
T-verifier: Verifying Truthfulness of Fact Statements
Xian Li1, Weiyi Meng1, Clement Yu2

1Department of Computer Science, Binghamton University
Binghamton, NY 13902, USA

{xianli, meng}@cs.binghamton.edu
2Department of Computer Science, University of Illinois at Chicago

 Chicago, IL 60607, USA
yu@cs.uic.edu

Abstract— The Web has become the most popular place for
people to acquire information. Unfortunately, it is widely
recognized that the Web contains a significant amount of
untruthful information. As a result, good tools are needed to help
Web users determine the truthfulness of certain information. In
this paper, we propose a two-step method that aims to determine
whether a given statement is truthful, and if it is not, find out the
truthful statement most related to the given statement. In the
first step, we try to find a small number of alternative statements
of the same topic as the given statement and make sure that one
of these statements is truthful. In the second step, we identify the
truthful statement from the given statement and the alternative
statements. Both steps heavily rely on analyzing various features
extracted from the search results returned by a popular search
engine for appropriate queries. Our experimental results show
the best variation of the proposed method can achieve a precision
of about 90%.

I. INTRODUCTION
More and more Web users depend on the Web to acquire
information. Unfortunately, not all information on the Web is
truthful. Concerns about the quality of Web content have been
raised for quite some time [6]. Reasons for having untruthful
information include unintended mistakes (e.g., typos) and
intentionally-spread rumors. The first search result in Fig.1 is
an example of a rumor-spreading article that attempts to
portrait Barack Obama as a Muslim even though he has been a
Christian for a long time. The fact that the Web is an open
forum where everyone can publish without prior review
makes it easier for untruthful information to enter the Web.
Methods are needed to distinguish truthful information from
untruthful ones on the Web.

Fig. 1: Results of "Barack Obama is Muslim" (Yahoo.com on 12/20/2009)

Many web pages contain sentences that state a “fact” and
these statements will be called fact statements. If a fact
statement states a true fact, it is called a truthful statement;
otherwise, it is an untruthful statement. In this paper, we are
interested in only fact statements rather than opinionative
statements, which express opinions. More specifically, for a

fact statement, we are interested in determining whether or not
the statement is truthful, and if it is not, finding out the
truthful statement most related to the given statement. The T-
verifier system solves this problem based on information
collected from the Web. When using the T-verifier system, a
user submits a fact statement whose truthfulness is uncertain
to the user. Such type of statements will be called doubtful
statements. In addition, the user also specifies which part(s) of
the statement he/she is not sure about; the specified part(s)
will be called doubt unit(s). A doubt unit can be a term or a
phrase. All the other non-stop terms in the doubtful statement
are called topic unit(s). As an example, a user may submit
“Barack Obama is a Muslim” as a doubtful statement and
specify “Muslim” as a doubt unit. In general, a user may
specify multiple doubt units in a doubtful statement. In this
paper, we consider the case when only one doubt unit is
specified in each doubtful statement and leave the case
involving multiple doubt units as future work.

A special case of the problem is that a user has a doubtful
statement whose doubt unit has several values and the user
knows one of these values is truthful but is not sure which one
is. For the above example about Barack Obama, a user may
know that either Muslim or Christian is truthful but not sure
which one is truthful. In this case, a simple method to
determine the truthfulness of a fact statement is as follows.
First, by replacing the doubt unit with each of the possible
values in the doubtful statement, we can generate multiple
statements. Second, we submit each statement to a popular
search engine and obtain the corresponding number of hits.
Finally, select the statement that has the largest number of hits
as the truthful statement. Intuitively, this method is appealing
and makes some sense because it is a simple way to leverage
the huge amount of data on the Web and there is likely more
truthful information than untruthful information on the Web.

TABLE I: NUMBER OF HITS COMPARISON (YAHOO.COM ON 12/20/2009)
Statements Truthfulness Number of Hits

Hillary Clinton is the
President of United States

Untruthful 30,100,000

Hillary Clinton is the
Secretary of State

Truthful 23,600,000

Unfortunately, the above simple method is not sufficiently
reliable as frequently untruthful statements may get more hits
than truthful ones. As an example, in Table 1, the untruthful
statement “Hillary Clinton is the President of United States”

got more hits than the truthful “Hillary Clinton is the
Secretary of State”. In general, our experiment shows that the
above simple method has only a 20% precision (see section V
for details). Therefore, more advanced methods are needed to
determine the truthfulness of fact statements.

Additional challenges that make determining the
truthfulness of fact statement difficult include: (1) Conflicting
statements about the same fact may appear on the Web. For
example, in the two articles corresponding to the results in
Fig.1, one asserts that Barack Obama is a Muslim while the
other tries to dispute the assertion. (2) Current search engines
rank search results based on their estimated relevance to the
user query but they do not take the truthfulness of the results
into consideration. As a result, it is unrealistic for ordinary
users to utilize an existing search engine directly to reliably
determine the truthfulness of their doubtful statements. We
need a systematic way to help users verify doubtful statements.

Though untruthful information is very common on the Web,
we believe that on the web (1) there must be someone telling
the truth of a fact; and (2) truth of a fact is usually more
widespread than untruth. Our solution of identifying statement
truthfulness consists of two steps: alternative statement
collection and statement truthfulness verification. In the first
step, we try to find other statements of the same topic as the
doubtful statement but are different on the doubt unit. We call
such kind of statements alternative statements. In the second
step, we will rank all the alternative statements as well as the
doubtful statement based on a set of measures related to
truthfulness determination and select the one which is most
likely to be truthful. For simplicity, in the statement
truthfulness verification step, we will consider the user given
doubtful statement as one of the alternative statements.

This paper has the following contributions:
(1) We propose a two-step (alternative statement collection

and statement truthfulness verification) method to tackle
the problem of determining the truthfulness of a fact
statement. And it has the capability to find out the
intended truthful statement if the given doubtful statement
is not true.

(2) Instead of simple string pattern matching techniques as
used in [16, 17], we use a feature based method to collect
alternative statements from the Web. Besides text features,
we perform semantic and correlation analysis on the
alternative statements and the doubt unit to filter out
unlikely statements and rank the promising statements.

(3) We employ a set of basic rankers to rank all the
alternative statements (including the doubtful statement
as stated earlier), evaluate and compare different rank
merging algorithms (including a new merging algorithm
we propose) for selecting the truthful statement – the one
with the highest combined ranking score. Based on our
experiment, our method can find the truthful statement in
90% of the cases.

For the rest of the paper, we first give an overview of our
approach in section II. After that, we discuss our solution on
alternative statement collection and statement truthfulness
verification in sections III and IV, respectively. The precision

of our solution is evaluated based on real data and our
experimental results are shown in section V. We compare our
work with other published papers on related issues in section
VI. We conclude the paper in section VII.

II. OVERVIEW OF APPROACH
In this paper, we introduce our T-verifier system which
addresses the truthfulness problem on statement level. A
system overview is shown in Fig.2. The system allows a user
to submit a doubtful statement DS together with a doubt unit
DU as input. The system will first generate a keyword query
based on topic units in DS and submit it to a search engine.
We try different query specification methods for the search
engine and use the best in our system implementation. From
the retrieved web pages we generate the alternative statements
by exploring a set of features. We then submit each of the
alternative statements (including the original doubtful
statement) as a query to the search engine, rank them by
comparing returned page sets on different measures, and show
the user the top-ranked statement as the truthful statement
found.

Fig. 2: T-verifier system overview

The purpose of alternative statement collection is to find a
list of those possibly truthful statements with respect to the
fact. The first challenge comes from the variations of language
usage. People may use different ways to state the same fact.
Therefore, collecting alternative statements may need natural
language understanding techniques. Second, some statements
with the same structure as the doubtful one may not be
relevant. Still taking the “Barack Obama is Muslim” as an
example, a possible alternative statement is “Barack Obama is
President”, which is truthful but not relevant to the religious
topic of the given doubtful statement.

