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Abstract—How do we find patterns and anomalies, on graphs
with billions of nodes and edges, which do not fit in memory?
How to use parallelism for such terabyte-scale graphs? In this
work, we focus on inference, which often corresponds, intuitively,
to “guilt by association” scenarios. For example, if a person is
a drug-abuser, probably its friends are so, too; if a node in a
social network is of male gender, his dates are probably females.
We show how to do inference on such huge graphs through our
proposed HADOOP LINE GRAPH FIXED POINT (HA-LFP), an
efficient parallel algorithm for sparse billion-scale graphs, using
the HADOOP platform.

Our contributions include (a) the design of HA-LFP, observing
that it corresponds to a fixed point on a line graph induced
from the original graph; (b) scalability analysis, showing that
our algorithm scales up well with the number of edges, as well
as with the number of machines; and (c) experimental results on
two private, as well as two of the largest publicly available graphs
— the Web Graphs from Yahoo! (6.6 billion edges and 0.24 Tera
bytes), and the Twitter graph (3.7 billion edges and 0.13 Tera
bytes). We evaluated our algorithm using M45, one of the top 50
fastest supercomputers in the world, and we report patterns and
anomalies discovered by our algorithm, which would be invisible
otherwise.

Index Terms—HA-LFP, Belief Propagation, Hadoop, Graph
Mining

I. INTRODUCTION

Given a large graph, with millions or billions of nodes, how
can we find patterns and anomalies? One method to do that
is through “guilt by association”: if we know that nodes of
type “A” (say, males) tend to interact/date nodes of type “B”
(females), we can infer the unknown gender of a node, by
checking the gender of the majority of its contacts. Similarly,
if a node is a telemarketer, most of its contacts will be normal
phone users (and not telemarketers, or 800 numbers).

We show that the “guilt by association” approach can find
useful patterns and anomalies, in large, real graphs. The typical
way to handle this is through the so-called Belief Propagation
(BP) [1], [2]. BP has been successfully used for social network
analysis, fraud detection, computer vision, error-correcting
codes [3], [4], [5], and many other domains. In this work,
we address the research challenge of scalability — we show
how to run BP on a very large graph with billions of nodes
and edges. Our contributions are the following:

1) We observe that the Belief Propagation algorithm is es-

sentially a recursive equation on the /ine graph induced

from the original graph. Based on this observation, we
formulate the BP problem as finding a fixed point on the
line graph. We propose the LINE GRAPH FIXED POINT
(LFP) algorithm and show that it is a generalized form
of a linear algebra equation.

2) We formulate and devise an efficient algorithm for the
LFP that runs on the HADOOP platform, called HADOOP
LINE GRAPH FIXED POINT (HA-LFP).

3) We run experiments on a HADOOP cluster and analyze
the running time. We analyze the large real-world graphs
including YahooWeb and Twitter with HA-LFP, and
show patterns and anomalies.

The rest of the paper is organized as follows. Section II
discusses the related works on the Belief Propagation and
HADOOP. Section III describes our formulation of the Belief
Propagation in terms of LINE GRAPH FIXED POINT (LFP), and
Section IV provides a fast algorithm in HADOOP. Section V
shows the scalability results, and Section VI gives the results
of analyzing the large, real-world graphs. We conclude in
Section VII.

To enhance readability of this paper, we have listed the
symbols frequently used in this paper in Table 1. The reader
may want to return to this table throughout this paper for a
quick reference of their meanings.

Definition

\%4 Set of nodes in a graph

E Set of edges in a graph

n Number of nodes in a graph

l Number of edges in a graph

S Set of states

1) Prior of node i being in state s

¥i;(s’,s)  Edge potential when nodes ¢ and j being
in states s’ and s, respectively
mi;(s) Message that node i sends to node j expressing

node i’s belief of node j’s being in state s
Belief of node i being in state s

TABLE 1
TABLE OF SYMBOLS



II. BACKGROUND

The related work forms two groups, Belief Propagation(BP)
and large graph mining with MAPREDUCE/HADOOP.

A. Belief Propagation(BP)

Belief Propagation(BP) [1] is an efficient inference algo-
rithm for probabilistic graphical models. Since its proposal,
it has been widely, and successfully, used in a myriad of do-
mains to solve many important problems (some are seemingly
unrelated at the first glance). For example, BP is used in some
of the best error-correcting codes, such as the Turbo code and
low-density parity-check code, that approach channel capacity.
In computer vision, BP is among the top contenders for stereo
shape estimation and image restoration (e.g., denoising) [3].
BP has also been used for fraud detection, such as for
unearthing fraudsters and their accomplices lurking in online
auctions [4], and pinpointing misstated accounts in general
ledger data for the financial domain [5].

BP is typically used for computing the marginal distribution
for the unobserved nodes in a graph, conditional on the
observed ones; we will only discuss this version in this
paper, though with slight and trivial modifications to our
implementation, the most probable distribution of node states
can also be computed.

BP was first proposed for trees [1] and it could compute the
exact marginal distributions; it was later applied on general
graphs [6] as an approximate algorithm. When the graph
contains cycles or loops, the BP algorithm applied on it is
called loopy BP, which is also the focus of this work.

