Answering Approximate String Queries
on Large Data Sets Using External Memory

Alexander Behrhy Chen LF, Michael J. Carey

Deptarment of Computer Science, University of California, Irvine
labehm@ cs. uci . edu, 2chenli @cs. uci . edu, 3rr]' carey@-cs. uci . edu

. . . . Data Strings Inverted Lists
Abstract— An approximate string query is to find from a
collection of strings those that are similar to a given querystring. id | String | [cal
Answering such queries is important in many applications sch L] cat)|
as data cleaning and record linkage, where errors could ocau é i’;ﬁey g g 2 S8
in queries as well as the data. Many existing algorithms have 4 | xat Y 4
focused on in-memory indexes. In this paper we investigatedw 5 cathy 5

to efficiently answer such queries in a disk-based setting, yb

systematlcally StUleng the effects (.)f storing data andllndxes Fig. 1. A string collection of person names and their invetists of 2-grams.
on disk. We devise a novel physical layout for an inverted

:ndexdt(t)) f?fns""er queries and we study hOWdtO Clor‘Str”Ct ngic;h the similarity, a lower bound on the number of common grams
imited buffer space. To answer queries, we develop a cosibed, . .
adaptive algorithm that balances the 1/O costs of retrievimy between two similar strings can be computed [15].

candidate matches and accessing inverted lists. Experimen Motivation: In this paper, we study how to answer ap-
on large, real datasets verify that simply adapting existig proximate string queries when data and indexes reside on

algorithms to a disk-based setting does not work well and thieour disk. Many existing works on approximate string queriesehav
new techniques answer queries efficiently. Further, our solions assumed memory resident data and indexes, but their sizes
significantly outperform a recent tree-based index, BED-tee. . !
could be very large. Indexing large amounts of data may cause
I. INTRODUCTION problems for applications. On the one hand, the indexes and

Many information systems need to answer approxima@ta could be so large that even compression cannot shrink
string queries. Given a collection of data strings such #em to fit into main memory. On the other hand, even if
person names, publication titles, or addresses, an appasei they fit, dedicating a large portion of memory to them may
string query finds all data strings similar to a given quer)e unacceptable. Database systems need to deal with many
string. For example, in data cleaning we want to discovélfferent indexes and concurrent queries, leading to heavy
and eliminate inconsistent, incorrect or duplicate emtié resource contention. In another scenario, consider a ajeskt
a real-world entity such agal | - Mart versus\Wal - Mart search application supporting similarity queries. It feasible
or Schwar zenegger versusSchwar t seneger . Similar to keep the entire index in memory when desktop search plays
problems exist in record linkage where we intend to combirfesecondary role in the users’ activities, and hence we dhoul
records of the same entity from different sources. consider secondary-storage solutions.

Various measures can quantify the similarity between two In recent years, major database systems such as Oracle [1],
strings, such as edit distance, Jaccard, etc. Many appeeadiB2 [2], and SQL Server [8] have each added support for
to answering approximate string queries relygegrams. The some kind of approximate queries. Though their implementa-
g-grams of a string are all its substrings of lengthFor ex- tion details are undisclosed, they clearly must employ -disk
ample, the 2-grams of stringathey are{ca, at, th,he,ey}. based indexes. Our work could help to improve the perfor-
Intuitively, if two strings are similar, then they must skaa mance of similarity queries in these systems.
certain number of grams. We can facilitate finding all data Contributions: Storing the data strings and the inverted
strings that share a gram by using an inverted index on th&s on disk dramatically changes the costs of answering
grams. For instance, Figure 1 shows a collection of strimgls aapproximate string queries. This setting presents to us new
the corresponding inverted lists of th&iigrams. To construct tradeoffs and allows novel optimizations. One solutionds t
the index, we decompose each data string into its grams amaply map the inverted lists to disk, and use existing in-
add its string id to the inverted lists of its grams. memory solutions for answering approximate string queries

To answer an approximate string query, we decompose tieg¢rieving inverted lists from disk as necessary. Such -disk
query string into its grams and retrieve their correspogdimased inverted indexes have been extensively studied fer co
inverted lists. We find all the string ids that occur at leagtinctive keyword queries [22]. However, there are seveesl k
a certain number of times on the lists (see Section Ilifferences between our problem and the traditional prable
For those string ids we retrieve their corresponding stingof conjunctive keyword queries. First, a keyword query ofte
compute their real similarities to the query, and removsefalconsists of only a few words, and the opportunity of pruning
positives. For many similarity measures, given a threslold results is limited to a few inverted lists. In contrast, an

approximate string query could have many grams, and it majgorithms have been developed for approximate stringsjoin
be inefficient to “blindly” readall their inverted lists. Second, based on various similarity functions [3], [4], [9], [1011§],
for conjunctive keyword queries an answer should typical[20]. Some of them are proposed in the context of relational
appear on all the inverted lists of the query’s keywords. ldatabases. A recent paper [13] ugegram inverted indexes
contrast, for an approximate string query, an answer must no answer substring queries. In this paper, we focus on
necessarily occur on all the query grams’ inverted listsrdih approximate string selection queries, but some of our ideas
keyword queries ask for possibly large documents, whereasy also apply to substring queries and approximate joins.
approximate string queries ask for strings relatively $enal There are many studies on disk-based inverted indexes,
than documents. This difference in the size of answers makasstly for information retrieval [22]. Index-construcatigoro-
it more attractive in our setting to ignore some invertetsliscedures are presented in [22], and index-maintenance-strat
and pay a higher cost in the final verification step. gies are evaluated in [14]. Please refer to our introdudibon

We make the following contributions. In Section Ill wea comparison between our problem and keyword queries.
propose a new storage layout for the inverted index and showCompression can improve transfer speeds of disk-resident
how to efficiently construct it with limited buffer space. &h structures. There are various compression algorithmeréail
new layout uses the unique filtering property of our setting inverted lists [23], [7]. These methods are orthogonah&
(see Section 1) to split the inverted list of a gram intdechniques described in this paper.
smaller sublists that still remain contiguous on disk. Waoal
discuss the placement of the data strings on disk to improve
query performance. Intuitively, we want to order the data Q-Grams: Let ¥ be an alphabet. For a string of the
strings to reflect the access patterns of queries during podtaracters inz, we use fs|” to denote the length of. The
processing. In Section IV we develop a cost-based, adaptiygrams of a string are all its substrings of length obtained
algorithm for answering queries. It effectively balances t by sliding a window of lengthy over s. For instance, the 2-
I/O costs of accessing inverted lists and candidate answeggms of a stringathey are{ca, at, th,he, ey}. We denote
It becomes technically interesting how to properly quantifthe multiset ofg-grams ofs by G(s). The number of;-grams
the tradeoff between accessing inverted lists and caraidat G(s) is |G(s)| = |s| — ¢+ 1.
answers when combining our new partitioned inverted index Approximate String Queries: An approximate string query
with the adaptive algorithm. Finally, Section V presents eonsist of a string and a similarity threshold. Given a set of
series of experiments on large, real datasets to study #igngssS, the query asks for all strings ifi whose similarity
merit of our techniques. We show that the index-constracti®o r is no less thark. We also call such queries approximate
procedure is efficient, and that the adaptive algorithmiciems range or selection queries. Various measures can quantify the
ably improves query performance. In addition, we show thaimilarity between two strings, as follows. Tledit distance
our techniques outperform a recent tree-based index, BElletween two strings- and s is the minimum number of

Il. PRELIMINARIES

tree [21], by orders of magnitude. single-character insertions, deletions, and substitstiteeded
to transformr to s. For example, the edit distance between
A. Related Work “cat hey” and “kat hy” is 2. Other measures quantify the

