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Abstract— The Web has become the most popular place for 
people to acquire information. Unfortunately, it is widely 
recognized that the Web contains a significant amount of 
untruthful information. As a result, good tools are needed to help 
Web users determine the truthfulness of certain information. In 
this paper, we propose a two-step method that aims to determine 
whether a given statement is truthful, and if it is not, find out the 
truthful statement most related to the given statement. In the 
first step, we try to find a small number of alternative statements 
of the same topic as the given statement and make sure that one 
of these statements is truthful. In the second step, we identify the 
truthful statement from the given statement and the alternative 
statements. Both steps heavily rely on analyzing various features 
extracted from the search results returned by a popular search 
engine for appropriate queries. Our experimental results show 
the best variation of the proposed method can achieve a precision 
of about 90%. 

I. INTRODUCTION 
More and more Web users depend on the Web to acquire 
information. Unfortunately, not all information on the Web is 
truthful. Concerns about the quality of Web content have been 
raised for quite some time [6]. Reasons for having untruthful 
information include unintended mistakes (e.g., typos) and 
intentionally-spread rumors. The first search result in Fig.1 is 
an example of a rumor-spreading article that attempts to 
portrait Barack Obama as a Muslim even though he has been a 
Christian for a long time. The fact that the Web is an open 
forum where everyone can publish without prior review 
makes it easier for untruthful information to enter the Web. 
Methods are needed to distinguish truthful information from 
untruthful ones on the Web. 

  

Fig. 1: Results of "Barack Obama is Muslim" (Yahoo.com on 12/20/2009) 

Many web pages contain sentences that state a “fact” and 
these statements will be called fact statements. If a fact 
statement states a true fact, it is called a truthful statement; 
otherwise, it is an untruthful statement. In this paper, we are 
interested in only fact statements rather than opinionative 
statements, which express opinions. More specifically, for a 

fact statement, we are interested in determining whether or not 
the statement is truthful, and if it is not, finding out the 
truthful statement most related to the given statement. The T-
verifier system solves this problem based on information 
collected from the Web. When using the T-verifier system, a 
user submits a fact statement whose truthfulness is uncertain 
to the user. Such type of statements will be called doubtful 
statements. In addition, the user also specifies which part(s) of 
the statement he/she is not sure about; the specified part(s) 
will be called doubt unit(s). A doubt unit can be a term or a 
phrase. All the other non-stop terms in the doubtful statement 
are called topic unit(s). As an example, a user may submit 
“Barack Obama is a Muslim” as a doubtful statement and 
specify “Muslim” as a doubt unit. In general, a user may 
specify multiple doubt units in a doubtful statement. In this 
paper, we consider the case when only one doubt unit is 
specified in each doubtful statement and leave the case 
involving multiple doubt units as future work. 

A special case of the problem is that a user has a doubtful 
statement whose doubt unit has several values and the user 
knows one of these values is truthful but is not sure which one 
is. For the above example about Barack Obama, a user may 
know that either Muslim or Christian is truthful but not sure 
which one is truthful. In this case, a simple method to 
determine the truthfulness of a fact statement is as follows. 
First, by replacing the doubt unit with each of the possible 
values in the doubtful statement, we can generate multiple 
statements. Second, we submit each statement to a popular 
search engine and obtain the corresponding number of hits. 
Finally, select the statement that has the largest number of hits 
as the truthful statement. Intuitively, this method is appealing 
and makes some sense because it is a simple way to leverage 
the huge amount of data on the Web and there is likely more 
truthful information than untruthful information on the Web.  

TABLE I: NUMBER OF HITS COMPARISON (YAHOO.COM ON 12/20/2009) 
Statements Truthfulness Number of Hits 

Hillary Clinton is the 
President of United States 

Untruthful 30,100,000 

Hillary Clinton is the 
Secretary of State 

Truthful 23,600,000 

Unfortunately, the above simple method is not sufficiently 
reliable as frequently untruthful statements may get more hits 
than truthful ones. As an example, in Table 1, the untruthful 
statement “Hillary Clinton is the President of United States” 



got more hits than the truthful “Hillary Clinton is the 
Secretary of State”. In general, our experiment shows that the 
above simple method has only a 20% precision (see section V 
for details). Therefore, more advanced methods are needed to 
determine the truthfulness of fact statements. 

Additional challenges that make determining the 
truthfulness of fact statement difficult include: (1) Conflicting 
statements about the same fact may appear on the Web. For 
example, in the two articles corresponding to the results in 
Fig.1, one asserts that Barack Obama is a Muslim while the 
other tries to dispute the assertion. (2) Current search engines 
rank search results based on their estimated relevance to the 
user query but they do not take the truthfulness of the results 
into consideration. As a result, it is unrealistic for ordinary 
users to utilize an existing search engine directly to reliably 
determine the truthfulness of their doubtful statements. We 
need a systematic way to help users verify doubtful statements. 

Though untruthful information is very common on the Web, 
we believe that on the web (1) there must be someone telling 
the truth of a fact; and (2) truth of a fact is usually more 
widespread than untruth. Our solution of identifying statement 
truthfulness consists of two steps: alternative statement 
collection and statement truthfulness verification. In the first 
step, we try to find other statements of the same topic as the 
doubtful statement but are different on the doubt unit. We call 
such kind of statements alternative statements. In the second 
step, we will rank all the alternative statements as well as the 
doubtful statement based on a set of measures related to 
truthfulness determination and select the one which is most 
likely to be truthful. For simplicity, in the statement 
truthfulness verification step, we will consider the user given 
doubtful statement as one of the alternative statements. 

This paper has the following contributions:   
(1) We propose a two-step (alternative statement collection 

and statement truthfulness verification) method to tackle 
the problem of determining the truthfulness of a fact 
statement. And it has the capability to find out the 
intended truthful statement if the given doubtful statement 
is not true.  

(2) Instead of simple string pattern matching techniques as 
used in [16, 17], we use a feature based method to collect 
alternative statements from the Web. Besides text features, 
we perform semantic and correlation analysis on the 
alternative statements and the doubt unit to filter out 
unlikely statements and rank the promising statements.  

(3) We employ a set of basic rankers to rank all the 
alternative statements (including the doubtful statement 
as stated earlier), evaluate and compare different rank 
merging algorithms (including a new merging algorithm 
we propose) for selecting the truthful statement – the one 
with the highest combined ranking score. Based on our 
experiment, our method can find the truthful statement in 
90% of the cases.  

For the rest of the paper, we first give an overview of our 
approach in section II. After that, we discuss our solution on 
alternative statement collection and statement truthfulness 
verification in sections III and IV, respectively. The precision 

of our solution is evaluated based on real data and our 
experimental results are shown in section V. We compare our 
work with other published papers on related issues in section 
VI. We conclude the paper in section VII.  

II. OVERVIEW OF APPROACH 
In this paper, we introduce our T-verifier system which 
addresses the truthfulness problem on statement level. A 
system overview is shown in Fig.2. The system allows a user 
to submit a doubtful statement DS together with a doubt unit 
DU as input. The system will first generate a keyword query 
based on topic units in DS and submit it to a search engine. 
We try different query specification methods for the search 
engine and use the best in our system implementation. From 
the retrieved web pages we generate the alternative statements 
by exploring a set of features. We then submit each of the 
alternative statements (including the original doubtful 
statement) as a query to the search engine, rank them by 
comparing returned page sets on different measures, and show 
the user the top-ranked statement as the truthful statement 
found. 

 
Fig. 2: T-verifier system overview 

The purpose of alternative statement collection is to find a 
list of those possibly truthful statements with respect to the 
fact. The first challenge comes from the variations of language 
usage. People may use different ways to state the same fact. 
Therefore, collecting alternative statements may need natural 
language understanding techniques. Second, some statements 
with the same structure as the doubtful one may not be 
relevant. Still taking the “Barack Obama is Muslim” as an 
example, a possible alternative statement is “Barack Obama is 
President”, which is truthful but not relevant to the religious 
topic of the given doubtful statement.  

