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Abstract—Recently, a new buffer and storage management systems, just to name a few for example, flash translation
strategy called In-Page Logging (IPL) has been proposed for |ayers [4], indexing structures [5], [6], buffer and stoeag

database systems based on flash memory. Its main objectivets
overcome the limitations of flash memory such as erase-befr
write and asymmetric read/write speeds by storing changes ade
to a data page in a form of log records without overwriting the
data page itself. Since it maintains a series of changes matie a

data page separately from the original data page until they ee

merged, the IPL scheme provides unique opportunities to dégn

light-weight transactional support for database systemsin this

paper, we propose thetransactional |PL (TIPL) scheme that takes
advantage of the IPL log records to support multiversion real

consistency and light-weight database recovery. Due to théual

use of IPL log records, namely, for snapshot isolation and fst

recovery as well as flash-aware write optimizationTIPL achieves
transactional support for flash memory database systems tha
minimizes the space and time overhead during normal databas
processing and shortens the database recovery time.

I. INTRODUCTION

management [7], [8], query processing [9], and logging and
temporary data spaces [10], [11]. However, there has been
little (if any) work on transactional support for flash memor
based database systems. Given that the transaction thatugh
can increase by orders of magnitude by utilizing flash memory
SSDs instead of magnetic disk drives, it is imperative that t
atomicity, consistency and durability are ensured for gdar
number of concurrent transactions with as much efficiency.
The main objective of this work is to develop efficient
transactional support and fast recovery for flash memorgdas
database systems. We present a ndvahsactional In-Page
Logging (TIPL), which will be built on the In-Page Logging
(IPL) scheme as an underlying platform for buffer and sterag
management. The In-Page Logging has been developed for
flash memory database systems to overcome the limitations

Since solid state drives (SSDs) based on NAND typef flash memory such as erase-before-write and asymmetric
flash memory were introduced to the storage market a fé@ad/write speeds [7]. It attempts to address the limitatioy
years ago, great strides have been made in overcoming $t@ying changes made by a transaction in a form of physiologi
poor random write performance and increasing the bandwidt@l log records without overwriting data pages themselBgs.
and throughput of flash memory SSDs. Due mainly to theipaintaining a series of changes made to a data page separatel
superior characteristics such as high throughput for randdrom the data page kept intact until they are merged, the IPL
I/O and low energy consumption, flash memory SSDs ageheme provides us with unique opportunities for utilizihg
now considered crucial or even indispensable for buildilgg records to design an efficient transactional suppaatesgy
high performance large scale data systems. As the preligninor database systems.
experience and analysis show, flash memory SSDs outperfornMost disk-based database systems rely on traditional tech-

magnetic disk drives with respect to transaction throughpd

nigques for transactional support such as write-ahead thaggi

energy conservation for OLTP systems [1]. Therefore, aelargWAL), steal and no-force buffer management, and a multi-
scale adoption of flash memory SSDs in database machinesijpse recovery procedure [12]. In contrast, THEL scheme
and tier zero storage for data centers [3] is not surprising asupports snapshot isolation [13] for concurrent transasti

more.

with an elaborateead consistent mergagorithm by enabling

Such a successful adoption of flash memory SSDs is Gifferent versions of a data page to be reconstructed effigie

part attributed to the impressive research efforts tha¢ feen

from the unmodified data page and its log records. Further-

made in the past few years. Most of the work has been focuggdre, TIPL achieves a light-weight but robust transactional
on the efficient use of flash memory for storage and databa&sgport by eliminating the need of write-ahead logging and

by enabling fast redo-only recovery or even instant restart
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Due to the dual use of IPL log records, namely, for multiver-
sion read consistency and fast recovery as well as flasheawar



write optimization, TIPL achieves transactional support foto rapid consumption of clean blocks and shortened life span
flash memory database systems that minimizes the space ahflash memory devices. IPL avoids this problem by storing
time overhead during normal database processing and sBorienly the change (or reddpg of an update instead of writing
the database recovery time. The key contributions of thikwothe updated page in its entirety. Furthermore, multiple log
are summarized as follows. records belonging to the same data page are written together
« This paper investigates opportunities provided by in-pad@ a 0g sector in flash memory such that the log sector is
|ogg|ng and refines the strategy further to minimize (ﬁo-locateddvith the data page in the same flash memory block
eliminate the need of write-ahead logging during norm&#!so known as an erase unit). Log records are flushed to flash
database processing and undo recovery at system restgmory when the data page is evicted or the in-memory log
« In order to support snapshot isolation [1B]PL provides sector becomes full.
a mechanism that can reconstruct different versions of When a flash memory block runs out of its free log sectors,
a data page for concurrent transactions with differeHtL allocates a clean block amdergesthe data pages and log
timestamps very efficiently by utilizing the data page angectors from the current block to the new one by applying the
its log records co-located in the same flash memory blodRg records to their corresponding data pages. On a page faul
Optimization techniques are provided for read consiste@tdata page must be read along with all of its log records from
merges at the presence of long running transactions. & flash memory block, and then the latest version of the page
« TIPL provides two alternative protocoliiree phase com- has to be computed by applying its log records.
mit and redundant loggingfor committing transactions. For the past few years, we have witnessed remarkable
While the former eliminates the need of redo recovery d@provements of flash memory SSDs, in particular, for the
that a database system can reststantlyfrom a failure, random write performance. This can be attributed mainly
the latter minimizes the commit-time delay and allow¥ the advances of a software module called FTL (flash
a database system to restart with redo-only recovery Bgnslation layer) [14] that is run by an SSD controller. Mos
resorting to a redundant system-wide logging. contemporary FTLs carry out a page overwrite operation by
The rest of this paper is organized as follows. Section §f€ating & new version of the page at the granularity of pages
reviews the IPL scheme and describes its unique features thgus: €ven when only a very small fraction of a page is
can be utilized for transactional support. Section Il pras UPdated, an FTL will write a new page in its entirety incluglin
the support for snapshot isolation and the read consisterig§ Unchanged portion of the page. Evidently, the change log
merge algorithm ofTIPL. Section IV proposes novel strate P€tween the old and new versions of the page are not preserved
gies to ensure the durability of committing transactionsj gatall
presents instant restart and redo-only recovery procedare N contrast, IPL keeps track of all the changes at the trans-
fast recovery. Section VI evaluates the performance impﬁqtlonal semantic level, and te.nds to consume flash memory
of TIPL. Lastly, Section VII surveys the related work, anduch less than the FTLs, which are developed for general