In the literature, the ternapproximate string query also similarity between two strings based on the similarity adith
means the problem of finding within a long text string thosg¢-gram multisets, for example:
substrings that are similar to a given query pattern. Seg [15 jqccard(G(r), G(s)) = 1ENEE)
for an excellent survey. Here, we use this term to refer to the ol ‘G%UG(S)I
problem of finding from a collection of strings those similar® Dice(G(r), G(s)) = %
to a given query string. T-Occurrence Problem: For answering approximate string
There are two main families of algorithms for answeringueries we focus og-gram inverted indexes. For each gram
approximate string queries: those based on trees (e.dix suf in the strings inS, we have a list,, of the ids of the strings
trees) [16], [12], [21], and those based on inverted index#sat include this gramg, as shown in Figure 1 fd-grams. An
on g-grams [11], [15], [5]. Suffix trees focus on substringapproximate string query can be approached by solving-a “
similarity search and mainly support edit distance. In thisccurrence problem” [18] defined as follows: Find the string
paper we focus on the inverted-index approach becauseda that appear at lea&ttimes on the inverted lists of grams in
supports a variety of important similarity measures anctii-g the query stringT’ is a lower bound on the number of grams
eralizes to other kinds of set-similarity queries. In SmttV any answer must share with computed as follows for edit
we compare our solutions to a recent tree-based approadiBtance. A string- that is within edit distancé of another
BED-tree [21], which is a disk-based index similar to a Bstring s must share at least the following number of grams
tree. Its main idea is to employ a smart global ordering of theith s [19]: T.q = (|7| — ¢+ 1) — k X q. Intuitively, every edit
data strings in the tree, and then transform a similariy yjueoperation can affect at mogtgrams of a string, and’ is the
into a range query using the global ordering. minimum number of grams that “survive? edit operations.
Several recent papers have focused on approxisehte- Similar observations exist for other similarity functiossch
tion queries [11], [15], [5] using in-memory indexes. Manyas Jaccard and Dice [15]. Solving tieoccurrence problem

yields a superset of the answers to a particular query. To I1l. DISK-BASED INDEX

remove false positives we compute their real similarities t |n this section we introduce a disk-based index to answer
the query in a post-processing step. Our goal in this papergigproximate string queries. We detail its individual compo

to efficiently answer approximate string queries when boéh thents, and discuss how to construct and store them on disk.
data and indexes need to reside on disk.

Generalization: Set-based similarity measures such as Jat- System Context
card and Dice are not limited tg-grams. For example, we Suppose we have a table about persons with attributes such
could also tokenize our strings into multisets of wordstéas as address, name, phone number, as shown in Figure 3. We
of grams), and use Jaccard or Dice to find similar multisetgant to create an index on the “Name” attribute to support
of words. In general, aet-smilarity query is to find, from a similarity selections. All components except the sourdeeta
collection of sets, those sets that are similar to a givemyquéelong to this index and are intended to be part of the dagabas
set. In this paper, we mostly use approximate string queriesgine. The components below the dotted line are stored on
using edit distance for illustration purposes, but our téghes disk, and only the FilterTree is assumed to fit in memory.
also work for many types of set-similarity queries. Dense Index The lowest level of our index is a dense index
that maps from names to record ids in the source table. Each
_) entry in the dense index is identified by a unique id, called

Prunmg cand|date answers based onIhk‘e‘)wer bo_und” as string id (SID). Our decision to project the indexed column
discussed previously is referred to as the “count filter'][10; 5 gense index is motivated by the following observation
We briefly review a few of the many other important filters. (1) The number of candidates answers could be much higher

I__en_gth Filtler: An answer to a query with string and than the number of true answers. Since the tuples in thesourc

edit d|stancglf must ha_lve a length '_'{1|S_| __k’ 5] +_k] [10]. table could have many attributes, it would be inefficient to
Analogous findings exist for other similarity functions [15 retrieve them for removing false positives. Instead, wethse

Prefix Filter: Suppose we impose a global ordering on th(‘j’ense index for post-processing and only access the source

universe of grams. Consider a query with an ordered gram §glie for trye answers. (2) The additional level of indireact
G(r) and lower bound. An answer must share at least on

all to choose the physical ization of the d
gram with the query in its “prefix”. That is, the firg&(r)| — ows LIS 10 CHOOSS e Prysica’ organizaion of e dense

Tl ¢ ¢ sh loast it index independently of the source table, which can improve
+1 grams of an answer must share at least one gram wi uery performance (see Section IlI-D).

the first|G(r)| — T + 1 grams of the query [9].

Other Filters: Some filters exploit the the positions of M
g-grams, e.g., the position filter [10] and content-based fil- E
ter [20], or mismatchingj-grams [20] for pruning.

B. Filter Tree

We can use filters to partition the data strings into groups.
We use a structure called FilterTree [15] to facilitate sach
partitioning. Originally, the FilterTree was designed for
memory inverted lists. In Section IlI-B we discuss how to
place the inverted lists onto disk.

A. Pruning with Filters

~ %Oz

S

Source| Address | Phone | Name

L Table

FilterTree

Fig. 3. Components of an index on the “Name” field of a “Perstatsle.
Inverted Index and FilterTree: The final level of our

Length ranges 24 Ql4,6) [8,10) index consists of an in-memory FilterTree (Section II-Bplan
Inverted indexes |T|T |-|-|Tl ﬂTP |T|-|-l a corresponding disk-resident inverted index. Each ledlffién
Strings in groups cat cathy cathey FilterTree has a map from each of its grams to an inverted list

kat kathy addresq!, o), indicating the offseb and lengthl of a gram’s
inverted list in a particular group. The inverted index s®r
Fig. 2. A FilterTree partitioning data strings by length. inverted lists of string ids (SIDs) in a file on disk. Typigall

Figure 2 shows a FilterTree that partitions the data stringgse FilterTree is very small (a few megabytes) compared to
by their length. A leaf node corresponds to a range of lengttie inverted index (hundreds of megabytes or gigabytes).
(called group), and each string belongs to exactly one groupAnswering Queries: To answer a query, we first identify
For each group we build an inverted index on the strings ail relevant groups with the FilterTree. Then, for eachvate
that group. To answer a query we then only need to procagsup we retrieve the inverted lists corresponding to thergu
some of the groups. For example, the answers to a query wibkens, and solve th&-occurrence problem (Section Il) to
string “cat hey” and edit distance 1 must be within the lengthdentify candidate answers. To remove false positives, we
range [5, 7]. To answer the query, we only access the invertedrieve the candidates from the dense index and compldite the
indexes of theelevant groups [4,6) and [6,8). real similarity to the query. In further discussions we igno

the final step of retrieving the records from the source tabf® Constructing Inverted Index on Disk

since this step cannot be avoided, and we want to keep oufye now present how to efficiently build an inverted index

solutions independent of the organization of the sourcketabi, the physical layout shown in Figure 4(c). Since we want to
index large string collections, we cannot assume that tfa fin

B. Partitioning Disk-Based Inverted Lists index fits into main memory. Hence, we desire a technique

,) . that (1) can cope with limited buffer space, and (2) scales
Inverted lists are often stored contiguously on disk [Z%Jicely with increasing buffer space. Our main idea is to

so each list can be read sequentially. This layout maximizgs; construct an unpartitioned inverted index with a stadd
selection-query performance at the expense of more co§lly ye hased method [22] (Phase 1), and then reorganize the
updgFes. As mentloped n Segtlon II-A, we use a filter 1o orteq Jists to reflect partitioning (Phase Il). This twbase
paryuon the data strings into d|fferent groups, e.g.,e.lnhen approach has the advantage that any existing construction
their length. For each group we build;ggram inverted index. ,-qcequre for an inverted index can be directly used in Phase
To answer a query, we process ellevant groups that could | *\yithout modification. Later in this subsection, we dissus
contain answers according to the partitioning filter useg..e 5, aiternative construction procedure that directly mesif.
groups that are within a certain length range. standard merge-based technique. Figure 5 shows both phases
No Filter Partitioning Filter of index construction, described as follows.
Phase I: Build Index without Filter