BP is generally applied on graphs whose nodes have finite
number of states (treating each node as a discrete random
variable). Gaussian BP is a variant of BP where its underlying
distributions are Gaussian [7]. Generalized BP [2] allows
messages to be passed between subgraphs, which can improve
accuracy in the computed beliefs and promote convergence.

BP is computationally-efficient; its running time scales
linearly with the number of edges in the graph. However,
for graphs with billions of nodes and edges — a focus of
our work — this cost becomes significant. There are several
recent works that investigated parallel BP on multicore shared
memory [8] and MPI [9], [10]. However, all of them assume
the graphs would fit in the main memory (of a single computer,
or a computer cluster). Our work specifically tackles the
important, and increasingly prevalent, situation where the
graphs would not fit in main memory.

B. Large Graph Mining with MapReduce and Hadoop

Large scale graph mining poses challenges in dealing with
massive amount of data. One might consider using a sampling
approach to decrease the amount of data. However, sampling
from a large graph can lead to multiple nontrivial problems that
do not have satisfactory solutions [11]. For example, which
sampling methods should we use? Should we get a random
sample of the edges, or the nodes? Both options have their
own share of problems: the former gives poor estimation of the
graph diameter, while the latter may miss high-degree nodes.

A promising alternative for large graph mining is MAPRE-
DUCE, a parallel programming framework [12] for processing
web-scale data. MAPREDUCE has two advantages: (a) The
data distribution, replication, fault-tolerance, load balancing is
handled automatically; and furthermore (b) it uses the familiar
concept of functional programming. The programmer needs to
define only two functions, a map and a reduce. The general
framework is as follows [13]: (a) the map stage reads the input
file and emits (key, value) pairs; (b) the shuffling stage sorts the
output and distributes them to reducers; (c) the reduce stage
processes the values with the same key and emits another (key,
value) pairs which become the final result.

HADOOP [14] is the open source version of MAPREDUCE.
HADOOP uses its own distributed file system HDEFS, and
provides a high-level language called PIG [15]. Due to its
excellent scalability and ease of use, HADOOP is widely used
for large scale data mining(see [16] [17] [18] [19]). Other
variants which provide advanced MAPREDUCE-like systems
include SCOPE [20], Sphere [21], and Sawzall [22].

III. PROPOSED METHOD

In this section, we describe LINE GRAPH FIXED POINT
(LFP), our proposed parallel formulation of the BP on
HADOOP. We first describe the standard BP algorithm, and
then explains our method in detail.

A. Belief Propagation

We provide a quick overview of the Belief Propagation(BP)
algorithm, which briefly explains the key steps in the algo-
rithm and their formulation; this information will help our
readers better understand how our implementation nontrivially
captures and optimizes the algorithm in latter sections. For
detailed information regarding BP, we refer our readers to the
excellent article by Yedidia et al. [2].

The BP algorithm is an efficient method to solve inference
problems for probabilistic graphical models, such as Bayesian
networks and pairwise Markov random fields (MRF). In this
work, we focus on pairwise MRF, which has seen empirical
success in many domains (e.g., Gallager codes, image restora-
tion) and is also simpler to explain; the BP algorithms for other
types of graphical models are mathematically equivalent [2].

When we view an undirected simple graph G = (V, E) as
a pairwise MRF, each node ¢ in the graph becomes a random
variable X;, which can be in a discrete number of states S.
The goal of the inference is to find the marginal distribution
P(x;) for all node 4, which is an NP-complete problem.

Fortunately, BP may be used to solve this problem approx-
imately (for MRF; exactly for trees). At a high level, BP
infers the “true” (or so-called “hidden”) distribution of a node
from some prior (or “observed”) knowledge about the node,
and from the node’s neighbors. This is accomplished through
iterative message passing between all pairs of nodes v; and
v;. We use m;;(z;) to denote the message sent from i to j,
which intuitively represents i’s opinion about j’s likelihood
of being in state x;. The prior knowledge about a node i, or
the prior probabilities of the node being in each possible state



are expressed through the node potential function ¢(x;). This
prior probability may simply be called a prior. The message-
passing procedure stops if the messages no longer change
much from one iteration to the another — or equivalently
when the nodes’ marginal probabilities are no longer changing
much. The estimated marginal probability is called belief, or
symbolically b;(z;) (= P(z;)).

In detail, messages are obtained as follows. Each edge e;;
is associated with messages m;;(x;) and mj;(x;) for each
possible state. Provided that all messages are passed in every
iteration, the order of passing can be arbitrary. Each message
vector my;; is normalized to sum to one. Normalization also
prevents numerical underflow (or zeroing-out values). Each
outgoing message from a node 7 to a neighbor j is gener-
ated based on the incoming messages from the node’s other
neighbors. Mathematically, the message-update equation is:

[Teen iy mri(wi)

Z¢1 T 1/113 Ly j) m]z(xz)

mij(x;)

(D

where N (i) is the set of nodes neighboring node ¢, and
i; (x4, ;) is called the edge potential; intuitively, it is a
function that transforms a node’s incoming messages collected
into the node’s outgoing ones. Formally, 1;; («;, 2;) equals the
probability of a node ¢ being in state x; and that its neighbor
J is in state x;.