Section VIII summarizes the contributions of this paper.  PUrpose applications and are oblivious to the transadtiona
database semantics. Since the unit of write by IPL is a sector

[I. MOTIVATIONS which is typically one fourth of a page, the benefit of IPL

Most existing database systems maintain a single copyWith respect to write amplification may diminish if sector
each data object in disk drives and perform update opesatiotite is no longer supported by flash memory chips (for
in place The previous versions of a data object are often kepxample, MLC chips). However, SLC flash memory chips are
in a separate data space called rollback segment or versipected to continue to support sector writes, and engerpri
store, if they are required for snapshot isolation or matsion OLTP database servers prefers to use SLC-based SSDs for
concurrency control. On the other hand, the In-Page Loggifgrformance concerns. For this reason, the effectiveness o
(IPL) scheme, which has been proposed to optimize the wrlgL will remain valid for enterprise class databases.
performance of flash memory devices [7], sto_res changes m%j.eTowar ds Transactional [PL
to a data page in a form of log records leaving the data page
itself intact until the log records are merged to the dataepag Since it maintains a series of changes made to a data page
This section will review the fundamentals of the IPL schemé€eparately from the original data page kept intact until the
discusses its unique features that can be utilized to eeal@®€ merged, the IPL scheme provides unique opportunities to
transactional support, and identifies tasks to fulfill regai design light-weight transactional support for databaseesys.
for developingTIPL as a light-weight and robust transactiorelow we describe the IPL features we can take advantage of

management strategy. to provide transactional support, and we propose how they
should be extended or redefined to real@®L as a fully
A. Fundamentals of IPL functioning, light-weight transaction management system

Due to the erase-before-write limitation of flash memory, Conflicting Order Preservedin general, log records must
even a single record update may require an entire paaecurately reflect the order in which update operations are
containing the record to be copied to a clean page. This is caxtually executed. This is because, when a database system
of the main causes of slow random writes, and this also leagstarts from a failure, the recovery system will re-execut



some of the updates that happened before the failure. HoweveFast Recovery: Regardless of support for multiversion
it is not necessary that the log records reflect the orderlof abncurrency control, most conventional disk-based dastaba
updates. The order needs to be maintained only forcttre systems adopt a multi-phase recovery procedure that tipica
flicting ones, for which relative order makes a difference [15includes a redo phase followed by a undo phasg,(the

Apparently, as log records are scattered across numerdfJES recovery algorithm [12]). With the steal policy for
flash memory blocks, there is no way IPL maintains a globglirty page propagation, a database may contain updates made
ordering for the entire log records. Nonetheless, the IFly uncommitted transactions at any moment during normal
log records can still be used to recover a database systeffine processing. Therefore, when a database systemis abo
consistently from a failure. This is because every pair & restart from a failure, undo recovery must be performed
conflicting updates must have been performed on the safferoll back the uncommitted updates. These uncommitted
data page, and all the update logs belonging to the same d#idates can be rolled back by the undo log records stored
page are recorded in the same log sector in chronologicatoréh the system log or by the old versions stored in the rollback
as they are produced. segments if they are available.

On the other hand, even with the steal policy, the IPL
weme avoids propagating a dirty page itself immediately

records instead of propagating the updated page in itssgntir ©© the database by writing only the change logs into a
By the unique way of propagating changes, IPL inherentﬁp”eSpond'ng log sgctor in flash memory. This implies that
maintains multiple versions of a data page in a space efficidfe can get away with the undo recovery as long as those
manner. By controlling which versions are maintained fowhotUncommitted change logs are not merged to their data pages

long, those versions of a data page can be used for the purpalll the corresponding transactions commit. With such an
of snapshot isolation and multiversion concurrency cdntrlaborate merge mechanism in place, it would be unnecessary
for concurrent transactions. Note that most existing datab © €xplicitly perform undo actions for incomplete transas
servers store not only the information about old data pages3t the time of a failure. Instead, any necessary undo action
the rollback segment but also the undo and redo imagesC9tld be performed implicitly as part of online database
changed data in the system log for the purpose of recové{Pcessing by preventing any uncommitted change logs from
and multiversion concurrency control [16]. In contrabtPL  P€ing merged to the data pages [7]. Section IV presents two

does not store redundant log information, unless redund&QVe! commit protocols for theIPL scheme and recovery
logging is explicitly requested to minimize commit-timelae procedures that restarts the system instantly or with cedpr

of transactions. (See Section IV-C.) recovery.
The exact scope of versions to maintain for a data page I1l. M ULTIVERSION READ CONSISTENCY

must be determined by the life spans of transactions that_l_ . .
. . ; he multiversion storage model has been adopted by many
access the data page, and this mechanism will have to be

incorporated into th&'IPL scheme. Full details of th&lPL commercial and open-source database servegs Oracle,

: . . . . SQL Server, PostgreSQL) to support snapshot isolation [13]
scheme regarding version reconstruction and multiversad . )
. . . . . and multiversion concurrency control [18]. One of the key
consistency will be given in Section III.