SID String
cat
cathey
kathy

1. Tokenize

kat

cathy In-MemOI"y Merged Index
[2,4) [4,6) [6,8) [8,10) Inverted Lists)
Groups Based on Filter Ranges Runs on Disk
G G PhaseIl: Reorganize Index
1,4 | I 1,4 I 3,5 I 2 I 1.Read FilterTree
2 l l | | 1 ,2,3,4,
| | | 2. Order by o,
| 35 I LID, SID
(a) No Filter, (b) Filter, (c) Filter, Merged Index D24 Q4.6 ()6.8) (48,10
Contiguous Scattered Contiguous Groups 4. Write N N N
~———
Fig. 4. The inverted list of gramdt ” with and without partitioning and 3. Set list addresses

possible mappings to a file on disk. Organization (c) is th&.be
. . . . Fig. 5. Two phases of index construction. Phase | builds ridex without
Let us examine Figure 4 to discuss possible layouts Qefqrtitioning. Phase Il re-organizes the index to reflectitpaming.

inverted lists partitioned in this fashion. In the left uppe Phase I: This is a standard merge-based construction pro-
portion we see a gramat 's inverted list without partitioning. cedure [22]. We read the strings in the collection one-by-
To the right, the original inverted list is split into difient one, decompose them into grams, and add the corresponding
groups according to a filter. At the bottom we show possibigtring ids into an in-memory inverted index. Whenever the in
storage layouts. Without partitioning we can simply stdre t memory index exceeds the buffer limitation, we flush all its
list contiguously as shown in organization (a). In orgati@a inverted lists with their grams to disk, creating a run. Oatte
(b), each inverted list is stored contiguously, but theslisktrings in the collection have been processed, we combine al
belonging to the same gram from different groups are seatterfuns into the final index in a merge-sort-like fashion.
across the file. Finally, organization (c) places the iretists Phase II: This phase reorganizes the inverted index con-
belonging to the same gram contiguously in the file. structed in Phase | into a partitioned inverted index better
Example: Suppose we partitioned the strings by length, amiited for approximate string queries. We start with an “grhp
shown in Figure 4. Consider a query with the stricgt hey” FilterTree, whose leaves contain empty mappings from grams
and an edit-distance threshold= 1. Let us examine the costto list addresses. We assign a unique id to each leaf (LID).
for retrieving the inverted list of gramat . In organization Then, we sequentially read lists from the merged index until
(a), we perform one disk seek and transfer the five elemette buffer is full. For each of those lists, we re-order its
{1,2,3,4,5} for at ’s inverted list. With filtering, answers to elements based on their FilterTree leaf ids (LID) and string
the query must be within the length ran@fe 7], since the ids (SID). The re-ordering can be supported by a map from
length of the query stringcat hey” is six. Therefore, only SID to LID created in Phase I, or we can compute the cor-
the groupd4, 6) and|6, 8) are relevant. Using organization (b)respondingL.I Ds on-the-fly to save memory. In the process,
we transfer three list element2, 3,5} with two disk seeks. we set the lengths and offsets (list addresses) for the dists
Note that the elements3, 5} and{2} could be arbitrarily far different groups in the FilterTree. After the elements oftea
apart in the file. Using organization (c) we transfer the santist in the buffer have been re-ordered, we write these lists
three element$2, 3,5} but with only one disk seek. the buffer back to disk, in-place, in one sequential write W

repeat these steps until all the lists of the merged indee hawe experimentally found that all of the approaches perform
been processed. Notice that the cost of Phase Il is independauch better than an arbitrary ordering of the strings. The
of the number of groups used in partitioning. If the mergeahore sophisticated methods, clustering and hybrid clurger
index hasm bytes and our buffer holdsbytes, then Phase Il did not offer better query performance than a simple filter
requires2 = 7+ sequential 1/0Os plus the CPU cost for sortingordering. Therefore, we prefer the filter ordering solution
The total cost is governed only by the index size and the buffe _
size, and thus Phase Il meets our performance requiremerfts.|"dex Maintenance

Integrating Partitioning in Phase I Instead of reorganiz- Inverted Index: Standard techniques [14] for inverted-
ing an unpartitioned index in a separate phase (Phase Il), wdex maintenance can be used to update our partitioned
could directly modify the merge-based construction proced inverted index. They mostly involve buffering insertiomgd
to build a partitioned index as follows. When merging thesruran in-memory index, and deletions into an in-memory list.
on disk we immediately reorder the elements of a completeéReriodically the in-memory structures are integrated ihi®
assembled inverted list before writing it to the final indexnpdex on disk, e.g., using one of the following strategie$][1
similar to the reordering done in Phase Il. We also needIn-Place: For each list in the in-memory index, read the
to update the mappings in the FilterTree accordingly. Therresponding list from disk, combine the two lists, andtevri
advantage of this construction procedure is that it elitgiga the new list back to disk (possibly to a different location).
the reorganization phase (Phase II). However, the proeedur Re-Merge: Read the lists in the file one-by-one. Whenever
will need to be either written from scratch, or integratetbin a list has pending changes in the in-memory index, update the

an existing merge-based construction algorithm. list. Finally, write all (possibly updated) lists into a ndile.
. , We can apply such maintenance strategies to our new phys-
D. Placing Dense Index on Disk ical layout from Section 11I-B. We add a FilterTree strugur

Next we study different ways to organize the entries in the the in-memory index that buffers updates. Alternatiyvely
dense index. Recall that to answer a query we use the inventgs could omit the FilterTree, and deal with reorganizing the
lists to get candidate answers. Then, for each candidatesid, inverted lists to reflect partitioning when we combine the in
access the dense index to retrieve its correspondiBgfing, memory index with the one on disk.

RID> pair and compute its similarity to the query (Section lll- Dense Index: The dense index is a sorted sequential file
A). Intuitively, we want those entries that are likely to bevhich allows various implementations and associated main-
accessed by the same query to be physically close on digdance strategies. For example, we could simply use a B+-
That is, we want to minimize the number of blocks that neatee. Since updates to the inverted index are done in a “bulk”
to be accessed to retrieve a given set of candidates. At fashion, it would be prudent to update the dense index (B+-
same time we want to avoid seeking through the entire densee) in a similar way to maintain the sequentiality of (l¢af
index file to find the candidates. Note that these desiderata antries. For example, bulk-loading a new B+-tree or using an
different, e.g., even if we only needed to retrieve a few kdpc extend-based B+-tree would achieve this goal.

those requested blocks could be far from each other in the file

The following are two natural ways to organize the entries: IV. COST-BASED, ADAPTIVE ALGORITHM

Filter Ordering: Partitioning filters offer a simple but In this section we present a cost-based, adaptive algorithm
effective solution. If we sort the entries of the dense intgx for answering similarity queries using the disk-based xede
a filter, then we limit the range of blocks in which candidateSor simplicity, we first describe the algorithm assuming the
of a query could appear. Also, it is more likely for blocks tanverted-index organization in Figure 4(a), and later wsedss
contain entries that are similar to each other, and henodasi how to modify it to work with organizations (b) and (c).
to a query. For example, we can limit the blocks that could -
contain answers to a quergAt hey” with edit distance 1 to A Intuition
those that contain strings of length [5,7]. Within that ramnge Recall that to answer a query we tokenize its string into
may perform random accesses to get the needed blocks, dmaims, retrieve their inverted lists, solve tliéoccurrence
the seek distances between these blocks are relatively. smaroblem to get candidate answers, and finally retrieve those

Clustering: Another solution is to group similar entriescandidates from the dense index to remove false positives. W
together in the file by running a clustering algorithm on themevelop the algorithm based on the following observati¢hs.
(e.g., k-Medoids). This global solution has drawbacks: (andidate answers must occur on at least a certain number
Clusters accessed by the same query could be arbitrarily ¢dirthe query grams’ inverted lists, but not necessarily dn al
apart in the file. (2) The clustering process could be vetkiose inverted lists. (2) The pruning power of invertedslist
expensive. (3) Updates to the index would be complicatecbmes from theabsence of string ids on them. For example,

It is also possible to combine a filter ordering with clustgri an inverted list that contains all string ids cannot help us
(hybrid), e.g., we could sort the strings by their lengthd arremove candidates. Intuitively, long lists are expensige t
then we run a clustering algorithm within each length groupetrieve from disk and may not offer much pruning power.

