
Answering Approximate String Queries
on Large Data Sets Using External Memory

Alexander Behm1, Chen Li2, Michael J. Carey3

Deptarment of Computer Science, University of California, Irvine
1abehm@ics.uci.edu, 2chenli@ics.uci.edu, 3mjcarey@ics.uci.edu

Abstract— An approximate string query is to find from a
collection of strings those that are similar to a given querystring.
Answering such queries is important in many applications such
as data cleaning and record linkage, where errors could occur
in queries as well as the data. Many existing algorithms have
focused on in-memory indexes. In this paper we investigate how
to efficiently answer such queries in a disk-based setting, by
systematically studying the effects of storing data and indexes
on disk. We devise a novel physical layout for an inverted
index to answer queries and we study how to construct it with
limited buffer space. To answer queries, we develop a cost-based,
adaptive algorithm that balances the I/O costs of retrieving
candidate matches and accessing inverted lists. Experiments
on large, real datasets verify that simply adapting existing
algorithms to a disk-based setting does not work well and that our
new techniques answer queries efficiently. Further, our solutions
significantly outperform a recent tree-based index, BED-tree.

I. I NTRODUCTION

Many information systems need to answer approximate
string queries. Given a collection of data strings such as
person names, publication titles, or addresses, an approximate
string query finds all data strings similar to a given query
string. For example, in data cleaning we want to discover
and eliminate inconsistent, incorrect or duplicate entries of
a real-world entity such asWall-Mart versusWal-Mart
or Schwarzenegger versusSchwartseneger. Similar
problems exist in record linkage where we intend to combine
records of the same entity from different sources.

Various measures can quantify the similarity between two
strings, such as edit distance, Jaccard, etc. Many approaches
to answering approximate string queries rely onq-grams. The
q-grams of a string are all its substrings of lengthq. For ex-
ample, the 2-grams of stringcathey are{ca, at, th, he, ey}.
Intuitively, if two strings are similar, then they must share a
certain number of grams. We can facilitate finding all data
strings that share a gram by using an inverted index on the
grams. For instance, Figure 1 shows a collection of strings and
the corresponding inverted lists of their2-grams. To construct
the index, we decompose each data string into its grams and
add its string id to the inverted lists of its grams.

To answer an approximate string query, we decompose the
query string into its grams and retrieve their corresponding
inverted lists. We find all the string ids that occur at least
a certain number of times on the lists (see Section II).
For those string ids we retrieve their corresponding strings,
compute their real similarities to the query, and remove false
positives. For many similarity measures, given a thresholdon

String

cat

cathey

kathy

kat

cathy

id

1

2

3

4

5

ca

1

2

5

th

1

3

5

Data Strings Inverted Lists

at

1

2

3

4

5

ka

3

5

ey

2

hy

3

5

hy

2

Fig. 1. A string collection of person names and their inverted lists of2-grams.

the similarity, a lower bound on the number of common grams
between two similar strings can be computed [15].

Motivation: In this paper, we study how to answer ap-
proximate string queries when data and indexes reside on
disk. Many existing works on approximate string queries have
assumed memory resident data and indexes, but their sizes
could be very large. Indexing large amounts of data may cause
problems for applications. On the one hand, the indexes and
data could be so large that even compression cannot shrink
them to fit into main memory. On the other hand, even if
they fit, dedicating a large portion of memory to them may
be unacceptable. Database systems need to deal with many
different indexes and concurrent queries, leading to heavy
resource contention. In another scenario, consider a desktop-
search application supporting similarity queries. It is infeasible
to keep the entire index in memory when desktop search plays
a secondary role in the users’ activities, and hence we should
consider secondary-storage solutions.

In recent years, major database systems such as Oracle [1],
DB2 [2], and SQL Server [8] have each added support for
some kind of approximate queries. Though their implementa-
tion details are undisclosed, they clearly must employ disk-
based indexes. Our work could help to improve the perfor-
mance of similarity queries in these systems.

Contributions: Storing the data strings and the inverted
lists on disk dramatically changes the costs of answering
approximate string queries. This setting presents to us new
tradeoffs and allows novel optimizations. One solution is to
simply map the inverted lists to disk, and use existing in-
memory solutions for answering approximate string queries,
retrieving inverted lists from disk as necessary. Such disk-
based inverted indexes have been extensively studied for con-
junctive keyword queries [22]. However, there are several key
differences between our problem and the traditional problem
of conjunctive keyword queries. First, a keyword query often
consists of only a few words, and the opportunity of pruning
results is limited to a few inverted lists. In contrast, an

approximate string query could have many grams, and it may
be inefficient to “blindly” readall their inverted lists. Second,
for conjunctive keyword queries an answer should typically
appear on all the inverted lists of the query’s keywords. In
contrast, for an approximate string query, an answer must not
necessarily occur on all the query grams’ inverted lists. Third,
keyword queries ask for possibly large documents, whereas
approximate string queries ask for strings relatively smaller
than documents. This difference in the size of answers makes
it more attractive in our setting to ignore some inverted lists
and pay a higher cost in the final verification step.

We make the following contributions. In Section III we
propose a new storage layout for the inverted index and show
how to efficiently construct it with limited buffer space. The
new layout uses the unique filtering property of our setting
(see Section II) to split the inverted list of a gram into
smaller sublists that still remain contiguous on disk. We also
discuss the placement of the data strings on disk to improve
query performance. Intuitively, we want to order the data
strings to reflect the access patterns of queries during post-
processing. In Section IV we develop a cost-based, adaptive
algorithm for answering queries. It effectively balances the
I/O costs of accessing inverted lists and candidate answers.
It becomes technically interesting how to properly quantify
the tradeoff between accessing inverted lists and candidate
answers when combining our new partitioned inverted index
with the adaptive algorithm. Finally, Section V presents a
series of experiments on large, real datasets to study the
merit of our techniques. We show that the index-construction
procedure is efficient, and that the adaptive algorithm consider-
ably improves query performance. In addition, we show that
our techniques outperform a recent tree-based index, BED-
tree [21], by orders of magnitude.

A. Related Work

In the literature, the termapproximate string query also
means the problem of finding within a long text string those
substrings that are similar to a given query pattern. See [17]
for an excellent survey. Here, we use this term to refer to the
problem of finding from a collection of strings those similar
to a given query string.

There are two main families of algorithms for answering
approximate string queries: those based on trees (e.g., suffix
trees) [16], [12], [21], and those based on inverted indexes
on q-grams [11], [15], [5]. Suffix trees focus on substring-
similarity search and mainly support edit distance. In this
paper we focus on the inverted-index approach because it
supports a variety of important similarity measures and it gen-
eralizes to other kinds of set-similarity queries. In Section V
we compare our solutions to a recent tree-based approach,
BED-tree [21], which is a disk-based index similar to a B-
tree. Its main idea is to employ a smart global ordering of the
data strings in the tree, and then transform a similariy query
into a range query using the global ordering.

Several recent papers have focused on approximateselec-
tion queries [11], [15], [5] using in-memory indexes. Many

algorithms have been developed for approximate string joins
based on various similarity functions [3], [4], [9], [10], [18],
[20]. Some of them are proposed in the context of relational
databases. A recent paper [13] usesq-gram inverted indexes
to answer substring queries. In this paper, we focus on
approximate string selection queries, but some of our ideas
may also apply to substring queries and approximate joins.

There are many studies on disk-based inverted indexes,
mostly for information retrieval [22]. Index-construction pro-
cedures are presented in [22], and index-maintenance strate-
gies are evaluated in [14]. Please refer to our introductionfor
a comparison between our problem and keyword queries.

Compression can improve transfer speeds of disk-resident
structures. There are various compression algorithms tailored
to inverted lists [23], [7]. These methods are orthogonal tothe
techniques described in this paper.