The statement truthfulness verification module is designed
to select the most likely truthful statement by ranking all the
alternative statements. The ranking is based on the search
result records retrieved using each of these statements. There
are two issues here. First, what kind of features should we use
to perform the ranking and how to combine the ranks
produced by individual rankers using different features? These
features, derived from the collection of search result records,
should be able to distinguish the truthful statement from
others. Second, though using a larger number of alternative
statements can increase the chance that one of them is the
truthful statement, it also increases the effort needed to

perform statement truthfulness verification. Note that for
every alternative statement considered, we have to perform a
search, collect certain number of search results and analyse
them. A good approach should try to minimize the number of
alternative statements for the verification step without
increasing the chance of missing the truthful statement.

III. ALTERNATIVE STATEMENT COLLECTION
Given a doubtful statement DS, we let the user specify the
doubt unit DU. A doubt unit can be a single word, a phrase, a
name entity, a number or a date, etc.

Alternative statements to DS are very important to the
truthfulness judgment, because they provide the users with
different versions of the fact. Especially when DS is not
truthful, the truthful one is quite probably one of the
alternative statements. Based on our observation, alternative
statements should have the following three properties:

• Same Topic. An alternative statement should cover the same
topic as the doubtful statement. Otherwise, it does not satisfy
the user’s expectation even when the alternative statement is
truthful.

• Different Values. An alternative statement should be different
from the doubtful statement on the doubt unit. We call the
term(s) in place of the doubt unit alternative unit. For example,
the alternative statement “Barack Obama is a Christian”
contains an alternative unit “Christian” which is in place of
“Muslim” in the doubtful statement.

• Term sense/type closeness. An alternative unit should be a
replacement of the doubt unit. Therefore, the alternative unit
and doubt unit should have close word sense to each other, in
both data type and semantic meaning. For example, “Christian”
is closer to “Muslim” than to “President”, because both
“Christian” and Muslim” are religious people.

The alternative statements may be presented in various
ways, while the essential difference between alternative
statements and the doubtful one is the alternative units. In
order to avoid getting involved in complex natural language
processing issues, we turn the problem of collecting
alternative statements into the problem of looking for
alternative units and use them to generate alternative
statements. Hence the key to find relevant alternative
statements is to find relevant alternative units from web pages
relevant to the same topic.

We partition a doubtful statement into two parts: doubt unit
and topic units. For the doubtful statement “Barack Obama is
Muslim”, the doubt unit is “Muslim” and topic units are
“Barack” and “Obama”. Web pages used for collecting
alternative units are retrieved by submitting only the topic
units as a query to a search engine (we currently use Yahoo!
in T-verifier). Note that if the doubt unit was included in the
query, the search results would be biased in favour of the
doubtful statement. We collect search result records (each
consisting of a title and a snippet), SRRs for short, from the
search engine result pages. Let D = {r1, r2 …, rN} be the set of
all SRRs collected, where N is the cardinality of D. We utilize
seven different features to rank the terms in the set of SRRs
and to find the alternative units from the top ranked terms.

A. Features of alternative units
Initially, all the terms/phrases appearing in the SRR set D

are considered as candidates for alternative units. In order to
reduce the number of candidates, we could resort to linguistic
analysis or some heuristic rules. However, it is not easy to
produce a set of widely usable rules and it is time-consuming
to do linguistic analysis. In this paper, we pursue a different
approach to identify potentially good alternative units. Our
observation shows that there are two types of co-occurrence
information with alternative units that can be used. First,
relevant alternative units frequently co-occur with the topic
units. This is because these topic units provide a good context
to the alternative units. Second, relevant alternative units often
co-occur with the doubt unit. This is because (1) when people
have doubt about a fact, they often mention other possible
answers to the fact; and (2) when people dispute a
controversial point or a common misconception, they often
mention their own points or the truthful fact. For example in
Fig.3, it shows the top result of “Obama is a Muslim” from the
Yahoo search engine, where we can find both “Muslim” and
“Christian” being mentioned in the same record. In order to
utilize these two co-occurrences in collecting alternative units,
we develop the following features to estimate the possibility
of a candidate term T (T can be single term or a phrase) as an
alternative unit.

Fig. 3: Sample result of “Barack Obama is Muslim” (Yahoo.com on

12/20/2009)

The first four features, including “result coverage”, “result
query relevance”, “SRR ranking”, and “term-keyword
distance”, are introduced to represent the co-occurrence
relationship between topic units in query Q (which is the
doubtful statement minus the doubt unit) and a candidate term
T (i.e., a candidate alternative unit). We use function Cont(r, T)
to check whether an SRR r in D contains the term T; Cont(r, T)
returns 1 if r contains T and 0 if r does not.
• Result coverage (RC): It is the percentage of SRRs in D

that contain T. We assume that all records in D are relevant
to the fact. RC shows how frequently T co-occurs with the
topic units. The record coverage of T is computed by:

𝑅𝐶(𝑇) =
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇)𝑁
𝑖=1

𝑁

• Result Query Relevance (RQR): It measures what
portions of the topic units are covered in SRRs. In the
above result coverage computation, all SRRs are
considered equally relevant to query Q. In reality, the
degree of relevance is different among the SRRs. One way
to estimate the relevance of an SRR is to check how many
topic units are contained in the SRR, and an SRR that
contains more topic units can be considered to have a
higher degree of relevance. Intuitively, if more SRRs
containing term T have higher degree of relevance, T is
more likely to be a relevant alternative unit. We measure
RQR by:

𝑅𝑄𝑅(𝑄,𝑇) =
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇)𝑁
𝑖=1 ∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟𝑖,𝑄)/𝑙𝑒𝑛(𝑄)

∑ 𝐶𝑜𝑛𝑡(𝑟𝑖,𝑇)𝑁
𝑖=1

where intersect(ri, Q) is the number of topic units in Q
appearing in ri and len(Q) is the length of Q.

• SRR ranking (Rrank): Another way to estimate the
relevance of an SRR is to see where it is ranked by the
search engine used. Generally, search engine ranks SRRs
based on their likelihood of being relevant to the query.
Therefore, we aggregate the ranks of the SRRs that contain
term T as the record ranking of T. The Rrank is computed
as follows:

𝑅𝑟𝑎𝑛𝑘(𝑇) =
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇) ∗ (1 − 𝑝𝑜𝑠(𝑟𝑖)/𝑁)𝑁
𝑖=1

∑ (1− 𝑝𝑜𝑠(𝑟𝑖)/𝑁)𝑁
𝑖=1

where pos(r) is the position of r in the search engine’s
ranking list and N is the cardinality of D.

• Term distance (TD): Intuitively, terms that appear far
away from the topic units are less likely to be related to the
topic units compared to those that appear closer. To capture
the proximity information between terms, we consider the
size of the smallest window of consecutive words in each
SRR (title or snippet) that covers all the topic units
contained in the SRR as well as the term T. We use the
following formula to compute TD in the snippet of the SRR
for term T:

𝑇𝐷𝑠𝑛𝑖𝑝𝑝𝑒𝑡(𝑇) =
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖𝑠𝑛𝑖𝑝𝑝𝑒𝑡,𝑇) ∗ (𝑆𝑛𝑖𝑝𝑝𝑒𝑡_𝑙𝑒𝑛 − 𝑚𝑖𝑛_𝑤𝑖𝑛𝑠𝑖𝑧𝑒)𝑁
𝑖=1

𝑁
∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟𝑖𝑠𝑛𝑖𝑝𝑝𝑒𝑡,𝑄)/𝑙𝑒𝑛(𝑄)

Our TD formula considers the length of the minimum
window as well as the number of topic units covered in this
window. For the TD measure, while an SRR containing
fewer topic units would benefit from possibly smaller
window size, it is also penalized for including fewer topic
units. Similarly we also compute 𝑇𝐷𝑡𝑖𝑡𝑙𝑒(𝑇) and add these
two parts together as the overall TD value. As a special
case, when none of the topic units appears in the same
sentence with T, we consider its TD for this record to be 0.
Another set of features capture the relevance between a

candidate term T and the given doubt unit DU.
• Data type matching (DM): The alternative units should be

of the same data type as the doubt unit because it is
reasonable to assume that the user is look for something of
the same type. Since the doubt unit provides us an instance
of the data type the user is looking for, candidate terms of
different data types are less likely to be relevant alternative
units. We identify several data types either by their special
format or by a dictionary, including date, time, telephone
number, email address, person name, place name (e.g.
name of state, city and attractions), and number. All the
others are considered as common string. In this way, we
can filter out those candidates that have a data type
different from that of the doubt unit.