We implemented all the above organizations, i.e., filtekn approximate query with a string ¢g-gramsG(r), and an
orderings, clustering using k-Medoids, and a hybrid apghoa edit distance threshold must share at leadt = |G(r)| —kx*q

Inverted Lists for Query s=cathey, k=1, =2, T=3

grams with an answer, witfG(r)| = |s| — ¢ + 1. According [ca hy||ey| Imitial Candidates
to the prefix filter (Section II-A), the minimum number of ¢;=(2,2,2)
2113
5L

—

lists we must read to ensure the completeness of answers is =(1,1,1)
minLists = |G(r)| — (T —1). To understand this equation, =G, 1, 1)
consider a string id that occurs dn— 1 lists. To become a ‘—7—’ =G, 1.1
candidate, it must additionally occur on at least one of the minLists = 3

other|G(r)| — (T —1) lists. For example, iy = 2 andk = 1,
a query with string tat hey” has|G(r)| =6 —-2+1=5
grams, 7 =5—1x2 =3 andminLists=5— (3—1) = 3.

~ At one extreme, we could read just theinLists shortest i, grder to be pruned. At each stage in the adaptive algorithm
lists. As a consequence, the number of candidates for pogfr answering a query with string and g-grams G (r), we

processing could be high, because every string id on thqsg, compute the count-absent value of a trile, cnt, ent,)
lists needs to be considered. Recall that for pOSt'prmssborresponding to a candidate answer by:
we retrieve strings from the dense index (Figure 3), hence

every candidate could require a random disk I/O. At the other enty = (|G(r)| — minLists) — (T — cnt) + 1. (1)
extreme, we could read all the inverted lists for a query,

including those long and expensive ones with little pruningandidates could have varioust, values, and the cost and
power. It is natural to strive for a solution between the twbenefit of reading more lists depend ani.e., the number
extremes, balancing the 1/0 costs for retrieving inverists| of additional lists we consider reading. Since the benefits o

[SN 8]

Fig. 6. Example to illustrate meaning and effect of the “doainsent” value.

and for probing the dense index. reading more lists can become apparent only after reading
)) several next lists, a cost model that considers only reatiag
B. Algorithm Details next list could get stuck in a local minimum, and is therefore

To answer a query we begin by reading thenList insufficient to find a globally minimal cost. This is the reaso
shortest inverted lists (corresponding to grams in the yyuewhy we need to consider reading all the possible numbers of
from disk into memory. Then we traverse these lists to obtai@maining lists\. For example, in the first iteration we would
a set of initial candidates containing all the lists’ striitg considerl < A < |G(r)| — minLists.

(using an algorithm such as “HeapMerge” [18]). The set of Pseudo-CodefFigure 7 shows pseudo-code for the adaptive
initial candidates, denoted by = {c1,c2,..., ¢}, is a set algorithm. We use(r) to denote the list addresses sorted
of triples ¢ = (sid, cnt, cnt,). In each triple,sid denotes the by length in an increasing order for a query string For
string id of the candidate;nt denotes the current “count” or convenience we us€(r)[j] to mean thej-th list in Q(r).
the total number of occurrences@ti on the lists we have read C), refers to the subset of candidates witht, < A. We
so far, andent, denotes the “count absent” value (its meaningssume the following parameters of a cost-model13 the
will become clear shortly). Next, we decide whether we camverage cost of post-processing a candidate I{@2) is the
reduce the overall cost of the query by reading additiomsé |i cost of reading list, and (3)ben()) is the benefit or reading
to prune candidates. If so, then we read the next list andepruk additional lists.
o e e e ot et o s o = ey s

: ’ . penads Minimum number of lists to reaghinLists
on the current number of candidates still @y the cost for | output: A setC of candidate answers to be post-processed
post-processing them by accessing the dense index, the ¢b&tthod:
for reading more lists, and the likelihood of pruning caradés |1. C = HeapMergeQ(r), minLists);
by reading more lists. We repeat this process until we ha nextList = minlists + 1,
read all the query grams’ inverted lists or there is no cos}’ listsLeft = |<¥(r)| —minLists;

" : o _) . WHILE listsLeft > 0

reduction from reading additional inverted lists. 5. FOR)\ = 1 TO listsLeft

Note that the benefits of reading additional inverted lisi$. A = next) lists starting fromQ(r)[nextList];
might manifest themselves after reading a few more listd, afY- costPP 5C,| * ©; // cost of post-processing

not necessarily after reading only one more list. Hence, \ costRL =3, , T1(1); // cost of reading lists
y g Y benfitRL :been()\) for lists in A;

must estimate the effects of reading the naxtists. Take |, IE (COSRL - benefitRL< costPP)THEN
our running example, withr = cathey, k = 1, and lower |17, invList = readListQ(r)[nextList]);
boundT = 5 as shown in Figure 6. Let us examine candidate2. C' = pruneCandidates], invList);

c1 = (2,2,2), which is part of the initial candidates produceg13. nextList+=1; listsLef-=1,

after processing theninLists = 3 shortest lists. We have 14. BREAK FOR;

read 3 of the 5 lists, so there are 2 lists left. In order to pru wig' ENENF%EF
candidater;, its string id must be absent on at least, =2 |17, |F A == listsLeft THEN BREAK WHILE; // no benefit
additional lists. 18. END WHILE

In general, the “count absent” value is the minimum numbgk9. RETURN ('
of additional lists a candidate string id must &lesent from,

Fig. 7. Cost-based, adaptive algorithm for answering @seri

We begin by readingninLists inverted lists and processfor each candidate individually would be computationally
them to obtain a set of initial candidates (line 1). Nexgxpensive. To avoid repeated computations we group the
we consider reading all numbers of remaining lists, settimg@ndidates bynt, as follows. We define a subset 6f as
A accordingly. We compute the cost of post-processing ti&i) = {c|c € C A c.ent, = i}, containing all candidates in
candidates that could potentially be pruned withists (line C that have a certaiant, = i. We also make the following
7). Correspondingly, we compute the cost (line 8) and bengfimplifying assumptions:

(line 9) of reading the nexx lists. We decide whether we can e The probability of one string id being present or absent
reduce the overall cost by readinglists, as compared to not from an inverted list is independent of the presence or
reading them (line 10). If we can reduce the cost, we read the absence of another string id on the same list.

next list (line 11) and prune candidates (line 12). Otheswis e The probability of a string id being present or absent from
we proceed with the next. We repeat this process until (a) one inverted list is independent of that same string id being
we have read all lists or (b) we cannot benefit from reading absent or present from another list.

any more lists. Notice that whenever we detect a benefit wellowing these assumptions, we estimate the benefit as:
read justone more list at a time, independent of the value

A
of A. This approach mitigates possible inaccuracies of a real ben(\) = O x Z |C(i)] * p(i, \))
cost-model. P T

