Firstly, compared with DISCOVER-II, our

method allows users to search the meta-data (i.e., names

of relation tables, or attributes), while DISCOVER-II only

supports full-text search. Thus, SQLSUGG can suggest more

relevant templates than DISCOVER-II and improve the recall.

For example, consider Q9 in Table VII. Since DISCOVER-

II only considers the full-text search, it can only suggest a

template, PUBS. In contrast, SQLSUGG can suggest more

templates, e.g., PERSON − SERVECONF − CONF, PERSON

− GIVECONFTALK − CONF, PERSON − GIVETUTORIAL −

CONF, etc., which are more relevant to Q9 than PUBS.

In addition, even though we extend DISCOVER-II by

considering the meta-data, SQLSUGG still has effectiveness

advantages. Observed from Figure 7(a), for the DBLP data set

with a very simple schema, both methods can provide nearly

all relevant templates. However, our method achieves better

ranking, as illustrated from precision scores at each recall.

An important reason that SQLSUGG outperforms DISCOVER-

II is that SQLSUGG exploits better models to measure the

keyword-to-template relevance, while DISCOVER-II simply

ranks CNs by their sizes.

2) Effectiveness of SQL Generation: Compared with

DISCOVER-II, SQLSUGG matches query keywords to at-

tributes, and can predict the conditions in the WHERE clause,

projections and aggregations in the SELECT clause. In this

section, we conducted experiments to evaluate the effective-

ness of SQL generation as follows. For each suggested SQL

query, the experts labeled 1, or 0, which indicates whether the

matchings between keywords and attributes were precise. Then

we exploited the average precision as the evaluation metric.

Figures 7(b) and 8(b) provide the experiment results on the

two data sets. Our method achieves high precision for SQL

generation. For example, the precision scores of all query

keywords in the two data sets are above 80%. Next, we give

an example to illustrate the effectiveness of our methods.

Consider the query keyword Q2 in Table VII for the DBLIFE

data set. We list the top-3 templates along with the conditions

of the top-1 SQL query in each template in Table VIII. From

the table, we can see that the keywords “Jim” and “Gray”

are matched to a person name, and “database” is matched

to either person homepage, topic name, or publication title in

the templates.

SQLSUGG can also match keywords to aggregate functions,

and produce SQL queries with aggregate functions. We use the

Q10 in Table VI to illustrate the effectiveness. We list the top-2

templates along with the top-1 SQL query in each template

in table IX. From the table, we can see that SQLSUGG

suggested two templates for this query: for the template P,

it aggregated the relation table PAPER; for the template P −

PA − A, SQLSUGG aggregated the relation table PAPER and

used the table AUTHOR to group the number of papers.

TABLE VIII

SUGGESTION RESULTS FOR A KEYWORD QUERY, “database Jim Gray”

ON THE DBLIFE DATA SET (WHERE P, T, R, AND W DENOTE PERSON,

TOPIC, RELATEDTOPIC, AND WRITEPUB RESPECTIVELY).

Templates Conditions in WHERE clause

P
P.name CONTAIN “Jim”

P.name CONTAIN “Gray”
P.homepage CONTAIN “database”

P − R − T
P.name CONTAIN “Jim”

P.name CONTAIN “Gray”
T.name CONTAIN “database”

P −W − PUBS

P.name CONTAIN “Jim”
P.name CONTAIN “Gray”

PUBS.title CONTAIN “database”

TABLE IX

SUGGESTION RESULTS FOR A KEYWORD QUERY, “count paper author”

ON THE DBLP DATA SET (WHERE P, A, AND PA DENOTE PAPER,

AUTHOR, AND PAPER-AUTHOR RESPECTIVELY.)

Templates Aggregation Grouping

P P.id -

P − PA − A P.id A.id

The high-effectiveness of SQL generation is due to our

SQL generation model (Section IV-A). We exploit attribute

importance and degree of mappings between keywords and

attributes to measure the matching score. The experimental

results show that the scoring scheme is effective.