The algorithm stops when the beliefs converge (within some
threshold, e.g., 1075), or a maximum number of iterations has
finished. Although convergence is not guaranteed theoretically
for general graphs, except for those that are trees, the algorithm
often converges in practice, where convergence is quick and
the beliefs are reasonably accurate. When the algorithm ends,
the node beliefs are determined as follows:

bi(wi) = ci(w:) [ mwi(zi) 2)

KEN ()
where c is a normalizing constant.

B. Recursive Equation

As seen in the last section, BP is computed by iteratively
running equations (1) and (2), as described in Algorithm 1.

In a shared-memory system in which random access to
memory is allowed, the implementation of Algorithm 1
might be straightforward. However, large scale algorithm
for MAPREDUCE requires careful thinking since the random
access is not allowed and the data are read sequentially within
mappers and reducers. A good news is that the two equa-
tions (1) and (2) involve only local communications between
neighboring nodes, and thus it seems hopeful to develop a
parallel algorithm for HADOOP. Naturally, one might think
of an iterative algorithm in which nodes exchange messages
to update its beliefs using an extended form of matrix-vector
multiplication [17]. In such formulation, a current belief vector
and the message matrix is combined to compute the next belief
vector. Thus, we want a recursive equation to update the belief

Algorithm 1: Belief Propagation
Input : Edge £,
node prior ¢™*1 and
propagation matrix /%%
Output: Belief matrix b"*°

1 begin

2 while m does not converge do
3 for (i,j) € E do

4 for s € S do

5

2 i(8)Vis (5" 8) Teen iy mai(s');

6 for : € V do

7 for s € S do
5 | bis) = ci(s) Tuen sy mi(s):
9 end

vector. However, such an equation cannot be derived due to
the denominator mj;(x;) in Equation (1). If it were not for
the denominator, we could get the following modified equation
where the superscript ¢ and ¢ — 1 mean the iteration number:

t 1
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Notice that the recursive equation (3) is a fake, imaginary
equation derived from the assumption that equation (1) has no
denominator. Although the recursive equation for the belief
vector cannot be acquired by this way, there is a more direct
and intuitive way to get a recursive equation. We will describe
how to get it in the next section.

C. Main Idea: Line graph Fixed Point(LFP)

How can we get the recursive equation for the BP? What
we need is a tractable recursive equation well-suited for large
scale MAPREDUCE framework. In this section, we describe
LINE GRAPH FIXED POINT (LFP), our formulation of BP in
terms of finding the fixed point of an induced graph from
the original graph. As seen in the last section, a recursive
equation to update the beliefs cannot be acquired due to the
denominator in the message update equation. Our main idea
to solve the problem is to flip the notion of the nodes and
edges in the original graph and thus use the equation (1),



without modification, as the recursive equation for updating
the ‘nodes’ in the new formulation. The ‘flipping’ means we
consider an induced graph, called the line graph, whose nodes
correspond to edges in the original graph, and the two nodes
in the induced graph are connected if the corresponding edges
in the original graph are incident. Notice that for each edge
(i,7) in the original graph, two messages need to be defined
since m;; and m; are different. Thus, the line graph should be
directed, although the original graph is undirected. Formally,
we define the ‘directed line graph’ as follows.

Definition 1 (Directed Line Graph): Given a  directed
graph G, its directed line graph L(G) is a graph such that
each node of L(G) represents an edge of G, and there is an
edge from v; to v; of L(G) if the corresponding edges e; and
e; form a length-two directed path from e; to e; in G.

For example, see Figure 1 for a graph and its directed line
graph. To convert a undirected line graph G to a directed
line graph L(G), we first convert G to a directed graph by
converting each undirected edge to two directed edges. Then,
a directed edge from v; to v; in L(G) is created if their
corresponding edges e; and e; form a directed path e; to ¢;
in G.

Now, we derive the exact recursive equation on the line
graph. Let G be the original undirected graph with n nodes
and [ edges, and L(G) be the directed line graph of G with 2]
nodes as defined by Definition 1. The (¢, j)th element L(G); ;
is defined to be 1 if the edge exist, or 0 otherwise. Let m be
a 2[-vector whose element corresponding to the edge (i, 7) in
G contains the reverse directional message m ;. The reason
of this reverse directional message will be described soon. Let
¢ be a n-vector containing priors of each node. We build a
2l-vector  as follows: if the kth element j, of ¢ corresponds
to an edge (i, 7) in G, then set ¢, to ¢(i). A standard matrix-
vector multiplication with vector addition operation on L(G),
m, @ is

m' =L(G)xm+ ¢
where
m; = Z?:l L(G)iﬁj X My + ;.

In the above equation, four operations are used to get the
result vector:

1) combine2(L(G); ;, m;): multiply L(G); ; and m;.

2) combineAll;(yi,...,Yn): sum n multiplication results

for node .

3) sumVector(y;,Vager): add ¢; to the result vqgq, of

combineAll.

4) assign(m;,oldval;, newval;): overwrite the previous

value oldval; of m; with the new value newwal; to make
m}.

Now, we generalize the operators x and + to X¢ and +¢,
respectively, so that the four operations can be any functions of
their arguments. In this generalized setting, the matrix-vector
multiplication with vector addition operation becomes

m' = L(G) Xxgm +ag ¢
where
m} = assign(m,,oldval;,

sumVector(p;,combineAll;({y; | j = l.n,
and y; =combine2(L(G); ;,m;)}))).