C. Cost Mode wherep(i,) denotes the probability of a string id being absent

In this section we develop a model to estimate the cost afs{am i of the A lists. In a sense, we are being optimistic,

benefit of reading additional inverted list ince Equation 2 expresses that we could pralheandidates
Cost of post-processing candidatesie focus on the 1/0O in C.(i) with probability p(i’%‘)' Th(_e _key challenge Is to
cost because the CPU time for computing similarities isrofteObtaIn at_reasonablydacqu/r\qiez,) efﬂmently.;c_)llgwmg(;)urt
negligible in comparison. The maximum cost for retrieving ssumpll_l(:r?slwe_ mo Qél’) aﬁ_a sequenc\:; dmf_ ep?n er,1
candidate string is the time for one disk seek plus the time Oertr;]ou Ib”a S |.e.f, a ternoqdl procels_st. ed $f|n|e N th
transfer one disk block. This cost can be determined djrecﬁs €a s?ncet 0 "’?ds fing I! tOSn' als I’I an K al ur?thasll te
from the hardware configuration or estimated offline. We capjesence orastring id on a ist. Since all we know ot the Ists
improve this model by taking into account the chance thafe thew_lengths, we estimate the success probability aith
a dense index block is already cached in memory. UsingsgtQ of list addresses: as:
conservative but simple approach, we read a few blocks efflin pe=1-— Dwea @ i 1 3)
and compute the average time to retrieve a block, denoted by * | '

N
©. We then uséC|*© to estimate the cost of post-processin

Sweaqw-l . .
a candidate sef’. For example, the cost of post-processinghe term=«g;— denotes the average list length of thésts
the candidates in Figure 6 would be@since|C| = 4. in @ we are considering to read, ard is the total number

Cost of retrieving inverted lists: Since the lengths of Of Strings in the dense index. The probability of at least

inverted lists usually follow a Zipf distribution, the aege SUCCESSeS i trials having a success probabilipy can be
retrieval time is not an accurate estimator of the true co§@mputed with the cumulative binomial distribution fureeti

Again, the cost is determined by the seek time and the transfe AN _
rate of the disk. Since our solution is on top of a file system, p(i, A) = binom(i, A\, ps) = Z (_)pg(l —p)M I (4)
the raw disk parameters are not very accurate performance j=i

indicators either, due to the intermediate layer. To over®0 combining Equations 2, 3 and 4 yields a complete model for
this issue, we read a few lists offline and do a linear regoessiestimating the benefit of readingadditional lists:
to obtain the cost functiofl(w) = m * w.l + b, wherew.l

denotes the length of the inverted list b is an estimate for
the seek time, and: is an estimate for the inverse transfer
rate. So, given a sét of w, we can estimate the total cost of o] -
reading all those inverted lists By, IT(w). For example, D- Combining with Partitioned Inverted-index Layout
the cost of reading the lists of graroa andat from Figure 6 So far, we have presented the adaptive algorithm using the
would be(m * 3+ b) 4+ (m * 5 + b), since their lengths are 3layout in Figure 4(a) from Section Il for simplicity. Next,
and 5, respectively. we discuss how to combine the adaptive algorithm with the
Benefit of reading additional inverted lists At a high other two inverted-index layouts (b) and (c). Recall thaewh
level, we quantify the benefit in terms of the cost we caanswering a query we first traverse the FilterTree to idgntif
save by pruning candidates, considering the likelihoochaf t the relevant groups (e.g., corresponding to length ranges)
happening by reading lists. The likelihood of pruning a which could contain answers.
candidatec with \ lists depends on itsnt,. Intuitively, we Modified Success Probability: In Equation 3 the proba-
would like to know the probability that's string id is absent bility (called success probability) of a string id being abs
from at leastent, of the A lists. Computing this probability from a set of lists depends on their average list length, and

A
ben(X) = © % Y |C(i)| * binom(i, A, ps). (5)
i=1

the total number of stringd’ in the dataset. Since each group A similar situation can arise during the iterative phase of
generated by a partitioning filter only contains a subsehef tthe adaptive algorithm. When a particular group does not
N total strings, simply applying Equation 3 would lead taontribute candidates anymore (because they have all been
overestimation of the success probability, and consetjuerpruned), then we do not need to read inverted lists from
overestimation of the benefit (Equation 5). We modify ththat group anymore (but possibly still from the other ones).
success probability by replacingy in Equation 3 with the We must handle both scenarios above specially during cost
number of strings in the particular group we are consideringstimation and during the retrieval of lists.
This change applies to both inverted-index layouts (b) ahd (Group [4,6) Group [6,8)
Next, we detail how to answer queries with those two layouts. %@%
Layout (b): To answer a query using the adaptive algorithm, 7
we first identify all relevant groups, and then process each 1l 5 .
group individually as if there was no partitioning (but witie
new success probability). Each instance of the algorithes tr _
to minimize the cost for processing its corresponding grou[Jgf'gthz'Str'iﬂ‘é‘;”iﬁdg'r'gfpf%’g)ugg‘]gir?fgé ';r:;é’qt h. %’ri‘r;fT = 3. None
Layout (c): Intuitively, we just process all relevant groups
together, as opposed to processing them one-by-one. We first V. EXPERIMENTS

read theminList inverted lists of all relevant groups to create In this section. we evaluate the performance of queries and
the sets of initial candidates fail groups at the same time.. ' P 9

To exploit the contiguous layout, we retrieve the lists gtaymn index construction of our techniques. We show experimemts o

gram. That is, we read the lists of all relevant groups of tf{lgs rilr?er?:r?”r]fl?z-g dqggirtI?j?s?aS:c]:ge ef;ig;?g‘;es’e?dr;?nnsg?ﬂe“
first gram, then we read the lists of all relevant groups of tk]]%cc%rd based on word rams, We compare ogr tecr,mi ues to
second gram, etc., until we have retrieved all thénLists 9 : P q

. ecent tree-based index BED-tree [21], whenever possible
lists. We perform HeapMerge on the groups separately to ge%atasetS'We used six real datasets[smearized ir? Table |

the initial sets of candidates. :
Next, we proceed with the iterative phase of the aIgorithr;1r he first four datasets are taken from [21] (BED-tree) to

estimating the cost and benefit of reading the next grants’ ”Se’stabhsh a fair comparison. In addition, we used the last tw

of all relevant groups. We either decide to read the next Iisgi"’r‘]t?:??efo;;xf;er”get?]t;no?hziﬁlgb;ggrand index-coostm
together or commence post-processing. y 9 '

Layout (c) Examples: In the following, we describe how to |

[V NI N

- i) - Dataset | #Strings | Max Len | Avg Len |

handle a few interesting scenarios when combining the adap- DBLP Author 2.948.929 28 15
tive algorithm with organization (c). For example, Figure 8 DBLP Title 1,158,648 667 68
shows the inverted lists of the relevant groups for our ragni IMDB Actor 1,213,391 73 16
examplecat hey (the string ids differ from earlier examples). Uniprot 508,038 1992 341
To minimize the global cost we should read the lists for gram Mediine Titles | 10,000,000 252 g4

, g g Web Word Grams| 20,000,000 163 23
hy first because there are a total of 3 relevant elemgts,
8}. Next, we should read the lists of gragy because they TABLE |
contain a total of 4 element, 6, 7, &, and so on. DATASETS AND THEIR STATISTICS

Local vs. Global Ordering: We want to read the inverted The DBLP Title and Author datasétsvere taken from