. ] ingredients for the snapshot isolation and multiversion-co
No WAL Protocol: Write-Ahead Logging (WAL), com- cyrrency control is to provide concurrent transactionsain
bined with force-write of the log tail at commit time, isingividual snapshot of database as of the start time of the
the fundamental rule that ensures the last committed valygnsactions. The snapshot of database is essentially af set
of each data item is always available in stable storage [1ghecific versions of data determined by the start time of a
When a data page is updated and propagated under the {Rlnsaction. While an update operation is always perforamed
scheme, however, only the redo log records are written s current version (subject to a write lock availabilitihe
stable storage.g, flash memory) leaving the data page intadnapshots of database are used to allow concurrent tragrsact
in the database. This may make it unnecessary to follow the reaqd different versions of a data object without blocking
traditional WAL protocol as an undo rule. A database systegych other.
could be relieved of the burden of writing undo log records \jost database servers maintain multiple versions by gjorin
prior to writing the data page to stable storage. Withouhsugne cyrrent version of a data object in the data page andgtori
overhead as synchronizing the propagation of logs and dg{@ previous versions separately in a data space calldzhobll
(e.9, inter-process communication [17]), the database systg@yment (or version store). When a transaction attempéstb r
would be more efficient during normal database processing, gata object, it must be ensured that the transaction reads
Note that the redo log records will eventually be merged t@e correct version of the data object. The correct version is
their corresponding data pages, and they cannot be rolled bgefined as the most recent version whose timestamp precedes
once merged. Therefore, the redo records to be merged must (start) timestamp of the transaction. The correct varsi
be determined carefully by the status of correspondingstrartan be obtained by reconstructing a data page from the ¢urren
actions. Again, this mechanism will have to be incorporatefhta page and the old data stored in the rollback segment or
into thetransactional IPLscheme. version store. This process of version reconstruction ney b

Efficient Version ReconstructioniPL accumulates the
changes made to a data page in concise physiological



costly if it requires accessing versions scattered acrgxal may have beescatteredphysically across multiple rollback
rollback segments [11]. segments, because a transaction is typically assigneaviis o

In this section, we describe how ti@PL scheme utilizes rollback segment. The obvious drawback is that the cost of
redo log records to reconstruct versions efficiently, ars@nt reconstructing a correct version could be high if a long ichai
an elaborate merge algorithm to support multiversion readl pointers had to be chased, causing as many random /O
consistency as well as its optimization techniques for lor@perations as the pointers to chase.
running transactions. The novelty of our approach is thatin contrast, TIPL stores log records in the same flash
the IPL log records are used to serve the dual purposesmory block where their corresponding data pages are
namely, (1) multiversion and recovery support and (2) writstored. Furthermore, the log records belonging to the same
optimization in a seamlessly integrated way. data page are clustered in one or more log sectors in the
block. Therefore, even for a data object frequently updaied
many transactions, the correct version would be recorstiluc

TIPL stores multiple versions of a data object but as @uickly by reading only a few log sectors sequentially from
combination of a data page current as of a certain poitie same flash memory block.
in past time and a series of redo log records. We assume )
that each IPL log record is associated with a timestamp aRd Read Consistent Merge
stores the id of a transaction that creates the log recordlf a flash memory block runs out of free log sectors, a merge
The timestamps are globally unique and ever-increasingy Thoperation is triggered by the IPL storage manager. When it
reflect the chronological ordering of update operationdiagp occurs, for each of the data pages stored in the block, all the
to the database. In this regard, the timestamps are sinoilarcbrresponding log records are applied to the page to compute
the log sequence numbers (LSNs) used by traditional regovéhe latest version. All the newly computed data pages am the
systems, but different in that the same timestamp generatinoved to a clean flash memory block allocated by the IPL
mechanism is used to provide timestamps for transactionssasrage manager, and the old flash memory block is garbage-
well as log records. collected and erased.

When a transactiorf; with timestampts(Z;) attempts to  If the merge operations are requested without consideratio
read a data page TIPL reconstructs the version pfcurrent of the status of transactions, the database system mawytall i
as ofts(Z;). This is initiated by fetching the copy g¢f from an unrecoverable state [7]. Suppose a log record is abowt to b
flash memory (unless the correct versiorpa$ already cached merged to a data page, and the transactipthat has created
in buffer) and collecting all its committed log records fréhe the log record is still active. If the transacti@i gets aborted
log sectors in buffer and flash memory. Then, while inspectiror the entire system crashes after the merge, then there is no
each of the collected log recordén chronological orderj is way the change made b¥; is rolled back. To address this
applied top if ts(l) < ts(Z3). In other words, all the committed concern, aselective mergealgorithm has been proposed [7].
log records ofp whose timestamps are older thta{l;) are The selective merge guarantees recoverability from abante
applied top to reconstruct the correct version pffor T;. incomplete transactions, simply by keeping log recordsfro

In the version reconstruction steps described above, ithieing applied to data pages if the corresponding transectio
implicitly assumed that the copy qf currently available in are still active at the time of merge.
the database is not newer th&s(Z;). If the copy is newer  The selective merge algorithm, however, does not support
than ts(Z;), that is, it contains any data object updated at the multiversion read consistency for concurrent transast
time later thants(Z;), the correct version op for 7; cannot because it allows all committed change logs to be merged re-
be reconstructed, becaus#PL does not maintain any undogardless of the timestamps of change logs and the timestamps
log record. Section IlI-B describes how this problem of Igeinof active transactions. To ensure that read consistencyells w
unable to reconstruct required versions can be prevented. as recoverability is supported, a log recércan be merged to

Cost of Version Reconstructiorin most existing databaseits data page, only if (1) the transaction that created the log
servers with multiversion support, the current version data record! has committed, and (2) there is no active transaction
object is stored in the data page, and the previous versibngimat will access the version pfcreated by the log recoid We
the data object are stored separately in rollback segmentgpoopose a new merge algorithm calleghd consistent merge
version stores. The current version stored in the data pagedeal with the requirements. As is presented in Algorithm 1
contains a pointer to its previous version, which may in turthe read consistent merge algorithm satisfies the condi#ipn
contain a pointer to even earlier version of the data objetly allowing a log record to be merged only if its timestamp
To reconstruct the correct version of a data pagéor a is less than the timestamp of the oldest transaction amdng al
transactionT; with timestampts(7;), the chains of pointers active ones (denoted lg(7,i4e5:)). That is, a log recordin a
may have to be followed (in reverse chronological ordeblock will be applied to its data pageif ts(l) < ts(Toidest)-
starting from the current version until the correct versiorOtherwise, the log recortwill be carried over to a new block
of all data objectsi(e., those with the latest timestamp lessvithout being merged t@.
than ts(7;)) are found. If there exists a data object that Note that the read consistent merge algorithm is more
has been updated by multiple transactions, then its vessi@monservative than the selective merge algorithm in that the