An important observation is that the BP equation (1) can
be represented by this generalized form of the matrix-vector
multiplication with vector addition. For simplifying the ex-
planation, we omit the edge potential 1);; since it is a tiny
information(e.g. 2 by 2 or 3 by 3 table), and the summation
over x;, both of which can be accommodated easily. Then, the
BP equation (1) is expressed by

m' = L(G)" xam+a e )
" = ChangeMessageDirection(m') (5)
where
m} = sumVector(y;,combineAll;({y; | j =

1..n, and y; =combine2(L(G)};, m;)}))

, the four operations are defined by

1) combineZ(L(G)M,mj) = L(G)l,] X my

2) combineAlli(yi, ., yn) = [1j=; ¥

3) sumVector(y;,Vaggr) = @i X Vaggr

4) assign(mg,oldval;, newval;) = newval; /val;

, and the ChangeMessageDirection function is defined by
Algorithm 2. The computed m’ of equation (5) is the updated
message which can be used as m in the next iteration. Thus,
our LINE GRAPH FIXED POINT (LFP) comprises running the
equation (4) and (5) iteratively until a fixed point, where the
message vector converges, is found.

Two details should be addressed for the complete de-
scription of our method. First, notice that L(G)T, instead
of L(G), is used in the equation (4). The reason is that a
message should aggregate other messages pointing fo itself,
which is the reverse direction of the line graph construction.
Second, what is the use of ChangeMessageDirection function?
We mentioned earlier that the bp equation (1) contained a
denominator m;j; which is the reverse directional message.
Thus, the input message vector m of equation (4) contains
the reverse directional message. However, the result message
vector m’ of equation (4) contains the forward directional
message. For the m’ to be used in the next iteration, it needs
to change the direction of the messages, and that is what
ChangeMessageDirection does.

Algorithm 2: ChangeMessageDirection

Input: message vector m of length 2/
Output: new message vector m’ of length 21
1: for k € 1..2] do
2: (4,j) « edge in G corresponding to my;
3: k' + element index of m corresponding to the edge

(j,1) in G
4 my, —my
5: end for

In sum, a generalized matrix-vector multiplication with
addition is the recursive message update equation which is run



(a) Original graph
Fig. 1.

(b) Directed graph

o,|1:|\ /\I:1I2—+5
N, ®E

(c) Directed line graph

Converting a undirected graph to a directed line graph. (a to b): replace a undirected edge with two directed edges. (b to ¢): for an edge (¢,7) in

(b), make a node (¢, j) in (c). Make a directed edge from (¢, j) to (k,) in (c) if j = k and ¢ # I. The rectangular nodes in (c) corresponds to edges in (b).

until convergence. The resulting algorithm LFP is summarized
in Algorithm 3.

Algorithm 3: LINE GRAPH FIXED POINT (LFP)

: Edge F of a undirected graph G = (V, E),
node prior ¢™*1 and
propagation matrix %%

Output: Belief matrix »"*°

Input

1 begin

2 L(G) < directed line graph from FE;

3 < line prior vector from ¢;

4 while m does not converge do

5 for s € S do

6 | m(s)"*" = L(G) xg m™" +¢ ¢;

7 for i € V do

8 for s € S do
) | bils) ¢ e6s(s) Tjencsy mii(s):
10 end

IV. FAST ALGORITHM FOR HADOOP

In this section, we first describe the naive algorithm for LFP
and propose an efficient algorithm.

A. Naive Algorithm

The formulation of BP in terms of the fixed point in the line
graph provides an intuitive way to understand the computation.
However, a naive algorithm without careful design is not
efficient for the following reason. In a naive algorithm, we
first build the matrix for the line graph L(G) and the message
vector, and apply the recursive equation on them. The problem
is that a node in G with degree d will generate d(d — 1) edges
in L(G). Since there exists many nodes with a very large
degree in real-world graphs due to the well-known power-law
degree distribution, the number of nonzero elements will grow
too large. For example, the YahooWeb graph in Section V has
several nodes with the several-million degree. As a result, the
number of nonzero elements in the corresponding line graph
is more than 1 trillion. Thus, we need an efficient algorithm
for dealing with the problem.

B. Lazy Multiplication

The main idea to solve the problem in the previous section
is not to build the line graph explicitly: instead, we do the
same computation on the original graph, or perform a ‘lazy’
multiplication. The crucial observation is that the edges in the
original graph G contain all the edge information in L(G):
each edge ¢ € E of GG is a node in L(G), and ej,es € G
are adjacent in L(G) if and only if they share the node in G.
For each edge (i,j) in G, we associate the reverse message
mj;. Then, grouping edges by source node id ¢ enables us
to get all the messages pointing to the source node. Thus,

for each node j of i’s neighbors, the updated message m;; is

computed by calculating % from the messages in

the grouped edges (incorporating priors and the propagation
matrix is described soon). Since we associate the reverse
message for each edge, the output triple (src, dst, reverse
message) is (J, %, m;;).

An issue in computing l'he%()i(?:k)l(m) is that a straight-
forward implementation requiresJ N()(N(i) — 1) multipli-
cation which is prohibitively large. However, we decrease
the number of multiplication to 2N (i) by first computing
t = Tlrenq)mri(s'), and for each j € N(i) computing
t/ mji(s’).