[V RN NI N)

lists from shortest to longest. However, the local orderaafte DBLP, and contained authors and titles of publications. The
group may not correspond to the best global order. We mubtDB Actor? dataset consists of actor names from movies.
read the relevant lists of grams in order of their sum of lbagt The Uniprot dataset contains protein sequences in text format.
Group [4,6) Group [6,8) The Medline Title4 dataset consists of publication titles
from the medical domain. Finally, the Web Word Gr&ms
7 E dataset contains popular word-grams from web documents. We
s 1Ls : randomly picked 10 million titles of the Medline Datasetdan
20 million 4-word-grams for the Web Word Grams dataset.
Hardware and Compiler: We conducted all experiments
Fig. 8. Inverted lists for quergathey, k =1, ¢ = 2, andT" = 3. on a machine with a four-core Intel Xeon E5520 2.26Ghz
Pruning Entire Groups. Groups that do not contain at leasprocessor, 12GB of RAM, and a 10,000 RPM disk drive,
T grams of the query can be pruned entirely. We should natnning a Ubuntu operating system. We used the original code
read the lists that do match a query’s grams of a pruned grofqr. BED-tree written in C++ which the authors generously
Figure 9 shows a group [6,8) that has less thawof the _ o
query’s grams. Since this group cannot contain answerseto thiWWW-!”fggma“k-””"t”e“der ley/db
guery, we do not need to read lists from it. For example, foram:miprgfg:g
gramca that exists in group [6,8), we should only read the 4yyw.ncbi.nim.nih.gov/pubmed
elements{1,2,5 andnot the element{6,7,8,9. Swww.ldc.upenn.edu/Catalog, number LDC2006T13

provided to us. We implemented all our algorithms in C++ da-memory inverted lists. Reorganizing the index considts
well. We compiled all code with GCC using the @3” flag. sorting inverted-list elements, while performing disk ope
Parameters: We experimented with different for tokeniz- tions in buffer-sized chunks.
ing strings intog-grams and found = 3 to be best for most We do not report the construction times for BED-tree for
cases. Therefore, we used= 3 for all experiments, for both the following reason. A comparison would be somewhat unfair
BED-tree (where applicable) and for out techniques. For osince our technique builds its inverted index in “bulk”, \ehi
technigues, we used the length filter for partitioning. Wedus BED-tree does not currently implement bulk-loading (it sise
a disk-block size of 8KB for both BED-tree and our methodsepeated insertions). For example, constructing a BEB-dre
Clearing Filesystem Cache:ln our experiments we con- 20 million Web Word Grams with a 100MB buffer took around
sidered both the raw disk performance of queries, and th8ithours, and still almost 4 hours with a 400MB buffer.
performance with caching. To simplify the implementations) _
both BED-tree and our techniques were built on top of & Query Performance Naming Conventions and Methodology
filesystem (as opposed to using the raw disk device). Usingln this subsection, we introduce the different flavors of
a filesystem, however, complicates accurate measurement8BD-tree and the inverted-index approach used in our exper-
disk performance due to filesystem caching (it will aggregments on query performance. We also detail our procedures
sively use all available memory to cache disk pages). Tor obtaining the results of different types of experiments
overcome this issue, we cleared the filsystem cache at mertaiBED-Tree Naming: We follow the convention from [21].
points (to be explained) with the following shell command: BD, BGC, and BGL refer to a BED-tree using the dictionary
order, gram count order, and gram location order, respagtiv
Naming of Our Approaches: In our experiments we
Query Workloads: The authors of the BED-tree providedfocused on the following two extreme approaches showing
us with the data and workloads from their experiments in.[21the best and worst inverted-index solutions for raw disk
The workload for each dataset consisted of 100 randonpgrformance. “Simple” refers to a straightforward adoptid
chosen strings. For the other datasets used only in this paisting algorithms. It uses an unpartitioned invertedeind
per (Medline Titles, Web Word Grams), we also generatethd a dense index whose entries are in an arbitrary order.
workloads by randomly choosing 100 strings for each datas&imple” retrieves all the inverted lists of a query striag’
. grams and then solves thE-occurrence problem with an
A. Index Construction Performance efficient in-memory algorithm (we used DivideSkip [15]). We
We built inverted indexes for the Web Word Grams datasgfige “AdaptPtOrd” to refer to our most advanced method using
in organization (c) (Section Ill) using length filtering. Wethe adaptive algorithm (“Adapt”), a partitioned invertediéex
measured each step of the construction procedure (1) mgeatpt”), and a dense index with entries ordered by their langt
runs, (2) merging the runs, and (3) reorganizing the indegQOrd”). More results exploring the various dimensions of o
clearing the filesystem cache before each step. We also alutions can be found in the full paper [6].

this eXperiment on the Medline Titles dataset, but omit the Raw Disk: In this type of experimentsi we measured the

echo 3 > /proc/sys/vm drop_caches

results since they show a similar trend. performance of queries when all data required for answering
Reorganize Index (Phase Il) Reorganize Index (Phase Il) a query (Inverted ||Sts’ dense Index blOCkS’ BED-tree mg)Ck
2, Merge Runs (Fhase B1a erge Runs (Phase ! 2= needed to be retrieved from disk. To do so, we cleared the
Eo E12 filesystem cache before each query. Recall that our inverted
gi élg index assumes the FilterTree is in memory (Section Ill-A). F
53 §e a fair comparison, we allocated the same amount of memory
gj _ % é) needed for the FilterTree to BED-tree’s buffer manager.eNot
So So that BED-tree implements its own buffer manager, and there-

4 8 12 16 20 50 100 150 200

Number of Strings (milions) Buffer Size (MB) fore, those blocks cached in its buffer manager were unaffiec
by clearing the filesystem cache.

We also gathered the number of disk seeks and the amount

In the left chart of Figure 10 we allocated a fixed buffeof data transferred from disk per query captioned as "Data
size of 400MB for index construction. It shows that the indexTransferred” and “Disk Seeks”. For BED-tree the disk seeks
construction procedure scaled well (almost linearly) ik are the number of nodes retrieved from disk (not alreadyen th
size of the dataset. The right chart shows the constructibuffer manager), and the data transferred is that number mul
performance with varying buffer sizes, and we see that thiplied by the block size. For our inverted-index solutidine
merging of the runs took most of the time. By increasingumber of disk seeks is the number of inverted lists and dense
the buffer size we improved the performance of merging thedex blocks accessed. We computed the data transfernegl usi
runs. The other two phases, creating the runs and reorggnizhe sizes of the inverted lists and dense-index blocks.
the index, did not benefit from a larger buffer size becauseFully Cached Index: This experiment represents the other
they were CPU bound, explained as follows. Creating the ruastreme in which all data required to answer a query is
consists of tokenizing the strings, and frequently reallimg already in memory. For BED-tree we achieved this behavior

Fig. 10. Index construction performance on Web Word Grams.

by allocating a large amount of memory in its buffer manager.
We ran our workloads immediately after building the BED-
tree, and therefore, the entire BED-tree was in memory wherg 10
running queries. For our inverted-index approach we reliedz 1
on the filesystem for caching. We first built the inverted 5 o1
index and dense index without clearing the filesystem cacheg’ 0.01
and then immediately ran our workloads, assuming that after
construction all indexes are probably in the filesystem&hea

C. Range Queries Using Edit Distance

BD —— Simple &
BGC —%— AdaptPtOrd @
- BGL —X—
~— 100
o
1S
= 10
Pl
S 1
(o4
2 o1
<<

Edit Distance
(a) Raw Disk Time.

BD —— Simple B
—~ BGC —%— AdaptPtOrd @~
[BGL —%—
= 1000
e}
@ 100
£ 1
c
|
|_
S 01
8 o
)
g 1 2 3 4

Edit Distance
(c) Data Transferred.

Fig. 11.
BD —— Simple
BGC —%— AdaptPtOrd
@ BGL —%—
< 100
(]
E 10
'_
) 1
[}
& o1
D
S 0.01
< 1 2 4 8 16
Edit Distance
(a) Raw Disk Time.
BD —— Simple -
BGC —%— AdaptPtOrd -
BGL —%—
1000
100

i
o

i

o ©
-

o
=

1 2 4 8 16
Edit Distance

(c) Data Transferred.

Data Transferred (MB)

Fig. 12.

BD —— Simple -3
BGC —%— AdaptPtOrd @
BGL —%—

i
= o
o o
<] S

=
o

Avg Query Time (ms)

1 2 3 4
Edit Distance

(b) Fully Cached Index Time.