3) Effectiveness of Record Retrieval: Since SQLSUGG

can also help users retrieve desired records from the un-

derlying database, we conducted an experiment to compare

the effectiveness of record retrieval with DISCOVER-II. For

DISCOVER-II, since it ranks records from different candidate

networks (i.e., query structures) according to a ranking func-

tion [8], we took at most top-20 records as the result for each

keyword query. For SQLSUGG, since it groups records by

their corresponding SQL queries, we sent to the underlying

database the best SQL query of each suggested template, each

of which returned at most top-5 records. Then, we inserted the

all records from the SQL queries into a ranked list, and took

at most top-20 records as the result for the keyword query.

We asked the experts to label 1 or 0 to each record, which

indicates whether the record was relevant to the keyword

query. We exploited the precision as a metric to evaluate the

effectiveness5.

Figures 7(c) and 8(c) show the experimental results on the

two data sets. From these figures, we can see that SQLSUGG

performs significantly better when query keywords are re-

ferred to meta-data or aggregate functions, while DISCOVER-

II cannot return relevant records because it cannot find tuples

containing the keywords such as “count” , “paper” , etc.

For example, in Figure 8(c), there are no relevant record

returned by DISCOVER-II for the queries Q4 and Q6 - Q10.

5As there is no standard benchmark, it is hard to find all relevant results
and compute recalls. To address this issue, we retrieved top-20 tuples. In this
case, the ratio of the recalls of the two systems and that of the precisions of
the two systems are the same, i.e., precision and recall are equivalent. Thus
we only compared the precision.

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

In
te

p
o
la

te
d
 P

re
ci

si
o
n
 (

%
)

Recall (%)

SQLSUGG
DISCOVER-II

(a) Effectiveness of template suggestion.

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A
v
er

ag
e

P
re

ci
si

o
n
 (

%
)

Keyword Query

SQL Generation

(b) Effectiveness of SQL generation.

 0

 20

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A
v
er

ag
e

P
re

ci
si

o
n
(%

)

Keyword Query

SQLSUGG
DISCOVER-II

(c) Effectiveness of record retrieval.
Fig. 7. Effectiveness comparisons on the DBLP data set.

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

In
te

p
o
la

te
d
 P

re
ci

si
o
n
 (

%
)

Recall (%)

SQLSUGG
DISCOVER-II

(a) Effectiveness of template suggestion.

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A
v
er

ag
e

P
re

ci
si

o
n
 (

%
)

Keyword Query

SQL Generation

(b) Effectiveness of SQL generation.

 0

 20

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A
v
er

ag
e

P
re

ci
si

o
n
(%

)

Keyword Query

SQLSUGG
DISCOVER-II

(c) Effectiveness of record retrieval.
Fig. 8. Effectiveness comparisons on the DBLIFE data set.

 0

 30

 60

 90

 120

2 3 4 5 6

Q
u
er

y
 T

im
e

(m
s)

of query keywords

SQLSUGG
DISCOVER-II

(a) Efficiency comparison (DBLP).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

2 3 4 5 6

Q
u
er

y
 T

im
e

(m
s)

of query keywords

SQLSUGG
DISCOVER-II

(b) Efficiency comparison (DBLIFE).

 0

 5

 10

 15

 20

 25

10 20 30 40 50 60 70 80 90 100

Q
u
er

y
 T

im
e

(m
s)

Percents of tuples (%)

keywords = 3
keywords = 4
keywords = 5

(c) Scalability (DBLP).
Fig. 9. Efficiency and scalability comparisons.

The improvement is due to the reason that SQLSUGG cannot

only support full-text search, but also allow keywords to refer

to meta-data and aggregate functions. The experimental result

shows that SQLSUGG can help users formulate a broader class

of SQL queries, and thus can obtain effective result records

capturing more information needs. In addition, even for full-

text search, SQLSUGG can also retrieve more precise records

than DISCOVER-II. For example, in Figure 7(c), SQLSUGG

can achieve higher precisions for Q1, Q2, Q3 and Q5. The rea-

son is that SQLSUGG matches keywords to specific attributes,

and thus can generate more accurate result tuples.

