
Generating Test Data for Killing SQL Mutants: A

Constraint-based Approach

Shetal Shah, S. Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta, Devang Vira

Computer Science and Engg. Dept., Indian Institute of Technology, Bombay

{shetals,sudarsha,suhask,sandeepp}@cse.iitb.ac.in, bhanupratap2006@gmail.com, devang.vira@gmail.com

Abstract—Complex SQL queries are widely used today, but it
is rather difficult to check if a complex query has been written
correctly. Formal verification based on comparing a specification
with an implementation is not applicable, since SQL queries are
essentially a specification without any implementation. Queries
are usually checked by running them on sample datasets and
checking that the correct result is returned; there is no guarantee
that all possible errors are detected.

In this paper, we address the problem of test data generation
for checking correctness of SQL queries, based on the query
mutation approach for modeling errors. Our presentation focuses
in particular on a class of join/outer-join mutations, comparison
operator mutations, and aggregation operation mutations, which
are a common cause of error. To minimize human effort in
testing, our techniques generate a test suite containing small and
intuitive test datasets. The number of datasets generated, is linear
in the size of the query, although the number of mutations in
the class we consider is exponential. Under certain assumptions
on constraints and query constructs, the test suite we generate is
complete for a subclass of mutations that we define, i.e., it kills
all non-equivalent mutations in this subclass.

I. INTRODUCTION

SQL queries are very widely used, but checking if a

query meets the intended goals is not an easy task. Formal

verification is not applicable, since it is based on comparing

a specification with an implementation, whereas SQL queries

are essentially a specification without any separate implemen-

tation. In practical settings, programmers execute the query

on each of multiple test cases, and check that the query gives

the desired results on each test case. However, if test cases

are created in an ad-hoc manner, it is not clear whether all

meaningful test cases have been covered, or there are cases

that have been omitted.

Mutation testing is a well known approach for checking if

test cases are adequate for a program (see e.g., [23]). Mutation

testing involves generating mutants of the original program

by modifying the program in a controlled manner [12]. A

mutation of a program is a single syntactically correct change;

a mutant of a program is the result of one or more mutations

on the program. Mutations model typical programming errors

like using the wrong operator or variable name.

If the given program is faulty, it is possible that one of the

mutants was the intended program. A test case would detect

the fault if it gave different results on the correct and faulty

programs. A test case that gives different results on the given

program and the mutant program is said to kill the mutant.

The notion of mutations can also be applied to database

queries. Query mutations which model common mistakes

made by programmers when specifying queries include using a

wrong relational operator in a where-clause condition, a wrong

join operator, e.g., an inner join (1) used instead of a left outer

join (––1), missing joins conditions, etc. For example, given the

query

SELECT * FROM instructor i, teaches t

WHERE i.id = t.id

changing the join to a left outer join results in a mutant

SELECT * FROM instructor i LEFT OUTER JOIN

teaches t ON (i.id = t.id)

The results of the original query and the above mutant will

differ if there is an instructor not teaching a course, but would

be identical otherwise.

The number of possible mutants of a query can be extremely

large if all possible mutations are considered, but the space can

be kept in control by considering mutants that reflect common

programming errors.

A test case is simply a (legal) database instance, while a

test suite may consist of one or more test cases.1 A mutant

query is said to be killed by a test case when the execution of

the mutant on a test case produces a different result than the

execution of the original query. In the above example, a test

case containing an instructor who does not teach any course

would kill the join/left-outer-join mutant.

The tester must examine the test case to figure out what

the intended output is on that test case, and check if the given

query gives the intended output. In case the original query was

incorrect, and a mutant was in fact the correct query, a test

case that kills that mutant would help the tester detect the error

in the original query, since the given query would generate a

different result from the intended query on that dataset. A

single test case may kill a large number of mutants, and the

tester need not even be aware of what mutants are killed by

the test case.

Mutants that are syntactically different may in fact be

semantically equivalent to the given query constraints on the

database. For example, in the presence of appropriate foreign

key constraints on the database, a query r 1 s, would always

1Queries generated by application programs may have parameters, but for
simplicity, we assume the parameters have been replaced by constants. Test
cases for an application containing queries would require input parameter
values in addition to a database instance; generating such test cases would
require program analysis, and is beyond the scope of this paper.

produce the same result as its mutant r ––1 s. We say that such

a mutant is equivalent to the original query.

A test suite for a query is said to be complete with respect

to a space of mutations if all non-equivalent mutants in the

space are killed by at least one of the test cases in the suite.

Prior work on mutation testing in databases, such as [16],

has focussed on checking the completeness of a given test

suite. Prior approaches to automated generation of datasets

such as AGENDA [10], RQP [3] and Olston et al [24],

generate datasets which ensure that the results of specified

queries are non-empty. However, they do not address muta-

tions, and there is no guarantee of completeness of the test

cases generated.

In this paper, we address the problem of test data generation

for SQL queries, taking mutants into account. In a shorter

version of this paper, [14], we introduced the problem of test

data generation to kill SQL mutants, and sketched an approach

to generating test data. In this paper, we extend the results of

our earlier paper, and describe a new implementation approach

which is more powerful than our earlier approach and handles

a larger class of queries.

The contributions of this paper are as follows:

• We define a space of mutations which is based on

mutations to a query tree, but allows the consideration

of all possible join orders for inner joins, which are

specified in a join-order independent fashion in SQL.

We outline how to handle mutations to join type (i.e.,

mutations between inner join, and the left, right and full

outer joins), comparison operations, and unconstrained

aggregation operations; however our approach, based on

using a constraint solver, makes it possible to add support

for other mutation types.

• We show that the decision version of the test data

generation problem is NP Hard in the size of the query.

However special cases without repeated occurrences of

relations can be solved in polynomial time.

• We give an algorithm which identifies constraints that

need to be satisfied by a test dataset to kill a particular

group of mutants. As in [3], each attribute of each

tuple in the output dataset is treated as a variable, and

the constraints are on these variables. We then use a

constraint solver, (in our current implementation, CVC3

[2]) to generate the required dataset.

• SQL queries allow relations to be listed in a join-order

independent way in the FROM clause. To model common

query errors, we need to consider mutations to every

possible join tree corresponding to the given relations

in the FROM clause. Unfortunately, the number of such

join trees is very large, with an exponential number of

possible join operations to be considered. Creating such

a large number of datasets would make testing infeasible.

Instead, we show how to generate a number of datasets

that is linear in the size of the query, yet can kill all these

exponential number of mutants.

• Each individual test case we generate is designed to be

small and intuitive, which is important since ultimately a

human has to examine each test case, and decide if the

query result is correct for that test case.

• The algorithms described have been implemented, as part

of a system for generating test data, which we call X-

Data. We present a preliminary study of the effectiveness

of our algorithms.

Although more work is required to handle all features of

SQL, and to handle application programs (these are part of

our ongoing work), we believe our contributions in this paper

are an important first step in generation of test databases in a

principled way, with completeness guarantees.

II. SPACE OF QUERIES AND MUTANTS CONSIDERED

In this paper, we consider the following class of queries:

single block SQL queries with join/outer-join operations

and predicates in the where-clause, and optionally aggregate

operations without a having clause, which correspond to

select/project/join/outer-join queries in relational algebra, with

an aggregation operation optionally on top. We do not consider

insert/delete/update queries in this paper.