• Sense closeness (SC): Data type matching can filter out a
great number of candidates, especially when the doubt unit
is of a special type, like number, dates or names etc.
However, in many cases the doubt unit is a common string.
In these cases, filtering by data type does not work

effectively. According to our observation, many terms
extracted from SRRs are irrelevant with the doubt unit even
when they have the same data type, especially when the
data type is common string. For example, a user has doubts
about the religion of Barack Obama and inputs “Barack
Obama is Muslim”. When query “Barack Obama is” is
submitted to Yahoo, the most frequent term extracted from
the returned SRRs that has the same data type is
“president”. However, “president” is a term irrelevant to
religion. Instead, a less frequent term “Christian” is more
likely to be a good alternative unit because, similar to
“Muslim”, it is also about religion. This example shows
that terms that have a closely related meaning as the doubt
unit are good candidates for alternative units.
In this paper, we utilize WordNet [22] to capture the sense
closeness between two different terms. In general, we take
special care of the following three relations: direct
hypernym/hyponym, instance hyponym, and sibling.
Instance hyponym means one term is an instance of the
other, like “Europe” is an instance hyponym of “continent”.
Sibling means two terms share the same direct hypernym or
instance hypernym. Except for these three cases, the sense
closeness is defined as the Wu-Palmer similarity
(wup_similarity) provided by the NLTK [15, 21], which
returns a score denoting how similar two word senses are,
based on the depths of the two senses in the taxonomy and
that of their Least Common Subsumer (most specific
ancestor node). For the hypernym and sibling cases, we do
not use wup_similarity value because hypernym and sibling
terms are often the best choices for alternative unit.
Therefore we want to specially differentiate these cases. To
summarise, we use the following formula to compute sense
closeness between term T and doubt unit DU:

𝑆𝐶(𝑇,𝐷𝑈)

= �
𝛼, 𝑖𝑓 ℎ𝑦𝑝𝑒𝑟(𝑇,𝐷𝑈) = 𝑡𝑟𝑢𝑒 𝑜𝑟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐_ℎ𝑦𝑝𝑒𝑟(𝑇,𝐷𝑈)
𝛽, 𝑖𝑓 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑇,𝐷𝑈) = 𝑡𝑟𝑢𝑒
𝛾, 𝛾 = 𝑤𝑢𝑝𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑇,𝐷𝑈), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

where α and β are parameters to be tuned empirically for
best performance.

• Term local correlation (TLC): It measures the correlation
between candidate term T and doubt unit DU. Based on our
second observation mentioned before, relevant alternative
units are often mentioned together with the doubt unit for
various reasons.

Detecting the terms which are highly correlated with the
doubt unit can be an effective way in finding likely relevant
alternative units. In this paper, we use the correlation
coefficient formula [14] to evaluate the correlation strength
between candidate term T and doubtful unit DU:

𝑇𝐿𝐶(𝑇,𝐷𝑈) =
∑ (𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇) − 𝑅𝐶(𝑇))(𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝐷𝑈) − 𝑅𝐶(𝐷𝑈))𝑁
𝑖=1

�𝜎(𝑇)2𝜎(𝐷𝑈)2

Here, RC(T) is the result coverage of T, which we have
mentioned before. σ(T) is computed by ∑ (Cont(ri, T) −N

i=1

RC(T))2 ∗ 1
N

. This formula basically uses the definition of
correlation coefficient.

If we consider X (Y) as a random variable which
describes the appearance of T (DU) in each SRR, then E(X)
is RC(T) and E(Y) is RC(DU). σ(T) and σ(DU) are the
standard deviations of X and Y, respectively. According to
the correlation coefficient definition, TLC of T and DU is
measured by the above formula.

B. Alternative unit selection algorithm
In this paper, we select alternative units by combining the

seven features described above in two steps. We first filter the
candidate terms by data type matching (DM), i.e., only those
terms that match the data type of the doubt unit will be
considered further. In the second step, we rank each remaining
candidate term based on the other six features. The ranking
score of T is computed using the following formula:

𝐴𝑙𝑡𝑒𝑟𝑟𝑎𝑛𝑘(𝑇) = 𝑤1 ∗ 𝑅𝐶 + 𝑤2 ∗ 𝑅𝑄𝑅 + 𝑤3 ∗ 𝑅𝑟𝑎𝑛𝑘 + 𝑤4 ∗ 𝑇𝐷
+ 𝑤5 ∗ 𝑆𝐶 + 𝑤6 ∗ 𝑇𝐿𝐶

where wi, i=1,...,6, are the weights for the features. These
weights form a vector called Alternative Unit Selection Vector
AUSV = (w1, w2, w3, w4, w5, w6). We use training to find the
best AUSV that yields the best performance. We evaluate the
effectiveness of an AUSV by the position it assigns to the
truthful alternative unit in its ranking list. Ideally, the truthful
alternative unit should be ranked at the top of the list for each
doubtful statement. Each time we go through the list of top 10
candidate terms sorted by Alterrank in descending order. If the
truthful alternative unit is ranked the i-th on the list, the fitness
of this AUSV will be (1-0.1*i).

A genetic algorithm [4] is used to obtain the best
performance AUSV over a set of training statements. Initially,
the algorithm randomly generates 30 different AUSVs, each
of which contains 6 real numerical components, as the first
generation. The evolution from one generation to the next
includes three steps: parent selection, crossover and mutation.
Every time we choose a pair of AUSVs in the current
generation as parents for next generation based on the Wheel
of Fortune principle. The probability for an AUSV to be
selected is its fitness divided by the sum of the fitnesses of all
AUSVs in the current generation. The AUSVs with larger
fitnesses have a better chance to be selected as parents. The
same AUSV is allowed to be selected more than once. For
each pair of selected parents, the crossover is done with a
probability of 0.75. When performing the crossover, we
generate a random binary mask with the same number of
components as AUSV, which is used to select the value of an
AUSV component from either the first parent or the second
parent, respectively. Mutation on the child AUSV is
performed with probability of 0.1. If a component mutates, it
increases or decreases by 0.1 with equal probability of 0.5.
The AUSV with the best fitness in the current generation will
be directly moved to the next generation. The genetic
algorithm continues until the best fitness meets a predefined
threshold 𝜏 . The fittest AUSV of the final generation is
selected as the “optimal” AUSV.

According to our experiment, the optimal AUSV found by
the above procedure performs well on our test dataset. For
each of the 50 sample statements tested, the algorithm always

ranks the truthful alternative statement among the top five
results. Furthermore, in 31 cases, the truthful statement is
ranked at the top. As a result, we only need to consider the
five statements with the highest Alterrank in the statement
truthfulness verification step for each user statement. This not
only reduces the effort but also provides a solid basic ranker
for ranking the alternative statements for the next step.