II. PRELIMINARIES

Q-Grams: Let Σ be an alphabet. For a strings of the
characters inΣ, we use “|s|” to denote the length ofs. The
q-grams of a strings are all its substrings of lengthq, obtained
by sliding a window of lengthq over s. For instance, the 2-
grams of a stringcathey are{ca, at, th, he, ey}. We denote
the multiset ofq-grams ofs by G(s). The number ofq-grams
in G(s) is |G(s)| = |s| − q + 1.

Approximate String Queries: An approximate string query
consist of a stringr and a similarity thresholdk. Given a set of
stringsS, the query asks for all strings inS whose similarity
to r is no less thank. We also call such queries approximate
range or selection queries. Various measures can quantify the
similarity between two strings, as follows. Theedit distance
between two stringsr and s is the minimum number of
single-character insertions, deletions, and substitutions needed
to transformr to s. For example, the edit distance between
“cathey” and “kathy” is 2. Other measures quantify the
similarity between two strings based on the similarity of their
q-gram multisets, for example:

• Jaccard(G(r), G(s)) = |G(r)∩G(s)|
|G(r)∪G(s)|

• Dice(G(r), G(s)) = 2|G(r)∩G(s)|
|G(r)|+|G(s)| .

T-Occurrence Problem: For answering approximate string
queries we focus onq-gram inverted indexes. For each gram
g in the strings inS, we have a listlg of the ids of the strings
that include this gramg, as shown in Figure 1 for2-grams. An
approximate string query can be approached by solving a “T -
occurrence problem” [18] defined as follows: Find the string
ids that appear at leastT times on the inverted lists of grams in
the query string.T is a lower bound on the number of grams
any answer must share withr, computed as follows for edit
distance. A stringr that is within edit distancek of another
string s must share at least the following number of grams
with s [19]: Ted = (|r|− q+1)−k× q. Intuitively, every edit
operation can affect at mostq grams of a string, andT is the
minimum number of grams that “survive”k edit operations.
Similar observations exist for other similarity functionssuch
as Jaccard and Dice [15]. Solving theT -occurrence problem

yields a superset of the answers to a particular query. To
remove false positives we compute their real similarities to
the query in a post-processing step. Our goal in this paper is
to efficiently answer approximate string queries when both the
data and indexes need to reside on disk.

Generalization: Set-based similarity measures such as Jac-
card and Dice are not limited toq-grams. For example, we
could also tokenize our strings into multisets of words (instead
of grams), and use Jaccard or Dice to find similar multisets
of words. In general, aset-similarity query is to find, from a
collection of sets, those sets that are similar to a given query
set. In this paper, we mostly use approximate string queries
using edit distance for illustration purposes, but our techniques
also work for many types of set-similarity queries.

A. Pruning with Filters

Pruning candidate answers based on theT lower bound as
discussed previously is referred to as the “count filter” [10].
We briefly review a few of the many other important filters.

Length Filter: An answer to a query with strings and
edit distancek must have a length in[|s| − k, |s| + k] [10].
Analogous findings exist for other similarity functions [15].

Prefix Filter: Suppose we impose a global ordering on the
universe of grams. Consider a query with an ordered gram set
G(r) and lower boundT . An answer must share at least one
gram with the query in its “prefix”. That is, the first|G(r)| −
T +1 grams of an answerr must share at least one gram with
the first |G(r)| − T + 1 grams of the query [9].

Other Filters: Some filters exploit the the positions of
g-grams, e.g., the position filter [10] and content-based fil-
ter [20], or mismatchingq-grams [20] for pruning.

B. Filter Tree

We can use filters to partition the data strings into groups.
We use a structure called FilterTree [15] to facilitate sucha
partitioning. Originally, the FilterTree was designed forin-
memory inverted lists. In Section III-B we discuss how to
place the inverted lists onto disk.

FilterTree

[2,4) [4,6) [6,8) [8,10)

cat

kat

cathy

kathy

cathey

Inverted indexes

Strings in groups

Length ranges

Fig. 2. A FilterTree partitioning data strings by length.

Figure 2 shows a FilterTree that partitions the data strings
by their length. A leaf node corresponds to a range of lengths
(called group), and each string belongs to exactly one group.
For each group we build an inverted index on the strings in
that group. To answer a query we then only need to process
some of the groups. For example, the answers to a query with
string “cathey” and edit distance 1 must be within the length
range [5, 7]. To answer the query, we only access the inverted
indexes of therelevant groups [4,6) and [6,8).

III. D ISK-BASED INDEX

In this section we introduce a disk-based index to answer
approximate string queries. We detail its individual compo-
nents, and discuss how to construct and store them on disk.

A. System Context

Suppose we have a table about persons with attributes such
as address, name, phone number, as shown in Figure 3. We
want to create an index on the “Name” attribute to support
similarity selections. All components except the source table
belong to this index and are intended to be part of the database
engine. The components below the dotted line are stored on
disk, and only the FilterTree is assumed to fit in memory.

Dense Index: The lowest level of our index is a dense index
that maps from names to record ids in the source table. Each
entry in the dense index is identified by a unique id, called
string id (SID). Our decision to project the indexed column
into a dense index is motivated by the following observations:
(1) The number of candidates answers could be much higher
than the number of true answers. Since the tuples in the source
table could have many attributes, it would be inefficient to
retrieve them for removing false positives. Instead, we usethe
dense index for post-processing and only access the source
table for true answers. (2) The additional level of indirection
allows us to choose the physical organization of the dense
index independently of the source table, which can improve
query performance (see Section III-D).

M

E

M

O

R

Y

D

I

S

K NameAddressSource

Table … …

Dense

Index

Inverted

Index

…

…

Via RID

Phone

…

Via Inverted-List Address

Via DID

FilterTree

Fig. 3. Components of an index on the “Name” field of a “Person”table.

Inverted Index and FilterTree : The final level of our
index consists of an in-memory FilterTree (Section II-B) and
a corresponding disk-resident inverted index. Each leaf inthe
FilterTree has a map from each of its grams to an inverted list
address(l, o), indicating the offseto and lengthl of a gram’s
inverted list in a particular group. The inverted index stores
inverted lists of string ids (SIDs) in a file on disk. Typically,
the FilterTree is very small (a few megabytes) compared to
the inverted index (hundreds of megabytes or gigabytes).

Answering Queries: To answer a query, we first identify
all relevant groups with the FilterTree. Then, for each relevant
group we retrieve the inverted lists corresponding to the query
tokens, and solve theT -occurrence problem (Section II) to
identify candidate answers. To remove false positives, we
retrieve the candidates from the dense index and compute their
real similarity to the query. In further discussions we ignore

the final step of retrieving the records from the source table
since this step cannot be avoided, and we want to keep our
solutions independent of the organization of the source table.

B. Partitioning Disk-Based Inverted Lists

Inverted lists are often stored contiguously on disk [22]
so each list can be read sequentially. This layout maximizes
selection-query performance at the expense of more costly
updates. As mentioned in Section II-A, we use a filter to
partition the data strings into different groups, e.g., based on
their length. For each group we build aq-gram inverted index.
To answer a query, we process allrelevant groups that could
contain answers according to the partitioning filter used, e.g.,
groups that are within a certain length range.

at

1

2

3

4

5

at

1

4

[2, 4) [4, 6) [6, 8)

at

2

Groups Based on Filter Ranges

at

[8, 10)

No Filter Partitioning Filter

rootroot

…

...

…

...

…

...

…

...

…

...

1, 2, 3, 4, 5 1, 4

3, 5

2

1, 4 3, 5

(a)No Filter,

Contiguous

(b) Filter,

Scattered

(c) Filter,

Contiguous Groups

at

3

5

2

Fig. 4. The inverted list of gram “at” with and without partitioning and
possible mappings to a file on disk. Organization (c) is the best.