A. Version Reconstruction



Algorithm 1: Read Consistent Merge

I I
| — T | Tcomp/eted
Input:  B,: an old flash block to merge | i ._I_> -
Output: B: a new flash block with merged content | | | active
procedure Merge(B,, B) —— : L Tiong
1: allocate a free flash block ! ' ! ,
2. if carry-over-fraction> 7 then ! ! ! oldest
3: attachB to B, as an overflow log J \L )
4: returnB, as B ts(l,) ts(ly) ts(l3)

endif
. for each committed log recordin B, do
6: if ts() < ts(Tp14es¢) then
7 apply to its data page
endif
endfor
8: write all data pages t®
9: compact and write all remaining log records o
10: erase and fred,

Fig. 1. A Scenario with a Long-Running Transaction

(92

read consistent merge algorithm,Tif,,,, were not excluded.
Furthermore, none of the three log recotdds andis would

be merged to their data pages, because their timestampd woul
be all newer than the timestamp®,,,,. With T3,,,4 excluded,
however, the timestamp df’,, ., will be used as the value

of tS(Toi4est) iNstead ofT},,4, and the log recordg andi,

can be merged to their data pages. Hér,. ., denotes the
oldest among the active transactions excludiiyg, .

number of log records merged by the read consistent merge

is always no more than the number of log records that would

be merged by the selective merge. This may have a negative

impact on the overall performance daflPL with respect Backward

to the utilization of flash memory and the cost of version o Hnk B
reconstruction. If there exists a long running transagctiban Po p
the tlmestamp of the oldest active transactite{/;qes:) in Version Creation

Algorithm (1), may become too old to merge a sufficient | ____ | for 7ong  Lo—o_
number of log records in the block. Then, the log sectors will P’s

be wasted because too many log records have to be carrie Log Sector

over to a clean flash memory block, and the cost of version B B
reconstruction will increase because more log records tave ?

be applied to compute a correct version for a transaction. Fig. 2. Backward Link between the Old and New Blocks
C. Optimization of Read Consistent Merge This optimization strategy will merge log records more

One way of dealing with the performance concern caused Bggressively, because any log record whose timestampes old
a long running transaction is to define the notion of databa®@n 7., can be merged. However, when a log recérd
snapshonharrowly for each transaction. That is, the snapshd® merged to a data page if the following conditions are
is taken not for the entire database but only for the set satisfied:
relational tables accessed by a transaction, assuminght®at (1) ts(Tjong) < ts(1) < ts(T)4es) @nd
information is available from the query compiler or optietiz  (2) p is accessed b§}on,,

If that is the case, the timestamp(louacs) N Line 6 of  then the read consistent merge algorithm should not erase an
Algorithm 1 can be refined to free the old block (denoted h#, in Algorithm 1) but instead
insert a backward link from the new block (denoted BY
to the old one B,). (See Figure 2 for an illustration.) Then,
Since this timestamp is no smaller (or older) thaf,;4.st), @ correct version of the data pagecan be reconstructed for
more log records are expected to be merged to data pa@gs, from the old version op and its redo log records stored
without being carried over to a clean flash memory block. in B,. The old blockB, can be erased and freed afgy,,,
Another way of dealing with a long running transaction (saterminates.
Tiong) is to exclude the transaction from consideration when In effect, this strategy allows to provide database snagsho
the read consistent merge is executed. In other words, the veor different transactions from different sets of versidrata
of ts(T,14e5¢) N Line 6 is determined by all active transactionpages. Consequently, at the cost of additional space to keep
excludingZiong. old flash memory blockse(g, B, for Tj.,), the cost of
In an example scenario shown in Figure 1, the timestamprsion reconstruction will remain nominal for all the rest
of Tiong Would be used as the value td(Z54.5¢:) by the of transactions without giving up the read consistency for a

min{ts(T;) | active T; accesses l's table}.



long running transaction. It is worth noting that this skt sectors are saved in flash memory. Since the original data
can also be used to support time travel by deferring garbaggges remain intact in the databad§dPL can roll back

collection for old flash memory blocks lik8,. uncommitted updates simply by eliminating (or ignoringgriin
. from flash memory log sectors by the read consistent merge
D. Atomicity of Merge (shown in Algorithm 1). In summary, thougHPL adopts the

The read consistent merge plays a key role in achievisgeal policy, the net effect is equivalent to that of the no-
snapshot isolation and recovery under fi€L scheme. A steal policy. Hence the undo recovery becomes completely
merge operation involves copying data pages from an old flashnecessary under thHdPL scheme, as long as it is ensured
memory block to a newly allocated clean block. Since that uncommitted log records are prevented from being nderge
size of a flash memory block is typically much larger thato data pages. Even though uncommitted log records stored in
a page €.g, typically 256KB for a block and 4KB for a flash memory will survive a failure, they will be eventually
page), a merge operation will take long and may be prodécarded by read consistent merge operations during horma
to be interrupted by a system failure. Obviously, withowg thonline processing resumed after the failure.
atomicity of merge i(e., all or nothing), TIPL would not Individual Rollback: The only exception to theo undo
guarantee the consistency of database. recoveryrule by TIPL is rolling back transactions that are

Fortunately, it is relatively simple to ensure the atorgicitaborted during normal online processimgq, by a deadlock).
of merge. In most flash memory storage devices, there When a transactiod” is aborted, all the locks held by’

a software layer called flash translation layer (FTL) thaire usually released immediately making all the uncomnuhitte

maintains a mapping table for flash memory blocks for logicathanges visible unless they are rolled back. Thus, all the

to-physical address mappinglPL can guarantee the atomicityuncommitted changes made Bymust be rolled back before

of merge by allowing the physical address of a new blBcto 7' is removed from the list of active transactions (or the

replace the physical address of an old bld@kin the mapping transaction table).

table, only after copying pages fromB, to B is finished In addition to the standard steps taken such as adding an

successfully. In fact, this is similar to the shadow pagingbort record forT' to the system log, there are three things

mechanism proposed for atomic page propagation [19].  that should be taken care of for an aborted transaction:

(1) uncommitted updates reflected in the cached images of
data pages,

A system failure is inevitable in large scale database sgerve (2) uncommitted updates still kept in in-memory log sectors
When it happens, the system must be recovered to a consistent and
state such that the atomicity and durability of transactiare  (3) uncommitted updates already flushed in flash memory
ensured. In this section, we describe h@WPL eliminates log sectors.
the need of undo recovery except for transactions abortedr an aborted transactidh, if there is a cached image of
during normal online processing. We then propose two nowghy data page containirifs uncommitted updates, the cached
strategies calledhree phase commind redundant logging image will be restored to a consistent state by reversing the
to ensure multiversion read consistency and durability effects of the uncommitted updates. The uncommitted update
transactions at low cost. are recorded in log records that may reside in the buffer pool

or flash memory. Therefore, this process may involve reading
A. No Undo Recovery log records from flash memory.