The only remaining pieces of the computation is to incorpo-
rate the prior ¢ and the propagation matrix . The propagation
matrix 1 is a tiny bit of information, so it can be sent to every
reducer by a variable passing functionality of HADOOP. The
prior vector ¢ can be large, since the length of the vector
can be the number of nodes in the graph. In the HADOOP
algorithm, we also group the ¢ by the node id: each node
prior is grouped together with the edges(messages) whose
source id is the node id. Algorithm 4 shows the high-level
algorithm of HADOOP LINE GRAPH FIXED POINT (HA-LFP).
Algorithm 5 shows the BP message initialization algorithm
which requires only a Map function. Algorithm 6 shows the
HADOOP algorithm for the message update which implements
the algorithm described above. After the messages converge,
the final belief is computed by Algorithm 7.

C. Analysis

We analyze the time and the space complexity of HA-LFP.
The main result is that one iteration of the message update on
the line graph has the same complexity as one matrix-vector



Algorithm 4: HADOOP LINE GRAPH FIXED POINT (HA-
LFP)

Input

: Edge F of a undirected graph G = (V, E),
node prior ¢™*1 and
propagation matrix %%

Output: Belief matrix b"*°

1 begin
2 Initialization(); // Algorithm 5
3 while m does not converge do

4 L MessageUpdate(); // Algorithm 6

5 BeliefComputation(); // Algorithm 7
6 end

Algorithm 5: HA-LFP Initialization
Input : Edge E = {(idsrc, idast) },
Set of states S = {s1,...,8p}
Output: Message Matrix M =
{(idsrca Z.ddstv mdst,src(sl); ceey mdst,src(sp))}
1 Initialization-Map (Key k, Value v);
2 begin
3 | Output((k,v), (g7, s 757));
4 end

I (K: idgye, Vi idgst)

multiplication on the original graph. In the lemmas below, M
is the number of machines.

Lemma 1 (Time Complexity of HA-LFP ): One iteration
of HA-LFP takes O(Y%Elog¥FHE) time. It could take
O(YEE) time if HADOOP uses only hashing, not sorting, on
its shuffling stage.

Proof: Notice that the number of states is usually very
small(2 or 3), thus can be considered as a constant. Assuming
uniform distribution of data to machines, the time complexity
is dominated by the MessageUpdate job. Thanks to the ‘lazy
multiplication’ described in the previous section, both Map
and Reduce takes linear time to the input. Thus, the time
complexity is O( V;}E logv—;f), which is the sorting time for
YEE records. It could be O(YSE), if HADOOP performs only
hashing without sorting on its shuffling stage. ]

A similar results holds for space complexity.

Lemma 2 (Space Complexity of HA-LFP ): HA-LFP re-
quires O(V + E) space.

Proof: The prior vector requires O(V') space, and the
message matrix requires O(2FE) space. Since the number of
edges is greater than the number of nodes, HA-LFP requires
O(V + E) space, in total. [ |

V. EXPERIMENTS
In this section, we present experimental results to answer
the following questions:
Q1 How fast is HA-LFP, compared to a single-machine disk-

based Belief Propagation algorithm?
Q2 How does HA-LFP scale up on the number of machines?

Algorithm 6: HA-LFP Message Update
: Set of states S = {s1,...,8p},
Current Message Matrix M““" =
{(sid, did, maiq,sia(51); -+ Mdid,sid(5p)) }»
Prior Matrix ® = {(id, ¢iq(s1); .-, Pia(sp))}
Propagation Matrix
Output: Updated Message Matrix M™%t =
{(idSch iddsta mdst,src(31)7 teey mdst,src(sp))}
1 MessageUpdate—Map (Key k, Value v);
2 begin
3 if (k,v) is of type M then
4 Output(k, v);
did, ma;d,sia(51), -, Mdid,sid(Sp))

Input

/I (k: sid, v:

5
6 else if (k,v) is of type @ then

7 ‘ Output(k, v); I (ke id, vi ¢ia(s1), ..., Gia(sp))
8

9

end

10 MessageUpdate—Reduce (Key k, Value
vil..rl);

11 begin
12 temps[l..p] < [1..1];
13 saved_prior <[ |;
14 HashTable<int, double[1..p]> h;
15 foreach v € v[1..r] do
16 if (k,v) is of type ® then
17 ‘ saved_prior[l..p] < v;
18
19 else if (k,v) is of type M then
20 (did, maid,sid(51), s Mdid,sid(Sp)) < Vs
21 hadd(dzd7 (mdid’sid(sl), ceey mdid,sid(sp)));
22 foreach i € 1..p do
23 L temps[i] = temps[i] X Maid,sia(S:);
24 B
25 foreach (did, (mdid,sid(Sl)a ey mdid’sid(sp))) € h do
26 outm[l..p] + 0;
27 foreach u € 1..p do
28 foreach v € 1..p do
29 outm[u] = outm[u] +
saved_prior[v] (v, w)temps[v]/Maid,sid(Sv);
30 | Output(did, (sid, outm[1], ..., outm|p]));
31 end

Q3 How does HA-LFP scale up on the number of edges?