IV. STATEMENT TRUTHFULNESS VERIFICATION
In the previous section, alternative statements are generated
from the searching results of the query composed of the topic
units. The Alternative Unit Selection algorithm aims to ensure
that the truthful alternative unit is included among the top five
ones on the final ranking list. However, the truthful statement
is not always at the top. This means there is a need of further
verification on each of the top five statements to find out
which one is truthful. In this section, we will discuss our
verification process for a given group of alternative statements
(including the doubtful statement). Generally, our verification
has three steps: first, send every alternative statement as a
query to a search engine and collect relevant SRRs; second,
employ a number of basic rankers and generate a ranking list
of the alternative statements using each basic ranker based on
newly collected SRRs; third, use a rank merging algorithm [1,
11] to merge the rank lists into a combined final list.

A. Statement truthfulness verification
Intuitively, verifying the truthfulness of a statement

requires relevant pages as evidence. In the web environment,
we can use a search engine to retrieve relevant web pages. As
we have mentioned in the introduction, truthful information is
usually more widespread than untruthful ones and tends to be
consistent. We will put emphasis on analysing how the
retrieved web pages support their corresponding statement.

Given several alternative statements among which one is
true, we can transform the verification problem to a ranking
problem: rank the statements based on an estimation of its
truthfulness and choose the one that is ranked the highest. In
order to perform the truthfulness evaluation, we can use
different features as measurements. For example, the simplest
way is to compare the number of retrieved pages. Intuitively,
the statement retrieving the largest number of results is more
likely to be true. Another method is to directly use the ranks
of alternative units generated by the alternative unit selection
step. In this paper, we will explore different ways to rank the
alternative statements and combine these ranks by a rank
merging algorithm.

We use a five-element vector to formalize the truthfulness
verification problem: [Statements, Supporting SRR sets, Basic
rankers, Basic rank lists, Merged rank list]. We show the
overview of the verification module in Fig.4.
• Statements (Stmts) is the set of selected alternative

statements (including the doubtful statement) to be verified.
Let Stmts = {s1, s2, …, sn} with n ≤ 5. All statements are
about the same topic but present different versions on the
fact. It is assumed that one of the statements in Stmts is
truthful but we do not know which one is.

• Supporting SRR Sets (Sup_S) is a collection of supporting
SRR sets. Specifically, Sup_S = {Sup1, Sup2, …, Supn},
where each Supi contains two components: (1) the number
of hits when statement si is submitted as a query to the
search engine used; and (2) the top N SRRs retrieved by the
search engine for si. Roughly speaking, all SRRs in Supi
can be considered as supporting evidence for si though with
a different degree of relevance. Additional features may
help the truthfulness judgment, for example, the publishing
time and domain of each SRR in Sup_S, Here the domain
of an SRR is the internet domain (e.g., edu, com) of the
URL of the web page corresponding to the SRR. It is
believed that information from certain domains (say edu) is
more trustworthy than information from other domains (e.g.,
com) [5, 18].

• Basic Rankers (BR) is a set of basic rankers each of which
ranks the statements in Stmts based on their measurement.
BR = {BR(1), ..., BR(M)}, where M is the number of basic
rankers used. Each basic ranker tries to explore different
features of the SRR set in Sup_S and their relationships
with the corresponding query statement. In section IV.B,
we will discuss all the basic rankers used in our verification
method.

• Basic Rank Lists (BRL) is a collection of rank lists, each
of which is a list of ranked statements in Stmts produced by
one of the basic rankers. The list produced by basic ranker
BR(k) is {r1

k, ..., rn
k}, where ri

k is the rank of si given by
BR(k).

• Merged Rank List (MRL) is the merged rank list of the
statements in Stmts by merging all the basic rank lists.
Rank merge is a classic problem which has been studied by
data fusion researchers. In this paper, we apply voting
based techniques to perform merging. For comparison
purpose, we also apply machine learning method to the
verification problem in experiment and compare its
performance with our voting based techniques.

Fig. 4: Elements for statement truthfulness verification

Overall, our verification method requires a search on the
web for each alternative statement. For a given alternative
statement si, we submit it to the search engine, collect the
number of hits returned by the search engine and the top N (N
= 200 is used in our experiments) SRRs from the result list as
Supi. By controlling the number of alternative statements that
need to be verified to at most five, the number of searches
needed in the verification step is small.

B. Basic Rankers

Given Stmts and Sup_S, ranking the truthfulness of the
statements based on the collected SRRs in Sup_S can be done
in different ways. Each of these methods captures one or more
features that the truthful statement is likely to outrank
untruthful ones. We first introduce different basic rankers to
rank the alternative statements with their features.
1) Alternative Unit Ranker (AUR): In section III, we
discussed the process of extracting and selecting alternative
units from the SRRs retrieved by the doubtful statement minus
the doubt unit. The alternative unit selection algorithm selects
the alternative units by ranking candidates based on a number
of features collected from the search result. Since each
alternative unit corresponds to an alternative statement, this
ranking of the alternative units from the alternative unit
selection algorithm can be considered as the ranking of the
statements in Stmts, and therefore we call it Alternative Unit
Ranker (AUR).

The ranks generated from AUR can be useful here because
of four reasons: (a) The web data used for AUR ranking is
retrieved by the doubtful statement without the doubt unit,
which is different from the data collected in Sup_S. (b) In the
process of ranking, we use not only data from the web, but
also WordNet to do semantics analysis, reducing the
probability of selecting irrelevant terms as alternative units. (c)
AUR specially considers the observation that related (either
truthful or controversial) alternative units often co-occur with
the untruthful ones. (d) AUR has reasonable effectiveness for
identifying the truthful alternative units as among the 50
statements used in our experiment, 31 truthful alternative units
are ranked at the top by this ranker, yielding a 62% precision.
2) Hits Ranker (HR): A seemingly reasonable method is to
rank the alternative statements by the number of hits they
retrieve from a search engine. Web users commonly use this
method to do quick truthfulness verification. We call this
method the Hits Ranker.

One potential problem of this ranker is that it implicitly
assumes that all the SRRs in Supi support statement si.
However, it is possible that some of the SRRs are actually
against si (i.e., saying it is not true). As current search engines
retrieve results based on only query words and do not analyse
the meanings of texts, the number of hits may not be a reliable
indicator for judging the truthfulness of a statement.
3) Text Feature Rankers (TFR): Text feature rankers are a set
of rankers measuring the relevance between alternative
statements and each SRR. In section III.B, we discussed
several text features used to measure the relevance between an
SRR and the modified query statement (i.e., the doubtful
statement minus the doubt unit). There are mainly four
features involved: Result Coverage (RC), Result Query
Relevance (RQR), SRR ranking (Rrank), Term Distance (TD).
In TFR, we reuse these four features to do the ranking.
However, the rankings generated by TFR here are different
from those by the alternative statement collection step in
section III because these four features are now used against a
different set of SRRs, which is retrieved by a different query
(i.e., the full alternative statement under consideration).

4) Domain Authority Ranker (DAR): There is a background
truth on the web: Some researchers have observed that web
pages published by certain domains are more likely to be
truthful, such as “.gov”, “.edu”, etc [5, 18]. This is because
websites in these domains claim the responsibility for their
published information. Based on this observation, we assign a
higher weight to a domain that is considered to be more
trustworthy.

In our work, the weights for different domains are learned
as follows. First collect two sample SRR sets. One set
contains the SRRs for k truthful statements, called True_set,
and the other set contains the SRRs for k untruthful statements,
called Untrue_set. We treat each domain as described below.
Take domain “.edu” as an example. We find the total number
of SRRs from the “.edu” domain in True_set, say n1 and that
in Untrue_set, say n2. Then the weight for SRRs from the
“.edu” domain is W.edu = n1/(n1+n2). In other words, if a
statement yields one result from “.edu” in its supporting SRR
set, it gains a truthfulness score of n1/(n1+n2).

When testing a statement S with unknown truthfulness, its
supporting SRR set is Sup with N SRRs included. We
aggregate the number of SRRs from each different domain in
its Sup. For example, there are m SRRs found from “.edu”.
These “.edu” pages gain truthfulness score of W.edu * m for S.
Overall, the rank position given by DAR for S is the average
truthfulness score of an SRR in Sup, ∑ 𝑊𝑑 ∗ 𝑛𝑑

𝑁�𝑑∈𝑑𝑜𝑚𝑎𝑖𝑛𝑠 ,
where Wd is the weight of domain d trained from the sample
set, nd is the number of SRRs from domain d, and N is the
cardinality of the Sup.