Thestealis a buffer management policy commonly adopted As for the steps (2) and (3),4f’s log records are still kept in
by most database servers. Under this policy, a dirty pagedramemory, they will be removed from the in-memory log sectors.
may be stolen from the buffer and written to the database ev@ncontrast, forI”s log records that have already been flushed
before the transactions commit that have updated the pageflash memoryTIPL does not perform any explicit operation
Consequently, when a database system restarts from aefailtw remove them from the log sectors in flash memory. Instead,
undo recovery must be carried out to roll back the chang®#PL leaves them in flash memory until they are discarded by
made by incomplete transactions. the read consistent merge algorithm, when the flash memory

The TIPL scheme also adopts the steal policy and allowsiocks containing the log records are merged.
any in-memory log sector to be flushed to flash memory beforeOne might be concerned that these uncommitted updates
transactions that have added log records to the log seatould present inconsistent database snapshots for otres-tr
commit. It usually happens when an in-memory log sectactions, during the period while uncommitted updates ramai
becomes full or its corresponding data page is evicted framflash memory. HoweveffIPL still guarantees multiversion
the buffer pool. This implies that, when it happens, soméeftread consistency even at the presence of the uncommitted
changes made by an uncommitted transaction may be writigodates in flash memory. This is becali$eL can reconstruct
to stable storage. correct versions from original data pages and committed up-

A major departure from the conventional way of propadates only, as described in Section IlI-A. In other wordssth
gating updates is, however, the fact tAdPL leaves original uncommitted updates remaimvisible to other concurrent
data pages intact in the database even after in-memory tognsactions until they are removed permanently.

IV. RECOVERY



One might wonder if the benefits afio undo restart a transactiorl’ is ready to commit, the three phase commit
might be canceled by existing techniques such as defermdcedure is carried out as follows.
modifications that have been already adopted by commercial
DBMSs. For instance, when the buffer pool is large enough,
uncommitted dirty pages do not have to be stolen. Thus, undo sector for eac_h data page updatedy
log records are kept in memory and undo recovery can be Force out the in-memory log septorof each data page
avoided. The performance gain by deferred modificationatoul updated byl to the corresponding flash memory log
be significant in practice. However, this deferred modifarat sector. _
technique alone does not obviate the need of undo recovery 3+ Write aconmi t log record to the system log.

altogether, especially when aggressive writes are desioed Theent rust is a new type of log records that helps decide

instance, as required by incremental checkpointing fot fagyickly which log records are committed or not. An entrust

recovery [20]. This is the case when flash memory basggly record contains only two pieces of information, namely,
DBMSs can benefit from th&lPL's no undo strategy. the type identifier of a log record and the identifier of a

committing transaction. Therefore, the additional ovarhe
B. Three Phase Commit for adding entrust log records is expected to be negligible.

. . The conmmi t log record in Phase Three is no different from
The no-force is another buffer management policy com- . .
. the commit record used by a conventional recovery system.
monly adopted by most database servers to avoid excessive A : ) . :
o : 0 transaction is considered committed until the commit log

I/0O for committing transactiong.IPL also adopts the no-force

. . L record is written to the system log. Once a commit log record
policy. When a transaction commits, in-memory log sectors

are forced out to flash memory if they contain at least o IS successfully written, the entry @f can be removed from

log record of a committing transaction. This is equivalent tr%ﬁe transaction table.

flushing the log tail to a stable storage when a transaction!nere is still a remaining concern about recoverabilitpSu
commits in the conventional database systems, excepttbatR0S€ the commit procedure has been initiated for a tramsacti
log records to be forced out may come from one or more buffér Then, for the data pages updatedByentrust log records
frames in the pool instead of a single system-wide log tail. e added to their in-memory log sectors, which are then
expedite commit-time force-out operations, each trafmact forced out to one or more flash memory blocks that store the
needs to keep track of dirty pages updated by itself. data pages. Since tHéPL storage manager can initiate a read

However, there is a potential drawback in this approaaqnsstent merge independently of the commit procedure, an
with respect to propagating changes to the database. NBtdhose flash memory blocks can be merged before a commit
that there are two separate processes involved in the upd&gPrd forZ’ is written to the system log. What happens if the
propagation: (1) copying change logs from the in-memory |0'§/stem crashes _at this moment, that is, after one of the flash
sectors to flash memory blocks, and (2) merging the chan@§Mory blocks is merged but before a commit recordfor
logs stored in the flash memory log sectors to the data pageif/fitten to the system log? As the commit record is not yet
the flash memory block. (The merge operations are performiftten to the system logl" is not considered committed and
by the read consistent merge algorithm shown in Algorithm 1N€ changes made By must be rolled back. However, it will
Note also that these two types of operations are performigl impossible to roll all of them back, because some of the
independently from each other. Suppose a read consistehgndes have already been merged to the data pages in the
merge is initiated for a flash memory block containing a lofi2sh memory block.
record of a transactioff’. If 7' had committed and its entry Fortunately, this potentially problematic scenario can be
had already been removed from the transaction table, theen gievented with ease by disallowing afiys log record to be
read consistent merge algorithm could not tell the statuf ofmerged between the second and third phases of the commit
and which log records are committed. procedure. Specifically, a log recaréh Line 5 of Algorithm 1

One remedy for this problem is to keep the transaction stai§sconsidered committednly if
even for committed ones in the transaction table until all of
their log records are merged to data pages in flash memory.
Since there is no way to upperbound the time gap between the
two types of operations without creating a superfluous der
pendency between them, the status of committed transaction
may have to be maintained in the transaction table for a loighen a read consistent merge is initiated for a block, the
while. The size of a transaction table may grow quickly asierge algorithm can tell that a commit procedure has already
the transaction throughput increases, and this may becomstated for a transactiof, if an entrust log record witl™'s
non-trivial burden on a large scale OLTP system. id is found in a log sector of the block. Then, it looks up the

We propose ghree phase commjgrocedure for committing transaction table and determines thais committed indeed
transactions to address this concern. This procedure hasifafi is not in the transaction table any longer. Otherwigas
additional phase that precedes the IPL no-force policy. Wheonsidered still active and@’s log records will not be merged.