We consider mutations to the join type (inner vs outer-join),

comparison operations, and aggregation operations, as outlined

below. This class covers many of the common errors that we

have seen in courses we teach and some that we have seen

during the development of application software used in IITB.

Our constraint-solver based approach can be used to handle

other types of mutations by defining appropriate constraints.

Join Type Mutations: We consider the following join types:

inner join (1θ), left outer-join (––1
θ
), right outer-join (1––

θ
),

and full outer-join (––1––
θ
). Given a relational algebra expres-

sion, the result of replacing one occurrence of a join operator

(1θ,
––1

θ
, 1

––
θ
, ––1––

θ
) by any one of the other join operators

is a join-type mutation of the expression.

An SQL query does not specify a particular evaluation

plan. To allow meaningful join-type mutations to the SQL

query, which reflect common programming errors, we consider

mutations of all equivalent join trees that can be derived from

the relations in the FROM clause. The space of equivalent join

trees also takes into account equivalence classes of attributes,

described later in Example 4 in Section IV-B. Thus, any

single join-type mutation to any relational algebra expression

equivalent to the given SQL query is a single join-type

mutation of the original query. In addition, SQL queries do not

specify the placement of selections. We push selections down

to the lowest level possible, namely the individual relations;

pulling a selection up to a higher level of the join tree would

make some mutations at a lower level equivalent, and thus

pushing selections down maximizes the number of mutations

that can be killed. Similarly, join predicates are assumed to be

applied at the earliest possible point in the tree.

Comparison Operator Mutation: Any one occurrence of a

comparison operator (=, <, >, <=, >=, <>) in the WHERE

clause of a query is replaced with any of the other comparison

operators to obtain a selection predicate mutant query.

Aggregation Operator Mutation: The aggregate operators

considered are MAX, MIN, SUM, AVG, COUNT, SUM

(DISTINCT), AVG (DISTINCT) and COUNT(DISTINCT) 2.

We consider mutations of any one of the aggregate operators

to any one of the others. An aggregation operator can occur

in the select clause of the query or in the having clause; the

latter case results in a constraint on the aggregation result,

complicating the generation of data. In this paper we do

not consider the case of constrained aggregation; handling

constrained aggregation is a topic of future work.

We only consider single mutations in a query at a time, as is

common in the mutation testing literature. It is possible that an

erroneous query may contain multiple mistakes or variations

at the same time; queries with multiple mutations are likely,

but not always guaranteed, to be killed by the datasets we

generate.

For the rest of this paper,we make the following assumptions

about the database schema and queries:

A1 The only constraints are primary and foreign key con-

straints.

A2 Foreign key columns are not nullable.

A3 Queries are single block SQL queries without nested

subqueries (however, we do allow outer join expressions).

A4 Queries do not include functions or expressions other than

simple arithmetic expressions.

A5 Join and selection predicates are conjunctions of simple

conditions of the form expr relop expr.

A6 Queries do not explicitly check for null values, using the

SQL clause IS NULL. This restriction is because our

constraint solver does not handle null values.

A7 If the query has a full outerjoin, at least one attribute

from each of its inputs is present in the select clause.

This restriction helps to ensure that the difference due to

a mutation in one of the inputs will be seen in the query

result.

A8 If the query has a natural full outerjoin, at least one

attribute from each of its inputs other than the common

(join) attributes is present in the select clause. (This

extension of Assumption A7 is required since the natural

outerjoin operation replaces common attributes by a single

output attribute, whose value may come from only one

of the inputs; this masks the difference between the case

where the other input is an empty set and the case where

it has a matching value.)

In Section V-H we discuss how to extend our algorithms to

partially relax Assumptions A2 and A3.

III. RELATED WORK

The AGENDA toolset for testing database applications [10]

has several components, including a component for generating

a test database for a given query. However, [10] does not

address mutation testing, and does not provide any guarantees

about completeness of the test data that it generates.

Reverse Query Processing (RQP) [3] takes a query and

an intended result as input and returns a possible database

2We have not considered the case of DISTINCT except in aggregation
operations. Mutations which affect the duplicate count are not in the class of
mutations we consider, and are an area of future work.

instance, respecting integrity constraints, that could have pro-

duced that result for that query; [4] extends RQP to handle

multiple queries. The primary goal of RQP is to generate test

datasets which result in non-empty result-sets on the execution

of a given query. It considers a subset of SQL/relational alge-

bra which includes join, selection, projection and aggregation

operations. However, RQP neither considers query mutations

nor outer join operations. Olston et al. [24] take a dataflow

program and a database and generate an example dataset

such that the result of each operator (including intermediate

operators) in the program is non-empty. However, they do not

handle integrity constraints or consider query mutations.

C. de la Riva et al. [11] show how to generate test cases

to kill SQL query mutants, generating constraints based on

SQL coverage rules ([28]) and solving them using a constraint

solver called Alloy. Our work was done independently of

theirs. While we do not handle certain features that they

support, such explicit support for NULL values, their mutation

space does not consider equivalent join orders, and they do not

provide any completeness guarantees.

Mutant killing is quite closely related to query containment.

If Q and mutant Q’ are not equivalent, then either Q is not

contained in Q’, or Q’ is not contained in Q. Many of the

algorithms for testing query containment actually generate

a dataset as evidence of non-containment, and could thus

potentially be used to generated datasets for killing mutants.

[9] and [1] address conjunctive queries, giving an algorithm

that generates a test dataset respecting primary key constraints,

and show NP hardness of the problem in general. The algo-

rithm was extended by [25], which considers union and differ-

ence operations, [17], which considers inclusion dependencies

(foreign key constraints) but only for conjunctive queries

without difference, and [19] which considers order constraints

for conjunctive queries. None of these algorithms consider

the outerjoin or aggregation operations. Further, generating

separate datasets for mutation could potentially result in a

infeasibly large number of test cases, and as a result we do

not use these algorithms. Equivalence of outerjoin queries

is addressed by [20], but their approach does not construct

datasets.

Other work on test data generation include [15], [6], [29],

and [21], which address the issue of performance testing

rather than correctness testing of applications, and [22], which

addresses schema validation; these papers do not consider

specific queries when generating data, and give no guarantees

about non-empty query results or about killing mutants.

Emmi et al. [13] describe an approach to test applications

based on creation of database states and test inputs, which can

ensure path coverage. Kapfhammer and Soffa [18] similarly

consider test adequacy of database driven applications. How-

ever, neither of these papers address the problem of testing

of queries, nor of mutations. Chan and Cheung [7] present an

approach for test input generation for SQL queries, but do not

consider mutations.

Tuya et al. [16] and Chan et al. [8] describe techniques for

generation of SQL query mutants, which are then executed

on the given test datasets to determine the number of killed

mutants, and thereby determine the effectiveness of the given

test dataset. However, neither of these papers address the

problem of generation of test datasets, nor do they consider

alternative join orders for mutation. Brass and Goldberg [5]

provide a rather comprehensive list of semantic errors in SQL

queries, but do not address data generation.

This paper is an extension of our earlier short paper [14].

The novel contributions of this paper include the following:

(a) handling complex selections, non-equi-join conditions and

aggregates, (b) showing the NP hardness of the data generation

problem, (c) a new algorithm for dataset generation which

generates a linear number of datasets unlike the exponential

number in [14], and handles foreign keys constraints with

completeness guarantees, and (e) generation of synthetic data

using a constraint solver ([14] did not provide any way to

generate synthetic data for queries with constraints).

