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Abstract—Recently, a new buffer and storage management
strategy called In-Page Logging (IPL) has been proposed for
database systems based on flash memory. Its main objective isto
overcome the limitations of flash memory such as erase-before-
write and asymmetric read/write speeds by storing changes made
to a data page in a form of log records without overwriting the
data page itself. Since it maintains a series of changes madeto a
data page separately from the original data page until they are
merged, the IPL scheme provides unique opportunities to design
light-weight transactional support for database systems.In this
paper, we propose thetransactional IPL (TIPL) scheme that takes
advantage of the IPL log records to support multiversion read
consistency and light-weight database recovery. Due to thedual
use of IPL log records, namely, for snapshot isolation and fast
recovery as well as flash-aware write optimization,TIPL achieves
transactional support for flash memory database systems that
minimizes the space and time overhead during normal database
processing and shortens the database recovery time.

I. I NTRODUCTION

Since solid state drives (SSDs) based on NAND type
flash memory were introduced to the storage market a few
years ago, great strides have been made in overcoming the
poor random write performance and increasing the bandwidth
and throughput of flash memory SSDs. Due mainly to their
superior characteristics such as high throughput for random
I/O and low energy consumption, flash memory SSDs are
now considered crucial or even indispensable for building
high performance large scale data systems. As the preliminary
experience and analysis show, flash memory SSDs outperform
magnetic disk drives with respect to transaction throughput and
energy conservation for OLTP systems [1]. Therefore, a large-
scale adoption of flash memory SSDs in database machines [2]
and tier zero storage for data centers [3] is not surprising any
more.

Such a successful adoption of flash memory SSDs is in
part attributed to the impressive research efforts that have been
made in the past few years. Most of the work has been focused
on the efficient use of flash memory for storage and database
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systems, just to name a few for example, flash translation
layers [4], indexing structures [5], [6], buffer and storage
management [7], [8], query processing [9], and logging and
temporary data spaces [10], [11]. However, there has been
little (if any) work on transactional support for flash memory
based database systems. Given that the transaction throughput
can increase by orders of magnitude by utilizing flash memory
SSDs instead of magnetic disk drives, it is imperative that the
atomicity, consistency and durability are ensured for a large
number of concurrent transactions with as much efficiency.

The main objective of this work is to develop efficient
transactional support and fast recovery for flash memory based
database systems. We present a novelTransactional In-Page
Logging (TIPL), which will be built on the In-Page Logging
(IPL) scheme as an underlying platform for buffer and storage
management. The In-Page Logging has been developed for
flash memory database systems to overcome the limitations
of flash memory such as erase-before-write and asymmetric
read/write speeds [7]. It attempts to address the limitations by
storing changes made by a transaction in a form of physiologi-
cal log records without overwriting data pages themselves.By
maintaining a series of changes made to a data page separately
from the data page kept intact until they are merged, the IPL
scheme provides us with unique opportunities for utilizingthe
log records to design an efficient transactional support strategy
for database systems.

Most disk-based database systems rely on traditional tech-
niques for transactional support such as write-ahead logging
(WAL), steal and no-force buffer management, and a multi-
phase recovery procedure [12]. In contrast, theTIPL scheme
supports snapshot isolation [13] for concurrent transactions
with an elaborateread consistent mergealgorithm by enabling
different versions of a data page to be reconstructed efficiently
from the unmodified data page and its log records. Further-
more, TIPL achieves a light-weight but robust transactional
support by eliminating the need of write-ahead logging and
by enabling fast redo-only recovery or even instant restart
procedures.

Due to the dual use of IPL log records, namely, for multiver-
sion read consistency and fast recovery as well as flash-aware



write optimization,TIPL achieves transactional support for
flash memory database systems that minimizes the space and
time overhead during normal database processing and shortens
the database recovery time. The key contributions of this work
are summarized as follows.

• This paper investigates opportunities provided by in-page
logging and refines the strategy further to minimize or
eliminate the need of write-ahead logging during normal
database processing and undo recovery at system restart.

• In order to support snapshot isolation [13],TIPL provides
a mechanism that can reconstruct different versions of
a data page for concurrent transactions with different
timestamps very efficiently by utilizing the data page and
its log records co-located in the same flash memory block.
Optimization techniques are provided for read consistent
merges at the presence of long running transactions.

• TIPL provides two alternative protocols,three phase com-
mit and redundant logging, for committing transactions.
While the former eliminates the need of redo recovery so
that a database system can restartinstantlyfrom a failure,
the latter minimizes the commit-time delay and allows
a database system to restart with redo-only recovery by
resorting to a redundant system-wide logging.