Let us examine Figure 4 to discuss possible layouts of
inverted lists partitioned in this fashion. In the left upper
portion we see a gramat’s inverted list without partitioning.
To the right, the original inverted list is split into different
groups according to a filter. At the bottom we show possible
storage layouts. Without partitioning we can simply store the
list contiguously as shown in organization (a). In organization
(b), each inverted list is stored contiguously, but the lists
belonging to the same gram from different groups are scattered
across the file. Finally, organization (c) places the inverted lists
belonging to the same gram contiguously in the file.

Example: Suppose we partitioned the strings by length, as
shown in Figure 4. Consider a query with the string “cathey”
and an edit-distance thresholdk = 1. Let us examine the cost
for retrieving the inverted list of gramat. In organization
(a), we perform one disk seek and transfer the five elements
{1, 2, 3, 4, 5} for at’s inverted list. With filtering, answers to
the query must be within the length range[5, 7], since the
length of the query string “cathey” is six. Therefore, only
the groups[4, 6) and[6, 8) are relevant. Using organization (b)
we transfer three list elements{2, 3, 5} with two disk seeks.
Note that the elements{3, 5} and{2} could be arbitrarily far
apart in the file. Using organization (c) we transfer the same
three elements{2, 3, 5} but with only one disk seek.

C. Constructing Inverted Index on Disk

We now present how to efficiently build an inverted index
in the physical layout shown in Figure 4(c). Since we want to
index large string collections, we cannot assume that the final
index fits into main memory. Hence, we desire a technique
that (1) can cope with limited buffer space, and (2) scales
nicely with increasing buffer space. Our main idea is to
first construct an unpartitioned inverted index with a standard
merge-based method [22] (Phase I), and then reorganize the
inverted lists to reflect partitioning (Phase II). This two-phase
approach has the advantage that any existing construction
procedure for an inverted index can be directly used in Phase
I, without modification. Later in this subsection, we discuss
an alternative construction procedure that directly modifies a
standard merge-based technique. Figure 5 shows both phases
of index construction, described as follows.

In-Memory

Inverted Lists

1.Tokenize

Runs on Disk

2. Flush

Merged Index

Phase I: Build Index without Filter

Phase II: Reorganize Index

1 2 3 4Merged Index

1, 2, 3, 4, 5
1.Read

2.Order by

LID, SID

1, 4 3, 5 2

3. Set list addresses

4.Write

3.Merge

[2,4) [4,6) [6,8) [8,10)

FilterTree

SID

1

2

3

4

5

…

String

cat

cathey

kathy

kat

cathy

…

Fig. 5. Two phases of index construction. Phase I builds the index without
partitioning. Phase II re-organizes the index to reflect partitioning.

Phase I: This is a standard merge-based construction pro-
cedure [22]. We read the strings in the collection one-by-
one, decompose them into grams, and add the corresponding
string ids into an in-memory inverted index. Whenever the in-
memory index exceeds the buffer limitation, we flush all its
inverted lists with their grams to disk, creating a run. Onceall
strings in the collection have been processed, we combine all
runs into the final index in a merge-sort-like fashion.

Phase II: This phase reorganizes the inverted index con-
structed in Phase I into a partitioned inverted index better
suited for approximate string queries. We start with an “empty”
FilterTree, whose leaves contain empty mappings from grams
to list addresses. We assign a unique id to each leaf (LID).
Then, we sequentially read lists from the merged index until
the buffer is full. For each of those lists, we re-order its
elements based on their FilterTree leaf ids (LID) and string
ids (SID). The re-ordering can be supported by a map from
SID to LID created in Phase I, or we can compute the cor-
respondingLIDs on-the-fly to save memory. In the process,
we set the lengths and offsets (list addresses) for the listsof
different groups in the FilterTree. After the elements of each
list in the buffer have been re-ordered, we write these listsin
the buffer back to disk, in-place, in one sequential write. We

repeat these steps until all the lists of the merged index have
been processed. Notice that the cost of Phase II is independent
of the number of groups used in partitioning. If the merged
index hasm bytes and our buffer holdsb bytes, then Phase II
requires2 ∗ m

b
sequential I/Os plus the CPU cost for sorting.

The total cost is governed only by the index size and the buffer
size, and thus Phase II meets our performance requirements.

Integrating Partitioning in Phase I: Instead of reorganiz-
ing an unpartitioned index in a separate phase (Phase II), we
could directly modify the merge-based construction procedure
to build a partitioned index as follows. When merging the runs
on disk we immediately reorder the elements of a completely
assembled inverted list before writing it to the final index,
similar to the reordering done in Phase II. We also need
to update the mappings in the FilterTree accordingly. The
advantage of this construction procedure is that it eliminates
the reorganization phase (Phase II). However, the procedure
will need to be either written from scratch, or integrated into
an existing merge-based construction algorithm.

D. Placing Dense Index on Disk

Next we study different ways to organize the entries in the
dense index. Recall that to answer a query we use the inverted
lists to get candidate answers. Then, for each candidate id,we
access the dense index to retrieve its corresponding<String,
RID> pair and compute its similarity to the query (Section III-
A). Intuitively, we want those entries that are likely to be
accessed by the same query to be physically close on disk.
That is, we want to minimize the number of blocks that need
to be accessed to retrieve a given set of candidates. At the
same time we want to avoid seeking through the entire dense-
index file to find the candidates. Note that these desiderata are
different, e.g., even if we only needed to retrieve a few blocks,
those requested blocks could be far from each other in the file.
The following are two natural ways to organize the entries:

Filter Ordering: Partitioning filters offer a simple but
effective solution. If we sort the entries of the dense indexby
a filter, then we limit the range of blocks in which candidates
of a query could appear. Also, it is more likely for blocks to
contain entries that are similar to each other, and hence, similar
to a query. For example, we can limit the blocks that could
contain answers to a query “cathey” with edit distance 1 to
those that contain strings of length [5,7]. Within that range we
may perform random accesses to get the needed blocks, but
the seek distances between these blocks are relatively small.

Clustering: Another solution is to group similar entries
together in the file by running a clustering algorithm on them
(e.g., k-Medoids). This global solution has drawbacks: (1)
Clusters accessed by the same query could be arbitrarily far
apart in the file. (2) The clustering process could be very
expensive. (3) Updates to the index would be complicated.
It is also possible to combine a filter ordering with clustering
(hybrid), e.g., we could sort the strings by their length, and
then we run a clustering algorithm within each length group.

We implemented all the above organizations, i.e., filter
orderings, clustering using k-Medoids, and a hybrid approach.

We experimentally found that all of the approaches perform
much better than an arbitrary ordering of the strings. The
more sophisticated methods, clustering and hybrid clustering,
did not offer better query performance than a simple filter
ordering. Therefore, we prefer the filter ordering solution.

E. Index Maintenance

Inverted Index: Standard techniques [14] for inverted-
index maintenance can be used to update our partitioned
inverted index. They mostly involve buffering insertions into
an in-memory index, and deletions into an in-memory list.
Periodically the in-memory structures are integrated intothe
index on disk, e.g., using one of the following strategies [14]:

In-Place: For each list in the in-memory index, read the
corresponding list from disk, combine the two lists, and write
the new list back to disk (possibly to a different location).

Re-Merge: Read the lists in the file one-by-one. Whenever
a list has pending changes in the in-memory index, update the
list. Finally, write all (possibly updated) lists into a newfile.

We can apply such maintenance strategies to our new phys-
ical layout from Section III-B. We add a FilterTree structure
to the in-memory index that buffers updates. Alternatively,
we could omit the FilterTree, and deal with reorganizing the
inverted lists to reflect partitioning when we combine the in-
memory index with the one on disk.