IV. KILLING JOIN MUTANTS: BASICS

In this section we discuss several issues that need to be

addressed when killing mutations, and later in Section V we

present our algorithm for generating datasets to kill mutations.

A. NP-Hardness of the Data Generation Problem

The problem of generating a single dataset to kill one

mutation is NP-Hard, in general. Consider a SQL query Q

involving a mix of inner, left outer joins, right outer and full

outer joins. Let Q′ be a single mutant of Q. Then the data

generation problem for a single mutation can be stated as: Is

there an assignment of tuples to each relation in Q such that

the results of Q and Q′ differ?

Proof of NP-Hardness: To prove that the decision version

of the data generation problem is NP-Hard, we reduce the

well known NP-Complete problem, Query Containment Prob-

lem for Conjunctive Queries[9], to this problem. The Query

Containment Problem states : Given two SQL queries Q1 and

Q2, is Q2 contained in Q1?

The reduction is as follows. Construct a tree Q2 1 Q1 and

a mutation Q2
––1 Q1 as the input to the Data Generation

Problem stated above. It is easy to see that, if on this input,

the algorithm for the Data Generation Problem assigns tuples

to the relations in Q1 and Q2 such the results of Q2 1 Q1

and Q2
––1 Q1 differ then Q2 is not contained in Q1. On the

other hand, if there is no such assignment, then it implies that

Q2 is contained in Q1. 2

This implies that, assuming P 6= NP , there is no polyno-

mial time algorithm to generate data for even one mutation

for a general SQL query. Note that NP-Hardness of the Query

Containment Problem is basically due to repeated occurrences

in the query. Versions of the problem without repeated occur-

rences are known to have polynomial time solutions.

B. Issues in Killing Mutations

In this section, we give examples illustrating the issues faced

in killing mutations.

Consider an arbitrary relational algebra tree equivalent to

the given query, and a single join mutation between a join

instructor teaches

instructor. id = teaches.id

teaches.cid=course.cid

course

Fig. 1. Query Tree for instructor 1 teaches 1 course

and a left outer join on a single node on that tree; the node

need not be the root of the expression. Let us denote the join

version of the node, W , as L 1 E where L denotes the left

input and E the right input. Our goal is to ensure that there is

a test case that can kill that mutation by producing different

results on the original query and on the mutant.

To ensure that there is a difference between the inner join

and the left outer join result, we must ensure that there is a

case where the inner join condition fails, while the left outer

join allows a result at that (internal) node of the tree. More

generally, for each mutation, we need to create a dataset that

distinguishes the mutation at a node by generating different

results for the original query and the mutation. Our goal is

ensure we have generated at least one such dataset for each

possible mutation.

Since the dataset must differentiate L 1θ E from L ––1
θ

E,

it must be the case that there is an L tuple with no matching

tuple in E. As long as the query does not have repeated

occurrences of any relation, and there are no foreign key

constraints, we can ensure the above condition by creating

datasets where one of the relations in E is empty in each of

the datasets; by doing so, for at least one dataset the result

at the node will differ based on whether an inner join or an

left outer join is used (if E has only inner joins, every dataset

above would exhibit the difference).

However, in the presence of foreign key constraints or

repeated occurrences of a relation, it may not be possible to

create a dataset with an empty relation that differentiates the

mutation. Also, repeated relational occurrences and aggrega-

tion operations may force us to have more than one tuple for

a relation. To handle this general case, we require that the

dataset satisfies

∃l∈L ¬∃e∈E θ(l, e)

i.e., there exists a tuple in L for which there does not exist any

matching tuple in E. However, in some cases it may not be

possible to create such datasets, due to the presence of foreign

key constraints (corresponding to an equivalent mutation).

Further, if the mutated node is not the root of the query tree,

the effect of the mutation may be masked by an intermediate

node. Wherever possible, we need to create a dataset where

the difference due to the mutation is propagated to the root

of the query tree, causing a change in the query result.

We illustrate these issues with the help of examples below.

Example 1: Consider the query tree given in Figure 1, and

consider a mutation that replaces instructor 1 teaches by

instructor 1
–– teaches. In the absence of foreign keys, we

can create a dataset where a teaches tuple does not have any

matching instructor tuple. To propagate this difference to the

result, the dataset must contain a course tuple that matches

the teaches tuple.

Example 2: Consider again the mutation instructor 1
––

teaches, but now with a foreign key from teaches.id to

instructor.id. Assuming teaches.id is not nullable, it is not

possible to generate data where the teaches tuple does not have

a matching instructor tuple. This mutation is equivalent to the

original query.

On the other hand, suppose that instructor is replaced with

σinstructor.dept=CS(instructor)
Then we can create an instructor tuple which matches the

teaches tuple on the foreign key reference, but which has, for

example, dept = Biology, so the selection condition is not

met. Thus, we ensure that the join operation has a right input

without any matching left input, and thus the join and right

outer join would generate different results.

Example 3: Now suppose that the inner join between instruc-

tor and teaches is mutated to a left outer join. To obtain a

difference in the query results, between the original query

and the mutant, we need a tuple in the instructor relation

which does not match with any tuple in the teaches relation.

Unfortunately, this tuple will be filtered at the root, as it will

not have any relevant teaches.courseId.

In this case, we can see that though it is possible to ensure

that there is a difference at the mutated node, this difference

will not be visible at the output of the root node. In fact, it can

be seen that this mutation is equivalent to the original query.

Example 4: Consider the query Q,

SELECT *
FROM A,B,C

WHERE A.x = B.x AND B.x = C.x;

The join condition could have equivalently been written as

A.x = B.x AND A.x = C.x. SQL programmers do not

care about join orders, and similarly they do not care about

which attributes are specifically equated; thus whether a query

condition is written as A.x = B.x AND B.x = C.x or as

A.x = B.x AND A.x = C.x, it should not affect the set of

mutations that are killed. However, consider Figure 2, where

(a) shows the first form, and (b) shows the second form; the

join order of (b) can be reordered to get (c), although the join

order of (a) cannot be reordered to (c). Suppose the intended

query was in fact (d), which is a mutation of (c). Then whether

the query was written in form (a) or (b), we should be able to

generate a dataset that kills mutation (d).

To ensure this, we map the join conditions in both forms

to a common equivalence class representation; in the above

example the equivalence class contains the attributes A.x, B.x

and C.x. Our data generation algorithms work directly on this

representation.

V. DATA GENERATION ALGORITHM

In this section, we present our algorithm for dataset gen-

eration. Our algorithm generates at most one dataset for each

attribute that participates in a join condition, and at most 3

datasets for each selection condition conjunct, and aggregation

operation and hence the number of datasets is linear in the size

of the query.

The dataset generation algorithm has two main steps:

1) The first step involves the generation of a set of constraints

that tuples in a dataset should satisfy to ensure a difference

between the results of the original query and its mutations.

These constraints are on the attributes of tuples of individual

relations involved in the query.

2) In the second step, the constraints are used to generate

datasets. We use a constraint solver (in our implementation,

CVC3 [2]) to get an assignment of values to variables repre-

senting attributes of tuples, and thereby generate a dataset.

Although the idea of using constraints to generate datasets

is similar to RQP [3], the specific constraints generated are

completely different since the goals of the two systems are

different.

A. Generating Constraints to Kill Join Mutations

The input to our algorithm is a query tree T consisting of

join nodes, selection predicates, and aggregation nodes, with

relations as leaves.