We performed experiments in the M45 HADOOP cluster by
Yahoo!. The cluster has total 480 machines with 1.5 Petabyte
total storage and 3.5 Terabyte memory. The single-machine
experiment was done in a machine with 3 Terabyte of disk and
48 GB memory. The single-machine BP algorithm is a scaled-
up version of a memory-based BP which reads all the nodes,
not the edges, into a memory. That is, the single-machine BP



Algorithm 7: HA-LFP Belief Computation

Input : Set of states S = {s1,...,8p},
Current Message Matrix M " =
{(sid, did, maiq,sia(51), s Mdid,sid(5p)) }»
Prior Matrix ® = {(id, ¢iq(s1), ---, Pia(sp))}
Output: Belief Vector b = {(id, b;q(s1), ..., bia(sp))}

1 BeliefComputation—-Map (Key k, Value v);
2 begin

3 if (k,v) is of type M then

4 Output(k, v);

did, mgid,sia(51); -+ Mdid,sid(Sp))

/I (k: sid, v:

5
6 else if (k,v) is of type ® then

7 | Output(k, v); 11 (k: id, Vi ¢ia(81), ey Pia(sp))
8

9

end

10 BeliefComputation—-Reduce (Key k, Value
v[il..r]);

11 begin

12 b[1..p] « [1..1];

13 | foreach v € v[1..r] do

14 if (k,v) is of type @ then

15 prior[l..p| < v;

16 foreach i € 1..p do

17 L bli] = bt] x prior[il;

18

19 else if (k,v) is of type M then
20 (did, Maid,sia(81), .-, Mdid,sid(Sp)) < v;
21 foreach i € 1..p do

22 L b[’L] = b[l] X mdid’sid(si);
23

24 | Output(k, (b[1],...,b[p]));

25 end

loads only the node information into a memory, but it reads
the edges sequentially from the disk for every message update,
instead of loading all the edges into a memory once for all.
The graphs we used in our experiments at Section V and
VI are summarized in Table I ! , with the following details.

¢ YahooWeb: web pages and their links, crawled by Yahoo!
at year 2002.

o Twitter: social network(who follows whom) extracted
from Twitter, at June 2010 and Nov 2009.

o Kronecker: synthetic Kronecker graph [23] with similar
properties as real-world graphs.

e VoiceCall: phone call records(who calls whom) during
Dec. 2007 to Jan. 2008 from an anonymous phone service
provider.

1YahooWeb: released under NDA.
Twitter: http://www.twitter.com
Kronecker: [23]
VoiceCall, SMS: not public data.

o SMS: short message service records(who sends to whom)
during Dec. 2007 to Jan. 2008 from an anonymous phone
service provider.

[ Graph [ Nodes | Edges | File | Desc.
YahooWeb | 1,413 M | 6,636 M | 0.24 TB | page-page
Twitter’ 10 104 M | 3,730M | 0.13 TB | person-person
Twitter’09 63M | 1,838 M 56 GB | person-person
Kronecker 177 K 1,977 M 25 GB | synthetic
120 K 1,145M | 13.9 GB
59 K 282 M 33 GB
VoiceCall 30 M 260 M 8.4 GB | who calls whom
SMS 7™M 38 M | 629 MB | who sends to whom
TABLE I
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Fig. 3.  Running time of 1 iterations of message update in HA-LFP on

Kronecker graphs. Notice that the running time scales-up linear to the number
of edges.

A. Results

Between HA-LFP and the single-machine BP, which one
runs faster? At which point does the HA-LFP outperform
the single-machine BP? Figure 2 (a) shows the comparison
of running time of the HA-LFP and the single-machine BP.
Notice that HA-LFP outperforms the single-machine BP when
the number of machines exceeds 40. The HA-LFP requires
more machines to beat the single-machine BP due to the fixed
costs for writing and reading the intermediate results to and
from the disk. However, for larger graphs whose nodes do not
fit into a memory, HA-LFP is the only solution to the best of
our knowledge.

The next question is, how does our HA-LFP scale up on
the number of machines and edges? Figure 2 (b) shows the
scalability of HA-LFP on the number of machines. We see
that our HA-LFP scales up linearly close to the ideal scale-
up. Figure 3 shows the linear scalability of HA-LFP on the
number of edges.



1200 |

‘ THALID =
» 1000 = Single-maching-BP -—e—
@
5
£ 800 |
£
£ 600 B B
@
=
=400 | |
-
=
C 200 - h

0 L | | |
! 25 50 75 100

Number of machines
(a) Running Time

"Scale up": 1Ty
M2
]
|

e HALFP —=—
| | |deal Scale! Up
25 50 75 100

Number of machines
(b) Scale-Up with Machines

Fig. 2. Running time of HA-LFP with 10 iterations on the YahooWeb graph with 1.4 billion nodes and 6.7 billion edges. (a) Comparison of the running times
of HA-LFP and the single-machine BP. Notice that HA-LFP outperforms the single-machine BP when the number of machines exceed ~40. (b) “Scale-up”
(throughput 1/T’s) versus number of machines M, for the YahooWeb graph. Notice the near-linear scale-up close to the ideal(dotted line).