C. Rank Merging
In section IV.B, we introduced a set of basic rankers each

of which evaluates statement truthfulness with a different
measure. Each ranker is applicable to all the alternative
statements. However, divergence in statement ranking is
inevitable among all these basic rankers. In order to get a
comprehensive conclusion, the final rank should combine
ranks from all basic rankers. Therefore, an effective rank
merging algorithm is a key component in a solution to the
statement verification problem. Taking the “Hillary”
statements in Table I as an example, though HR ranks the
untruthful statement over the truthful one, AUR, TFR and
DAR give higher rank to the truthful statement. For this
example, combining all the ranks would rank the truthful
statement over untruthful ones.

Rank merging is not the only solution to find out the
truthful statement. By considering the ranking scores of each
statement given by basic rankers as feature values, we can
also apply a machine learning algorithm to a set of pre-tagged
truthful/untruthful statements to train a classifier, and use it to
determine the truthfulness of unknown alternative statements.
We will compare rank merging solutions with a decision tree
based solution in our experiment (see section V).

1) Baseline Merging Algorithms
Given a set of alternative statements about the same topic,

Stmts = {s1, s2, ….sn}, each basic ranker ranks them in its own

manner. Say ranker BR(i) ranks Stmts as {r1
i, r2

i, …rn
i}, where

rj
i is the rank of statement sj given by ranker BR(i). In general,

rj
i < rk

i means ranker BR(i) believes that sj is more likely to be
truthful than sk. Therefore, M rankers would generate M basic
rank lists BRL = {BRL1, BRL2, …, BRLM}. In this paper, we
use two commonly used algorithms Borda [1, 2] and
Condorcet [3, 11] as the baseline algorithms for merging the
rank.

In the basic Borda algorithm (BaseBorda), the top ranked
statement by BR(i), say sj, is given score n (rj

i = n) and the
second ranked is given n-1 and so on. Therefore, the scores of
each ranker’s rank list are a permutation of integers in [1, n].
The Merged Rank List (MRL) will be obtained based on the
values computed in {∑ 𝑟1𝑖𝑖∈[1,𝑀] , ∑ 𝑟2𝑖𝑖∈[1,𝑀] , … ,∑ 𝑟𝑛𝑖𝑖∈[1,𝑀] } .
The alternative statement with the largest combined score is
considered as the truthful one. This algorithm fully utilizes the
position information in every rank list and uses quantified
scores to represent position information so as to facilitate the
merging process.

Algorithm 1: Baseline Condorcet Algorithm (BaseCond)
1. Count = 0; graph G;
2. for each basic ranker ri, do
3. if ri ranks sj higher than sk
4. Count += 1
5. else Count - = 1;
6. if Count > 0: add sjsk to G
7. else if Count < 0: add sksj; to G
8. compute Hamiltonian path in G

The idea of Condorcet algorithm is to choose the statement
which is ranked higher than or the same as every other
statement as the truthful one. For every pair of statements in
Stmts, say (si, sj), their rank relationship is defined as follows.
Check the ranks given by each basic ranker. If si is ranked
higher than sj by more basic rankers, then si is ranked higher
than sj in MRL, denoted as sisj, and vice versa. If each of
the two statements is ranked higher than the other by the same
number of basic rankers, then they are considered to have the
same rank in MRL, denoted as si=sj. Note that since we use
seven basic rankers, the case for si=sj won’t occur. Essentially,
considering every statement as a vertex and sisj as an edge,
the ranking relationships can be represented as a directed
graph, called Condorcet graph. If there exists a cycle in the
Condorcet graph, e.g. {sisj…sksi}, all the statements
included in this cycle are considered as equivalently ranked.
Finally, select the statement ranked not lower than any other
statement as the top one, which can be carried out by finding a
Hamiltonian path in the Condorcet graph. Obviously, it is
possible for this algorithm to rank more than one statement at
the top. In such a case, our system will select the statement
that is placed highest by the most accurate basic ranker.

Both of the above two algorithms can find the top ranked
alternative statement fast, especially when the size of Stmts is
not large. Two noticeable common features of these two
algorithms are that they both treat each basic ranker equally.
However, in reality, features adopted by each basic ranker are
likely to be relevant with truthfulness judgment with different
degrees. Some rankers may produce more accurate ranks than

others. Therefore, we introduce weighted merging algorithms
in the next subsection.

2) Weighted Rank Merging
In this subsection, we introduce several ways to incorporate

weights of individual rankers into the BaseBorda and
BaseCond algorithms to improve ranking precision.
Specifically, we consider the following variations to them.
• Positional Borda (PosBorda). For each basic ranker, the
BaseBorda algorithm gives the top ranked statement score n,
the second score n-1 and so on. We can interpret it as follows:
if a statement is ranked at the top by a basic ranker, it is
truthful with probability 𝑛

∑ 𝑖𝑛1
 for this ranker; if second, then its

probability is 𝑛−1
∑ 𝑖𝑛1

, and so on. We call it “position probability”,
i.e., the probability of a statement being truthful if it is ranked
at i-th position.

We may obtain more accurate position probabilities from
sample documents. Let D be a collection of sample alternative
statement sets, D = {Stmts1, Stmts2, …, StmtsX}. Each Stmtsi
contains n alternative statements and only one of them is
truthful. We try each basic ranker on D and record the rank
position of the truthful statement. Let xj be the number of
truthful statements ranked at the j-th position. Then the
probability that a truthful statement is ranked at the j-th
position can be estimated to be xj / X, where X is the total
number of Stmts in D. In general, the i-th basic ranker BR(i)
gets a set of position probabilities PP(i) = {P1

(i), P2
(i), …Pn

(i)},
where Pj

(i) is the probability that a statement ranked at the j-th
position by BR(i) is truthful. We can interpret Pj

(i) as the
ranking score given by BR(i) to the statement ranked at j-th
position; it is an empirical score obtained by training. When
given a new Stmts, each alternative statement s in Stmts will
receive a score (i.e., the position probability) from each of the
basic rankers. The sum of these scores becomes the overall
score of s. All statements in Stmts are ranked in descending
order of their overall scores.

In summary, suppose we have M basic rankers with BR =
{BR(1), BR(2), …, BR(M)} and each gets a set of position
probabilities PP. If a statement s is ranked at j-th position by
BR(i), it will receive a score as Pj

(i), which corresponds to rj
i in

Fig.4. The merged rank of the statement s is determined by its
overall ranking score ∑ 𝑟𝑗𝑖𝑀

𝑖=1 .
• Weighted Borda (WBorda). This variation differentiates the
importance of different rankers and assigns a weight to each
ranker, as was also done in [1]. There are two different ways
to get the weights for basic rankers. First, because the weight
is used to enhance the influence of more precise basic rankers,
we can use the precision of each basic ranker on the sample
statement set D as its weight. Same for the sample set D with
X groups of alternative statements. If a basic ranker ranks the
truthful statement at the top in x groups, its precision is x/X.
In such a case, we can get a set of weights, each of which
represents the precision of a basic ranker. The other method is
to use a genetic algorithm to train a weight vector with M
elements, W = {w1, w2, …, wM}, over the training set D to get
the optimal weights for rank merging. We tested both methods

and the second method had better performance. For the rest of
this paper, we use the weights obtained by the second method.
After the weight for each basic ranker is obtained, the only
difference between WBorda and BaseBorda is that the latter
multiplies each score assigned by BR(i) by wi.
• Weighted Position Borda (WPosBorda). This variation is a
combination of PosBorda and WBorda, which combines the
idea of adjustment on the scores assigned to each ranked
position and different weight placed on basic rankers. It
obtains the Merged Rank List (MRL) based on the values
computed in {∑ 𝑤𝑖𝑟1𝑖𝑖∈[1,𝑀] , ∑ 𝑤𝑖𝑟2𝑖𝑖∈[1,𝑀] , … ,∑ 𝑤𝑖𝑟𝑛𝑖𝑖∈[1,𝑀] } ,
where wi is the weight assigned to the i-th basic ranker, rj

i is
the position probability at position j by basic ranker BR(i).
• Weighted Condorcet (WCond). We now discuss how to
incorporate ranker weights into the Condorcet algorithm. In
the process of building the Condorcet graph, we decide the
partial order for every pair of statements by combining the
ranks given by the basic rankers. When assigning weights to
basic rankers, this process would incorporate the weights as
parameters. The modified algorithm over Algorithm 1 is
described as Algorithm 2 below. The same trained weights for
basic rankers that are used in WBorda are used for WCond in
our experiment.