Dense Index: The dense index is a sorted sequential file
which allows various implementations and associated main-
tenance strategies. For example, we could simply use a B+-
tree. Since updates to the inverted index are done in a “bulk”
fashion, it would be prudent to update the dense index (B+-
tree) in a similar way to maintain the sequentiality of (leaf-)
entries. For example, bulk-loading a new B+-tree or using an
extend-based B+-tree would achieve this goal.

IV. COST-BASED, ADAPTIVE ALGORITHM

In this section we present a cost-based, adaptive algorithm
for answering similarity queries using the disk-based indexes.
For simplicity, we first describe the algorithm assuming the
inverted-index organization in Figure 4(a), and later we discuss
how to modify it to work with organizations (b) and (c).

A. Intuition

Recall that to answer a query we tokenize its string into
grams, retrieve their inverted lists, solve theT -occurrence
problem to get candidate answers, and finally retrieve those
candidates from the dense index to remove false positives. We
develop the algorithm based on the following observations.(1)
Candidate answers must occur on at least a certain number
of the query grams’ inverted lists, but not necessarily on all
those inverted lists. (2) The pruning power of inverted lists
comes from theabsence of string ids on them. For example,
an inverted list that contains all string ids cannot help us
remove candidates. Intuitively, long lists are expensive to
retrieve from disk and may not offer much pruning power.
An approximate query with a stringr, q-gramsG(r), and an
edit distance thresholdk must share at leastT = |G(r)|−k∗q

grams with an answer, with|G(r)| = |s| − q + 1. According
to the prefix filter (Section II-A), the minimum number of
lists we must read to ensure the completeness of answers is
minLists = |G(r)| − (T − 1). To understand this equation,
consider a string id that occurs onT − 1 lists. To become a
candidate, it must additionally occur on at least one of the
other|G(r)|− (T − 1) lists. For example, ifq = 2 andk = 1,
a query with string “cathey” has |G(r)| = 6 − 2 + 1 = 5
grams,T = 5− 1 ∗ 2 = 3 andminLists = 5− (3− 1) = 3.

At one extreme, we could read just theminLists shortest
lists. As a consequence, the number of candidates for post-
processing could be high, because every string id on those
lists needs to be considered. Recall that for post-processing
we retrieve strings from the dense index (Figure 3), hence
every candidate could require a random disk I/O. At the other
extreme, we could read all the inverted lists for a query,
including those long and expensive ones with little pruning
power. It is natural to strive for a solution between the two
extremes, balancing the I/O costs for retrieving inverted lists
and for probing the dense index.

B. Algorithm Details

To answer a query we begin by reading theminList

shortest inverted lists (corresponding to grams in the query)
from disk into memory. Then we traverse these lists to obtain
a set of initial candidates containing all the lists’ stringids
(using an algorithm such as “HeapMerge” [18]). The set of
initial candidates, denoted byC = {c1, c2, . . . , c|C|}, is a set
of triples c = (sid, cnt, cnta). In each triple,sid denotes the
string id of the candidate,cnt denotes the current “count” or
the total number of occurrences ofsid on the lists we have read
so far, andcnta denotes the “count absent” value (its meaning
will become clear shortly). Next, we decide whether we can
reduce the overall cost of the query by reading additional lists
to prune candidates. If so, then we read the next list and prune
candidates with it. If not, then we post-process the candidates
in C. The decision whether or not to read the next list depends
on the current number of candidates still inC, the cost for
post-processing them by accessing the dense index, the cost
for reading more lists, and the likelihood of pruning candidates
by reading more lists. We repeat this process until we have
read all the query grams’ inverted lists or there is no cost
reduction from reading additional inverted lists.

Note that the benefits of reading additional inverted lists
might manifest themselves after reading a few more lists, and
not necessarily after reading only one more list. Hence, we
must estimate the effects of reading the nextλ lists. Take
our running example, withr = cathey, k = 1, and lower
boundT = 5 as shown in Figure 6. Let us examine candidate
c1 = (2, 2, 2), which is part of the initial candidates produced
after processing theminLists = 3 shortest lists. We have
read 3 of the 5 lists, so there are 2 lists left. In order to prune
candidatec1, its string id must be absent on at leastcnta = 2
additional lists.

In general, the “count absent” value is the minimum number
of additional lists a candidate string id must beabsent from,

Inverted Lists for Query s=cathey, k=1, q=2, T=3

minLists = 3

Initial Candidates

c1 = (2, 2, 2)

c2 = (1, 1, 1)

c3 = (3, 1, 1)

c4 = (5, 1, 1)

ca

1

2

5

th

1

3

5

at

1

2

3

4

5

ey

2

hy

2

Fig. 6. Example to illustrate meaning and effect of the “count absent” value.

in order to be pruned. At each stage in the adaptive algorithm
for answering a query with stringr and q-gramsG(r), we
can compute the count-absent value of a triple(sid, cnt, cnta)
corresponding to a candidate answer by:

cnta = (|G(r)| −minLists)− (T − cnt) + 1. (1)

Candidates could have variouscnta values, and the cost and
benefit of reading more lists depend onλ, i.e., the number
of additional lists we consider reading. Since the benefits of
reading more lists can become apparent only after reading
several next lists, a cost model that considers only readingthe
next list could get stuck in a local minimum, and is therefore
insufficient to find a globally minimal cost. This is the reason
why we need to consider reading all the possible numbers of
remaining listsλ. For example, in the first iteration we would
consider1 ≤ λ ≤ |G(r)| −minLists.

Pseudo-Code:Figure 7 shows pseudo-code for the adaptive
algorithm. We useΩ(r) to denote the list addresses sorted
by length in an increasing order for a query stringr. For
convenience we useΩ(r)[j] to mean thej-th list in Ω(r).
Cλ refers to the subset of candidates withcnta ≤ λ. We
assume the following parameters of a cost-model: (1)Θ is the
average cost of post-processing a candidate, (2)Π(l) is the
cost of reading listl, and (3)ben(λ) is the benefit or reading
λ additional lists.

Input: Inverted list addressesΩ(r) for a query stringr
Minimum number of lists to readminLists

Output: A setC of candidate answers to be post-processed
Method:
1. C = HeapMerge(Ω(r), minLists);
2. nextList = minLists + 1;
3. listsLeft = |Ω(r)| −minLists;
4. WHILE listsLeft > 0
5. FOR λ = 1 TO listsLeft
6. Λ = nextλ lists starting fromΩ(r)[nextList];
7. costPP =|Cλ| ∗Θ; // cost of post-processing
8. costRL =

∑
l∈Λ

Π(l); // cost of reading lists
9. benfitRL =ben(λ) for lists in Λ;
10. IF (costRL - benefitRL< costPP)THEN
11. invList = readList(Ω(r)[nextList]);
12. C = pruneCandidates(C, invList);
13. nextList+=1; listsLeft−=1;
14. BREAK FOR;
15. END IF
16. END FOR
17. IF λ == listsLeft THEN BREAK WHILE; // no benefit
18. END WHILE
19. RETURN C;

Fig. 7. Cost-based, adaptive algorithm for answering queries.

We begin by readingminLists inverted lists and process
them to obtain a set of initial candidates (line 1). Next,
we consider reading all numbers of remaining lists, setting
λ accordingly. We compute the cost of post-processing the
candidates that could potentially be pruned withλ lists (line
7). Correspondingly, we compute the cost (line 8) and benefit
(line 9) of reading the nextλ lists. We decide whether we can
reduce the overall cost by readingλ lists, as compared to not
reading them (line 10). If we can reduce the cost, we read the
next list (line 11) and prune candidates (line 12). Otherwise,
we proceed with the nextλ. We repeat this process until (a)
we have read all lists or (b) we cannot benefit from reading
any more lists. Notice that whenever we detect a benefit we
read justone more list at a time, independent of the value
of λ. This approach mitigates possible inaccuracies of a real
cost-model.