Consider a join node W of T . Let L be the left child

and E be the right child of W . Let the join predicate at

W be θ. Without loss of generality, assume that W is an

inner join, and consider its mutation to a left outer join. Then,

from our discussion in Section IV, to kill this mutation, we

need a dataset satisfying a not-exists constraint of the form

∃l∈L ¬∃e∈E θ(l, e), i.e., in that dataset there exists a tuple

in L for which there does not exist any matching tuple in E.

Now consider the mutation of W to a right outer join. Then, to

kill the mutation, we symmetrically require a dataset satisfying

∃e∈E ¬∃l∈L θ(l, e), to kill the right outer join mutant at W .

Each of these datasets will also kill the mutation of an inner

join to a full outer join.

Now assume that W is a left outer join and consider

its mutation to an inner join. Here too, a dataset satisfying

∃l∈L ¬∃e∈E θ(l, e), is sufficient to kill the mutation. Note that

in this case, the original query will have a non-empty result at

W whereas the result of the mutant will be empty. Similarly

a mutation to a right outer join can be killed with the dataset

satisfying ∃e∈E ¬∃l∈L θ(l, e). This implies that irrespective of

the type of join node, we can generate two (specific) datasets

to kill all 3 mutations of the node.

Unfortunately, it is not possible to give a constraint of the

above form directly to a constraint solver, since the constraints

must be in terms of attributes of tuples that are generated,

and not on results of an expression. Specifically, to specify

the constraints in a form that a solver such as CVC3 can

handle, we create a tuple of variables (with one variable per

attribute) corresponding to each tuple to be generated in the

dataset. Constraints such as join and selection conditions, as

well as not-exists constraints described above, have to be

translated into constraints on these variables. A key problem

is to translate such a high level requirement into constraints

on individual tuples.

A B

A.x=B.x

B.x=C.x

C

A B

A.x=B.x

A.x=C.x

C

A C

A.x=C.x

A.x=B.x

B

A C

A.x=C.x

A.x=B.x

B

a. Given Query b. Equivalent Query c. Join Reordering on (b) d. Intended Query

Fig. 2. Motivation for Equivalence Class Formation

The second problem that needs to be addressed lies in

ensuring that the difference exposed at node W is propagated

to the result of the overall query, wherever possible. To address

this problem, we ensure that all join and selection conditions

in the query, other than those that are specifically violated in

a dataset, are satisfied by adding corresponding constraints.

A third problem is that if we generate a separate dataset for

each possible L and E in each possible join tree we would

get an exponential number of datasets. Instead, we generate

only a small number of datasets and show that they kill all

join type mutations of all join trees.

A fourth problem that we need to address is repeated

relation occurrences in a query. To handle these, we assume

that each occurrence has been given a distinct name so they can

be distinguished; however, we also record the corresponding

base relation which is required for generating constraints.

Further, we create a separate CVC3 tuple for each occurrence,

in an array of tuples corresponding to the base relation. Thus,

if relation R occurs twice in a query, we create an array of 2

R tuples in CVC3, and map one occurrence to R[1] and the

other to R[2]. The same scheme also allows us to generate

more than one tuple for a particular relation occurrence, by

adding further elements to the array for R.

To enforce a condition such as ¬∃r∈R r.A = 5, we create a
constraint in CVC3 of the form ¬∃i R[i].A = 5. CVC3 does

not understand attribute names, and instead uses positional

notation, so in reality we have to use a constraint of the form

¬∃i R[i].0 = 5, if A is the very first attribute of R (or R[i].1
if A is the second attribute, and so on), but we sometimes use

the attribute name in our presentation, for simplicity.

Once constraints are generated for a particular dataset, we

invoke CVC3 to create a model satisfying the constraints. In

case the constraints are inconsistent, for example, because of a

foreign key constraint conflicting with a not-exists constraint,

the dataset will not get created; such cases arise only when

the targeted class of mutants is actually equivalent to the given

query.

B. Overall Algorithm

The overall algorithm for dataset generation is shown in

Algorithm 1. As the very first step of the algorithm, the

following preprocessing steps are carried out:

1) Build equivalence classes of the relation attributes in-

volved in equi-join conditions.

2) Drop all equi-join predicates from the list of predicates in

the query, since they are now implicitly represented by the

Algorithm 1 : Main Algorithm

1: Hashtable currentIndex; /* Maps distinct relation names

to offsets in the CVC3 array created for the corresponding

database relation */

2: procedure generateDataSet(query q)

3: preprocess query tree

4: initializeIndices() /* Initializes currentIndex

and other related structures */

5: generateDataSetForOriginalQuery()

6: killEquivalenceClasses()

7: killOtherPredicates()

8: killComparisonOperators()

9: killAggregates()

10: end procedure

equivalence classes. All other predicates, including join

predicates other than equijoin conditions, and selection

predicates, are retained.

3) Build a closure of foreign key relationships in the schema.

If we have foreign key relationships A.x → B.x and

B.x → C.x, then the closure also contains A.x → C.x.

The next step initializes the mapping from distinct relation

names to indices into the array of tuples of the corresponding

database relation.

The following step of Algorithm 1 generates data that

ensures a non-empty result for the given query (using the

procedure generateDataSetForOriginalQuery()) so that the user

sees at least one test case giving a non-empty result. Also, if

there are query mutants whose results are empty on all legal

datasets, this dataset guarantees that such mutants are killed.

We outline procedure generateDataSetForOriginalQuery()) be-

low. The rest of Algorithm 1 generates datasets to kill different

kinds of mutations, and these procedures are discussed in

subsequent sections.

The procedure generateDataSetForOriginalQuery() first cre-

ates one constraint tuple for each occurrence of a relation;

the tuple contains one variable for each attribute of the

relation. Next, the procedure adds constraints corresponding

to each of the predicates in the query, including equi-join

predicates (represented by equivalence classes), and other join

and selection predicates.

Finally, constraints corresponding to primary and foreign

key constraints in the database are added by the procedure

genDBConstraints(). To ensure primary key constraints, a

corresponding functional dependency constraint is created; for

example, if R.A is a primary key, the constraint ensures that if

for any i, j, R[i].A=R[j].A, then the remaining attribute values

are also equal3 (if we instead constrained R[i].A to not equal

any other R[j].A, the solver would not be able to create a case

where a relation contains only one tuple even though it occurs

twice in a query).

The foreign key constraints ensures that the values assigned

to the foreign key are a subset of those assigned to the primary

key. Consider a foreign key R.A referencing S.B. One way

to implement foreign key constraints is to create a constraint

of the form ∀i∃j(R[i].A = S[j].B); actually the quantifiers

range over the number of tuples created for R and S, so a

related problem is how many tuples to create for R and S.

There are cases where to kill a mutation, we require a tuple

of S.B with no referencing R.A. In this case, we need to

ensure that S has at least two tuples, one with a matching R.A

and one without any matching R.A. Therefore whenever we

create an S[i] tuple with no matching tuple in the referencing

relation R, we also create a constraint tuple S[j] for each tuple

R[k] in the referencing relation R, with a constraint forcing

S[j].B = R[k].A, to enforce the foreign key constraint. This

is in addition to tuples created to ensure the query result is not

empty, or to kill mutants. (The constraint solver may of course

make these tuples equal, and we eliminate duplicates before

creating a dataset in the database if the relation has primary

key constraints.)