The statement truthfulness verification module is designed 
to select the most likely truthful statement by ranking all the 
alternative statements. The ranking is based on the search 
result records retrieved using each of these statements. There 
are two issues here. First, what kind of features should we use 
to perform the ranking and how to combine the ranks 
produced by individual rankers using different features? These 
features, derived from the collection of search result records, 
should be able to distinguish the truthful statement from 
others. Second, though using a larger number of alternative 
statements can increase the chance that one of them is the 
truthful statement, it also increases the effort needed to 



perform statement truthfulness verification. Note that for 
every alternative statement considered, we have to perform a 
search, collect certain number of search results and analyse 
them. A good approach should try to minimize the number of 
alternative statements for the verification step without 
increasing the chance of missing the truthful statement. 

III. ALTERNATIVE STATEMENT COLLECTION 
Given a doubtful statement DS, we let the user specify the 
doubt unit DU. A doubt unit can be a single word, a phrase, a 
name entity, a number or a date, etc.  

Alternative statements to DS are very important to the 
truthfulness judgment, because they provide the users with 
different versions of the fact. Especially when DS is not 
truthful, the truthful one is quite probably one of the 
alternative statements. Based on our observation, alternative 
statements should have the following three properties: 

• Same Topic. An alternative statement should cover the same 
topic as the doubtful statement. Otherwise, it does not satisfy 
the user’s expectation even when the alternative statement is 
truthful.  

• Different Values. An alternative statement should be different 
from the doubtful statement on the doubt unit. We call the 
term(s) in place of the doubt unit alternative unit. For example, 
the alternative statement “Barack Obama is a Christian” 
contains an alternative unit “Christian” which is in place of 
“Muslim” in the doubtful statement. 

• Term sense/type closeness. An alternative unit should be a 
replacement of the doubt unit. Therefore, the alternative unit 
and doubt unit should have close word sense to each other, in 
both data type and semantic meaning. For example, “Christian” 
is closer to “Muslim” than to “President”, because both 
“Christian” and Muslim” are religious people. 

The alternative statements may be presented in various 
ways, while the essential difference between alternative 
statements and the doubtful one is the alternative units. In 
order to avoid getting involved in complex natural language 
processing issues, we turn the problem of collecting 
alternative statements into the problem of looking for 
alternative units and use them to generate alternative 
statements. Hence the key to find relevant alternative 
statements is to find relevant alternative units from web pages 
relevant to the same topic.  

We partition a doubtful statement into two parts: doubt unit 
and topic units. For the doubtful statement “Barack Obama is 
Muslim”, the doubt unit is “Muslim” and topic units are 
“Barack” and “Obama”. Web pages used for collecting 
alternative units are retrieved by submitting only the topic 
units as a query to a search engine (we currently use Yahoo! 
in T-verifier). Note that if the doubt unit was included in the 
query, the search results would be biased in favour of the 
doubtful statement. We collect search result records (each 
consisting of a title and a snippet), SRRs for short, from the 
search engine result pages. Let D = {r1, r2 …, rN} be the set of 
all SRRs collected, where N is the cardinality of D. We utilize 
seven different features to rank the terms in the set of SRRs 
and to find the alternative units from the top ranked terms. 

A. Features of alternative units 
Initially, all the terms/phrases appearing in the SRR set D 

are considered as candidates for alternative units. In order to 
reduce the number of candidates, we could resort to linguistic 
analysis or some heuristic rules. However, it is not easy to 
produce a set of widely usable rules and it is time-consuming 
to do linguistic analysis. In this paper, we pursue a different 
approach to identify potentially good alternative units. Our 
observation shows that there are two types of co-occurrence 
information with alternative units that can be used. First, 
relevant alternative units frequently co-occur with the topic 
units. This is because these topic units provide a good context 
to the alternative units. Second, relevant alternative units often 
co-occur with the doubt unit. This is because (1) when people 
have doubt about a fact, they often mention other possible 
answers to the fact; and (2) when people dispute a 
controversial point or a common misconception, they often 
mention their own points or the truthful fact. For example in 
Fig.3, it shows the top result of “Obama is a Muslim” from the 
Yahoo search engine, where we can find both “Muslim” and 
“Christian” being mentioned in the same record. In order to 
utilize these two co-occurrences in collecting alternative units, 
we develop the following features to estimate the possibility 
of a candidate term T (T can be single term or a phrase) as an 
alternative unit. 

 
Fig. 3: Sample result of “Barack Obama is Muslim” (Yahoo.com on 

12/20/2009) 

The first four features, including “result coverage”, “result 
query relevance”, “SRR ranking”, and “term-keyword 
distance”, are introduced to represent the co-occurrence 
relationship between topic units in query Q (which is the 
doubtful statement minus the doubt unit) and a candidate term 
T (i.e., a candidate alternative unit). We use function Cont(r, T) 
to check whether an SRR r in D contains the term T; Cont(r, T) 
returns 1 if r contains T and 0 if r does not. 
• Result coverage (RC): It is the percentage of SRRs in D 

that contain T. We assume that all records in D are relevant 
to the fact. RC shows how frequently T co-occurs with the 
topic units. The record coverage of T is computed by: 

𝑅𝐶(𝑇) =  
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇)𝑁
𝑖=1

𝑁
 

• Result Query Relevance (RQR): It measures what 
portions of the topic units are covered in SRRs. In the 
above result coverage computation, all SRRs are 
considered equally relevant to query Q. In reality, the 
degree of relevance is different among the SRRs. One way 
to estimate the relevance of an SRR is to check how many 
topic units are contained in the SRR, and an SRR that 
contains more topic units can be considered to have a 
higher degree of relevance. Intuitively, if more SRRs 
containing term T have higher degree of relevance, T is 
more likely to be a relevant alternative unit. We measure 
RQR by: 



𝑅𝑄𝑅(𝑄,𝑇) =  
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇)𝑁
𝑖=1 ∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟𝑖,𝑄)/𝑙𝑒𝑛(𝑄)

∑ 𝐶𝑜𝑛𝑡(𝑟𝑖,𝑇)𝑁
𝑖=1

 

where intersect(ri, Q)  is the number of topic units in Q 
appearing in ri and len(Q) is the length of Q.  

• SRR ranking (Rrank): Another way to estimate the 
relevance of an SRR is to see where it is ranked by the 
search engine used. Generally, search engine ranks SRRs 
based on their likelihood of being relevant to the query. 
Therefore, we aggregate the ranks of the SRRs that contain 
term T as the record ranking of T. The Rrank is computed 
as follows: 

𝑅𝑟𝑎𝑛𝑘(𝑇) =  
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇) ∗ (1 − 𝑝𝑜𝑠(𝑟𝑖)/𝑁)𝑁
𝑖=1

∑ (1− 𝑝𝑜𝑠(𝑟𝑖)/𝑁)𝑁
𝑖=1

 

where pos(r) is the position of r in the search engine’s 
ranking list and N is the cardinality of D.  