The rest of this paper is organized as follows. Section II
reviews the IPL scheme and describes its unique features that
can be utilized for transactional support. Section III presents
the support for snapshot isolation and the read consistency
merge algorithm ofTIPL. Section IV proposes novel strate-
gies to ensure the durability of committing transactions, and
presents instant restart and redo-only recovery procedures for
fast recovery. Section VI evaluates the performance impact
of TIPL. Lastly, Section VII surveys the related work, and
Section VIII summarizes the contributions of this paper.

II. M OTIVATIONS

Most existing database systems maintain a single copy of
each data object in disk drives and perform update operations
in place. The previous versions of a data object are often kept
in a separate data space called rollback segment or version
store, if they are required for snapshot isolation or multiversion
concurrency control. On the other hand, the In-Page Logging
(IPL) scheme, which has been proposed to optimize the write
performance of flash memory devices [7], stores changes made
to a data page in a form of log records leaving the data page
itself intact until the log records are merged to the data page.
This section will review the fundamentals of the IPL scheme,
discusses its unique features that can be utilized to realize
transactional support, and identifies tasks to fulfill required
for developingTIPL as a light-weight and robust transaction
management strategy.

A. Fundamentals of IPL

Due to the erase-before-write limitation of flash memory,
even a single record update may require an entire page
containing the record to be copied to a clean page. This is one
of the main causes of slow random writes, and this also leads

to rapid consumption of clean blocks and shortened life span
of flash memory devices. IPL avoids this problem by storing
only the change (or redo)log of an update instead of writing
the updated page in its entirety. Furthermore, multiple log
records belonging to the same data page are written together
to a log sector in flash memory such that the log sector is
co-locatedwith the data page in the same flash memory block
(also known as an erase unit). Log records are flushed to flash
memory when the data page is evicted or the in-memory log
sector becomes full.

When a flash memory block runs out of its free log sectors,
IPL allocates a clean block andmergesthe data pages and log
sectors from the current block to the new one by applying the
log records to their corresponding data pages. On a page fault,
a data page must be read along with all of its log records from
a flash memory block, and then the latest version of the page
has to be computed by applying its log records.

For the past few years, we have witnessed remarkable
improvements of flash memory SSDs, in particular, for the
random write performance. This can be attributed mainly
to the advances of a software module called FTL (flash
translation layer) [14] that is run by an SSD controller. Most
contemporary FTLs carry out a page overwrite operation by
creating a new version of the page at the granularity of pages.
Thus, even when only a very small fraction of a page is
updated, an FTL will write a new page in its entirety including
the unchanged portion of the page. Evidently, the change logs
between the old and new versions of the page are not preserved
at all.

In contrast, IPL keeps track of all the changes at the trans-
actional semantic level, and tends to consume flash memory
much less than the FTLs, which are developed for general
purpose applications and are oblivious to the transactional
database semantics. Since the unit of write by IPL is a sector,
which is typically one fourth of a page, the benefit of IPL
with respect to write amplification may diminish if sector
write is no longer supported by flash memory chips (for
example, MLC chips). However, SLC flash memory chips are
expected to continue to support sector writes, and enterprise
OLTP database servers prefers to use SLC-based SSDs for
performance concerns. For this reason, the effectiveness of
IPL will remain valid for enterprise class databases.

B. Towards Transactional IPL

Since it maintains a series of changes made to a data page
separately from the original data page kept intact until they
are merged, the IPL scheme provides unique opportunities to
design light-weight transactional support for database systems.
Below we describe the IPL features we can take advantage of
to provide transactional support, and we propose how they
should be extended or redefined to realizeTIPL as a fully
functioning, light-weight transaction management system.

Conflicting Order Preserved:In general, log records must
accurately reflect the order in which update operations are
actually executed. This is because, when a database system
restarts from a failure, the recovery system will re-execute



some of the updates that happened before the failure. However,
it is not necessary that the log records reflect the order of all
updates. The order needs to be maintained only for thecon-
flicting ones, for which relative order makes a difference [15].

Apparently, as log records are scattered across numerous
flash memory blocks, there is no way IPL maintains a global
ordering for the entire log records. Nonetheless, the IPL
log records can still be used to recover a database system
consistently from a failure. This is because every pair of
conflicting updates must have been performed on the same
data page, and all the update logs belonging to the same data
page are recorded in the same log sector in chronological order
as they are produced.

Efficient Version Reconstruction:IPL accumulates the
changes made to a data page in concise physiological log
records instead of propagating the updated page in its entirety.
By the unique way of propagating changes, IPL inherently
maintains multiple versions of a data page in a space efficient
manner. By controlling which versions are maintained for how
long, those versions of a data page can be used for the purpose
of snapshot isolation and multiversion concurrency control
for concurrent transactions. Note that most existing database
servers store not only the information about old data pages in
the rollback segment but also the undo and redo images of
changed data in the system log for the purpose of recovery
and multiversion concurrency control [16]. In contrast,TIPL
does not store redundant log information, unless redundant
logging is explicitly requested to minimize commit-time delay
of transactions. (See Section IV-C.)