Note that if there is a foreign key constraint from a relation

involved in the given query Q, referencing a relation which

is not included in Q, then we also generate test data for

the referenced relations (and so on transitively), so that the

integrity constraints of the database schema are maintained.

The genDBConstraints() procedure also adds domain con-

straints, to ensure that values for an attribute are generated

from the domain of that attribute; we can for example specify

the domain to be an integer, or enumerate data values to be

used for that domain.

The following helper functions are used in procedures that

we will see subsequently.

1) cvcMap(): This function cvcMap(rel.attr) takes a dis-

tinct relation name rel and attribute name attr, and

returns a string r[i].pos, where r is the base relation (i.e.,

rel is a renaming of r), pos is the position of attribute

attr in r (since CVC3 uses positional notation), and i

is the index in array r corresponding to rel which is

obtained from the currentIndex map. In general, we

may create more than one tuple in r for a given distinct

name rel, for example to create multiple top-level tuples.

However, at any point when cvcMap is called, there is

a current index value, which is used; this value may be

updated when more tuples are created. We omit details.

Similarly, there is an overloaded function cvcMap(Pred)

which takes a predicate P and returns the predicate with

each of its relation attributes rel.attr translated to the

CVC3 array form, by calling cvcMap(rel.attr). We omit

3For readers familiar with query containment, this constraint implements
the chase algorithm.

details.

2) generateEqConds(): The function generateEqConds(P)

generates equality constraints for all elements of equiva-

lence class P . The function simply creates a conjunction

of equality conditions, with the ith condition equating

member i and i + 1 of equivalence class P (we assume

members are ordered in some fashion). So that the

generated constraints are in CVC3 form, this function

calls cvcMap() on the elements.

C. Killing Equi-Join Condition Mutations

We next create datasets to kill join type (i.e., join/outerjoin)

mutations. Consider any node W of any join tree with children

L and E, and suppose predicate p is a conjunct of the join

condition at the node. If p is an equijoin condition, it must

equate attributes from the two children of the node. Our goal

is to ensure there is a dataset where there is a tuple from L

that does not have any matching tuple from E and vice versa.

To do so, we pick the relations participating in p, and for

each of the relations ri we ensure there is a dataset with a

tuple for each of the remaining relations in p which together

satisfy the join and selection conditions, but there is no tuple

in ri matching these other tuples on condition p. We say that

relation ri has been nullified on condition p by this dataset.

It should be clear that if we can do so for each join predicate

conjunct p and relation ri, then we would have handled all

join trees regardless of the join order.

The above task must be carried out on equivalence classes

as well as other join conditions. The task must also be applied

to selections, where it ensures that there is a dataset with no

tuple satisfying the selection condition, which can be required

to kill mutations as outlined in Example 2 in Section IV. We

consider these cases in this and subsequent sections.

Procedure killEquivalenceClass(), shown in Algorithm 2,

handles the case of equi-join conditions represented by

equivalence classes. Consider an equivalence class containing

A.x, B.x and C.x. Suppose that there is foreign key relation-

ship from A.x to B.x. Now, it is not possible to create a dataset

where there is an A.x tuple with no matching B.x value.

Hence, we do the following: whenever we need to create a

dataset where B.x is to be nullified on a join predicate linking

it to a referencing relation, we also nullify the referencing

foreign keys (A.x in the above example). Specifically, we split

the equivalence class ec into two parts: S which contains B.x

and all its referencing foreign keys, and P containing the rest

of the elements: ec − S.

We then jointly nullify the set of elements given in S, i.e.,

we ensure that there are tuples for each element in P that

match each other on the join attributes, but there is no tuple

in any relation in S that has a value matching the P tuples.

As a special case, if P is an empty set, we do not generate a

dataset as this corresponds to an equivalent mutation.

Instead of adding relations referencing B.x and then nulli-

fying them all together, we could have just skipped creating

a dataset for this case. Doing so would in fact be fine if the

given query had only inner joins. However, if the query can

Algorithm 2 : killEquivalenceClasses()

1: for each equivalence class ec do

2: Let allRelations := Set of all 〈rel, attr〉 pairs in ec

3: for each element e in allRelations do

4: conds := empty set

5: Let e := R.a

6: S := (set of elements in ec which are foreign keys

referencing R.a directly or indirectly) UNION R.a

7: P := ec - S

8: if P.isEmpty() then

9: continue

10: end if

11: conds.add(generateEqConds(P))

12: conds.add(

“NOT EXISTS i: R[i].a = ” + cvcMap(P[0]))

13: for all other equivalence classes oec do

14: conds.add(generateEqConds(oec))

15: end for

16: for each other predicate p do

17: conds.add(cvcMap(p))

18: end for

19: conds.add(genDBConstraints())

20: callSolver(conds)

21: if solution exists then

22: create a dataset from solver output

23: end if

24: end for

25: end for

include outer joins, there could be a case where we would not

kill a mutant. To see why, suppose A.x references B.x, and

the given query is (C ––1 A) 1 B. Now, if we skip nullifying

B, we may not generate a dataset that kills the mutation of

the root to a ––1; nullifying just A does not help, since that

dataset would have an B tuple matching each C tuple, but

nullifying B and A together ensures there is a dataset where

the C tuple does not have a matching B tuple.

D. Killing Join Mutations with Non-Equijoin Conditions and

Selections

Procedure killOtherPredicates() shown in Algorithm 3 gen-

erates datasets to kill join type mutations considering non-equi

join conditions, and selection predicates.

Consider a non-equi join condition involving a set of

relations S. The procedure generates several datasets each of

which nullifies one of the relations s ∈ S with respect to the

other relations.

The function killOtherPredicates() calls the function gen-

NotExists(P,R), which takes a predicate and a relation, and

generates a not-exists constraint of the form ¬∃r∈Rs.t. P .

The function genNotExists() is called on each relation R

participating in P . For example, suppose we have a join

condition B.x = C.x + 10. We would then generate two

datasets which include the following not-exists constraints

(B INT and C INT denote the range of array indices for B

Algorithm 3 : killOtherPredicates()

1: for each predicate p do

2: Let allRelations := Set of all relations in p

3: for each relation r in allRelations do

4: conds := empty set

5: conds.add(genNotExists(p, r))

6: for each equivalence class ec do

7: conds.add(generateEqConds(ec))

8: end for

9: for all other predicates p do

10: conds.add(cvcMap(p))

11: end for

12: conds.add(genDBConstraints())

13: callSolver(conds)

14: if solution exists then

15: create a dataset from solver output

16: end if

17: end for

18: end for

and C respectively, and we assume that the current index of

B and C are both 1):

1) Dataset 1 (nullifying B.x):

ASSERT NOT EXISTS (i : B_INT) :

(B[i].0 = C[1].0 + 10);

2) Dataset 2 (nullifying C.x):

ASSERT NOT EXISTS (i : C_INT) :

(B[1].0 = C[i].0 + 10);

Consider any tree T where the join condition occurs in

node W . The not-exists constraints above ensure that the

datasets differentiate between inner and outer-joins at W . The

remaining constraints added by the procedure ensure that the

concerned tuples reach the node W , and the result, if any,

of W is propagated to the root of T . To do so, we generate

constraints that ensure that all other join conditions evaluate

to true.

Similarly, if we had a selection condition on B, we would

generate a dataset where no tuple in B satisfies the selection

condition. Ensuring selection conditions are not satisfied is

required to kill join mutations in some cases where foreign

key constraints prevent nullification of referenced attributes,

as we saw earlier in Example 2 of Section IV.