Algorithm 2: Weighted Condorcet Algorithm (WCond)
1. weightedCount = 0; weighted Condorcet graph G;
2. for each basic ranker ri, do
3. if ri ranks sj higher than sk
4. weightedCount += wi
5. else weightedCount - = wi;
6. if weightedCount > 0: add sjsk to G
7. else if weightedCount < 0: add sksj; to G
8. compute Hamiltonian path in G

3) Probabilistic Rank Merging
• Probability Combination (ProbComb). This is another way
to combine basic rankers. Our basic rankers are based on
different types of fairly independent features. Thus we may
assume that these rankers are independent. Based on this
assumption, we can consider the precision of a basic ranker as
the success rate of the basic ranker or the probability that the
basic ranker is correct in determining the truthful statement.
Let Pi denote this probability of basic ranker BR(i). Then the
overall probability that the truthfulness of a statement S is
correctly determined (i.e., the probability that at least one of
the basic rankers is correct in predicting the truthfulness of S)
can be estimated by 1-∏ (1 − 𝑃𝑖)𝑖∈[1,𝑀] .

V. EXPERIMENTS
Our experiments require a set of fact statements that are either
truthful or not truthful as well as the specified doubt unit for
each of the statements. In order to evaluate the precision of
our system, we also need the truthful statement for each case.
We use the factoid questions from TREC-8 and TREC-9
Question Answering track [20] as the experiment data
repository, which contains a large number of factoid questions
as well as correct answers. In our experiments, we randomly
choose 50 questions from TREC-8 and TREC-9, transform

them into statements with answers that are either correct or
incorrect. We make half of the statements with correct
answers while the other half with incorrect ones. The answer
part in each statement is specified as the doubt unit. We make
our dataset available at [23]. We use our proposed method to
determine the truthfulness of each statement and compare the
result with the ground truth to compute the precision for our
method. We show two sample doubtful statements in our
dataset in Table II.

TABLE II: SAMPLE DOUBTFUL STATEMENTS

Doubtful statement Doubt unit Truth
Antarctic is the only continent without a
desert.

Antarctic Europe

George C. Scott won the Oscar for best
actor in 1970.

George C.
Scott

George
C. Scott

A. Experiments on Alternative Statement Collection

1) Search methods experiment
Current commercial search engines such as Yahoo often

provide more than one way to specify a query and the most
common specifications are: “all of the words”, “the exact
phrase” and “any of the words”. As our alternative statement
collection method aims to discover possible truthful
alternative units from the SRRs returned by the search engine
used, it is important to choose the best query specification
method to maximize the chance of retrieving better alternative
statements. We use the 50 statements in our dataset to find out
which specification method would return more SRRs
containing the truthful alternative units. Our measure is like
this, for every query specification method, we compute the
average number of SRRs that contain truthful alternative units
among the top k SRRs for all 50 sample statements. In our
experiment, we test the cases for k = 10, 50 and 100. The
experimental results are shown as Table III.

TABLE III: COMPARISON ON QUERY SPECIFICATION METHODS
Different Query specification methods

 All of the
words

Exact phrase Any of the
words

Top 10 SRRs 2.8 2.32 0.34
Top 50 SRRs 13.2 10.52 0.98
Top 100 SRRs 24.14 17.76 1.78

Based on our experiment, it shows that queries in “all of the
words” format achieved the best performance. “Exact phrase”
is not as good as “all of the words”. The “any of the word”
method performs much worse than the other two. For the rest
of our experiments, we use “all of the words” method to
submit queries to Yahoo! Search.

2) Alternative statement collection experiment
In section II, we introduced six features as well as a data

type filter for alternative statement collection. We train the
weights for different features based on the training set using a
genetic algorithm (see section III). Then we use the optimal
weights to do experiments on the testing set. Among the 50
statements, we randomly select 25 of them as training set and
the rest as testing set. The collection is performed on the top

200 SRRs for each statement. The results are shown in Table
IV. On the training set, in 17 out of 25 cases, the truthful
alternative unit is collected and ranked as the top candidate.
Among the other 8 cases, the truthful alternative unit is ranked
at the second in 7 cases and the fourth for one case. On the
testing set, the result is also promising, in 14 of 25 cases, the
truthful alternative statement is ranked as top 1 and the rest
are ranked from the second to the fourth. The experimental
result shows that our algorithm can always rank all truthful
alternative statements among the top 4 candidates for our
dataset. To further reduce the chance of missing out on the
truthful alternative statement for each query, we will consider
the top 5 results for each query.

TABLE IV: ALTERNATIVE STATEMENT COLLECTION PERFORMANCE
Training data set Testing data set
Total cases 25 Total cases 25
Truthful one as top 1st 17 Truthful one as top 1st 14
Truthful one as 2nd 7 Truthful one as 2nd 9
Truthful one as 3rd 0 Truthful one as 3rd 1
Truthful one as 4th 1 Truthful one as 4th 1
Truthful one as 5th 0 Truthful one as 5th 0
We also divided our dataset into 10 subsets to do 10-fold

cross-validation. Each subset contains 5 doubtful statements
and 200 SRRs for each doubtful statement. In each round of
validation, we use 45 statements as training set and 5
statements for testing. The precision of each round is
determined as the number of cases in the testing set which
rank the truthful alternative unit at the k-th position. Finally,
we compute the average precision of all 10 rounds. We run the
10-fold cross validation for 30 times with different ways to
divide the dataset into 10 subsets to get the average precision.
The experiment results are shown in Table V. Again all the
truthful alternative units are ranked among the top 5 results.

TABLE V: CROSS-VALIDATION ON ALTERNATIVE UNIT COLLECTION
10-fold cross-validation

Truthful one as top 1 0.614
Truthful one as top 2 0.912
Truthful one as top 3 0.944
Truthful one as top 4 0.988
Truthful one as top 5 1.0

Alternative statements are extracted from the top N SRRs.
For efficiency consideration, it is better to use a smaller N as
it would save the SRR downloading and processing time.
However, if N is too small, the truthful alternative unit may
not be contained in the top N SRRs and would cause problem
in determining the truthfulness of the doubtful statement or
finding a truthful alternative statement. Therefore, the value of
N is a trade-off parameter that should be considered. We
perform experiments with statements in the training set to test
what value of N is small enough but can ensure that the
truthful alternative unit appears in the top 5 extracted terms
using our method. We compare the cases with N selected from
{10, 50, 100, 150, 200} and show the result in Table VI. We
use the AUSV with the best fitness in our training.

According to our experimental results, in 5 out of 50 cases
truthful alternative units are not included in the top 5
alternative units if we only consider the top 100 SRRs. When

the number of SRRs increases to 150, the truthful alternative
units are extracted and ranked among the top 5 for all the 50
cases. Moreover, they are ranked among the top 4 with 200
SRRs. Based on our experimental results, 150 is an
appropriate number of SRRs to be used for the purpose of
ensuring that all truthful alternative units be extracted and
ranked among the top 5 results. We set N = 200 in our
experiments as it produces a better result than when N = 150
as can be seen from Table VI.