C. Cost Model

In this section we develop a model to estimate the cost and
benefit of reading additional inverted list.

Cost of post-processing candidates: We focus on the I/O
cost because the CPU time for computing similarities is often
negligible in comparison. The maximum cost for retrieving a
candidate string is the time for one disk seek plus the time to
transfer one disk block. This cost can be determined directly
from the hardware configuration or estimated offline. We can
improve this model by taking into account the chance that
a dense index block is already cached in memory. Using a
conservative but simple approach, we read a few blocks offline
and compute the average time to retrieve a block, denoted by
Θ. We then use|C|∗Θ to estimate the cost of post-processing
a candidate setC. For example, the cost of post-processing
the candidates in Figure 6 would be 4*Θ since|C| = 4.

Cost of retrieving inverted lists: Since the lengths of
inverted lists usually follow a Zipf distribution, the average
retrieval time is not an accurate estimator of the true cost.
Again, the cost is determined by the seek time and the transfer
rate of the disk. Since our solution is on top of a file system,
the raw disk parameters are not very accurate performance
indicators either, due to the intermediate layer. To overcome
this issue, we read a few lists offline and do a linear regression
to obtain the cost functionΠ(ω) = m ∗ ω.l + b, whereω.l
denotes the length of the inverted listω, b is an estimate for
the seek time, andm is an estimate for the inverse transfer
rate. So, given a setΩ of ω, we can estimate the total cost of
reading all those inverted lists by

∑

ω∈ΩΠ(ω). For example,
the cost of reading the lists of gramsca andat from Figure 6
would be(m ∗ 3 + b) + (m ∗ 5 + b), since their lengths are 3
and 5, respectively.

Benefit of reading additional inverted lists: At a high
level, we quantify the benefit in terms of the cost we can
save by pruning candidates, considering the likelihood of that
happening by readingλ lists. The likelihood of pruning a
candidatec with λ lists depends on itscnta. Intuitively, we
would like to know the probability thatc’s string id is absent
from at leastcnta of the λ lists. Computing this probability

for each candidate individually would be computationally
expensive. To avoid repeated computations we group the
candidates bycnta as follows. We define a subset ofC as
C(i) = {c|c ∈ C ∧ c.cnta = i}, containing all candidates in
C that have a certaincnta = i. We also make the following
simplifying assumptions:
• The probability of one string id being present or absent

from an inverted list is independent of the presence or
absence of another string id on the same list.

• The probability of a string id being present or absent from
one inverted list is independent of that same string id being
absent or present from another list.

Following these assumptions, we estimate the benefit as:

ben(λ) = Θ ∗

λ
∑

i=1

|C(i)| ∗ p(i, λ), (2)

wherep(i, λ) denotes the probability of a string id being absent
from i of the λ lists. In a sense, we are being optimistic,
since Equation 2 expresses that we could pruneall candidates
in C(i) with probability p(i, λ). The key challenge is to
obtain a reasonably accuratep(i, λ) efficiently. Following our
assumptions we modelp(i, λ) as a sequence ofλ independent
Bernoulli trials, i.e., a Bernoulli process. We define “success”
as the absence of a string id on a list, and “failure” as the
presence of a string id on a list. Since all we know of the lists
are their lengths, we estimate the success probability witha
setΩ of list addressesω as:

ps = 1−

∑

ω∈Ω ω.l

|Ω|
∗

1

N
. (3)

The term
∑

ω∈Ω
ω.l

|Ω| denotes the average list length of theλ lists
in Ω we are considering to read, andN is the total number
of strings in the dense index. The probability of at leasti

successes inλ trials having a success probabilityps can be
computed with the cumulative binomial distribution function:

p(i, λ) = binom(i, λ, ps) =

λ
∑

j=i

(

λ

j

)

pjs(1− ps)
λ−j . (4)

Combining Equations 2, 3 and 4 yields a complete model for
estimating the benefit of readingλ additional lists:

ben(λ) = Θ ∗

λ
∑

i=1

|C(i)| ∗ binom(i, λ, ps). (5)

D. Combining with Partitioned Inverted-Index Layout

So far, we have presented the adaptive algorithm using the
layout in Figure 4(a) from Section III for simplicity. Next,
we discuss how to combine the adaptive algorithm with the
other two inverted-index layouts (b) and (c). Recall that when
answering a query we first traverse the FilterTree to identify
the relevant groups (e.g., corresponding to length ranges)
which could contain answers.

Modified Success Probability: In Equation 3 the proba-
bility (called success probability) of a string id being absent
from a set of lists depends on their average list length, and

the total number of stringsN in the dataset. Since each group
generated by a partitioning filter only contains a subset of the
N total strings, simply applying Equation 3 would lead to
overestimation of the success probability, and consequently
overestimation of the benefit (Equation 5). We modify the
success probability by replacingN in Equation 3 with the
number of strings in the particular group we are considering.
This change applies to both inverted-index layouts (b) and (c).
Next, we detail how to answer queries with those two layouts.

Layout (b): To answer a query using the adaptive algorithm,
we first identify all relevant groups, and then process each
group individually as if there was no partitioning (but withthe
new success probability). Each instance of the algorithm tries
to minimize the cost for processing its corresponding group.

Layout (c): Intuitively, we just process all relevant groups
together, as opposed to processing them one-by-one. We first
read theminList inverted lists of all relevant groups to create
the sets of initial candidates forall groups at the same time.
To exploit the contiguous layout, we retrieve the lists gramby
gram. That is, we read the lists of all relevant groups of the
first gram, then we read the lists of all relevant groups of the
second gram, etc., until we have retrieved all theminLists

lists. We perform HeapMerge on the groups separately to get
the initial sets of candidates.

Next, we proceed with the iterative phase of the algorithm,
estimating the cost and benefit of reading the next grams’ lists
of all relevant groups. We either decide to read the next lists
together or commence post-processing.

Layout (c) Examples: In the following, we describe how to
handle a few interesting scenarios when combining the adap-
tive algorithm with organization (c). For example, Figure 8
shows the inverted lists of the relevant groups for our running
examplecathey (the string ids differ from earlier examples).
To minimize the global cost we should read the lists for gram
hy first because there are a total of 3 relevant elements{2, 6,
8}. Next, we should read the lists of gramey because they
contain a total of 4 elements{2, 6, 7, 8}, and so on.

Local vs. Global Ordering: We want to read the inverted
lists from shortest to longest. However, the local order of each
group may not correspond to the best global order. We must
read the relevant lists of grams in order of their sum of lengths.

ca

1

2

5

th

1

3

5

at

1

2

3

4

5

ey

2

hy

2

ca

6

7

8

9

th

8

9

at

6

ey

6

7

8

hy

6

8

Group [4,6) Group [6,8)

Fig. 8. Inverted lists for querycathey, k = 1, q = 2, andT = 3.

Pruning Entire Groups: Groups that do not contain at least
T grams of the query can be pruned entirely. We should not
read the lists that do match a query’s grams of a pruned group.

Figure 9 shows a group [6,8) that has less thanT of the
query’s grams. Since this group cannot contain answers to the
query, we do not need to read lists from it. For example, for
gramca that exists in group [6,8), we should only read the
elements{1,2,5} andnot the elements{6,7,8,9}.