BD —— Simple &
BGC —%— AdaptPtOrd @~
BGL —¥—

i
(=]
o
o

[N
o
o

Disk Seeks (x100)
&

o
[

1 2 3 4
Edit Distance

(d) Disk Seeks.

Range-query performance on DBLP Author.

BD —— Simple -
BGC —>%— AdaptPtOrd -
BGL —¥—

[N

=]
= O O
o o© o

[N

o
e

1 2 4 8 16
Edit Distance

(b) Fully Cached Index Time.
BD —— Simple

Avg Query Time (ms)

BGL —¥—

i
o
o
o

[N
o
o

Disk Seeks (x100)
&

o
[

Edit Distance
(d) Disk Seeks.

Range-query performance on DBLP Title.

BD —+— Simple --E3- BD —— Simple
BGC —%— AdaptPtOrd @ BGC —%— AdaptPtOrd @
BGL —%— BGL —%—

e (s)

100

[N
=l
o o
o o

[iN

Avg Query Time (ms)
o [
= o

2 3 4
Edit Distance

(a) Raw Disk Time.

Edit Distance
(b) Fully Cached Index Time.

BD —— Simple & BD —— Simple -
BGC —%— AdaptPtOrd @ BGC —%— AdaptPtOrd @
BGL —%— BGL —¥—

i
==
o o
o O
i
o
o
o

[N
o
o

ﬁ,
[}
1

=}
kR

Disk Seeks (x100)
o [

e o

2 3 4
Edit Distance

(d) Disk Seeks.

Data Transferred (MB)
&

Edit Distance
(c) Data Transferred.

Fig. 13. Range-query performance on IMDB Author.
BD —+— Simple --E3- BD —— Simple --E3-
BGC —%— AdaptPtOrd @~ _ BGC —%— AdaptPtOrd @
@ BGL —%—) BGL —%—
< 100 £ 10000
Q
E 10 g 1000
E L iZ 100
3 2 1
o ot 3 t
[
S 001 2 o1
< 1 2 4 8 16 z 1 2 4 8 16
Edit Distance Edit Distance
(a) Raw Disk Time. (b) Fully Cached Index Time.
BD —— Simple -} BD —— Simple -}
—~ BGC —%— AdaptPtOrd @~ BGC —%— AdaptPtOrd @~
o BGL —%— ~ BGL —%—
= 10000 g 10000
T 1000 = 1000 TS
(3] x
£ 100 = / X
@ ¥ 100
% 10 < ¥
c) 10 G =
@ 1 & L [T
— 0.1 x - o9
S 00 Lél 01 Q-
8 1 2 4 8 16

Edit Distance
(d) Disk Seeks.

Edit Distance
(c) Data Transferred.

Fig. 14. Range-query performance on Uniprot.

We see that “AdaptPtOrd” consistently outperformed BEEetr

by orders of magnitude, both for raw disk peformance and
for a fully cached index (notice we are using a log scale on
the y-axes). Also, “AdaptPtOrd” was considerably fastemth
“Simple”. The performance differences between “Adapt@tOr
and the BED-tree variants on raw disk are explained by the
graphs (c) and (d). “AdaptPtOrd” transferred significarmlys
data per query with fewer disk seeks than BED-tree. The
two main reasons why BED-tree examined so many nodes
are as follows. First, the pruning power at higher levels of
the BED-tree is weak because a node entry refers to the
enclosing interval of ranges in its subtree. Second, the BED

1) Comparison with BED-Tree: Next, we compare our tree search procedure traverse multiple paths in the treee(m
approach with BED-tree on range-query performance usiagin to an R-tree search), leading to additional node aesess
the datasets and workloads from the BED-tree paper [21]. Tas compared to a standard B-tree range search. Such a search
first two graphs, (a) and (b), of Figures 11-14 show the raprocedure can also incur long disk-seek distances, beddase
disk, and fully cached index times, respectively. The gsapimpossible to simultaneously store all tree-nodes closath
(c) and (d) further detail the raw disk performance with thether (in a standard B-tree we only need to store the leaves
average number of disk seeks and data transferred per quelgse to their siblings). Our argument that BED-tree’s jimgn

Simple ~~E}- AdaptPtord @ BGC —%— AdaptPtord @~

power is not as strong as our approach is also supported bys ————————— 3 »gsoosmple R
the results on fully cached indexes, where a significantisost g4 e €
computing the real edit distances to candidate answers. e D _§4oo

In Table Il we summarized the index sizes for these sets o2 |——& 2300
experiments. We observe that, in general, our invertedxinde: & éigg
approach requires more space than BED-tree. For exampl&,o "~ (j "(z 2 "i) 2 o

on DBLP Author the BED-tree with dictionary ordering (BD) N2umber of Strings (millions) Number of Strings (millions)
required 97MB of disk-space, and our indexes required 82 +
204 = 292MB on disk. However, our approaches transferred
much less data from disk per query (see Figures 11-14). Alsd,
recall that for the raw disk experiments, we give the BERtreyqrkioads of the BED-tree paper. We answer top-k queries
variants a buffer space equal to “FT”, the size of our Filteel 5, qur inverted-index by a sequence of range queries with
increasing ranges. We do not show the results on the DBLP
Title and Uniprot datasets, because for some queries B&®-tr

(a) Raw Disk Time. (b) Fully Cached Index Time.
ig. 16. Range-query scalability with edit distance 6 on NtedTitle.

[Dataset [BD | BGC [BGL [Denix [Invix [FT |

DBLP Author | 97 | 225 | 189 82 204 | 7
DBLP Tile | 123 | 156 | 157 100 297 | 21 did not find all correct answers. For example, on Uniprot with
IMDB Actor | 38 | 88 75 32 88 | 11 K=4, BED-tree only returned a total of 304 answers instead
Uniprot [283 | 302 | 305 || 222 | 617 | 49 of the correct 400 answers for the 100 queries.
TABLE Il The results on top-k queries are consistent with those on

range queries, and similarity show our techniques answered

INDEX S1ZES INMB OF BED-TREE VARIANTS AND OUR INVERTED-INDEX | T
top-k queries efficiently, and outperformed BED-tree.

COMPONENTS DENIX REFERS TO THE DENSE INDEXINVIX TO THE

INVERTED INDEX, AND FT TO THE IN-MEMORY FILTERTREE. BD —— Simple -} BD —— Simple -}
BGC —%— AdaptPtOrd --@-- _ BGC —%— AdaptPtOrd --@--
2) Scalability: In Figures 15 and 16 we varied the number % 100 1 i+§ VR——— éwooBGL o
of indexed strings on our two large datasets, Web Wordg 10 —#=————* £ 100
Grams and Medline Titles, to evaluate the scalability of ourz 1 '; 10
techniques. Due to its slow performance we omit BED-treeg o é 1
from the raw disk experiments. For example, on 12 million £ o.01 2 o1
Web Word Grams its best version BD needed an average o vz é e® X
15 seconds per query, and on 6 million Medline Titles its best (a) Raw Disk Time. (b) Fully Cached Index Time.

version BGC needed an average of 145 seconds. Similarly,
we only plot the best version of BED-tree for the in-memory
results since the other versions were significantly worse. BD —— Simple - BD —— Simple -

Fig. 17. Top-K query performance on DBLP Author.