Add anent r ust log record to the in-memory log

(1) an entrust log record havings transaction id is
found in the log sectorand

(2) the transaction id of is not found in the transaction
table.
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C. Redundant Logging stable storage butithoutforcing out any in-memory
As will be discussed in Section V, the three phase commit log sector to flash memory. (See the bottom half of
can make the logic for a system restart extremely simple by Figure 3.)

eliminating the redo recovery altogether. However, it magur - The page- check is a new type of log records that helps
additional I/O operations during the normal online proaegs reconstruct in-memory log sectors at the system restag. tim
Whenever a transaction commits, one or more in-memory 1ég will be described in detail in Section V, a page-check log
sectors must be forced out to flash memory if they contaigcord plays a role similar tincremental checkpointinfl 5]
at least one log record of the committing transaction. Th@@ per-page basis. It helps avoid repeating unnecessary 1/O
procedure will increase the likelihood of those in-memarny | operations at the system restart, particularly for hot gates,
sectors to be flushegrematurelyto flash memory before they because their in-memory log sectors tend to be filled up and
become full of log records. For a transaction that updatedlashed to flash memory blocks frequently.
large number of data pages, the commit time delay will grow A page-check log record contains the id of a data page
considerably because many in-memory log sectors need tovidgose in-memory log sector is being flushed and a window
flushed. Besides, due to the premature force-out of in-mgmaf timestamps of all log records stored in the log sector. The
log sectors, the flash memory blocks will be consumed atichestamp window is not essential for recovery but added to
erased more frequently, which will in turn add to the overathe page-check log record as an additional fail-safe measur
cost of transaction processing and shorten the life spacefaf matching an in-memory log sector with its page-check log
flash memory drives. record. Note that whether an update log record is considered
To address this limitation, we propose an alternative to tikemmitted or not is still determined the same way, by the two
three phase commit policy. In order to smooth out potentialconditions given in Section IV-B.
spiky commit time cost, the alternative policy attempts & b If the system crashes after a transactibncommits, the
more truthful to the notion oho force by reinstating the only things that are guaranteed to survive the crash are the
conventional system-wide redo logging in addition to the idog records written to the system log. Sin€és in-memory
page logging, as shown in Figure 3. For the reason, we chlf) sectors are not forced out wh&hcommits, some ofl’s
this new policy aredundant logging redo log records created BMPL may be lost. This implies
Under the redundant logging policy, there will be three typaat adoption of the redundant logging policy necessittites
of logging activities that occur in the system log during theedo recovery at the system restart.
normal online processing.

A: When a transaction updates a data object, a redo log
record is added to the system log (tail) in addition When a database system restarts from a failure, the system
to adding one to the in-memory log sector. (See thexecutes typically a multi-phase recovery procedure irotal
top half of Figure 3.) ensure the atomicity and durability of transactions. Inegah

B: When an in-memory log sector is flushed to flash must redo the effects of committed transactions that imate
memory, apage- check log record is added to the reached the persistent storage before the crash, and uado th
system log (tail). effects of incomplete transactions that have already eshtife

C: When a transactiol’ commits, anent rust log persistent storage before the crash. HoweverJtR& scheme
record is added to the in-memory log sector for eaatan make the restart procedure a great deal simpler than the
data page updated B¥, and acommi t log record conventional recovery systems. This section describes &ow
for T is added to the system log. Then, the systedmatabase system can restagtantly after a crash or recover
log tail including the commit record is flushed to ay an efficientredo-onlyrecovery procedure.

V. SYSTEM RESTART



A. Instant Restart at a high level, the redo-only recovery procedure proposed

As described in Section IV-A, except for transaction® this section is quite similar to the first two phases of the
aborted during normal database processifigL eliminates ARIES recovery algorithm. We assume that a transactiortabl
the need of rolling back any changes made by incomple@@d a d|_rty page table are ma|nta|r_1ed during normal database
transactions. Consequently, the system restart procexure Processing and they are force-written to the system log by
dispense with the undo recovery altogether. indirect checkpointing.

If the three phase commit policy presented in Section Iv-B The first analysis phase of the proposed redo-only recovery
is adopted for committing transactions, the system restéftidentical to that of the ARIES. It starts the analysis ghas
procedure will be simplified even further. A transaction i8Y fetching the transaction table and the dirty page talolefr
considered committed only when a commit log record the latest checkpointing record stored in the system log. It
written to the system log. For any transacti@hthat has then scans the rest of the log records in the forward directio
committed following the three phase commndt, must have O restore the transaction tal_ale and the dirty page tableup t
saved all of its changes in a form of redo log records flush&d@ current state as of the time of a crash. Then, at the end
from in-memory log sectors to flash memory log sectors alo the analysis phase, the transaction table contains aflist
with other log records such as entrust log records, befare | transactions active.€., either committed or incomplete) at
system crashes. the time of the crash, and the dirty page table contains the

Some or all of theT”s redo log records may have beerinformation enough to determine the scope of redo recovery
merged to data pages in flash memory, if read consistent mete- the location of a redo log record in the system log where
operations had been invoked by tAéPL storage manager the redo recovery must start) [12].
during the time period between tHE's commit time and  Then, in the redo phase, the history is repeated by re-
the time of system crash. Irrespective of that, however, §kecuting all the log records in the system log including
is still guaranteed that no change made Byis lost once redo, commit, abort, transaction begin, transaction end, a
T is committed under this policy. When the database sery@®gde- check log records. A clear distinction from the
restarts after the crash, all tHés remaining redo log records ARIES recovery lies in the way redo log records are processed
are preserved, will survive any future system crash, antl wind page-check log records are utilized to speed up the redo
be eventually merged to data pages during normal datab&@govery process. When a redo log recérts encountered,
processing. TIPL add! to its corresponding in-memory log sector, which

The implication of this is indeed significant. Essentiallywill be allocated in the buffer pool if it has not been created
the three phase commit policy enables the database sys¥h Note that this redo action does not involve fetching any
to recover from a crash without explicit redo recovery. sincdata page from the database.