E. Killing Comparison Operator Mutations

Procedure killComparisonOperators() generates constraints

to kill comparison operator mutants of selection predicate

conjuncts. The conjuncts considered are of the form A.x op

val where op can be any relational operator amongst {<, >

, =, <=, >=, <>}. As discussed in [14], three datasets are

sufficient to kill all comparison operator mutants wherein one

relation operator is mutated to another. These three datasets

correspond to the cases where op is {=, < and >} respectively.
Hence we generate datasets where A.x op val is replaced by

one of ‘A.x = val’, ‘A.x > val’ and ‘A.x < val’ respectively.

We omit the detailed algorithm due to lack of space.

Algorithm 4 : killAggregates()

1: for each aggregation operator aggop do

2: conds := empty set

3: conds.add(genDBConstraints())

4: Let G=groupby attributes, A=aggregated attribute

5: Create the following sets of constraints on three sets of

tuples, each tuple set containing one tuple variable per

relation in the input to aggop:

6: S0: For each set of tuple variables, add constraints

based on join and selection conditions in the input to the

aggregation operation. Also add a constraint to ensure

all three G values are identical.

7: S1: Constraints to ensure that the first two tuple sets

have the same A value which is 6= 0, but differ in the

value of at least one other attribute.

8: S2: Constraints to ensure that the third tuple set differs

from the first two tuple sets in the value of A.

9: S3: Constraints that ensure that attribute G of the 3

sets of tuples do not occur in any other tuples of the

corresponding relations.

10: conds.add(S0 ∧ S1 ∧ S2 ∧ S3)
11: if any of the above sets of constraints (other than S0)

are inconsistent with the database constraints, or with

the query constraints S0 then

12: drop all such inconsistent sets of constraints from

conds.

13: end if

14: if callSolver(conds) succeeds then

15: create a dataset from the solver output

16: end if /* Solver will succeed above, unless we add any

of the other constraints described in the text, which

may lead to inconsistency; in such cases the added

constraints may need to be relaxed to allow a dataset

to be generated. */

17: end for

F. Killing Unconstrained Aggregation Mutations

Procedure killAggregates(), shown in Algorithm 4, gen-

erates datasets to kill aggregate operation mutations. The

procedure assumes that the input to the aggregation has only

join/outerjoin operations and selections, and there are no

constraints on the aggregation result, i.e., the aggregation

operation is at the root of the query tree.

Consider the case where it is possible to create duplicate

values for the group by attributes as well as the aggregated

attributes (we will shortly see cases where this is not possible).

Let the aggregation be on relation R. Then D should contain

three distinct tuples for relation R (due to constraint set S1
and S2), such that all the three tuples have the same value for

the group by attributes. Constraint set S1 ensures that two of

these tuples have the same non-zero value for the aggregated

attribute, ensuring COUNT and COUNT(DISTINCT) will

return different results, and similarly for SUM and SUM

(DISTINCT), and for AVG and AVG (DISTINCT), while

constraint set S2 ensures that MIN, MAX return different

values. In addition if the domain has only value > 0, or

only values < 0, the results of each of the above aggregate

operations (other than COUNT/COUNT(DISTINCT) will be

different; otherwise we can add constraints to force all values

to be on one side of 0, as long as this is compatible with the

domain/query constraints. The idea of having two duplicate

and another distinct value is independently presented in [28].

For an aggregated attribute A, with group by attributes

G, if the database and query constraints ensure that G, A

is unique, we cannot create duplicate values for A within a

group. In this case S1 would be inconsistent with the database

constraints and S0, and would be dropped. In this case, SUM

and SUM(DISTINCT) are equivalent, as are the corresponding

versions of COUNT and AVG.

Now, it is possible that the database constraints imply

that the GROUP BY attributes form a primary key of the

input to the aggregation. In this case, constraint sets S1
and S2 would be inconsistent with the database constraints

and S0, and be dropped, allowing all three tuple sets to be

identical. In this case, each group can have only one tuple,

and mutations between all aggregation operations (except

between COUNT/COUNT(DISTINCT) and one of the other

operations) are all equivalent mutations. The dataset generated

here will kill the non-equivalent mutations.

We can add additional constraints to ensure that

COUNT/COUNT(DISTINCT) also differ from each of the

other aggregation results. Similarly, we can add a constraint

that the two distinct A values do not add up to 0, ensuring
that SUM(DISTINCT) and AVG(DISTINCT) return different

results. These may be incompatible with database and query

constraints, and the algorithm can be extended to relax these

constraints as required.

G. Completeness Results

Theorem 1: For the class of queries, with the space of join-

type and selection mutations defined in Section II, the suite of

datasets generated by our algorithm is complete. That is, the

datasets kill all non-equivalent mutations of a given query.

We omit the proof due to lack of space, but it is available in

[26]. The proof of correctness shows that if the datasets we

generate do not kill a mutation, it is an equivalent mutation.

Primary/foreign key constraints as well as operations higher

up in the tree, such as projections coupled with outerjoins, and

selections/join conditions can make mutations equivalent.

For the case of mutations to aggregate operations, our

algorithm is complete in the following subclasses of the class

defined in Section II: (a) the input to the aggregation is a

single relation, or is a chain of foreign key joins starting

from the relation containing the group by attributes G, and

ending in the relation containing the aggregated attribute

A, and (b) mutations of aggregate operations are between

MIN and MAX, COUNT and COUNT(DISTINCT), SUM

and SUM(DISTINCT), and AVG and AVG(DISTINCT). We

can modify the algorithm to additionally handle mutations

between any of MIN, MAX, SUM, SUM(DISTINCT), AVG

and AVG(DISTINCT) by adding extra constraints ensuring

that these values are different, provided the query and database

constraints allow it.

Unfortunately, for the general case of joins in the input to

the aggregation, although the constraints we generate ensure

that the join result will have three desired tuples (if feasible),

it is hard to generate constraints that will prevent other tuples

from being present in the result, without over-constraining

the result and making a solution infeasible in some cases.

The potential extra tuples may cause the results of different

aggregate operations to be the same. Although we cannot show

completeness in this case, mutations are still very likely to be

killed, since the different aggregation operation results will be

the same only in some special cases.

Assumption A7 helps ensure that the presence or absence

of a tuple in the input of an outerjoin (reflecting the effect of a

mutation in the input) will be seen in the final output. Without

this assumption, we may have to ensure that the other input

to the outerjoin is empty, so that the presence or absence of

a tuple is observable, which is not currently handled by our

algorithm. This assumption is not required for left outerjoin,

where the presence or absence of a tuple in the right input

could still be masked by the left input, but if we make the

left input empty the left outerjoin result would also be empty.

Thus such a case where our algorithm is unable to make the

difference observable at the output would correspond to an

equivalent mutation. (The case of right outerjoin is symmetric.)

H. Discussion

If a foreign key column is nullable, an alternative to nulling

the referenced attribute is to create null values for the foreign

key column. Simple subqueries which can be decorrelated

into joins can be handled by decorrelating the query and then

applying our algorithms to generate datasets. We are currently

working on techniques to directly handle subqueries.

Although our discussion is in terms of SQL, it can be

rephrased in terms of relational algebra; however, as described

earlier, we restrict the class of queries to allow aggregation

only as the top-most operation, with joins and selections

underneath.