B. Discussion

Based on the experimental results, what are the advantages
of HA-LFP? In what situations should it be used? For a
small graph whose nodes and edges fit in the memory, the
single-machine BP is recommended since it runs faster. For a
medium-to-large graph whose nodes fit in the memory but the
edges do not fit in the memory, HA-LFP gives the reasonable
solution since it runs faster than the single-machine BP. For a
very large graph whose nodes do not fit in the memory, HA-
LFP is the only solution. We summarize the advantages of the
HA-LFP here:

o Scalability: HA-LFP is the only solution when the nodes
information can not fit in memory. Moreover, HA-LFP
scales up near-linearly.

e Running Time: Even for a graph whose node informa-
tion fits into a memory, HA-LFP ran 2.4 times faster.

o Fault Tolerance: HA-LFP enjoys the fault tolerance that
HADOOP provides: data are replicated, and the failed
programs due to machine errors are restarted in working
machines.

VI. ANALYSIS OF REAL GRAPHS

In this section, we analyze real-world graphs using HA-LFP
and show important findings.

A. HA-LFP on YahooWeb

Given a web graph, how can we separate the educa-
tional(‘good’) web pages from the adult(‘bad’) web pages?
Manually investigating billions of web pages would take so
much time and efforts. In this section, we show how to do it
using HA-LFP. We use a simple heuristic to set priors: the web
pages which contain ‘edu’ have high goodness prior(0.95), and
the web pages which contain either ‘sex’, ‘adult’, or ‘porno’
have low goodness prior(0.05). Among 11.8 million web pages

containing sexually explicit keywords, we keep 10% of the
pages as a validation set (goodness prior 0.5), and use the rest
90% as a training set by setting the goodness prior 0.05. Also,
among 41.7 million web pages containing ‘edu’, we randomly
sample 11.8 million web pages, so that the number equals with
that of adult pages given prior, and use 10% as a validation
set(goodness prior 0.5), and use the rest 90% as a training
set(goodness prior 0.95). The edge potential function is given
by Table III. It is given by our observation that good pages
tend to point to other good pages, while bad pages might point
to good pages, as well as bad pages, to boost their ranking in
web search engines.

[ [ Good [ Bad |

Good 1-€ €
Bad 0.5 0.5

TABLE III
EDGE POTENTIAL FOR THE YAHOOWEB. € IS SET TO 0.05 IN THE
EXPERIMENTS. GOOD PAGES POINT TO OTHER GOOD PAGES WITH HIGH
PROBABILITY. BAD PAGES POINT TO BAD PAGES, BUT ALSO GOOD PAGES
WITH EQUAL CHANCES, TO BOOST THEIR RANK IN WEB SEARCH ENGINES.

Figure 4 shows the HA-LFP scores and the number of pages
in the test set having such scores. Notice that almost all the
pages with LFP score less than 0.9 in our test data contain
adult web sites. Thus, the LFP score 0.9 can be used as a
decision boundary for adult web pages.

Figure 5 shows the HA-LFP scores vs. PageRank scores of
pages in our test set. We see that the PageRank cannot be used
for differentiating between educational and adult web pages.
However, HA-LFP can be used to spotting adult web pages,
by using the threshold 0.9.

B. HA-LFP on Twitter and VoiceCall

We run HA-LFP on Twitter and VoiceCall data which are
both social networks representing who follows whom or who
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calls whom. We define the three roles: ’celebrity’, ’spammer’,
and normal people. We define a celebrity as a person with high
in-degree (>=1000), and not-too-large out-degree(< 10 x
indegree). We define a spammer as a person with high out-
degree (>=1000), but low in-degree (< 0.1 X outdegree).
For celebrities, we set (0.8, 0.1, 0.1) for (celebrity, spammer,
normal) prior probabilities. For spammers, we set (0.1, 0.8,
0.1) for (celebrity, spammer, normal) prior probabilities. The
edge potential function is given by Table IV. It encodes our
observation that celebrities tend to follow normal persons the
most, spammers follow other spammers or normal persons,
and normal persons follow other normal persons or celebrities.

[ | Celebrity | Spammer | Normal |

Celebrity 0.1 0.05 0.85

Spammer 0.1 0.45 0.45

Normal 0.35 0.05 0.6
TABLE IV

EDGE POTENTIAL FOR THE TWITTER AND VOICECALL.

Figure 6 shows the HA-LFP scores of people in the Twitter
and VoiceCall data. There are two clusters in both of the data.
The large cluster starting from the ‘Normal’ vertex contains

high degree nodes, and the small cluster below the large cluster
contains low degree nodes.

C. Finding Roles And Anomalies

In the experiments of previous sections, we used several
classes(‘bad’ web sites, ‘spammers’, ‘celebrities’, etc.) of
nodes. The question is, how can we find classes of a given
graph? Finding out such classes is important for BP since
it helps to set reasonable priors which could lead to quick
convergence. In this section, we analyze real world graphs
using the PEGASUS package [17] and give observations
on the patterns and anomalies, which could potentially help
determine the classes. We focus on the structural properties of
graphs, including degree, connected component, and radius.

Using Degree Distributions. We first show the degree
distributions of real world graphs in Figure 7. Notice that
there are nodes with very high in or out degrees, which gives
valuable information for setting priors.

Observation 1 (High In or Out Degree Nodes): The nodes
with high in-degree can have a high prior for ‘celebrity’, and
the nodes with high out-degree but low in-degree can have a
high prior for ‘spammer’.