• Term distance (TD): Intuitively, terms that appear far 
away from the topic units are less likely to be related to the 
topic units compared to those that appear closer. To capture 
the proximity information between terms, we consider the 
size of the smallest window of consecutive words in each 
SRR (title or snippet) that covers all the topic units 
contained in the SRR as well as the term T. We use the 
following formula to compute TD in the snippet of the SRR 
for term T: 

𝑇𝐷𝑠𝑛𝑖𝑝𝑝𝑒𝑡(𝑇) =  
∑ 𝐶𝑜𝑛𝑡(𝑟𝑖𝑠𝑛𝑖𝑝𝑝𝑒𝑡,𝑇) ∗ (𝑆𝑛𝑖𝑝𝑝𝑒𝑡_𝑙𝑒𝑛 − 𝑚𝑖𝑛_𝑤𝑖𝑛𝑠𝑖𝑧𝑒)𝑁
𝑖=1

𝑁
∗  𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟𝑖𝑠𝑛𝑖𝑝𝑝𝑒𝑡,𝑄)/𝑙𝑒𝑛(𝑄) 

Our TD formula considers the length of the minimum 
window as well as the number of topic units covered in this 
window. For the TD measure, while an SRR containing 
fewer topic units would benefit from possibly smaller 
window size, it is also penalized for including fewer topic 
units. Similarly we also compute 𝑇𝐷𝑡𝑖𝑡𝑙𝑒(𝑇) and add these 
two parts together as the overall TD value. As a special 
case, when none of the topic units appears in the same 
sentence with T, we consider its TD for this record to be 0.  
Another set of features capture the relevance between a 

candidate term T and the given doubt unit DU. 
• Data type matching (DM): The alternative units should be 

of the same data type as the doubt unit because it is 
reasonable to assume that the user is look for something of 
the same type. Since the doubt unit provides us an instance 
of the data type the user is looking for, candidate terms of 
different data types are less likely to be relevant alternative 
units. We identify several data types either by their special 
format or by a dictionary, including date, time, telephone 
number, email address, person name, place name (e.g. 
name of state, city and attractions), and number. All the 
others are considered as common string. In this way, we 
can filter out those candidates that have a data type 
different from that of the doubt unit. 

• Sense closeness (SC): Data type matching can filter out a 
great number of candidates, especially when the doubt unit 
is of a special type, like number, dates or names etc. 
However, in many cases the doubt unit is a common string. 
In these cases, filtering by data type does not work 

effectively. According to our observation, many terms 
extracted from SRRs are irrelevant with the doubt unit even 
when they have the same data type, especially when the 
data type is common string. For example, a user has doubts 
about the religion of Barack Obama and inputs “Barack 
Obama is Muslim”. When query “Barack Obama is” is 
submitted to Yahoo, the most frequent term extracted from 
the returned SRRs that has the same data type is 
“president”. However, “president” is a term irrelevant to 
religion. Instead, a less frequent term “Christian” is more 
likely to be a good alternative unit because, similar to 
“Muslim”, it is also about religion. This example shows 
that terms that have a closely related meaning as the doubt 
unit are good candidates for alternative units. 
In this paper, we utilize WordNet [22] to capture the sense 
closeness between two different terms. In general, we take 
special care of the following three relations: direct 
hypernym/hyponym, instance hyponym, and sibling. 
Instance hyponym means one term is an instance of the 
other, like “Europe” is an instance hyponym of “continent”. 
Sibling means two terms share the same direct hypernym or 
instance hypernym. Except for these three cases, the sense 
closeness is defined as the Wu-Palmer similarity 
(wup_similarity) provided by the NLTK [15, 21], which 
returns a score denoting how similar two word senses are, 
based on the depths of the two senses in the taxonomy and 
that of their Least Common Subsumer (most specific 
ancestor node). For the hypernym and sibling cases, we do 
not use wup_similarity value because hypernym and sibling 
terms are often the best choices for alternative unit. 
Therefore we want to specially differentiate these cases. To 
summarise, we use the following formula to compute sense 
closeness between term T and doubt unit DU: 

𝑆𝐶(𝑇,𝐷𝑈)

= �
𝛼, 𝑖𝑓 ℎ𝑦𝑝𝑒𝑟(𝑇,𝐷𝑈) = 𝑡𝑟𝑢𝑒 𝑜𝑟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐_ℎ𝑦𝑝𝑒𝑟(𝑇,𝐷𝑈)
𝛽, 𝑖𝑓 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑇,𝐷𝑈) = 𝑡𝑟𝑢𝑒
𝛾, 𝛾 = 𝑤𝑢𝑝𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑇,𝐷𝑈), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

where α and β are parameters to be tuned empirically for 
best performance. 

• Term local correlation (TLC): It measures the correlation 
between candidate term T and doubt unit DU. Based on our 
second observation mentioned before, relevant alternative 
units are often mentioned together with the doubt unit for 
various reasons.  

Detecting the terms which are highly correlated with the 
doubt unit can be an effective way in finding likely relevant 
alternative units. In this paper, we use the correlation 
coefficient formula [14] to evaluate the correlation strength 
between candidate term T and doubtful unit DU: 

𝑇𝐿𝐶(𝑇,𝐷𝑈) =
∑ (𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝑇) − 𝑅𝐶(𝑇))(𝐶𝑜𝑛𝑡(𝑟𝑖 ,𝐷𝑈) − 𝑅𝐶(𝐷𝑈))𝑁
𝑖=1

�𝜎(𝑇)2𝜎(𝐷𝑈)2
 

Here, RC(T) is the result coverage of T, which we have 
mentioned before. σ(T) is computed by ∑ (Cont(ri, T) −N

i=1

RC(T))2 ∗ 1
N

. This formula basically uses the definition of 
correlation coefficient. 



If we consider X (Y) as a random variable which 
describes the appearance of T (DU) in each SRR, then E(X) 
is RC(T) and E(Y) is RC(DU). σ(T)  and σ(DU)  are the 
standard deviations of X and Y, respectively. According to 
the correlation coefficient definition, TLC of T and DU is 
measured by the above formula. 

B. Alternative unit selection algorithm 
In this paper, we select alternative units by combining the 

seven features described above in two steps. We first filter the 
candidate terms by data type matching (DM), i.e., only those 
terms that match the data type of the doubt unit will be 
considered further. In the second step, we rank each remaining 
candidate term based on the other six features. The ranking 
score of T is computed using the following formula: 

𝐴𝑙𝑡𝑒𝑟𝑟𝑎𝑛𝑘(𝑇) =  𝑤1 ∗ 𝑅𝐶 + 𝑤2 ∗ 𝑅𝑄𝑅 + 𝑤3 ∗ 𝑅𝑟𝑎𝑛𝑘 + 𝑤4 ∗ 𝑇𝐷
+ 𝑤5 ∗ 𝑆𝐶 + 𝑤6 ∗ 𝑇𝐿𝐶 

where wi, i=1,...,6, are the weights for the features. These 
weights form a vector called Alternative Unit Selection Vector 
AUSV = (w1, w2, w3, w4, w5, w6). We use training to find the 
best AUSV that yields the best performance. We evaluate the 
effectiveness of an AUSV by the position it assigns to the 
truthful alternative unit in its ranking list. Ideally, the truthful 
alternative unit should be ranked at the top of the list for each 
doubtful statement. Each time we go through the list of top 10 
candidate terms sorted by Alterrank in descending order. If the 
truthful alternative unit is ranked the i-th on the list, the fitness 
of this AUSV will be (1-0.1*i). 

A genetic algorithm [4] is used to obtain the best 
performance AUSV over a set of training statements. Initially, 
the algorithm randomly generates 30 different AUSVs, each 
of which contains 6 real numerical components, as the first 
generation. The evolution from one generation to the next 
includes three steps: parent selection, crossover and mutation. 
Every time we choose a pair of AUSVs in the current 
generation as parents for next generation based on the Wheel 
of Fortune principle. The probability for an AUSV to be 
selected is its fitness divided by the sum of the fitnesses of all 
AUSVs in the current generation. The AUSVs with larger 
fitnesses have a better chance to be selected as parents. The 
same AUSV is allowed to be selected more than once. For 
each pair of selected parents, the crossover is done with a 
probability of 0.75. When performing the crossover, we 
generate a random binary mask with the same number of 
components as AUSV, which is used to select the value of an 
AUSV component from either the first parent or the second 
parent, respectively. Mutation on the child AUSV is 
performed with probability of 0.1. If a component mutates, it 
increases or decreases by 0.1 with equal probability of 0.5. 
The AUSV with the best fitness in the current generation will 
be directly moved to the next generation. The genetic 
algorithm continues until the best fitness meets a predefined 
threshold 𝜏 . The fittest AUSV of the final generation is 
selected as the “optimal” AUSV. 