Our results show that “AdaptPtOrd” offers better scalapili 5 5ei S " © g sl S M ©
than “Simple”, explained as follows. As we increased the siz ¢ b
L R E 10l ¥= % ;‘, ilé ;'g £ 100
of the dataset, some inverted lists became longer. However — =
. >
the number of results per query grew relatively slower thang ! o 2 10
the total index size. Especially for highly selective qasrithe < 01 o 5 !
adaptive algorithm avoided reading many unnecessaryteder 2 °* 1, 4 5 15 £ % % 2 4 & 1
lists. This effect explains the excellent performance oa th K K
highly selective Medline Titles. Similar arguments hold fo (a) Raw Disk Time. (b) Fully Cached Index Time.
the experiments with fully cached indexes. Fig. 18. Top-K query performance on IMDB Actor.
Simple --E}- AdaptPtOrd --@-- ~ BD —— AdaptPtOrd @ . L. .)
@ ! = ngOSlmple o E. Query Performance Using Other Smilarity Functions
g os e < 120 —t
E o6 P 5 In this subsection, we present experiments on range queries
& ol g NS - - using normalized edit distance and Jaccard. Its main perpos
R . _ _perpe
502 Q@ ° g is to demonstrate that our solutions also support simyarit
E o functions other than edit distance. Due to space limitation
4 8 12 16 20 < 4 8 12 16 2 we omit some of the figures since they are consistent with the
Number of Strings (millions) Number of Strings (milions) gy erall trends. The complete set of experimental results ca
(@) Raw Disk Time. (b) Fully Cached Index Time. be found in the full version of this paper [6].

Fig. 15. Range-query scalability with edit distance 2 on Wiédrd Grams. 1) Normalized Edit Distance: Again, we used the datasets
) _ o and workloads from the BED-tree paper. Since BED-tree
D. Top-K Queries Using Edit Distance currently supports normalized edit distance only with thang
Next, we discuss our results on top-k queries shown @ounting order, we have only BGC in Figures 19 and 20. As
Figures 17 and 18. As before we used the datasets @wlore, “AdaptPtOrd” outperforms its competitors.

BGC —%— AdaptPtord @~
Simple -3 VI. CONCLUSION

S'BGIC —%— AdaptPtord @~ =
@ 100 -8 élOOO We h died i i I [i h
> /</<———>< > e have studied approximate string selection queries when
E w g E 100 data and indexes reside on disk. We proposed a new physical
o e s L M > layout for an inverted index, demonstrated how to efficientl
& o1 o 3 construct it, and showed its benefits to query processing. We
2on b 2 developed a cost-based adaptive algorithm to answer guerie
085 03 085 08 < 0.95 09 085 08 We have shown that the adaptive algorithm and the new index
Normalized Edit Distance Normalized Edit Distance . . .
-) layout complement each other and that their combination an-
(a) Raw Disk Time. (b) Fully Cached Index Time.
swers queries efficiently. Further, our techniques outperéd
Fig. 19. Range-query performance on DBLP Author. a recent tree-based index, BED-tree.

BGC —x— AdapPiOd -0 o Simple G rr o " Acknowledgements This work was supported by the CIUE
Fa0 e B g 1000 (IIS 0844574) and Asterix (I1S 0910989) NSF grants, and the
2 £ 100 ' National Nature Science of China grant number 60828004.

E 10 =
2 S 1 REFERENCES
] ! 8 © [1] Oracle Text, An Oracle Technical White Paper, 2007. http:
4 o1 2 /I www. or acl e. coni t echnol ogy/ product s/t ext/ pdf/
<= 005 09 085 08 X 095 09 085 08 11gor acl et ext t wp. pdf .
Normalized Edit Distance Normalized Edit Distance [2] Fuzzy Search in IBM DB2 9.5, 2008. http://publib.
; : ; boul der. i bm coni i nfocenter/db2l uw v9r5/i ndex.
Raw Disk Time. b) Fully Cached Index Time.
(&) Raw Disk Time (b) Fully Cached Index Time j sp?topi c=/comibm db2. | uw. adm n. nse. t opi cs. doc/
Fig. 20. Range-query performance on DBLP Title. doc/t0052178. htm .
.) . [3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact sensarity joins.
2) Jaccard with Q-Gram Tokens: In Figure 21 we used the In VLDB, pages 918-929, 2006.

Jaccard similarity of multisets gfgram tokens to quantify the [4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairsikrity

L. . . search. I'WWWV, 2007.
similarity between strings. Though BED-tree could possibl [5] A.Behm, S. Ji, C. Li, and J. Lu. Space-constrained grasel indexing

answer queries using Jaccard with the gram count ordetsg, i ~ for efficient approximate string search. IG6DE, 2009.
current implementation does not support it. Therefore, mig o0 [6] A. Behm, C. Li, and M. J. Carey. Answering approximatergirqueries

on large datasets using external memory (full version) hiieal report,
plot the results of our approaches. We observe that our new Department of Compiter Science, UC rvine, July 2010.

techniques also provide a disk-performance benefit to gsieri(7] s. Buettcher and C. L. A. Clarke. Index compression isty@specially
using Jaccard. for random access. IGIKM, 2007.
[8] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. Narasaywynd
Simple AdaptPtord ——1 Simple AdaptPtord ——1 T. Vassilakis. Data cleaning in Microsoft SQL Server 2065SIGMOD,
2005.
[9] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive opera for
similarity joins in data cleaning. IhWCDE, 2006.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. KoudadyiBthukrishnan,
and D. Srivastava. Approximate string joins in a databasadqst) for
free. InVLDB, pages 491-500, 2001.

[11] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. @&stava. Fast
indexes and algorithms for set similarity selection querién ICDE,

Z 02

0.9 0.8 0.7 0.6 . .
Jaccard Jaccard 2008.

. [12] E. Hunt, M. P. Atkinson, and R. W. Irving. A database irde large
(2) DBLP Author. (b) DBLP Title. bioIo_gicaI sequences. |m VLDB, pages 1:_%9—148,_ 2_001. _
Fig. 21. Raw disk range-query performance using Jaccargignam tokens. [13] Y. Kim, K.-G. Woo, H. Park, and K. Shim. Efficient procéss of
]) substring match queries with inverted g-gram indexeslGBDE, 2010.
3) Jaccard with Word Tokens: For those datasets with very[14] N. Lester, J. Zobel, and H. Williams. Efficient onlinediex maintenance

Iong strings (DBLP Title, Medline Title), it could be more for contiguous inverted listslnf. Process. Manage., 42(4), 2006.

. { C. Li, J. Lu, and Y. Lu. Efficient merging and filtering aidgthms for
meaningful to use Jaccard based on word tokens to quanti approximate string searches. IlGDE, pages 257—266, 2008.

the similarity between strings. Figure 22 shows the raw di§l6é] C. Meek, J. M. Patel, and S. Kasetty. Oasis: An online aocurate

erformance of queries based on word tokens, and we see ttechnique for Iocal-alignment searches on biological sages, 2003.
P q H]ﬂ G. Navarro. A guided tour to approximate string matghinACM

our techniques also improved their performance in thisrgett Comput. Surv., 33(1):31-88, 2001.
[18] S. Sarawagi and A. Kirpal. Efficient set joins on simitlarpredicates.
Simple AdaptPtOrd —— Simple AdaptPtOrd —— In SGMOD Conference, 2004.

o
~

[19] E. Ukkonen. Approximae string matching with g-gramsl anaximal
matching. Theor. Comut. Sci., 1:191-211, 1992.

[20] C. Xiao, W. Wang, and X. Lin. Ed-join: An efficient algthim for
similarity joins with edit distance constraints. \fLDB, 2008.

[21] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivagh. Bed-tree:
an all-purpose index structure for string similarity séabased on edit
distance. InSGMOD, 2010.

o
w

Avg Query Time (s)
<} <}
P N

o

08 08 07 06 09 08 07 06 [22] J. Zobel and A. Moffat. Inverted files for text search iemg. ACM
Jaccard Jaccard Comput. Surv., 38(2):6, 2006.
(a) DBLP Title. (b) Medline Title. [23] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-s¢aM-CPU

) . . cache compression. 2006.
Fig. 22. Raw disk range-query performance using Jaccard ard wkens.