TIPL does away with the undo recovery as is mentioned abovelf @ page-check log record is encounteredTIPL repeats
with the three phase commit policy adopted for committingistory simply by discarding the in-memory log sector for
transactions, a database system can recover from a cragd all its redo log records. This is because we can determine
without any explicit or separate phases for undo or redgat the in-memory log sector farhas already been forced-
recovery. It can resume normal database processing ilystaQUt to flash memory from the fact thats found in the system

from the very moment when it restarts from a crash. log.! Again this redo action does not involve fetching any data
page from the database.
B. Redo-Only Recovery Towards the end of the redo phase, the database buffer

If the redundant logging policy is adopted instead of thpool may be left with in-memory log sectors that contain
three phase commit, then redo recovery must be performed records. These log records are yet to be flushed to flash
to recover a system from a failure. This is because redo lagemory, because there is no more matching page-check log
records are not forced out when a transaction commits undecord left in the system log. The in-memory log sectors
this policy. Some of the redo log records may have remainedntaining the log records arerphanedin the sense that
in in-memory log sectors and have been lost at the time oftteey are not accompanied by corresponding data pages in the
system crash. Since the redo log records stored in in-memadgtabase buffer pool. This abnormal situation happensusec
log sectors are the only information that can be lost at aegystdata pages are never fetched from database during the redo-
crash, the goal of thisedo-onlyrecovery is to restore the in- only recovery.
memory log sectors up to the state at the time of crash. In order to restore the database system to a state consistent

The redundant logging adds a redo log record redundanijth all committed transactions in the transaction taBlgL
to the system log for each change made by a transaction. Thihes all the orphaned in-memory log sectors to the corre-
system log is maintained in a stable storage, and all the resfwonding log sectors in flash memory. Each time an orphaned
log records in the system log will survive a system failursm-memory log sector is flushed successfulfPL adds a
(possibly except for a few log records kept in the log tail).

Thus, the in-memory log sectors can be restored from the lo iSome of the redo log records by an incomplete transaction hasg
. . . en flushed together to flash memory log sectors before #sh.chose
records saved in the system log by following a conventiong

k omplete log records will be eventually eliminated BYPL read consistent
multi-phase recovery procedure such as ARIES [12]. In facetierge operations.



page-check log record to the system log. Finally, when a&lll the logical read operations can be captured by a database
the orphaned in-memory log sectors are flushed successfudlgrver logging process or even by a kernel level 1/0 tracing
the system becomes ready to resume normal operations toal. We modified the source codes of the PostgreSQL server
accept new transactions. to obtain a trace of all /0O operations including those lagjic
Although it does not allow instant restart, the redo-onlgeads from a TPC-C benchmark.
recovery supports fast recovery from a failure, becauserit p The TPC-C database was populated with 10 warehouses
forms the minimum 1/O operations required for redo recovergf about 1.5GB data, and the benchmark was run on a
As for the I/O operations, the redo-only recovery does natire|_inux system (kernel 2.6.28) with an AMD dual-core 2.7GHz

the system log records more than a conventional multi-phgs@cessor and 3GB RAM. The buffer cache of the PostgreSQL
recovery algorithm would do, does not fetch any data pagerver was set to 50MB.

from the database, and does not force out any in-memory logy/e implemented an event-driven simulator that models the
sector more than once by utilizing the page-check log rexordeaq consistent merge @iPL as described in Section 11-B.
Crash during RecoveryFor completeness, consider wha{yhen a read consistent merge is invoked for a flash memory
would happen if a system crashes again while its recoveihck, the simulator determines whether merge can be per-
procedure is in progress. If it happens during the analysisrmed immediately for individual log records in the bloai f
phase, all the work done so far will be lost but there willead consistency by checking the timestamps of the log decor
be no effect on the state of database. Thus, when the systgig relevant transactions. When there is any log record that
restarts again, the analysis phase will be repeated with figsds to be carried over, the simulator determines the amoun

same IPL log, the same system log and the same databasgf additional log space required for the log record.
If the system crashes during the redo phase, some of the

orphaned in-memory log sectors constructed during the redo

phase may survive the crash if they have been flushed Bo Multi-version Read Consistency

flash memory and their page-check log records have been | ) _

successfully written to the system log. When the systemUYSing the simulator and the trace described above, we
restarts again, the analysis and redo phases will be repe&tBServed how often log records are carried over for read

but the amount of in-memory log sectors to be written duringPnsistency and measured the average volume of log data
the redo phase will be less, because the in-memory log secfigr P& carried over. Among the 12,240 flash memory blocks

that were flushed in the first redo will not be redone a secoft?8KB €ach) used to store the TPC-C database, 10,299 blocks
time due to the page-check log records. were updated during the benchmark and a read consistent

merge was requested at least once for 6,529 blocks of those
V1. PERFORMANCEEVALUATION updated blocks. A total of 37,230 read consistent merges wer
In order to understand the performance implications §gauested, and 32,153 (or 86%) of them did notinvolve any log
TIPL, we evaluate the time and space overhead incurré&ford to be carried over. In other worddPL did not incur
by read consistent merge operations using a workload tr&® additional overhead (both in time and space) to maintain
obtained from a PostgreSQL server that supports multivégad consistency for about 86% of merge operations. For the
sion concurrency control. We also evaluate the performarl&st of mergesi@., 14% of all merges), the average amount

implications of TIPL with respect to the proposed recover;?mc log records to be carried over was about 2800 Byies, (
schemes. ess than six sectors) per merge.