A similar situation can arise during the iterative phase of
the adaptive algorithm. When a particular group does not
contribute candidates anymore (because they have all been
pruned), then we do not need to read inverted lists from
that group anymore (but possibly still from the other ones).
We must handle both scenarios above specially during cost
estimation and during the retrieval of lists.

ca

1

2

5

th

1

3

5

at

1

2

3

4

5

ey

2

hy

2

ca

6

7

8

9

that ey

6

7

8

hy

Group [4,6) Group [6,8)

Fig. 9. Inverted lists for querycathey, k = 1, q = 2, andT = 3. None
of the strings in group [6,8) contain the gramsat, th, or ty.

V. EXPERIMENTS

In this section, we evaluate the performance of queries and
index construction of our techniques. We show experiments on
range and top-k queries using edit distance, and range queries
using normalized edit distance, Jaccard based onq-grams, and
Jaccard based on word grams. We compare our techniques to
a recent tree-based index BED-tree [21], whenever possible.

Datasets:We used six real datasets, summarized in Table I.
The first four datasets are taken from [21] (BED-tree) to
establish a fair comparison. In addition, we used the last two
datasets for experiments on scalability and index-construction
since they are larger than the first four.

Dataset # Strings Max Len Avg Len
DBLP Author 2,948,929 48 15
DBLP Title 1,158,648 667 68
IMDB Actor 1,213,391 73 16

Uniprot 508,038 1992 341

Medline Titles 10,000,000 252 84
Web Word Grams 20,000,000 163 23

TABLE I

DATASETS AND THEIR STATISTICS.

The DBLP Title and Author datasets1 were taken from
DBLP, and contained authors and titles of publications. The
IMDB Actor2 dataset consists of actor names from movies.
The Uniprot3 dataset contains protein sequences in text format.
The Medline Titles4 dataset consists of publication titles
from the medical domain. Finally, the Web Word Grams5

dataset contains popular word-grams from web documents. We
randomly picked 10 million titles of the Medline Dataset, and
20 million 4-word-grams for the Web Word Grams dataset.

Hardware and Compiler: We conducted all experiments
on a machine with a four-core Intel Xeon E5520 2.26Ghz
processor, 12GB of RAM, and a 10,000 RPM disk drive,
running a Ubuntu operating system. We used the original code
for BED-tree written in C++ which the authors generously

1www.informatik.uni-trier.de/˜ley/db
2www.imdb.com
3www.uniprot.org
4www.ncbi.nlm.nih.gov/pubmed
5www.ldc.upenn.edu/Catalog, number LDC2006T13

provided to us. We implemented all our algorithms in C++ as
well. We compiled all code with GCC using the “-O3” flag.

Parameters:We experimented with differentq for tokeniz-
ing strings intoq-grams and foundq = 3 to be best for most
cases. Therefore, we usedq = 3 for all experiments, for both
BED-tree (where applicable) and for out techniques. For our
techniques, we used the length filter for partitioning. We used
a disk-block size of 8KB for both BED-tree and our methods.

Clearing Filesystem Cache:In our experiments we con-
sidered both the raw disk performance of queries, and their
performance with caching. To simplify the implementations,
both BED-tree and our techniques were built on top of a
filesystem (as opposed to using the raw disk device). Using
a filesystem, however, complicates accurate measurements of
disk performance due to filesystem caching (it will aggres-
sively use all available memory to cache disk pages). To
overcome this issue, we cleared the filsystem cache at certain
points (to be explained) with the following shell command:

echo 3 > /proc/sys/vm/drop_caches

Query Workloads: The authors of the BED-tree provided
us with the data and workloads from their experiments in [21].
The workload for each dataset consisted of 100 randomly
chosen strings. For the other datasets used only in this pa-
per (Medline Titles, Web Word Grams), we also generated
workloads by randomly choosing 100 strings for each dataset.

A. Index Construction Performance

We built inverted indexes for the Web Word Grams datasets
in organization (c) (Section III) using length filtering. We
measured each step of the construction procedure (1) creating
runs, (2) merging the runs, and (3) reorganizing the index,
clearing the filesystem cache before each step. We also ran
this experiment on the Medline Titles dataset, but omit the
results since they show a similar trend.

 0

 1

 2

 3

 4

 5

 6

 7

4 8 12 16 20C
on

st
ru

ct
io

n
T

im
e

(m
in

s)

Number of Strings (millions)

Create Runs (Phase I)
Merge Runs (Phase I)

Reorganize Index (Phase II)

 0

 2

 4

 6

 8

 10

 12

 14

50 100 150 200C
on

st
ru

ct
io

n
T

im
e

(m
in

s)

Buffer Size (MB)

Create Runs (Phase I)
Merge Runs (Phase I)

Reorganize Index (Phase II)

Fig. 10. Index construction performance on Web Word Grams.

In the left chart of Figure 10 we allocated a fixed buffer
size of 400MB for index construction. It shows that the index-
construction procedure scaled well (almost linearly) withthe
size of the dataset. The right chart shows the construction
performance with varying buffer sizes, and we see that the
merging of the runs took most of the time. By increasing
the buffer size we improved the performance of merging the
runs. The other two phases, creating the runs and reorganizing
the index, did not benefit from a larger buffer size because
they were CPU bound, explained as follows. Creating the runs
consists of tokenizing the strings, and frequently reallocating

in-memory inverted lists. Reorganizing the index consistsof
sorting inverted-list elements, while performing disk opera-
tions in buffer-sized chunks.

We do not report the construction times for BED-tree for
the following reason. A comparison would be somewhat unfair
since our technique builds its inverted index in “bulk”, while
BED-tree does not currently implement bulk-loading (it uses
repeated insertions). For example, constructing a BED-tree on
20 million Web Word Grams with a 100MB buffer took around
9 hours, and still almost 4 hours with a 400MB buffer.

B. Query Performance Naming Conventions and Methodology

In this subsection, we introduce the different flavors of
BED-tree and the inverted-index approach used in our exper-
iments on query performance. We also detail our procedures
for obtaining the results of different types of experiments.

BED-Tree Naming: We follow the convention from [21].
BD, BGC, and BGL refer to a BED-tree using the dictionary
order, gram count order, and gram location order, respectively.

Naming of Our Approaches: In our experiments we
focused on the following two extreme approaches showing
the best and worst inverted-index solutions for raw disk
performance. “Simple” refers to a straightforward adoption of
existing algorithms. It uses an unpartitioned inverted index
and a dense index whose entries are in an arbitrary order.
“Simple” retrieves all the inverted lists of a query string’s
grams and then solves theT -occurrence problem with an
efficient in-memory algorithm (we used DivideSkip [15]). We
use “AdaptPtOrd” to refer to our most advanced method using
the adaptive algorithm (“Adapt”), a partitioned inverted index
(“Pt”), and a dense index with entries ordered by their length
(“Ord”). More results exploring the various dimensions of our
solutions can be found in the full paper [6].

Raw Disk: In this type of experiments, we measured the
performance of queries when all data required for answering
a query (inverted lists, dense index blocks, BED-tree blocks)
needed to be retrieved from disk. To do so, we cleared the
filesystem cache before each query. Recall that our inverted-
index assumes the FilterTree is in memory (Section III-A). For
a fair comparison, we allocated the same amount of memory
needed for the FilterTree to BED-tree’s buffer manager. Note
that BED-tree implements its own buffer manager, and there-
fore, those blocks cached in its buffer manager were unaffected
by clearing the filesystem cache.

We also gathered the number of disk seeks and the amount
of data transferred from disk per query captioned as ”Data
Transferred” and “Disk Seeks”. For BED-tree the disk seeks
are the number of nodes retrieved from disk (not already in the
buffer manager), and the data transferred is that number mul-
tiplied by the block size. For our inverted-index solution,the
number of disk seeks is the number of inverted lists and dense-
index blocks accessed. We computed the data transferred using
the sizes of the inverted lists and dense-index blocks.