According to our experiment, the optimal AUSV found by 
the above procedure performs well on our test dataset. For 
each of the 50 sample statements tested, the algorithm always 

ranks the truthful alternative statement among the top five 
results. Furthermore, in 31 cases, the truthful statement is 
ranked at the top. As a result, we only need to consider the 
five statements with the highest Alterrank in the statement 
truthfulness verification step for each user statement. This not 
only reduces the effort but also provides a solid basic ranker 
for ranking the alternative statements for the next step.  

IV. STATEMENT TRUTHFULNESS VERIFICATION 
In the previous section, alternative statements are generated 
from the searching results of the query composed of the topic 
units. The Alternative Unit Selection algorithm aims to ensure 
that the truthful alternative unit is included among the top five 
ones on the final ranking list. However, the truthful statement 
is not always at the top. This means there is a need of further 
verification on each of the top five statements to find out 
which one is truthful. In this section, we will discuss our 
verification process for a given group of alternative statements 
(including the doubtful statement). Generally, our verification 
has three steps: first, send every alternative statement as a 
query to a search engine and collect relevant SRRs; second, 
employ a number of basic rankers and generate a ranking list 
of the alternative statements using each basic ranker based on 
newly collected SRRs; third, use a rank merging algorithm [1, 
11] to merge the rank lists into a combined final list. 

A. Statement truthfulness verification 
Intuitively, verifying the truthfulness of a statement 

requires relevant pages as evidence. In the web environment, 
we can use a search engine to retrieve relevant web pages. As 
we have mentioned in the introduction, truthful information is 
usually more widespread than untruthful ones and tends to be 
consistent. We will put emphasis on analysing how the 
retrieved web pages support their corresponding statement. 

Given several alternative statements among which one is 
true, we can transform the verification problem to a ranking 
problem: rank the statements based on an estimation of its 
truthfulness and choose the one that is ranked the highest. In 
order to perform the truthfulness evaluation, we can use 
different features as measurements. For example, the simplest 
way is to compare the number of retrieved pages. Intuitively, 
the statement retrieving the largest number of results is more 
likely to be true. Another method is to directly use the ranks 
of alternative units generated by the alternative unit selection 
step. In this paper, we will explore different ways to rank the 
alternative statements and combine these ranks by a rank 
merging algorithm. 

We use a five-element vector to formalize the truthfulness 
verification problem: [Statements, Supporting SRR sets, Basic 
rankers, Basic rank lists, Merged rank list]. We show the 
overview of the verification module in Fig.4.  
• Statements (Stmts) is the set of selected alternative 

statements (including the doubtful statement) to be verified. 
Let Stmts = {s1, s2, …, sn} with n ≤ 5. All statements are 
about the same topic but present different versions on the 
fact. It is assumed that one of the statements in Stmts is 
truthful but we do not know which one is. 



• Supporting SRR Sets (Sup_S) is a collection of supporting 
SRR sets. Specifically, Sup_S = {Sup1, Sup2, …, Supn}, 
where each Supi contains two components: (1) the number 
of hits when statement si is submitted as a query to the 
search engine used; and (2) the top N SRRs retrieved by the 
search engine for si. Roughly speaking, all SRRs in Supi 
can be considered as supporting evidence for si though with 
a different degree of relevance. Additional features may 
help the truthfulness judgment, for example, the publishing 
time and domain of each SRR in Sup_S, Here the domain 
of an SRR is the internet domain (e.g., edu, com) of the 
URL of the web page corresponding to the SRR. It is 
believed that information from certain domains (say edu) is 
more trustworthy than information from other domains (e.g., 
com) [5, 18]. 

• Basic Rankers (BR) is a set of basic rankers each of which 
ranks the statements in Stmts based on their measurement. 
BR = {BR(1), ..., BR(M)}, where M is the number of basic 
rankers used. Each basic ranker tries to explore different 
features of the SRR set in Sup_S and their relationships 
with the corresponding query statement. In section IV.B, 
we will discuss all the basic rankers used in our verification 
method. 

• Basic Rank Lists (BRL) is a collection of rank lists, each 
of which is a list of ranked statements in Stmts produced by 
one of the basic rankers. The list produced by basic ranker 
BR(k)  is {r1

k, ..., rn
k}, where ri

k is the rank of si given by 
BR(k).   

• Merged Rank List (MRL) is the merged rank list of the 
statements in Stmts by merging all the basic rank lists. 
Rank merge is a classic problem which has been studied by 
data fusion researchers. In this paper, we apply voting 
based techniques to perform merging. For comparison 
purpose, we also apply machine learning method to the 
verification problem in experiment and compare its 
performance with our voting based techniques. 

 
Fig. 4: Elements for statement truthfulness verification 

Overall, our verification method requires a search on the 
web for each alternative statement. For a given alternative 
statement si, we submit it to the search engine, collect the 
number of hits returned by the search engine and the top N (N 
= 200 is used in our experiments) SRRs from the result list as 
Supi.  By controlling the number of alternative statements that 
need to be verified to at most five, the number of searches 
needed in the verification step is small.  

B. Basic Rankers 

Given Stmts and Sup_S, ranking the truthfulness of the 
statements based on the collected SRRs in Sup_S can be done 
in different ways. Each of these methods captures one or more 
features that the truthful statement is likely to outrank 
untruthful ones. We first introduce different basic rankers to 
rank the alternative statements with their features. 
1)  Alternative Unit Ranker (AUR): In section III, we 
discussed the process of extracting and selecting alternative 
units from the SRRs retrieved by the doubtful statement minus 
the doubt unit. The alternative unit selection algorithm selects 
the alternative units by ranking candidates based on a number 
of features collected from the search result. Since each 
alternative unit corresponds to an alternative statement, this 
ranking of the alternative units from the alternative unit 
selection algorithm can be considered as the ranking of the 
statements in Stmts, and therefore we call it Alternative Unit 
Ranker (AUR). 

The ranks generated from AUR can be useful here because 
of four reasons: (a) The web data used for AUR ranking is 
retrieved by the doubtful statement without the doubt unit, 
which is different from the data collected in Sup_S. (b) In the 
process of ranking, we use not only data from the web, but 
also WordNet to do semantics analysis, reducing the 
probability of selecting irrelevant terms as alternative units. (c) 
AUR specially considers the observation that related (either 
truthful or controversial) alternative units often co-occur with 
the untruthful ones. (d) AUR has reasonable effectiveness for 
identifying the truthful alternative units as among the 50 
statements used in our experiment, 31 truthful alternative units 
are ranked at the top by this ranker, yielding a 62% precision. 
2)  Hits Ranker (HR): A seemingly reasonable method is to 
rank the alternative statements by the number of hits they 
retrieve from a search engine.  Web users commonly use this 
method to do quick truthfulness verification. We call this 
method the Hits Ranker.  

One potential problem of this ranker is that it implicitly 
assumes that all the SRRs in Supi support statement si.  
However, it is possible that some of the SRRs are actually 
against si (i.e., saying it is not true). As current search engines 
retrieve results based on only query words and do not analyse 
the meanings of texts, the number of hits may not be a reliable 
indicator for judging the truthfulness of a statement.   
3)  Text Feature Rankers (TFR): Text feature rankers are a set 
of rankers measuring the relevance between alternative 
statements and each SRR. In section III.B, we discussed 
several text features used to measure the relevance between an 
SRR and the modified query statement (i.e., the doubtful 
statement minus the doubt unit). There are mainly four 
features involved: Result Coverage (RC), Result Query 
Relevance (RQR), SRR ranking (Rrank), Term Distance (TD). 
In TFR, we reuse these four features to do the ranking. 
However, the rankings generated by TFR here are different 
from those by the alternative statement collection step in 
section III because these four features are now used against a 
different set of SRRs, which is retrieved by a different query 
(i.e., the full alternative statement under consideration). 