TABLE VI: IMPACT OF USING DIFFERENT NUMBERS (N) OF TOP SRRS

 Top
10

Top
50

Top
100

Top
150

Top
200

Ranked as 1st 12 21 29 31 31
Ranked as 2nd 6 12 10 12 16
Ranked as 3rd 5 3 3 3 1
Ranked as 4th 3 1 2 2 2
Ranked as 5th 2 0 1 1 0
Not Among top 5 22 13 5 0 0

B. Statement Verification Experiments
Based on our experiment on alternative unit collection

shown in last subsection, we only need to compare five
alternative statements with the user-entered doubtful statement
to determine which one is most likely to be truthful and
consequently decide whether the doubtful one is truthful. For
the purpose of verification, we developed seven basic rankers
as mentioned in section IV: Alternative Unit Ranker (AUR),
Hits Ranker, (HR), four Text Feature Rankers (TFR)
including Result Coverage (RC), Result Query Relevance
(RQR), Result ranking (Rrank), Term Distance (TD), and
Domain Authority Ranker (DAR). First, we use all the 50
sample statements to test the precision of each basic ranker. In
other words, use each of the basic rankers to rank the doubtful
statement as well as its corresponding alternative ones and
check whether it ranks the truthful one as the top result.

TABLE VII: PRECISION OF BASIC RANKERS

In Table VII, we show the precision of each basic ranker.
Overall, the precision achieved by each basic ranker is not
very good. Result Coverage performs better than others. The
domain authority result ranker results in the lowest precision
because most retrieved SRRs are from domain “.com”.
Therefore, using the website domains of the SRRs cannot
effectively distinguish truthful statements from untruthful
ones. Individual basic rankers do not achieve good
performance because each one of them evaluates statements
based on only one feature. A better way is to combine them
together to make a comprehensive evaluation.

Combining ranks from basic rankers would generate an
overall rank based on which the system decides the top ranked
statement, either an alternative one or the user given one, as
truthful. The precision of the verification module is computed

as the percentage of test cases which successfully rank the
truthful statement as the top result.

In section IV, we introduced three types of rank merging
algorithms, Borda-based, Condorcet-based and ProbComb.
BaseBorda and BaseCond are two baseline algorithms used to
merge the basic rank list. They do not require training. We
directly apply the algorithms to all of the 50 statements.
PosBorda adopts the idea of position probability. WBorda and
WCond assign weights to different basic rankers. WPosBorda
combines both the position probability as well as the rankers’
weights. ProbComb combines the success rates of different
basic rankers. These five algorithms require training for either
the position probability or the rankers’ weights/success rates.
So we use 10-fold cross validation to evaluate the algorithms’
performance. Overall, we run cross validation for 30 times
and use the average precision as the final result.

Fig. 5: Precisions of Rank Merging Algorithms

The precisions of all of the seven algorithms are shown in
Fig.5. According to the results, the BaseCond gets the worst
precision at 0.68 and BaseBorda only achieves 0.7. By
incorporating position probability, the ProbComb method gets
0.76 and PosBorda increases this to 0.81. Assigning fine-
tuned weights to the basic rankers also improves the precision.
The WBorda gets 0.826 and WCond gets 0.82. WPosBorda,
which combines both position probability and rankers’
weights, achieves the highest average precision at 0.904.

TABLE VIII: LIST OF ERRONEOUS CASES

 Untruthful statements verified as truthful Truthful
1 Tom Hanks was lead actress in the

movie 'Sleepless in Seattle'.
Meg Ryan

2 Apollo is the first spacecraft on the moon. Luna2
3 Sullivan is the fastest swimmer in the world. Michael Phelps
4 Les Paul invented the electric guitar. Rickenbacker
5 English is the primary language of the

Philippines
Filipino

We also evaluated the precision of the ID3 decision tree
method [24] for truthfulness verification. For the 10-fold
cross-validation, the average precision of ID3 is 0.66, which is
much lower than all of our rank merging algorithms.

In Table VIII, we show the 5 cases WPosBorda made
incorrect verification. In Case 1, our verification algorithm
failed to recognize that “Tom Hanks” is a man which
mismatches with “lead actress”. In Case 2, Apollo is the first
“manned” spacecraft on the moon while Luna2 is the first
spacecraft on the moon. “Tom Hanks” and “Apollo” appear
much more frequently than “Meg Ryan” and “Luna2” on the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

BaseBorda BaseCond ProbComb PosBorda WBorda WCond WPosBorda

Ranker AUR TFR(TD) TFR(RC) TFR(RQR)
Precision 0.62 0.32 0.66 0.6
Ranker HR DAR TFR(Rrank)
Precision 0.20 0.20 0.62

Web, respectively. In Case 3, we expected “Michael Phelps”
to be the truthful alternative unit. But our system selects
“Sullivan” as truthful because he broke the 50-meter freestyle
world record in 2008 and was called the “fastest swimmer in
the world” in many news reports. Though Michael Phelps is
widely considered as the fastest swimmer today, not many
web pages use the phrase “fastest swimmer” to describe him.
Note that when TREC-9 was held in 2000, “Sandy Neilson”
was given as the correct answer for Case 2, which is way out
of date now. The answer for the statement in Case 4 is
controversial. TREC gave “Rickenbacker” as the correct
answer. However, “Les Paul” is the inventor of the first solid-
body electric guitar, while “Rickenbacker” invented semi
hollow body electric guitar. So it is difficult to say who the
inventor of electric guitar is. Case 5 fails because according to
most web pages, both English and Filipino are the official
language of the Philippines though TREC 9 gives only
“Filipino” as the correct answer. So it could be argued that for
Cases 4 and 5, the correct answers are not unique and our
system did not actually fail. In the future, we will investigate a
systematic solution to deal with the situation where a doubtful
statement may have multiple truthful alternative units.

All of the above experiments were based on combining all
the basic rankers. Because the precision of each individual
ranker differs from one another and we have obtained the
precision of each basic ranker, we experimented with merging
only the k most accurate rankers (k = 2, 3, …,7) to observe the
impact on the overall precision. We use only the WPosBorda
merging algorithm in this experiment as it has the best
performance among all merging algorithms we tested. The
experimental results are shown in Fig.6. According to our
experiment, merging the top 5 basic rankers (AUR, TFR(RC),
TFR(RQR), TFR(Rrank), TFR(TD)) can achieve 0.9 precision,
same as using all seven basic rankers. The fact that adding HR
and DAR does not gain any benefits suggests that these two
rankers are not effective in differentiating truthful and
untruthful statements.

Fig. 6: Precision of partially merging basic rankers

VI. RELATED WORK
The quality of web page content has become a known concern
in recent years. Untruthful information on the web often
misleads common users and is especially harmful when it
spreads misconceptions to the young generation. The web
information trust issue could be addressed at three levels:
statement level, web page level and website level.

• Some researchers have started discussing the truthfulness
of individual statements in recent years. The “Honto”
system [16, 17] has a similar objective as ours. We will
compare their work with ours in detail in the next
paragraph.

• At the page level, current works mainly focus on detecting
spam pages based on link analysis and content features for
the purpose of filtering out low quality web pages [5, 12].
However, spam and “untruthful” are two relevant but
different concepts. Untruthful pages are not necessarily
spams. There are many non-spam pages presenting
incorrect facts which cause users’ confusion. In order to
identify untruthful statements, we need pay more effort on
analysing the statements in pages.

• To our best knowledge, there is not any published paper
discussing the website trust issue except considering the
domain of a website.