Fully Cached Index: This experiment represents the other
extreme in which all data required to answer a query is
already in memory. For BED-tree we achieved this behavior

by allocating a large amount of memory in its buffer manager.
We ran our workloads immediately after building the BED-
tree, and therefore, the entire BED-tree was in memory when
running queries. For our inverted-index approach we relied
on the filesystem for caching. We first built the inverted
index and dense index without clearing the filesystem cache,
and then immediately ran our workloads, assuming that after
construction all indexes are probably in the filesystem’s cache.

C. Range Queries Using Edit Distance

 0.1

 1

 10

 100

 1 2 3 4A
vg

 Q
ue

ry
 T

im
e

(s
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(a) Raw Disk Time.

 1

 10

 100

 1000

 1 2 3 4A
vg

 Q
ue

ry
 T

im
e

(m
s)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(b) Fully Cached Index Time.

 0.1

 1

 10

 100

 1000

 1 2 3 4D
at

a
T

ra
ns

fe
rr

ed
 (

M
B

)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(c) Data Transferred.

 0.1

 1

 10

 100

 1000

 1 2 3 4D
is

k
S

ee
ks

 (
x1

00
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(d) Disk Seeks.

Fig. 11. Range-query performance on DBLP Author.

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(s
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(a) Raw Disk Time.

 0.1

 1

 10

 100

 1000

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(m
s)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(b) Fully Cached Index Time.

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16D
at

a
T

ra
ns

fe
rr

ed
 (

M
B

)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(c) Data Transferred.

 0.1

 1

 10

 100

 1000

 1 2 4 8 16D
is

k
S

ee
ks

 (
x1

00
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(d) Disk Seeks.

Fig. 12. Range-query performance on DBLP Title.

1) Comparison with BED-Tree: Next, we compare our
approach with BED-tree on range-query performance using
the datasets and workloads from the BED-tree paper [21]. The
first two graphs, (a) and (b), of Figures 11-14 show the raw
disk, and fully cached index times, respectively. The graphs
(c) and (d) further detail the raw disk performance with the
average number of disk seeks and data transferred per query.

 0.01

 0.1

 1

 10

 100

 1 2 3 4A
vg

 Q
ue

ry
 T

im
e

(s
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(a) Raw Disk Time.

 0.1

 1

 10

 100

 1000

 1 2 3 4A
vg

 Q
ue

ry
 T

im
e

(m
s)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(b) Fully Cached Index Time.

 0.1

 1

 10

 100

 1000

 1 2 3 4D
at

a
T

ra
ns

fe
rr

ed
 (

M
B

)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(c) Data Transferred.

 0.1

 1

 10

 100

 1000

 1 2 3 4D
is

k
S

ee
ks

 (
x1

00
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(d) Disk Seeks.

Fig. 13. Range-query performance on IMDB Author.

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(s
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(a) Raw Disk Time.

 0.1

 1

 10

 100

 1000

 10000

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(m
s)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(b) Fully Cached Index Time.

 0.01
 0.1

 1
 10

 100
 1000

 10000

 1 2 4 8 16D
at

a
T

ra
ns

fe
rr

ed
 (

M
B

)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(c) Data Transferred.

 0.1

 1

 10

 100

 1000

 10000

 1 2 4 8 16D
is

k
S

ee
ks

 (
x1

00
)

Edit Distance

BD
BGC
BGL

Simple
AdaptPtOrd

(d) Disk Seeks.

Fig. 14. Range-query performance on Uniprot.

We see that “AdaptPtOrd” consistently outperformed BED-tree
by orders of magnitude, both for raw disk peformance and
for a fully cached index (notice we are using a log scale on
the y-axes). Also, “AdaptPtOrd” was considerably faster than
“Simple”. The performance differences between “AdaptPtOrd”
and the BED-tree variants on raw disk are explained by the
graphs (c) and (d). “AdaptPtOrd” transferred significantlyless
data per query with fewer disk seeks than BED-tree. The
two main reasons why BED-tree examined so many nodes
are as follows. First, the pruning power at higher levels of
the BED-tree is weak because a node entry refers to the
enclosing interval of ranges in its subtree. Second, the BED-
tree search procedure traverse multiple paths in the tree (more
akin to an R-tree search), leading to additional node accesses
as compared to a standard B-tree range search. Such a search
procedure can also incur long disk-seek distances, becauseit is
impossible to simultaneously store all tree-nodes close toeach
other (in a standard B-tree we only need to store the leaves
close to their siblings). Our argument that BED-tree’s pruning

power is not as strong as our approach is also supported by
the results on fully cached indexes, where a significant costis
computing the real edit distances to candidate answers.

In Table II we summarized the index sizes for these sets of
experiments. We observe that, in general, our inverted index
approach requires more space than BED-tree. For example,
on DBLP Author the BED-tree with dictionary ordering (BD)
required 97MB of disk-space, and our indexes required 82 +
204 = 292MB on disk. However, our approaches transferred
much less data from disk per query (see Figures 11-14). Also,
recall that for the raw disk experiments, we give the BED-tree
variants a buffer space equal to “FT”, the size of our FilterTree.

Dataset BD BGC BGL DenIx InvIx FT
DBLP Author 97 225 189 82 204 7
DBLP Title 123 156 157 100 297 21
IMDB Actor 38 88 75 32 88 11

Uniprot 283 302 305 222 617 49

TABLE II

INDEX SIZES IN MB OF BED-TREE VARIANTS AND OUR INVERTED-INDEX

COMPONENTS. DENIX REFERS TO THE DENSE INDEX, INV IX TO THE

INVERTED INDEX, AND FT TO THE IN-MEMORY FILTERTREE.

2) Scalability: In Figures 15 and 16 we varied the number
of indexed strings on our two large datasets, Web Word
Grams and Medline Titles, to evaluate the scalability of our
techniques. Due to its slow performance we omit BED-tree
from the raw disk experiments. For example, on 12 million
Web Word Grams its best version BD needed an average of
15 seconds per query, and on 6 million Medline Titles its best
version BGC needed an average of 145 seconds. Similarly,
we only plot the best version of BED-tree for the in-memory
results since the other versions were significantly worse.

Our results show that “AdaptPtOrd” offers better scalability
than “Simple”, explained as follows. As we increased the size
of the dataset, some inverted lists became longer. However,
the number of results per query grew relatively slower than
the total index size. Especially for highly selective queries, the
adaptive algorithm avoided reading many unnecessary inverted
lists. This effect explains the excellent performance on the
highly selective Medline Titles. Similar arguments hold for
the experiments with fully cached indexes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

A
vg

 Q
ue

ry
 T

im
e

(s
)

Number of Strings (millions)

Simple AdaptPtOrd

(a) Raw Disk Time.

 0
 20
 40
 60
 80

 100
 120
 140

 4 8 12 16 20A
vg

 Q
ue

ry
 T

im
e

(m
s)

Number of Strings (millions)

BD
Simple

AdaptPtOrd

(b) Fully Cached Index Time.

Fig. 15. Range-query scalability with edit distance 2 on WebWord Grams.

D. Top-K Queries Using Edit Distance

Next, we discuss our results on top-k queries shown in
Figures 17 and 18. As before we used the datasets and

 0

 1

 2

 3

 4

 5

 2 4 6 8 10

A
vg

 Q
ue

ry
 T

im
e

(s
)

Number of Strings (millions)

Simple AdaptPtOrd

(a) Raw Disk Time.

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10A
vg

 Q
ue

ry
 T

im
e

(m
s)

Number of Strings (millions)

BGC
Simple

AdaptPtOrd

(b) Fully Cached Index Time.