4)  Domain Authority Ranker (DAR): There is a background 
truth on the web: Some researchers have observed that web 
pages published by certain domains are more likely to be 
truthful, such as “.gov”, “.edu”, etc [5, 18]. This is because 
websites in these domains claim the responsibility for their 
published information. Based on this observation, we assign a 
higher weight to a domain that is considered to be more 
trustworthy.  

In our work, the weights for different domains are learned 
as follows. First collect two sample SRR sets. One set 
contains the SRRs for k truthful statements, called True_set, 
and the other set contains the SRRs for k untruthful statements, 
called Untrue_set. We treat each domain as described below. 
Take domain “.edu” as an example. We find the total number 
of SRRs from the “.edu” domain in True_set, say n1 and that 
in Untrue_set, say n2. Then the weight for SRRs from the 
“.edu” domain is W.edu = n1/(n1+n2). In other words, if a 
statement yields one result from “.edu” in its supporting SRR 
set, it gains a truthfulness score of n1/(n1+n2).  

When testing a statement S with unknown truthfulness, its 
supporting SRR set is Sup with N SRRs included. We   
aggregate the number of SRRs from each different domain in 
its Sup. For example, there are m SRRs found from “.edu”. 
These “.edu” pages gain truthfulness score of W.edu * m for S. 
Overall, the rank position given by DAR for S is the average 
truthfulness score of an SRR in Sup, ∑ 𝑊𝑑 ∗ 𝑛𝑑

𝑁�𝑑∈𝑑𝑜𝑚𝑎𝑖𝑛𝑠 , 
where  Wd is the weight of domain d trained from the sample 
set, nd is the number of SRRs from domain d, and N is the 
cardinality of the Sup.  

C. Rank Merging 
In section IV.B, we introduced a set of basic rankers each 

of which evaluates statement truthfulness with a different 
measure. Each ranker is applicable to all the alternative 
statements. However, divergence in statement ranking is 
inevitable among all these basic rankers. In order to get a 
comprehensive conclusion, the final rank should combine 
ranks from all basic rankers. Therefore, an effective rank 
merging algorithm is a key component in a solution to the 
statement verification problem. Taking the “Hillary” 
statements in Table I as an example, though HR ranks the 
untruthful statement over the truthful one, AUR, TFR and 
DAR give higher rank to the truthful statement. For this 
example, combining all the ranks would rank the truthful 
statement over untruthful ones.  

Rank merging is not the only solution to find out the 
truthful statement. By considering the ranking scores of each 
statement given by basic rankers as feature values, we can 
also apply a machine learning algorithm to a set of pre-tagged 
truthful/untruthful statements to train a classifier, and use it to 
determine the truthfulness of unknown alternative statements. 
We will compare rank merging solutions with a decision tree 
based solution in our experiment (see section V). 

1)  Baseline Merging Algorithms 
Given a set of alternative statements about the same topic, 

Stmts = {s1, s2, ….sn}, each basic ranker ranks them in its own 

manner. Say ranker BR(i) ranks Stmts as {r1
i, r2

i, …rn
i}, where 

rj
i is the rank of statement sj given by ranker BR(i). In general, 

rj
i < rk

i means ranker BR(i) believes that sj is more likely to be 
truthful than sk. Therefore, M rankers would generate M basic 
rank lists BRL = {BRL1, BRL2, …, BRLM}. In this paper, we 
use two commonly used algorithms Borda [1, 2] and 
Condorcet [3, 11] as the baseline algorithms for merging the 
rank. 

In the basic Borda algorithm (BaseBorda), the top ranked 
statement by BR(i), say sj, is given score n (rj

i = n) and the 
second ranked is given n-1 and so on. Therefore, the scores of 
each ranker’s rank list are a permutation of integers in [1, n]. 
The Merged Rank List (MRL) will be obtained based on the 
values computed in {∑ 𝑟1𝑖𝑖∈[1,𝑀] , ∑ 𝑟2𝑖𝑖∈[1,𝑀] , … ,∑ 𝑟𝑛𝑖𝑖∈[1,𝑀] } . 
The alternative statement with the largest combined score is 
considered as the truthful one. This algorithm fully utilizes the 
position information in every rank list and uses quantified 
scores to represent position information so as to facilitate the 
merging process. 

Algorithm 1: Baseline Condorcet Algorithm (BaseCond) 
1. Count = 0; graph G; 
2. for each basic ranker ri, do 
3.     if ri ranks sj higher than sk 
4.         Count += 1 
5.     else Count - = 1; 
6. if Count > 0: add sjsk to G 
7. else if Count < 0: add sksj; to G 
8. compute Hamiltonian path in G 

The idea of Condorcet algorithm is to choose the statement 
which is ranked higher than or the same as every other 
statement as the truthful one. For every pair of statements in 
Stmts, say (si, sj), their rank relationship is defined as follows. 
Check the ranks given by each basic ranker. If si is ranked 
higher than sj by more basic rankers, then si is ranked higher 
than sj in MRL, denoted as sisj, and vice versa. If each of 
the two statements is ranked higher than the other by the same 
number of basic rankers, then they are considered to have the 
same rank in MRL, denoted as si=sj. Note that since we use 
seven basic rankers, the case for si=sj won’t occur. Essentially, 
considering every statement as a vertex and sisj as an edge, 
the ranking relationships can be represented as a directed 
graph, called Condorcet graph. If there exists a cycle in the 
Condorcet graph, e.g. {sisj…sksi}, all the statements 
included in this cycle are considered as equivalently ranked. 
Finally, select the statement ranked not lower than any other 
statement as the top one, which can be carried out by finding a 
Hamiltonian path in the Condorcet graph. Obviously, it is 
possible for this algorithm to rank more than one statement at 
the top. In such a case, our system will select the statement 
that is placed highest by the most accurate basic ranker.  

Both of the above two algorithms can find the top ranked 
alternative statement fast, especially when the size of Stmts is 
not large. Two noticeable common features of these two 
algorithms are that they both treat each basic ranker equally. 
However, in reality, features adopted by each basic ranker are 
likely to be relevant with truthfulness judgment with different 
degrees. Some rankers may produce more accurate ranks than 



others. Therefore, we introduce weighted merging algorithms 
in the next subsection. 

2)  Weighted Rank Merging 
In this subsection, we introduce several ways to incorporate 

weights of individual rankers into the BaseBorda and 
BaseCond algorithms to improve ranking precision. 
Specifically, we consider the following variations to them.  
• Positional Borda (PosBorda). For each basic ranker, the 
BaseBorda algorithm gives the top ranked statement score n, 
the second score n-1 and so on. We can interpret it as follows: 
if a statement is ranked at the top by a basic ranker, it is 
truthful with probability 𝑛

∑ 𝑖𝑛1
 for this ranker; if second, then its 

probability is 𝑛−1
∑ 𝑖𝑛1

, and so on. We call it “position probability”, 
i.e., the probability of a statement being truthful if it is ranked 
at i-th position.  