Recently, researchers from Kyoto University proposed their
system “Honto?Search” for the purpose of verifying the
truthfulness of facts [16, 17]. The basic idea is the same as
ours, which looks for alternative statements via a search
engine and finds most likely truthful one from them. Their
method is based on hits numbers, temporal information (i.e.,
when a page is published) [16] and sentimental factors [17].
However, several important issues are not addressed in their
work. First, the authors do not provide the actual techniques
used for alternative statement collection although they
mention that the collection is based on the search results of the
doubtful statement. Alternative statement collection is an
important step in a complete solution to determine the
truthfulness of the doubtful statement and to identify the
truthful statement. Second, they do not utilize several piece of
relevant information which is essential for truthfulness
verification. Specifically, text similarity between the query
statement and SRRs, ranking positions of SRRs, semantic
closeness and correlation between the doubt unit and each
alternative unit are not considered in their solution. They also
do not give a systematic algorithm to combine the factors.
Lastly, in their experiment, they only performed experiments
on statements with temporal doubt unit (e.g. which year event
A happens) and the precision of their method is only 62%,
which is much lower than the precision of our methods.

Answer verification in question answering is relevant to
the statement truthfulness verification problem. [9, 10]
proposed a method for the answer verification problem. This
method extracts keywords from the question (Qsp) as well as
each candidate answer (Asp), computes the co-occurrence of
Qsp and Asp on web pages based on the hits numbers from
querying Qsp and Asp together and separately. The more
often a candidate answer co-occurs with question keywords,
the more likely it is the right answer. In our method, we also
utilize the co-occurrence information to find alternative units.
But it is only one of seven features we use in our alternative
statement collection algorithm. Moreover, after obtaining
alternative units, we use a verification algorithm to determine
the truthfulness of each of them.

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7

To the best of our knowledge, very few papers address the
answer verification problem directly, although many systems
incorporate answer verification into their candidate answer
ranking component. The ranking component scores candidate
answers based on certain features (e.g., document frequency),
and considers the answer with the highest score as the most
likely correct one [7]. We summarize these features as follows.
(a) The entity type associated with a candidate answer should
match the question type. (b) The number of occurrences of a
candidate answer in retrieved relevant document set has an
impact on its score as stated in [13]. (c) The rank of retrieved
documents. In AnswerBus [19], documents that are ranked
higher in the return list are assigned higher scores. (d)
Distance between candidate answers and question keywords.
In [17], the FDUQA system defines the distance as the
distance between answer and question keywords in the
grammar parsing tree. [19] assigns a weight to each keyword
and scores a candidate answer by its word distance from the
keywords multiplied by the corresponding weight of each
keyword.

Naturally, our method also uses some of the features used
in previous solutions. But our method is significantly different
from the existing solutions as summarized below. (1) Our
method consists of two carefully designed phases (i.e.,
alternative statement collection and statement truthfulness
verification) which explore different sets of features, including
new features not used before such as the semantic closeness
between the doubt unit and each alternative unit. None of the
existing solutions used all of these features in a single solution
and used them like our method. None of them has studied both
phases as comprehensively as our work. In fact, most of them
studied only one of these phases. (2) Our alternative statement
collection algorithm has achieved always including the
truthful alternative unit among the top 5 results in our
experiment. To the best of our knowledge, similar results have
not been reported before. (3) Based on seven basic rankers, we
have evaluated and compared a large number of ranking
merging algorithms for statement truthfulness verification.
Similar studies have not been reported before in related
applications. The best merging algorithm (WPosBorda), that
we proposed in this paper, achieved a precision of about 90%.
And if we counted Cases 4&5 in Table VIII as correct, the
precision of WPosBorda would reach 94%.

VII. CONCLUSION
In this paper, we studied the statement level trust problem and
proposed a two-step (alternative statement collection and
statement truthfulness verification) approach to automatically
determine the truthfulness of statements given by users. Both
of these two steps exploit a number of features relevant to
truthfulness, and our experimental results showed that these
features as well as our combining methods are capable of
handling most truthfulness identification cases. Besides
textual features, we illustrated the effectiveness of utilizing
semantic information of the doubt unit and the correlation
between the doubt unit and each alternative unit for alternative
unit selection. In addition, we proposed a new rank merging

algorithm (WPosBorda), evaluated and compared the
performance of a large number of merging algorithms for
statement truthfulness verification including several Borda-
based and Condorcet-based algorithms as well as a
probabilistic method. There is still room for improvement,
such as negation analysis on statements in SRRs and coping
with multiple doubt units in a doubtful statement.

ACKNOWLEDGEMENTS
This work is supported in part by the following
NSF grants: IIS-0842608, IIS-0842546 and CNS-0958501.
We would like to thank Yadnesh Baviskar for providing the
code for comparing different query specification methods.

REFERENCES
[1] J. A. Aslam, M. H. Montague: Models for Metasearch. SIGIR 2001:
275-284.
[2] J. C. de Borda. M´emoire sur les ´elections au scrutin. In Histoire de
l’Academie Royale des Sciences. Paris, 1781.
[3] M. de Condorcet. Essai sur l’application de l’analyse `a la probabilit´e
des decisions rendues `a la pluralit´e des voix, 1785.
[4] D. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley, 1989.
[5] Z. Gyöngyi, H. Garcia-Molina, J. Pedersen: Combating Web Spam
with TrustRank. VLDB 2004:576-587.
[6] M. R. Henzinger, R. Motwani, C. Silverstein: Challenges in Web
Search Engines. IJCAI 2003: 1573-1579.
[7] C. T. Kwok, O. Etzioni, D. S. Weld: Scaling question answering to
the web. ACM Trans. Inf. Syst. 19(3): 242-262 (2001).
[8] S. Liu, F. Liu, C. Yu, W. Meng: An effective approach to document
retrieval via utilizing WordNet and recognizing phrases. SIGIR 2004:
266-272.
[9] B. Magnini, M. Negri, R. Prevete, H. Tanev: Is It the Right Answer?
Exploiting Web Redundancy for Answer Validation. ACL 2002: 425-432.
[10] B. Magnini, M. Negri, R. Prevete, H. Tanev: Mining Knowledge
from Repeated Co-Occurrences: DIOGENE at TREC 2002. TREC 2002.
[11] M. H. Montague, J. A. Aslam: Condorcet fusion for improved
retrieval. CIKM 2002: 538-548.
[12] A. Ntoulas, M. Najork, M. Manasse, D. Fetterly: Detecting spam
web pages through content analysis. WWW 2006: 83-92.
[13] X. Qiu, B. Li, C. Shen, L. Wu, X. Huang, Y. Zhou: FDUQA on
TREC2007 QA Track. Sixteenth Text REtrieval Conference (TREC),
2007.
[14] C. Silverstein, M. R. Henzinger, H. Marais, M. Moricz: Analysis of
a Very Large Web Search Engine Query Log. SIGIR Forum 33(1): 6-12
(1999).
[15] Z. Wu and M. Palmer. “Verb semantics and lexical selection”. 32nd
Annual Meeting of the Associations for Computational Linguistics, pp
133-138. 1994.
[16] Y. Yamamoto, T. O. Tezuka, A. Jatowt, K. Tanaka: Honto? Search:
Estimating Trustworthiness of Web Information by Search Results
Aggregation and Temporal Analysis. APWeb/WAIM 2007: 253-264.
[17] Y. Yamamoto, T. Tezuka, A. Jatowt, K. Tanaka: Supporting
Judgment of Fact Trustworthiness Considering Temporal and
Sentimental Aspects. In WISE 2008: 206-220.
[18] X. Zhang, B. Han, and W. Liang: Automatic seed set expansion for
trust propagation based anti-spamming algorithms. WIDM 2009: 31-38.
[19] Z. Zheng: AnswerBus Question Answering System. In HLT 2002:
399-404.
[20] http://trec.nist.gov/data/qamain.html
[21] NLTK: http://www.nltk.org
[22] WordNet: http://wordnet.princeton.edu/
[23] www.cs.binghamton.edu/~xianli/doubtful_statement.html.
[24] www.cs.waikato.ac.nz/ml/weka/