Fig. 16. Range-query scalability with edit distance 6 on Medline Title.

workloads of the BED-tree paper. We answer top-k queries
on our inverted-index by a sequence of range queries with
increasing ranges. We do not show the results on the DBLP
Title and Uniprot datasets, because for some queries BED-tree
did not find all correct answers. For example, on Uniprot with
K=4, BED-tree only returned a total of 304 answers instead
of the correct 400 answers for the 100 queries.

The results on top-k queries are consistent with those on
range queries, and similarity show our techniques answered
top-k queries efficiently, and outperformed BED-tree.

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(s
)

K

BD
BGC
BGL

Simple
AdaptPtOrd

(a) Raw Disk Time.

 0.1

 1

 10

 100

 1000

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(m
s)

K

BD
BGC
BGL

Simple
AdaptPtOrd

(b) Fully Cached Index Time.

Fig. 17. Top-K query performance on DBLP Author.

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(s
)

K

BD
BGC
BGL

Simple
AdaptPtOrd

(a) Raw Disk Time.

 0.1

 1

 10

 100

 1000

 1 2 4 8 16A
vg

 Q
ue

ry
 T

im
e

(m
s)

K

BD
BGC
BGL

Simple
AdaptPtOrd

(b) Fully Cached Index Time.

Fig. 18. Top-K query performance on IMDB Actor.

E. Query Performance Using Other Similarity Functions

In this subsection, we present experiments on range queries
using normalized edit distance and Jaccard. Its main purpose
is to demonstrate that our solutions also support similarity
functions other than edit distance. Due to space limitations,
we omit some of the figures since they are consistent with the
overall trends. The complete set of experimental results can
be found in the full version of this paper [6].

1) Normalized Edit Distance: Again, we used the datasets
and workloads from the BED-tree paper. Since BED-tree
currently supports normalized edit distance only with the gram
counting order, we have only BGC in Figures 19 and 20. As
before, “AdaptPtOrd” outperforms its competitors.

 0.01

 0.1

 1

 10

 100

 0.8 0.85 0.9 0.95

A
vg

 Q
ue

ry
 T

im
e

(s
)

Normalized Edit Distance

BGC
Simple

AdaptPtOrd

(a) Raw Disk Time.

 1

 10

 100

 1000

 0.8 0.85 0.9 0.95A
vg

 Q
ue

ry
 T

im
e

(m
s)

Normalized Edit Distance

BGC
Simple

AdaptPtOrd

(b) Fully Cached Index Time.

Fig. 19. Range-query performance on DBLP Author.

 0.1

 1

 10

 100

 0.8 0.85 0.9 0.95

A
vg

 Q
ue

ry
 T

im
e

(s
)

Normalized Edit Distance

BGC
Simple

AdaptPtOrd

(a) Raw Disk Time.

 1

 10

 100

 1000

 0.8 0.85 0.9 0.95A
vg

 Q
ue

ry
 T

im
e

(m
s)

Normalized Edit Distance

BGC
Simple

AdaptPtOrd

(b) Fully Cached Index Time.

Fig. 20. Range-query performance on DBLP Title.

2) Jaccard with Q-Gram Tokens: In Figure 21 we used the
Jaccard similarity of multisets ofq-gram tokens to quantify the
similarity between strings. Though BED-tree could possibly
answer queries using Jaccard with the gram count ordering, its
current implementation does not support it. Therefore, we only
plot the results of our approaches. We observe that our new
techniques also provide a disk-performance benefit to queries
using Jaccard.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.9 0.8 0.7 0.6

A
vg

 Q
ue

ry
 T

im
e

(s
)

Jaccard

Simple AdaptPtOrd

(a) DBLP Author.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.9 0.8 0.7 0.6

A
vg

 Q
ue

ry
 T

im
e

(s
)

Jaccard

Simple AdaptPtOrd

(b) DBLP Title.

Fig. 21. Raw disk range-query performance using Jaccard onq-gram tokens.

3) Jaccard with Word Tokens: For those datasets with very
long strings (DBLP Title, Medline Title), it could be more
meaningful to use Jaccard based on word tokens to quantify
the similarity between strings. Figure 22 shows the raw disk
performance of queries based on word tokens, and we see that
our techniques also improved their performance in this setting.

 0

 0.1

 0.2

 0.3

 0.4

0.9 0.8 0.7 0.6

A
vg

 Q
ue

ry
 T

im
e

(s
)

Jaccard

Simple AdaptPtOrd

(a) DBLP Title.

 0

 1

 2

 3

0.9 0.8 0.7 0.6

A
vg

 Q
ue

ry
 T

im
e

(s
)

Jaccard

Simple AdaptPtOrd

(b) Medline Title.

Fig. 22. Raw disk range-query performance using Jaccard on word tokens.

VI. CONCLUSION

We have studied approximate string selection queries when
data and indexes reside on disk. We proposed a new physical
layout for an inverted index, demonstrated how to efficiently
construct it, and showed its benefits to query processing. We
developed a cost-based adaptive algorithm to answer queries.
We have shown that the adaptive algorithm and the new index
layout complement each other and that their combination an-
swers queries efficiently. Further, our techniques outperformed
a recent tree-based index, BED-tree.

Acknowledgements: This work was supported by the CluE
(IIS 0844574) and Asterix (IIS 0910989) NSF grants, and the
National Nature Science of China grant number 60828004.

REFERENCES

[1] Oracle Text, An Oracle Technical White Paper, 2007. http:
//www.oracle.com/technology/products/text/pdf/
11goracletexttwp.pdf.

[2] Fuzzy Search in IBM DB2 9.5, 2008. http://publib.
boulder.ibm.com/infocenter/db2luw/v9r5/index.
jsp?topic=/com.ibm.db2.luw.admin.nse.topics.doc/
doc/t0052178.html.

[3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB, pages 918–929, 2006.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. InWWW, 2007.

[5] A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained gram-based indexing
for efficient approximate string search. InICDE, 2009.

[6] A. Behm, C. Li, and M. J. Carey. Answering approximate string queries
on large datasets using external memory (full version). Technical report,
Department of Computer Science, UC Irvine, July 2010.

[7] S. Buettcher and C. L. A. Clarke. Index compression is good, especially
for random access. InCIKM, 2007.

[8] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. Narasayya, and
T. Vassilakis. Data cleaning in Microsoft SQL Server 2005. In SIGMOD,
2005.

[9] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. InICDE, 2006.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[11] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava. Fast
indexes and algorithms for set similarity selection queries. In ICDE,
2008.

[12] E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large
biological sequences. InIn VLDB, pages 139–148, 2001.

[13] Y. Kim, K.-G. Woo, H. Park, and K. Shim. Efficient processing of
substring match queries with inverted q-gram indexes. InICDE, 2010.

[14] N. Lester, J. Zobel, and H. Williams. Efficient online index maintenance
for contiguous inverted lists.Inf. Process. Manage., 42(4), 2006.

[15] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. InICDE, pages 257–266, 2008.

[16] C. Meek, J. M. Patel, and S. Kasetty. Oasis: An online andaccurate
technique for local-alignment searches on biological sequences, 2003.

[17] G. Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001.

[18] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD Conference, 2004.

[19] E. Ukkonen. Approximae string matching with q-grams and maximal
matching.Theor. Comut. Sci., 1:191–211, 1992.

[20] C. Xiao, W. Wang, and X. Lin. Ed-join: An efficient algorithm for
similarity joins with edit distance constraints. InVLDB, 2008.

[21] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree:
an all-purpose index structure for string similarity search based on edit
distance. InSIGMOD, 2010.

[22] J. Zobel and A. Moffat. Inverted files for text search engines. ACM
Comput. Surv., 38(2):6, 2006.

[23] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar RAM-CPU
cache compression. 2006.