We may obtain more accurate position probabilities from 
sample documents. Let D be a collection of sample alternative 
statement sets, D = {Stmts1, Stmts2, …, StmtsX}. Each Stmtsi 
contains n alternative statements and only one of them is 
truthful. We try each basic ranker on D and record the rank 
position of the truthful statement. Let xj be the number of 
truthful statements ranked at the j-th position. Then the 
probability that a truthful statement is ranked at the j-th 
position can be estimated to be xj / X, where X is the total 
number of Stmts in D. In general, the i-th basic ranker BR(i) 
gets a set of position probabilities PP(i) = {P1

(i), P2
(i), …Pn

(i)}, 
where Pj

(i) is the probability that a statement ranked at the j-th 
position by BR(i) is truthful. We can interpret Pj

(i) as the 
ranking score given by BR(i) to the statement ranked at j-th 
position; it is an empirical score obtained by training. When 
given a new Stmts, each alternative statement s in Stmts will 
receive a score (i.e., the position probability) from each of the 
basic rankers. The sum of these scores becomes the overall 
score of s. All statements in Stmts are ranked in descending 
order of their overall scores. 

In summary, suppose we have M basic rankers with BR = 
{BR(1), BR(2), …, BR(M)} and each gets a set of position 
probabilities PP. If a statement s is ranked at j-th position by 
BR(i), it will receive a score as Pj

(i), which corresponds to rj
i in 

Fig.4. The merged rank of the statement s is determined by its 
overall ranking score ∑ 𝑟𝑗𝑖𝑀

𝑖=1 .  
• Weighted Borda (WBorda). This variation differentiates the 
importance of different rankers and assigns a weight to each 
ranker, as was also done in [1]. There are two different ways 
to get the weights for basic rankers. First, because the weight 
is used to enhance the influence of more precise basic rankers, 
we can use the precision of each basic ranker on the sample 
statement set D as its weight. Same for the sample set D with 
X groups of alternative statements. If a basic ranker ranks the 
truthful statement at the top in x groups, its precision is x/X. 
In such a case, we can get a set of weights, each of which 
represents the precision of a basic ranker. The other method is 
to use a genetic algorithm to train a weight vector with M 
elements, W = {w1, w2, …, wM}, over the training set D to get 
the optimal weights for rank merging. We tested both methods 

and the second method had better performance. For the rest of 
this paper, we use the weights obtained by the second method. 
After the weight for each basic ranker is obtained, the only 
difference between WBorda and BaseBorda is that the latter 
multiplies each score assigned by BR(i) by wi.  
• Weighted Position Borda (WPosBorda).  This variation is a 
combination of PosBorda and WBorda, which combines the 
idea of adjustment on the scores assigned to each ranked 
position and different weight placed on basic rankers. It 
obtains the Merged Rank List (MRL) based on the values 
computed in {∑ 𝑤𝑖𝑟1𝑖𝑖∈[1,𝑀] , ∑ 𝑤𝑖𝑟2𝑖𝑖∈[1,𝑀] , … ,∑ 𝑤𝑖𝑟𝑛𝑖𝑖∈[1,𝑀] } , 
where wi is the weight assigned to the i-th basic ranker, rj

i is 
the position probability at position j by basic ranker BR(i).  
• Weighted Condorcet (WCond). We now discuss how to 
incorporate ranker weights into the Condorcet algorithm. In 
the process of building the Condorcet graph, we decide the 
partial order for every pair of statements by combining the 
ranks given by the basic rankers.  When assigning weights to 
basic rankers, this process would incorporate the weights as 
parameters. The modified algorithm over Algorithm 1 is 
described as Algorithm 2 below. The same trained weights for 
basic rankers that are used in WBorda are used for WCond in 
our experiment.  

Algorithm 2: Weighted Condorcet Algorithm (WCond) 
1. weightedCount = 0; weighted Condorcet graph G; 
2. for each basic ranker ri, do 
3.     if ri ranks sj higher than sk 
4.         weightedCount += wi 
5.     else weightedCount - = wi; 
6. if weightedCount > 0: add sjsk to G 
7. else if weightedCount < 0: add sksj; to G 
8. compute Hamiltonian path in G 

3)  Probabilistic Rank Merging 
• Probability Combination (ProbComb). This is another way 
to combine basic rankers. Our basic rankers are based on 
different types of fairly independent features. Thus we may 
assume that these rankers are independent. Based on this 
assumption, we can consider the precision of a basic ranker as 
the success rate of the basic ranker or the probability that the 
basic ranker is correct in determining the truthful statement. 
Let Pi denote this probability of basic ranker BR(i). Then the 
overall probability that the truthfulness of a statement S is 
correctly determined (i.e., the probability that at least one of 
the basic rankers is correct in predicting the truthfulness of S) 
can be estimated by 1-∏ (1 − 𝑃𝑖)𝑖∈[1,𝑀] .  

V. EXPERIMENTS 
Our experiments require a set of fact statements that are either 
truthful or not truthful as well as the specified doubt unit for 
each of the statements. In order to evaluate the precision of 
our system, we also need the truthful statement for each case. 
We use the factoid questions from TREC-8 and TREC-9 
Question Answering track [20] as the experiment data 
repository, which contains a large number of factoid questions 
as well as correct answers. In our experiments, we randomly 
choose 50 questions from TREC-8 and TREC-9, transform 



them into statements with answers that are either correct or 
incorrect. We make half of the statements with correct 
answers while the other half with incorrect ones. The answer 
part in each statement is specified as the doubt unit. We make 
our dataset available at [23]. We use our proposed method to 
determine the truthfulness of each statement and compare the 
result with the ground truth to compute the precision for our 
method. We show two sample doubtful statements in our 
dataset in Table II. 

TABLE II: SAMPLE DOUBTFUL STATEMENTS 

Doubtful statement Doubt unit Truth 
Antarctic is the only continent without a 
desert. 

Antarctic Europe 

George C. Scott won the Oscar for best 
actor in 1970. 

George C. 
Scott 

George 
C. Scott 

A. Experiments on Alternative Statement Collection 

1)  Search methods experiment 
Current commercial search engines such as Yahoo often 

provide more than one way to specify a query and the most 
common specifications are: “all of the words”, “the exact 
phrase” and “any of the words”. As our alternative statement 
collection method aims to discover possible truthful 
alternative units from the SRRs returned by the search engine 
used, it is important to choose the best query specification 
method to maximize the chance of retrieving better alternative 
statements. We use the 50 statements in our dataset to find out 
which specification method would return more SRRs 
containing the truthful alternative units. Our measure is like 
this, for every query specification method, we compute the 
average number of SRRs that contain truthful alternative units 
among the top k SRRs for all 50 sample statements. In our 
experiment, we test the cases for k = 10, 50 and 100. The 
experimental results are shown as Table III.  

TABLE III: COMPARISON ON QUERY SPECIFICATION METHODS  
Different Query specification methods 

 All of the 
words 

Exact phrase Any of the 
words 

Top 10 SRRs 2.8 2.32 0.34 
Top 50 SRRs 13.2 10.52 0.98 
Top 100 SRRs 24.14 17.76 1.78 

Based on our experiment, it shows that queries in “all of the 
words” format achieved the best performance. “Exact phrase” 
is not as good as “all of the words”. The “any of the word” 
method performs much worse than the other two. For the rest 
of our experiments, we use “all of the words” method to 
submit queries to Yahoo! Search.  

2)  Alternative statement collection experiment 
In section II, we introduced six features as well as a data 

type filter for alternative statement collection. We train the 
weights for different features based on the training set using a 
genetic algorithm (see section III). Then we use the optimal 
weights to do experiments on the testing set. Among the 50 
statements, we randomly select 25 of them as training set and 
the rest as testing set. The collection is performed on the top 

200 SRRs for each statement. The results are shown in Table 
IV. On the training set, in 17 out of 25 cases, the truthful 
alternative unit is collected and ranked as the top candidate. 
Among the other 8 cases, the truthful alternative unit is ranked 
at the second in 7 cases and the fourth for one case. On the 
testing set, the result is also promising, in 14 of 25 cases, the 
truthful alternative statement is ranked as top 1 and the rest 
are ranked from the second to the fourth. The experimental 
result shows that our algorithm can always rank all truthful 
alternative statements among the top 4 candidates for our 
dataset. To further reduce the chance of missing out on the 
truthful alternative statement for each query, we will consider 
the top 5 results for each query.  