C. Evaluation of Efficiency and Scalability

We examined the efficiency of our SQL suggestion methods,

and compared the query time6 of SQLSUGG with that of

DISCOVER-II. Figures 9(a) and 9(b) show the experiment

results on the two data sets. The results show that our

methods outperform DISCOVER-II significantly, especially in

the DBLIFE data set. For example, consider the query time

for a keyword query with length 6 in Figure 9(b). SQLSUGG

outperforms DISCOVER-II by an order of magnitude. More-

over, on the two data set, the query time of SQLSUGG is

very stable, and is always smaller than 100 ms. It indicates

that SQLSUGG can suggest SQL queries in real time.

The improvement of our methods is mainly attributed to

the top-k template ranking algorithm. DISCOVER-II exploits

a keyword-to-attribute index to find tuple sets that may contain

6All algorithms were tested using the same computer with the same system
configuration and the same system/application workload.

query keywords, and on-the-fly generates candidate networks.

Since the amount of candidate networks could be large,

especially for complex schemas, DISCOVER-II is inefficient to

generate all candidate networks. For example, the query time

of DISCOVER-II is hundreds of milliseconds on the DBLIFE

data set which has 14 relation tables. In contrast, SQLSUGG

focuses on suggesting top-k templates according to our ranking

model. The experimental result shows that the algorithm is

very efficient and can suggest template in real time.

Next, we examine the scalability of SQLSUGG on the

DBLP data set. Initially, the entire database was empty. We

inserted 10% of tuples in every relation table at each time,

and ran SQLSUGG to evaluate the query time. Figure 9(c)

shows the experiment results. SQLSUGG scales very well on

the DBLP data set. The query time increases sub-linearly as

the data set increases. For example, the query time is stable

between 5 ms and 20 ms.

Summary. The experimental results show that SQLSUGG has

the following advantages. Firstly, for advanced users who want

to pose SQL queries, SQLSUGG can suggest heavily relevant

templates, and can generate accurate SQL queries. Secondly,

for casual users, SQLSUGG can retrieve records capturing

more information needs, that is, SQLSUGG allows users to

specify tables and attributes of the returned records, and can

return aggregation tuples. Thirdly, SQLSUGG achieves higher

efficiency than DISCOVER-II and scales very well due to our

proposed ranking algorithms.

VI. RELATED WORK

The area most related to our work is keyword search

over relational databases. The existing approaches of keyword

search over relational databases can be broadly classified into

two categories: those based on the Steiner tree [2,11,12,14],

and others based on the candidate network (CN) [1,8,9,17,22].

The Steiner tree based methods first model the tuples in a

relational database as a data-graph, where nodes are tuples

and edges are the primary-foreign-key relationships. Steiner

trees which contain all or some of input keywords are then

identified to answer keyword queries. The candidate network

based methods identify answers composed of relevant tuples

by generating and extending a candidate network following the

primary-foreign-key relationship. Compared with these meth-

ods, SQLSUGG provides a more powerful keyword-search

paradigm that assists users to formulate more complex SQL

queries, and thus it can help users express their query intent

more precisely than keyword search. In addition, SQLSUGG

improves the ranking model of generating query structures

of CN-based methods by taking into account the keyword-

to-template relevance and template query ability, and extends

the methods by matching keywords to specific attributes.

Recently, some studies proposed keyword-based methods to

help users pose aggregation SQL queries [19,23]. The basic

idea of these methods is similar to ours, that is, to take key-

word queries as input and SQL queries as output. Except that

SQLSUGG can support a broader class of SQL queries rather

than aggregation queries, we propose a more effective SQL

query ranking mechanism, which is not considered by existing

methods, and devise an efficient algorithm for supporting the

ranking mechanism.

The concept, template, that captures query structure has also

been investigated in form-based search [4,10]. The methods

propose to summarize the schema and the underlying data to

generate a good set of templates. However, their templates

are keyword-independent. In contrast, SQLSUGG further con-

siders the relevance between templates and keywords, and

proposes to generate specific SQL queries from templates.