Although solving constraints is in general NP-hard, and

even undecidable with arbitrary constraints, it is tractable in

special cases. For example, suppose relations are not repeated

in a query, and join and selection conditions are conjunctions

of equality or inequality operations on attributes (that is,

without any expressions), and there are no foreign-key con-

straints. Then, the set of constraints generated after unfolding

of quantifiers (described in Section VI-B) consist of a finite set

of variables with equality and inequality constraints relating

them to each other or to constants. It is well known that such

a set can be solved easily in polynomial time. In practise, as

shown in Section VI-C, the solver executes very fast even for

moderate sized queries without these assumptions.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Our algorithms were implemented in Java, parsing SQL

queries using the Derby parser, and generating constraints

that are given to CVC3 to generate a model satisfying the

constraints. From the model generated by CVC3, we automat-

ically create datasets. We describe some implementation issues

below, and then present results from a performance study.

A. Use of Input Database

If a database already exists, using tuples from existing

database can make the generated dataset more intuitive. We

can create constraints which force CVC3 to assign values to

tuples in the generated dataset from tuples in a given database.

The constraints are specified as follows. Corresponding to each

relation R in the query, we have two relations RI and RD

in CVC3, one representing the relation in the input database

and the other representing the relation in the dataset to be

generated. Tuples from the input database are assigned to RI .

Additionally, constraints are imposed on RD which state each

tuple of RD must equal one of the tuples in RI .

Unfortunately, if the input database does not have enough

tuples, and in cases where our procedures generate constraints

that force tuples to have values not in the input database, we

may not be able to satisfy the above input-database constraints.

In such as case CVC3 returns an “inconsistent” status, and we

can retry data generation after removing these constraints.

B. Unfolding of First Order Quantifiers

Our algorithm generates a number of constraints using first

order quantifiers FORALL, EXISTS and NOT EXISTS. We

observed that as the number of such constraints in CVC3

increased, CVC3 often took a longer time to generate datasets.

However, since these quantifiers are on bounded ranges of

integers corresponding to array ranges, we can actually unfold

them by replacing a quantified expression by a conjunction or

disjunction of expressions on each array index value.

For example, consider a foreign key constraint

∀s[i]∈S∃r[j]∈R(s[i].b = r[j].a). Let S = {s[1], . . . , s[n]}
and R = {r[1], . . . , r[m]}. Then the quantified

constraint can be replaced a collection (conjunction)

of constraints one for each si, 1 ≤ i ≤ n, where

the constraint for each si is the following disjunction:

s[i].b = r[1].a ∨ s[i].b = r[2].a ∨ . . . ∨ s[i].b = r[m].a,
Similarly a not exists constraint of the form

¬∃s[i]∈S(s[i].b = r[k].a) can be unfolded as follows

s[1].b 6= r[k].a ∧ s[2].b 6= r[k].a ∧ . . . ∧ s[n].b 6= r[k].a.
Similar unfolding can be done for primary key constraints,

and constraints to pick a subset from the input database.

C. Experimental Results

We carried out a performance study to check (a) the effec-

tiveness of our data generation algorithm in killing mutants, (b)

the time taken to generate datasets, and (c) the effect of the

optimizations we have outlined earlier. All our experiments

were performed on x86 machine with 2 GB main memory

and a 1.86 GHz processor. By default, we constrain attributes

to take domain values that are present in an input database,

although we do not force entire tuples to be from the input

database.

We ran our algorithms on queries on 1 to 7 relations. The

schema used was a slightly modified version of the University

schema of [27].

To check the effectiveness of our algorithms at killing

mutants, we generate all join orders of the given query, and

all corresponding join type mutations automatically (we ignore

the mutation to full outer join). For each dataset, for each such

mutant, we execute a database query to check if the original

query and the mutant return different results; thereby we find

which mutants have been killed by which dataset.

1) Killing Join Mutants: We first ran our code on queries

with inner joins. The queries that we considered contained 1−
6 joins, i.e., the number of relations in the query varied from

2 − 7. We repeated the above process varying the number of

foreign key constraints from 0 up to the number of constraints

originally present on relations in the query.

For the case of queries with only inner joins, the results in

terms of number of datasets generated for each query, number

of mutants killed, and time taken to generate the dataset

(including the time to generate the CVC3 constraints plus the

time taken by the CVC3 solver) are shown in Table I. We used

one query for each join size. The number of datasets shown in

the table does not include the dataset generated to satisfy the

original query. We show time taken for two cases, one with

constraints using quantifiers, and the other with the quantifiers

unfolded, as described in Section VI-B. The time taken by our

code to generate constraints for CVC3 was negligible, at about

30 ms on average.

For queries containing 2−4 relations, we manually verified

that every mutation that was not killed was in fact an equiv-

alent mutation. The number of possible (equivalent and non-

equivalent) mutants, across all join orderings for a 3 relation

join was 15 and that for a 4 relation join query was 84. For
queries containing 5 or more relations, we could not check

this exhaustively, but instead sampled a significant number of

mutations that had not been killed, and found that they were

all equivalent mutations.

Table I shows, as expected, that as the number of for-

eign keys in the schema increases, the number of equivalent

mutations increases, and correspondingly both the number

of mutations killed and the number of datasets generated

decrease.

We also tested our algorithm for queries that contained a

mix of inner and outer (left and right) joins and manually

verified the results of the same. The results obtained were

similar to those obtained for a query containing only inner

joins, and we omit details.

The timing numbers in Table I show that as the number

of relations in the query increases, the time taken by CVC3

to generate datasets increases significantly without unfolding.

The results for the same set of queries, but where the quanti-

fiers were unfolded show that unfolding has a rather dramatic

effect, reducing the time by a factor ranging between 6 and

85. Unfolding also results in better scaling with number of

relations/joins, and even with 7 relations the time taken is very

small. Interestingly, without unfolding the time taken by CVC3

Qu- #Joins #FK #Datasets #Mut- Total Time(s)
ery (#Rela- Gene- ants without with

tions) rated Killed Unfolding

1 1 (2) 0 2 2 0.430 0.040

1 1 (2) 1 1 1 0.370 0.030

2 2 (3) 0 4 6 1.680 0.140

2 2 (3) 1 3 4 1.000 0.100

2 2 (3) 2 2 3 0.990 0.060

3 3 (4) 0 6 18 3.990 0.229

3 3 (4) 1 5 13 1.729 0.190

3 3 (4) 4 3 6 1.230 0.179

4 4 (5) 0 7 122 7.190 0.279

4 4 (5) 4 4 62 2.310 0.190

5 5 (6) 0 9 450 26.800 0.570

5 5 (6) 4 6 245 2.960 0.380

6 6 (7) 0 11 1499 68.450 0.790

6 6 (7) 6 6 507 3.809 0.520

TABLE I
RESULTS FOR INNER JOIN QUERIES

Qu- #Joins #Sel- #Agg- #Data #Mut- Total Time(s)
ery ect- rega- sets ants without with

ions tions Gen. killed Unfolding

7 0 1 0 3 5 0.12 0.12

8 0 0 1 1 7 0.08 0.08

9 1 0 1 2 9 41.40 0.65

10 2 1 0 6 9 5.69 1.23

11 2 2 0 9 18 6.54 1.67

12 2 1 1 5 14 53.95 1.05

TABLE II
RESULTS FOR QUERIES WITH SELECTION/AGGREGATION

reduces significantly if foreign key constraints are added. Even

with unfolding, there is a small reduction in several cases. We

believe this is because the search space becomes smaller due

to the extra constraints.