Under the previous IPL scheme, log records are blindly Overall, the amount of overhead for the read consistent

applied to their data pages when a block containing thef€rges was quite nominal at approximately 400 Bytes (or
is merged. In contrasf[IPL merges log records selectivelysmaller than a sector) per merge each requested for a flash
and carries over the rest in order to support both multieersimemory block of 128 KB.
read consistency and fast recovery. Thus, log records beindMultiversion read consistency in general imposes a sub-
carried over are the only cause of additional overhead bfantial amount of overhead on a database system in both
TIPL over the original IPL. For this reason, we will use thepace (for maintaining multiple versions) and time (fororec
average amount of carry-over log records as one of the kelyucting relevant versions). In a traditional databaseesea
performance metrics. version reconstruction, as described in Section I, resqi
i many random accesses for pages scattered across several

A. Settings for TPC-C Benchmark rollback segments. In contradt|PL can reconstruct a version

In order to understand the performance implications of reagiickly by maintaining multiple versions concisely in a set
consistent merge operations, it is essential to measure hofvphysiological log records and keeping them co-located
often and how much log records are carried over to a nawth corresponding data objects. Considering the low cost
block without being merged to data pages. of version reconstruction b¥IPL, the space overhead of .5

This in turn requires keeping track of transactions thatire&B per merge each requested for a 128 KB flash memory
various versions of data objects. Since some of those rdaldck observed above in the TPC-C benchmark appears to be
requests may be served by data objects cached in memory,pefectly acceptable.



C. Fast Recovery Nonetheless, if flash memory SSDs are used as a simple
replacement of disk drives, a database system may not be

As is described in Section IV-ATIPL ensures that uncom- X
le to fully exploit the advantages of flash memory nor

mitted log records are not merged to data pages. In order I its disad Rath is d ot
evaluate its additional overhead, the simulator measures {u y overcome its disadvantages. Rather, as Is demoestrat

amount of uncommitted log records that need to be carrily Previous work [7]’_ [9], some of the key _components of
over. database server design may well be revisited so that they

Due t0 3 igh cegree of ransacion concurency, e e ot harsctersics offsh memon.
existed at least one uncommitted log record at almost ever P pap P

moment of time when a merge was requested. For the reas the same spirit and developed as a flash-aware design for

: ' trahisaction management.
unlike the case of read consistency, log records needed tob : :

. ot much work has been reported in the literature about
carried over more often for the sake of undo-free recovery Prgnsactional support for flash memorv based storage and
TIPL for the same trace described above. However, the avera; P y g

volume of log records to carry over was still quite low at 208% Tabase systems so far. In this section, we briefly review

o research results related to this work in the area of traiswsadt

Bytes per merge. This implies th&tPL can support both read _. . ) ”

. . o file system, multiversion-based recovery, and more traui
consistency and undo-free recovery with additional ovathe

no more than 600 Bytes per merge (again, each requestedr Oﬁ‘?gﬁgééfgmqggzh File Svstem&here have been a fe
a 128 KB flash memory block) to deal with carrying over Iog : : y : v w

records. ecent attempts to provide transactional support for filg- sy

. . : Lo tems, for exampletransactional flash23] and Light-weight
The three phase commit policy aims at eliminating the neeﬁfr::e shift FTL (LTFTLJ24]. In order to support various useful
of redo recovery. For the reason, the three phase com%n

L o . : atures such as atomic writes, rollback, undelete, ané tim
policy is somewhat similar to the force commit policy in

I . ravel operations in a file system, they exploit the existenc
that changes made by a committing transaction are flushed {o " . !
; . multiple versions of a page, which are produced by out-of-
database. However, the absolute amount of writes required . :
g ace updates in flash memory, much like what we dolRL.
the three phase commit is expected to be much smaller than

€ .
force commit policy would require, becau$&L writes only n"addition, unlike pure FTL-based approach, they assume
the physiological log records of the changes without wgitin.

more functional interfaces other than the usual read anig wri
the updated pages themselves. The reduction in the absomtOrder o provide tighter interaction between the file eyst

amount of writes will be significant for OLTP workloads Wherean.8 flash memory. Unhké’IP.L, however, these approaphes

write a whole page as a unit of update propagation instead

most data pages are updated only once before propagath!n. o . .

. of writing change logs, and thus a force commit policy is

Given the low latency of flash memory, the performance gain - .

obtained by reduced amount of writes will be maanified inmndatory for them to ensure atomicity and consistency. The

flash memgr database svstems g main drawback of the approaches is the storage overhead for

In th TP(y: C bench Y K : b d that th maintaining old version pages and the overhead of garbage

n the “L benchimark, we ojserve at the averaggection (performed in the background) to clean up old
volume of log records each transaction produced was approXl cion pages

mately 3.4 KB in total or 140 Bytes per page. Given the SIZ€S Multiversion Based Database Recovergeveral multiver-

of anentrust log record and gage- check log record _. ; .
are no more than 8 Bytes and 16 Bytes, respectively, the spslzoen based database recovery techniques had been proposed i

and /0 overhead required for the three-phase commit antf ea_rly 1980s such as tagomic actionsby Re_ed [1.8] and
. . . . ItS variants [25], [26]. Some of the recent multiversion dzas
redundant logging policies are considered negligible.

shapshot isolation approaches[13], [16] can be traced tmack
these pieces of work. The existence of multiple versionsasak
it easier to implement multiversion concurrency controtl an
Recent advances in flash memory SSD technology hayearantee the atomicity of transactions.
increased the 1/0 bandwidth and throughput of storage de-like the transactional flash file systems, the multiversion
vices based on flash memory significantly, and it has bebased recovery approaches use a whole page as a unit of
demonstrated that this new storage medium can be usedvéssion and adopt a force policy for commit protocol. In
improve the throughput of large scale OLTP systems by ordexddition, these approaches are often criticized for itysma
of magnitude with much less energy consumption [21], [1llock granularity, space overhead from multiple versions] a
This impressive development has been realized by variowgte bandwidth [27]. This criticism is also shared by the
research and development endeavors for better hardware aadsactional flash file systems mentioned above. It is-inter
software such as multi-channel architecture, over-pionerd esting to note that the transactional flash file systems and
capacity, large DRAM buffer, flash translation layers, weahe multiversion based database recovery techniques @ttem
leveling algorithms, and so forth. In particular, flash slation to achieve a similar goal at different layers of the system
layers play a significant role in overcoming the limitationgierarchy.
of flash memory such as erase-before-write and the limitedOther Recovery Technique8esides the popular ARIES-
number of erase cycles [22], [14], [4]. style database recovery, several important recovery igaba
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