Most of the degree distributions in Figure 7 follow
power law or log-normal. The VoiceCall in degree distribu-
tion(Figure 7 (e)) is different from other distributions since it
contains mixture of distributions:

Observation 2 (Mixture of Lognormals in Degree Distribution):

VoiceCall in degree distributions in Figure 7 seems to
comprise two lognormal distributions shown in D1(red color)
and D2(green color).

Another observation is that there are several anomalous
spikes in the degree distributions in Figure 7 (b) and (d).

Observation 3 (Spikes in Degree Distribution): There is a
huge spike at the out degree 1200 of YahooWeb data in
Figure 7 (b). They came from online market pages from
Germany, where the pages are linked to each other and forming
link farms. Two outstanding spikes are also observed at the out
degree 20 and 2001 of Twitter data in Figure 7 (d). The reason
seems to be a hard limit in the maximum number of people
to follow.
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Finally, we study the highest degrees that are beyond
the power-law or lognormal cutoff points using rank plot.
Figure 8 shows the top 1000 highest in and out degrees and its
rank(from 1 to 1000) which we summarize in the following
observation.

Observation 4 (Tilt in Rank Plot): The out degree rank
plot of Twitter data in Figure 8 (b) follows a power law
with a single exponent. The in degree rank plot, however,
comprises two fitting lines with a tilting point around rank
240. The tilting point divides the celebrities in two groups:
super-celebrities (e.g., possibly, of international caliber) and
plain celebrities (possibly, of national or regional caliber).
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Fig. 8. Degree vs. Rank. in Twitter Jun. 2010 data. Notice the change of slope
around the tilting point in (a). The point can be used to distinguishing super-
celebrities (e.g., of international caliber) versus plain celebrities (of national
or regional caliber).

Using Connected Component Distributions. The distri-
butions of the sizes of connected components in a graph
informs us of the connectivity of the nodes (component size
vs. number of components having that size). When these
distributions are plotted over time, we may observe when
certain nodes participate in various activities — patterns such
as periodicity or anomalous deviations from such patterns can
generate important insights.

Observation 5 (Periodic Dips and Surges): Figure 9 shows
the temporal connected component distribution of the Voice-
Call (who-calls-whom) data, where each data point was
computed using one day’s worth of data (i.e., a one-day
snapshot). On every Sunday, we see a dip in the size of
the giant connected component (largest component), and an

accompanying surge in the number of connected components
for the day. This periodicity highlights the typical and rather
constant call volume during the work days, and lower volume
outside them. Equipped with this information, we may infer
that “business” phone numbers (nodes) are those that are
regularly active during work days but not weekends; we may
in turn characterize these “business” numbers as one class of
nodes in our algorithm. The sizes of the second and third
largest component oscillate about some small numbers (68
and 50 respectively), echoing previous research findings [24].
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Fig. 9. [Best Viewed In Color] Temporal connected component distributions
of the VoiceCall data, from Dec 1, 2007 to Jan 31, 2008, inclusively. Each
data point computed using one day’s worth of data (i.e., a one-day snapshot.)
GCC, 2CC, and 3CC are the first (giant), second, and third largest components
respectively. The turquoise line denotes the number of connected components.
The temporal trend may be used to set priors for HA-LFP. See the text for
details.

Using Radius Distributions. We next analyze the radius
distributions of real graphs. Radius of a node is defined to be
the 90%th percentile of all the distances to other nodes from
it. Thus, nodes with low radii can reach other nodes in a small
number of steps. Figure 10 shows the radius distributions of
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determine the classes for HA-LFP. Most distributions follow power-law or lognormal, except (e) which seems to be a mixture of two lognormal distributions.
Also notice the several spikes which suggest anomalous nodes, suspicious activities, or software limits on the number of connections.

real graphs. In contrast to the VoiceCall and the SMS data, the
Twitter data contains several anomalous nodes with long(>10)
radii.

Observation 6 (Suspicious Accounts Created By A User):
The Twitter data contain several nodes with long radii. They
form chains shown in Figure 11. Each chain seems to be
created by one user, since the times in which accounts are
created are regular.

VII. CONCLUSION

In this paper we proposed HADOOP LINE GRAPH FIXED
POINT (HA-LFP), a HADOOP algorithm for the inferences of
graphical models in billion-scale graphs. The main contribu-
tions are the followings:

o Efficiency: We show that the solution of inference prob-
lem in graphical models is a fixed point in line graph. We
propose LINE GRAPH FIXED POINT (LFP), a formulation
of BP on a line graph induced from the original graph,
and show that it is a generalized version of a linear
algebra operation. We propose HADOOP LINE GRAPH
FIXED POINT (HA-LFP), an efficient algorithm carefully
designed for LFP in HADOOP.

e Scalability: We do the experiments to compare the run-
ning time of the HA-LFP and a single-machine BP. We
also gives the scalability results and show that HA-LFP
has a near-linear scale up.

o Effectiveness: We show that our method can find inter-
esting patterns and anomalies, on some of the largest
publicly available graphs (Yahoo Web graph of 0.24 Tb,
and twitter, of 0.13 Tb).

Future research directions include algorithms for mining
based on graphical models, and tensor analysis on HADOOP

([25D.
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