We also did a performance comparison of the algorithm in

[14] and our algorithm. Queries where the number of joins

were varied from 1 to 6 were considered. Since the algorithm

in [14] did not handle foreign keys, we ran the algorithms on

the same schema but without foreign keys. The input database

consisted of a small sample dataset from [27]. The time taken

by the algorithm in [14] was between 0.20 to 0.34 seconds.

The time taken by the current algorithm, however, varied from

0.040s for a single join query to 0.790s for a 6 join query. The

time taken by the current algorithm increased with the number

of joins, as the constraint solver had to handle more number

of constraints. The implementation of the algorithm in [14]

did not generate synthetic data if the output of the original

query was insufficient, and hence was not always able to kill

all non-equivalent mutants, even without foreign keys.

2) Killing Comparison and Aggregation Operator Mutants:

We also tested our algorithm for comparison operator and

aggregation operator mutations on queries containing combi-

nations of comparison operators, aggregation operators and

inner joins; the results of which are given in Table II. The

queries involving joins contained exactly one foreign key. In

each case, we manually checked that the datasets generated

were complete and killed all non-equivalent mutations.

The time taken by CVC3 to generate the datasets involving

only selection predicates or aggregation operators was small

(<150 ms). However, when coupled with joins, the time

taken by CVC3 increased. This increase is considerable for

queries involving aggregation operators. The reason is that

the datasets to kill aggregation operator mutations require as-

signment of values to 3 tuples for every relation, considerably

increasing the number of constraint variables. However, on

unfolding the quantifications, the time taken reduced greatly,

by a factor of over 50 in two cases.

3) Use of Input Database: We manually added constraints

to force use of tuples from an existing database (Section

VI-A) to some of our test cases to check the effect of their

addition. We used a small subset of the values in [27] as our

input database. As expected, we saw an increase in the time

taken by CVC3 to generate the datasets, due to the additional

constraints imposed. For example, for the join query with 4

relations and no foreign keys (see Table I), the total time

taken (with unfolding of quantifiers) by CVC3 to generate the

datasets increased to 0.652 seconds with an input database size

of 5 tuples per relation, and to 1.124 seconds for 9 tuples per

relation. Our constraint solver ran into some internal problem

beyond this size, so we are unable to report numbers for larger

input databases.

VII. CONCLUSIONS AND FUTURE WORK

We have developed algorithms for generating datasets that

can kill join type and comparison-operation and aggregation-

operation mutants for a large class of queries. Our experiments

showed that the generated datasets are small, and can be easily

checked manually for reasonable sized queries.

The area of testing of data based applications is an important

one, considering the size and scope of such applications,

and we believe techniques for automated generation of test

data, tailored to killing common query mutants, will be of

great practical importance. We are currently extending our

techniques to handle more SQL features, such as the having

clause, and nested subqueries in the select, from and where

clause. We are also working on minimizing the number of

datasets generated, by pruning redundant datasets. Further,

queries are usually executed as part of an application program.

In this case issues such as data generation for an application

with multiple queries, taking care of data flow between queries

in a single interface, and code/query coverage are important

areas of future work.

Acknowledgements: We thank Bhupesh Chawda and Junaid

Mohammed for their help in coding and running some of the

experiments.

REFERENCES

[1] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient optimization of a class
of relational expressions. ACM Trans. Database Syst., 4(4):435–454,
1979.

[2] C. Barrett and C. Tinelli. CVC3. In Int’l Conf. on Computer Aided

Verification (CAV), pages 298–302, 2007.
[3] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In

ICDE, pages 506–515, 2007.

[4] C. Binnig, D. Kossmann, and E. Lo. Multi-RQP: generating test
databases for the functional testing of OLTP applications. In DBTest,
page 5, 2008.

[5] S. Brass and C. Goldberg. Semantic errors in SQL queries: a quite
complete list. In Int’l Conf. on Quality Software (QSIC), pages 250–
257, 2004.

[6] N. Bruno and S. Chaudhuri. Flexible database generators. In VLDB,
pages 1097–1107. ACM, 2005.

[7] M.-Y. Chan and S.-C. Cheung. Testing database applications with
SQL semantics. In Int’l Symp. on Cooperative Database Systems for

Advanced Applications, pages 363–374, Mar. 1999.
[8] W. K. Chan, S. C. Cheung, and T. H. Tse. Fault-based testing of database

application programs with conceptual data model. In Int’l Conf. on

Quality Software (QSIC), pages 187–196, 2005.
[9] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive

queries in relational data bases. In STOC, pages 77–90, 1977.
[10] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J.

Weyuker. An AGENDA for testing relational database applications.
Software Testing, Verification and Reliability, 14(1):17–44, 2004.

[11] C. de la Riva, M. J. Suárez-Cabal, and J. Tuya. Constraint-based
test database generation for SQL queries. In Proceedings of the 5th

Workshop on Automation of Software Test, AST ’10, pages 67–74, 2010.
[12] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: Help

for the practicing programmer. Computer, 11(4):34–41, April 1978.
[13] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for

database applications. In Int’l Symp. on Software Testing and Analysis
(ISTAA), pages 151–162, 2007.

[14] B. P. Gupta, D. Vira, and S. Sudarshan. X-Data: Generating test data
for killing SQL mutants. In ICDE, 2010. (Short Paper).

[15] K. Houkjr, K. Torp, and R. Wind. Simple and realistic data generation.
In VLDB, pages 1243–1246, 2006.

[16] C. d. l. R. Javier Tuya, M Jose Suarez-Cabal. Mutating database queries.
Information and Software Technology, 49(4):398–417, 2007.

[17] D. S. Johnson and A. C. Klug. Testing containment of conjunctive
queries under functional and inclusion dependencies. J. Comput. Syst.

Sci., 28(1):167–189, 1984.
[18] G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria

for database-driven applications. SIGSOFT Softw. Eng. Notes, 28(5):98–
107, 2003.

[19] A. C. Klug. On conjunctive queries containing inequalities. J. ACM,
35(1):146–160, 1988.

[20] P.-Å. Larson and J. Zhou. View matching for outer-join views. VLDB

J., 16(1):29–53, 2007.
[21] E. Lo, N. Cheng, and W.-K. Hon. Generating databases for query

workload. In VLDB, 2010.
[22] A. Neufeld, G. Moerkotte, and P. C. Lockemann. Generating consistent

test data: restricting the search space by a generator formula. The VLDB
Journal, 2(2):173–214, 1993.

[23] A. J. Offutt. A practical system for mutation testing: Help for the
common programmer. In ITC, pages 824–830, 1994.

[24] C. Olston, S. Chopra, and U. Srivastava. Generating example data for
dataflow programs. In SIGMOD Conference, pages 245–256, 2009.

[25] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. ACM, 27(4):633–655, 1980.

[26] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta, and D. Vira.
Generating test data for killing SQL mutants: A constraint-based ap-
proach. In Technical Report, IITB, 2010.

[27] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System
Concepts. McGraw Hill, 6th edition, 2010.

[28] J. Tuya, M. J. S. Cabal, and C. de la Riva. Full predicate coverage for
testing sql database queries. Softw. Test., Verif. Reliab., 20(3):237–288,
2010.

[29] X. Wu, C. Sanghvi, Y. Wang, and Y. Zheng. Privacy aware data
generation for testing database applications. In IDEAS, pages 317–326,
2005.