TABLE IV: ALTERNATIVE STATEMENT COLLECTION PERFORMANCE 
Training data set Testing data set 
Total cases 25 Total cases 25 
Truthful one as top 1st 17 Truthful one as top 1st 14 
Truthful one as 2nd 7 Truthful one as 2nd 9 
Truthful one as 3rd 0 Truthful one as 3rd 1 
Truthful one as 4th 1 Truthful one as 4th 1 
Truthful one as 5th  0 Truthful one as 5th  0 
We also divided our dataset into 10 subsets to do 10-fold 

cross-validation. Each subset contains 5 doubtful statements 
and 200 SRRs for each doubtful statement. In each round of 
validation, we use 45 statements as training set and 5 
statements for testing. The precision of each round is 
determined as the number of cases in the testing set which 
rank the truthful alternative unit at the k-th position. Finally, 
we compute the average precision of all 10 rounds. We run the 
10-fold cross validation for 30 times with different ways to 
divide the dataset into 10 subsets to get the average precision. 
The experiment results are shown in Table V. Again all the 
truthful alternative units are ranked among the top 5 results. 

TABLE V: CROSS-VALIDATION ON ALTERNATIVE UNIT COLLECTION 
10-fold cross-validation 

Truthful one as top 1 0.614 
Truthful one as top 2 0.912 
Truthful one as top 3 0.944 
Truthful one as top 4 0.988 
Truthful one as top 5 1.0 

Alternative statements are extracted from the top N SRRs. 
For efficiency consideration, it is better to use a smaller N as 
it would save the SRR downloading and processing time. 
However, if N is too small, the truthful alternative unit may 
not be contained in the top N SRRs and would cause problem 
in determining the truthfulness of the doubtful statement or 
finding a truthful alternative statement. Therefore, the value of 
N is a trade-off parameter that should be considered. We 
perform experiments with statements in the training set to test 
what value of N is small enough but can ensure that the 
truthful alternative unit appears in the top 5 extracted terms 
using our method. We compare the cases with N selected from 
{10, 50, 100, 150, 200} and show the result in Table VI. We 
use the AUSV with the best fitness in our training.  

According to our experimental results, in 5 out of 50 cases 
truthful alternative units are not included in the top 5 
alternative units if we only consider the top 100 SRRs. When 



the number of SRRs increases to 150, the truthful alternative 
units are extracted and ranked among the top 5 for all the 50 
cases. Moreover, they are ranked among the top 4 with 200 
SRRs. Based on our experimental results, 150 is an 
appropriate number of SRRs to be used for the purpose of 
ensuring that all truthful alternative units be extracted and 
ranked among the top 5 results. We set N = 200 in our 
experiments as it produces a better result than when N = 150 
as can be seen from Table VI.  

TABLE VI: IMPACT OF USING DIFFERENT NUMBERS (N) OF TOP SRRS 

 Top 
10 

Top 
50 

Top 
100 

Top 
150 

Top 
200 

Ranked as 1st 12 21 29 31 31 
Ranked as 2nd 6 12 10 12 16 
Ranked as 3rd 5 3 3 3 1 
Ranked as 4th 3 1 2 2 2 
Ranked as 5th  2 0 1 1 0 
Not Among top 5 22 13 5 0 0 

B. Statement Verification Experiments 
Based on our experiment on alternative unit collection 

shown in last subsection, we only need to compare five 
alternative statements with the user-entered doubtful statement 
to determine which one is most likely to be truthful and 
consequently decide whether the doubtful one is truthful. For 
the purpose of verification, we developed seven basic rankers 
as mentioned in section IV: Alternative Unit Ranker (AUR), 
Hits Ranker, (HR), four Text Feature Rankers (TFR) 
including Result Coverage (RC), Result Query Relevance 
(RQR), Result ranking (Rrank), Term Distance (TD), and 
Domain Authority Ranker (DAR). First, we use all the 50 
sample statements to test the precision of each basic ranker. In 
other words, use each of the basic rankers to rank the doubtful 
statement as well as its corresponding alternative ones and 
check whether it ranks the truthful one as the top result.  

TABLE VII: PRECISION OF BASIC RANKERS 

In Table VII, we show the precision of each basic ranker. 
Overall, the precision achieved by each basic ranker is not 
very good. Result Coverage performs better than others. The 
domain authority result ranker results in the lowest precision 
because most retrieved SRRs are from domain “.com”. 
Therefore, using the website domains of the SRRs cannot 
effectively distinguish truthful statements from untruthful 
ones. Individual basic rankers do not achieve good 
performance because each one of them evaluates statements 
based on only one feature. A better way is to combine them 
together to make a comprehensive evaluation. 

Combining ranks from basic rankers would generate an 
overall rank based on which the system decides the top ranked 
statement, either an alternative one or the user given one, as 
truthful. The precision of the verification module is computed 

as the percentage of test cases which successfully rank the 
truthful statement as the top result.  

In section IV, we introduced three types of rank merging 
algorithms, Borda-based, Condorcet-based and ProbComb. 
BaseBorda and BaseCond are two baseline algorithms used to 
merge the basic rank list. They do not require training. We 
directly apply the algorithms to all of the 50 statements. 
PosBorda adopts the idea of position probability. WBorda and 
WCond assign weights to different basic rankers. WPosBorda 
combines both the position probability as well as the rankers’ 
weights. ProbComb combines the success rates of different 
basic rankers. These five algorithms require training for either 
the position probability or the rankers’ weights/success rates. 
So we use 10-fold cross validation to evaluate the algorithms’ 
performance. Overall, we run cross validation for 30 times 
and use the average precision as the final result. 

 
Fig. 5: Precisions of Rank Merging Algorithms 

The precisions of all of the seven algorithms are shown in 
Fig.5. According to the results, the BaseCond gets the worst 
precision at 0.68 and BaseBorda only achieves 0.7. By 
incorporating position probability, the ProbComb method gets 
0.76 and PosBorda increases this to 0.81. Assigning fine-
tuned weights to the basic rankers also improves the precision. 
The WBorda gets 0.826 and WCond gets 0.82. WPosBorda, 
which combines both position probability and rankers’ 
weights, achieves the highest average precision at 0.904.  

TABLE VIII: LIST OF ERRONEOUS CASES 

 Untruthful statements verified as truthful Truthful 
1 Tom Hanks was lead actress in the 

movie 'Sleepless in Seattle'. 
Meg Ryan 

2 Apollo is the first spacecraft on the moon. Luna2 
3 Sullivan is the fastest swimmer in the world. Michael Phelps  
4 Les Paul invented the electric guitar. Rickenbacker 
5 English is the primary language of the 

Philippines 
Filipino 

We also evaluated the precision of the ID3 decision tree 
method [24] for truthfulness verification. For the 10-fold 
cross-validation, the average precision of ID3 is 0.66, which is 
much lower than all of our rank merging algorithms. 