Therefore, SQLSUGG can allow users to not only select

templates using keywords, but also to generate most promising

SQL queries from the general templates.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an effective and user-

friendly keyword-based method, called SQLSUGG, to suggest

SQL queries based on limited keyword queries. We proposed

queryable templates to model the structures of SQL queries,

and generated templates from the schema graph. We ranked the

templates by their relevance to the keyword query, and devised

a progressive algorithm to compute top-k templates efficiently.

To generate SQL queries from templates, we proposed a gener-

ation model by considering the degree of matchings between

keywords and attributes, and devised a greedy algorithm to

compute the best matching between keywords and attributes.

We have implemented our approach and examined it on two

real data sets. The experimental results show that our approach

achieves high effectiveness and efficiency.

We believe this study on SQL suggestion opens many new

interesting and challenging problems that need further research

investigation, such as how to estimate the number of returned

records for each SQL, how to support non-string data types,

how to allow users to express more information, and how to

support personalized suggestion.

VIII. ACKNOWLEDGEMENT

This work is partly supported by the National Natural Sci-

ence Foundation of China (NSFC) under Grant No. 61003004,

and the NSFC under Grant No. 60833003. We appreciate the

helpful comments of the anonymous reviewers.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for
keyword-based search over relational databases. In ICDE, pages 5–16,
2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks. In ICDE,
pages 431–440, 2002.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 30(1-7):107–117, 1998.

[4] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton. Combining
keyword search and forms for ad hoc querying of databases. In SIGMOD

Conference, pages 349–360, 2009.
[5] V. Chvatal. A greedy heuristic for the set-covering problem. Mathemat-

ics of Operations Research, 4(3):233235, 1979.
[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for

middleware. In PODS, 2001.
[7] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches

on graphs. In SIGMOD Conference, pages 305–316, 2007.
[8] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style

keyword search over relational databases. In VLDB, pages 850–861,
2003.

[9] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in
relational databases. In VLDB, pages 670–681, 2002.

[10] M. Jayapandian and H. V. Jagadish. Automated creation of a forms-
based database query interface. PVLDB, 1(1):695–709, 2008.

[11] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In VLDB, pages 505–516, 2005.

[12] B. Kimelfeld and Y. Sagiv. Efficiently enumerating results of keyword
search over data graphs. Inf. Syst., 33(4-5):335–359, 2008.

[13] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an effective 3-in-1
keyword search method for unstructured, semi-structured and structured
data. In SIGMOD Conference, pages 903–914, 2008.

[14] G. Li, X. Zhou, J. Feng, and J. Wang. Progressive keyword search in
relational databases. In ICDE, 2009.

[15] H. Lu, H. C. Chan, and K. K. Wei. A survey on usage of sql. SIGMOD

Rec., 22(4):60–65, 1993.
[16] C. Lund and M. Yannakakis. On the hardness of approximating

minimization problems. J. ACM, 41(5):960–981, 1994.
[17] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in

relational databases. In SIGMOD Conference, pages 115–126, 2007.
[18] Y. Luo, W. Wang, and X. Lin. Spark: A keyword search engine on

relational databases. In ICDE, pages 1552–1555, 2008.
[19] S. Tata and G. M. Lohman. Sqak: doing more with keywords. In

SIGMOD Conference, pages 889–902, 2008.
[20] X. Yang, C. M. Procopiuc, and D. Srivastava. Summarizing relational

databases. PVLDB, 2(1):634–645, 2009.
[21] C. Zhai. Statistical language models for information retrieval: A critical

review. Foundations and Trends in Information Retrieval, 2(3):137–213,
2008.

[22] J. Zhang, Z. Peng, S. Wang, and H. Nie. Clascn: Candidate network
selection for efficient top- keyword queries over databases. J. Comput.

Sci. Technol., 22(2):197–207, 2007.
[23] B. Zhou and J. Pei. Answering aggregate keyword queries on relational

databases using minimal group-bys. In EDBT, pages 108–119, 2009.