In Table VIII, we show the 5 cases WPosBorda made 
incorrect verification. In Case 1, our verification algorithm 
failed to recognize that “Tom Hanks” is a man which 
mismatches with “lead actress”. In Case 2, Apollo is the first 
“manned” spacecraft on the moon while Luna2 is the first 
spacecraft on the moon. “Tom Hanks” and “Apollo” appear 
much more frequently than “Meg Ryan” and “Luna2” on the 
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BaseBorda BaseCond ProbComb PosBorda WBorda WCond WPosBorda

Ranker AUR TFR(TD) TFR(RC) TFR(RQR) 
Precision 0.62 0.32 0.66 0.6 
Ranker HR DAR TFR(Rrank)  
Precision 0.20 0.20 0.62  



Web, respectively. In Case 3, we expected “Michael Phelps” 
to be the truthful alternative unit. But our system selects 
“Sullivan” as truthful because he broke the 50-meter freestyle 
world record in 2008 and was called the “fastest swimmer in 
the world” in many news reports. Though Michael Phelps is 
widely considered as the fastest swimmer today, not many 
web pages use the phrase “fastest swimmer” to describe him. 
Note that when TREC-9 was held in 2000, “Sandy Neilson” 
was given as the correct answer for Case 2, which is way out 
of date now. The answer for the statement in Case 4 is 
controversial. TREC gave “Rickenbacker” as the correct 
answer. However, “Les Paul” is the inventor of the first solid-
body electric guitar, while “Rickenbacker” invented semi 
hollow body electric guitar. So it is difficult to say who the 
inventor of electric guitar is. Case 5 fails because according to 
most web pages, both English and Filipino are the official 
language of the Philippines though TREC 9 gives only 
“Filipino” as the correct answer. So it could be argued that for 
Cases 4 and 5, the correct answers are not unique and our 
system did not actually fail. In the future, we will investigate a 
systematic solution to deal with the situation where a doubtful 
statement may have multiple truthful alternative units. 

All of the above experiments were based on combining all 
the basic rankers. Because the precision of each individual 
ranker differs from one another and we have obtained the 
precision of each basic ranker, we experimented with merging 
only the k most accurate rankers (k = 2, 3, …,7) to observe the 
impact on the overall precision. We use only the WPosBorda 
merging algorithm in this experiment as it has the best 
performance among all merging algorithms we tested. The 
experimental results are shown in Fig.6. According to our 
experiment, merging the top 5 basic rankers (AUR, TFR(RC), 
TFR(RQR), TFR(Rrank), TFR(TD)) can achieve 0.9 precision, 
same as using all seven basic rankers. The fact that adding HR 
and DAR does not gain any benefits suggests that these two 
rankers are not effective in differentiating truthful and 
untruthful statements.  

 
Fig. 6: Precision of partially merging basic rankers 

VI. RELATED WORK 
The quality of web page content has become a known concern 
in recent years. Untruthful information on the web often 
misleads common users and is especially harmful when it 
spreads misconceptions to the young generation. The web 
information trust issue could be addressed at three levels: 
statement level, web page level and website level.  

• Some researchers have started discussing the truthfulness 
of individual statements in recent years. The “Honto” 
system [16, 17] has a similar objective as ours. We will 
compare their work with ours in detail in the next 
paragraph.  

• At the page level, current works mainly focus on detecting 
spam pages based on link analysis and content features for 
the purpose of filtering out low quality web pages [5, 12]. 
However, spam and “untruthful” are two relevant but 
different concepts. Untruthful pages are not necessarily 
spams. There are many non-spam pages presenting 
incorrect facts which cause users’ confusion. In order to 
identify untruthful statements, we need pay more effort on 
analysing the statements in pages. 

• To our best knowledge, there is not any published paper 
discussing the website trust issue except considering the 
domain of a website.  

Recently, researchers from Kyoto University proposed their 
system “Honto?Search” for the purpose of verifying the 
truthfulness of facts [16, 17]. The basic idea is the same as 
ours, which looks for alternative statements via a search 
engine and finds most likely truthful one from them. Their 
method is based on hits numbers, temporal information (i.e., 
when a page is published) [16] and sentimental factors [17]. 
However, several important issues are not addressed in their 
work. First, the authors do not provide the actual techniques 
used for alternative statement collection although they 
mention that the collection is based on the search results of the 
doubtful statement. Alternative statement collection is an 
important step in a complete solution to determine the 
truthfulness of the doubtful statement and to identify the 
truthful statement. Second, they do not utilize several piece of 
relevant information which is essential for truthfulness 
verification. Specifically, text similarity between the query 
statement and SRRs, ranking positions of SRRs, semantic 
closeness and correlation between the doubt unit and each 
alternative unit are not considered in their solution. They also 
do not give a systematic algorithm to combine the factors. 
Lastly, in their experiment, they only performed experiments 
on statements with temporal doubt unit (e.g. which year event 
A happens) and the precision of their method is only 62%, 
which is much lower than the precision of our methods. 

Answer verification in question answering is relevant to 
the statement truthfulness verification problem. [9, 10] 
proposed a method for the answer verification problem. This 
method extracts keywords from the question (Qsp) as well as 
each candidate answer (Asp), computes the co-occurrence of 
Qsp and Asp on web pages based on the hits numbers from 
querying Qsp and Asp together and separately. The more 
often a candidate answer co-occurs with question keywords, 
the more likely it is the right answer. In our method, we also 
utilize the co-occurrence information to find alternative units. 
But it is only one of seven features we use in our alternative 
statement collection algorithm. Moreover, after obtaining 
alternative units, we use a verification algorithm to determine 
the truthfulness of each of them. 
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To the best of our knowledge, very few papers address the 
answer verification problem directly, although many systems 
incorporate answer verification into their candidate answer 
ranking component. The ranking component scores candidate 
answers based on certain features (e.g., document frequency), 
and considers the answer with the highest score as the most 
likely correct one [7]. We summarize these features as follows. 
(a) The entity type associated with a candidate answer should 
match the question type. (b) The number of occurrences of a 
candidate answer in retrieved relevant document set has an 
impact on its score as stated in [13]. (c) The rank of retrieved 
documents. In AnswerBus [19], documents that are ranked 
higher in the return list are assigned higher scores. (d) 
Distance between candidate answers and question keywords. 
In [17], the FDUQA system defines the distance as the 
distance between answer and question keywords in the 
grammar parsing tree. [19] assigns a weight to each keyword 
and scores a candidate answer by its word distance from the 
keywords multiplied by the corresponding weight of each 
keyword.  

Naturally, our method also uses some of the features used 
in previous solutions. But our method is significantly different 
from the existing solutions as summarized below. (1) Our 
method consists of two carefully designed phases (i.e., 
alternative statement collection and statement truthfulness 
verification) which explore different sets of features, including 
new features not used before such as the semantic closeness 
between the doubt unit and each alternative unit. None of the 
existing solutions used all of these features in a single solution 
and used them like our method. None of them has studied both 
phases as comprehensively as our work. In fact, most of them 
studied only one of these phases. (2) Our alternative statement 
collection algorithm has achieved always including the 
truthful alternative unit among the top 5 results in our 
experiment. To the best of our knowledge, similar results have 
not been reported before. (3) Based on seven basic rankers, we 
have evaluated and compared a large number of ranking 
merging algorithms for statement truthfulness verification. 
Similar studies have not been reported before in related 
applications. The best merging algorithm (WPosBorda), that 
we proposed in this paper, achieved a precision of about 90%. 
And if we counted Cases 4&5 in Table VIII as correct, the 
precision of WPosBorda would reach 94%. 

VII. CONCLUSION 
In this paper, we studied the statement level trust problem and 
proposed a two-step (alternative statement collection and 
statement truthfulness verification) approach to automatically 
determine the truthfulness of statements given by users. Both 
of these two steps exploit a number of features relevant to 
truthfulness, and our experimental results showed that these 
features as well as our combining methods are capable of 
handling most truthfulness identification cases. Besides 
textual features, we illustrated the effectiveness of utilizing 
semantic information of the doubt unit and the correlation 
between the doubt unit and each alternative unit for alternative 
unit selection. In addition, we proposed a new rank merging 

algorithm (WPosBorda), evaluated and compared the 
performance of a large number of merging algorithms for 
statement truthfulness verification including several Borda-
based and Condorcet-based algorithms as well as a 
probabilistic method. There is still room for improvement, 
such as negation analysis on statements in SRRs and coping 
with multiple doubt units in a doubtful statement.  
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