The exact scope of versions to maintain for a data page
must be determined by the life spans of transactions that
access the data page, and this mechanism will have to be
incorporated into theTIPL scheme. Full details of theTIPL
scheme regarding version reconstruction and multiversionread
consistency will be given in Section III.

No WAL Protocol: Write-Ahead Logging (WAL), com-
bined with force-write of the log tail at commit time, is
the fundamental rule that ensures the last committed value
of each data item is always available in stable storage [15].
When a data page is updated and propagated under the IPL
scheme, however, only the redo log records are written to
stable storage (i.e., flash memory) leaving the data page intact
in the database. This may make it unnecessary to follow the
traditional WAL protocol as an undo rule. A database system
could be relieved of the burden of writing undo log records
prior to writing the data page to stable storage. Without such
overhead as synchronizing the propagation of logs and data
(e.g., inter-process communication [17]), the database system
would be more efficient during normal database processing.

Note that the redo log records will eventually be merged to
their corresponding data pages, and they cannot be rolled back
once merged. Therefore, the redo records to be merged must
be determined carefully by the status of corresponding trans-
actions. Again, this mechanism will have to be incorporated
into the transactional IPLscheme.

Fast Recovery: Regardless of support for multiversion
concurrency control, most conventional disk-based database
systems adopt a multi-phase recovery procedure that typically
includes a redo phase followed by a undo phase (e.g., the
ARIES recovery algorithm [12]). With the steal policy for
dirty page propagation, a database may contain updates made
by uncommitted transactions at any moment during normal
online processing. Therefore, when a database system is about
to restart from a failure, undo recovery must be performed
to roll back the uncommitted updates. These uncommitted
updates can be rolled back by the undo log records stored
in the system log or by the old versions stored in the rollback
segments if they are available.

On the other hand, even with the steal policy, the IPL
scheme avoids propagating a dirty page itself immediately
to the database by writing only the change logs into a
corresponding log sector in flash memory. This implies that
we can get away with the undo recovery as long as those
uncommitted change logs are not merged to their data pages
until the corresponding transactions commit. With such an
elaborate merge mechanism in place, it would be unnecessary
to explicitly perform undo actions for incomplete transactions
at the time of a failure. Instead, any necessary undo action
could be performed implicitly as part of online database
processing by preventing any uncommitted change logs from
being merged to the data pages [7]. Section IV presents two
novel commit protocols for theTIPL scheme and recovery
procedures that restarts the system instantly or with only redo
recovery.

III. M ULTIVERSION READ CONSISTENCY

The multiversion storage model has been adopted by many
commercial and open-source database servers (e.g., Oracle,
SQL Server, PostgreSQL) to support snapshot isolation [13]
and multiversion concurrency control [18]. One of the key
ingredients for the snapshot isolation and multiversion con-
currency control is to provide concurrent transactions with an
individual snapshot of database as of the start time of the
transactions. The snapshot of database is essentially a setof
specific versions of data determined by the start time of a
transaction. While an update operation is always performedon
the current version (subject to a write lock availability),the
snapshots of database are used to allow concurrent transactions
to read different versions of a data object without blocking
each other.

Most database servers maintain multiple versions by storing
the current version of a data object in the data page and storing
the previous versions separately in a data space called rollback
segment (or version store). When a transaction attempts to read
a data object, it must be ensured that the transaction reads
the correct version of the data object. The correct version is
defined as the most recent version whose timestamp precedes
the (start) timestamp of the transaction. The correct version
can be obtained by reconstructing a data page from the current
data page and the old data stored in the rollback segment or
version store. This process of version reconstruction may be



costly if it requires accessing versions scattered across several
rollback segments [11].

In this section, we describe how theTIPL scheme utilizes
redo log records to reconstruct versions efficiently, and present
an elaborate merge algorithm to support multiversion read
consistency as well as its optimization techniques for long
running transactions. The novelty of our approach is that
the IPL log records are used to serve the dual purposes,
namely, (1) multiversion and recovery support and (2) write
optimization in a seamlessly integrated way.

A. Version Reconstruction

TIPL stores multiple versions of a data object but as a
combination of a data page current as of a certain point
in past time and a series of redo log records. We assume
that each IPL log record is associated with a timestamp and
stores the id of a transaction that creates the log record.
The timestamps are globally unique and ever-increasing. They
reflect the chronological ordering of update operations applied
to the database. In this regard, the timestamps are similar to
the log sequence numbers (LSNs) used by traditional recovery
systems, but different in that the same timestamp generation
mechanism is used to provide timestamps for transactions as
well as log records.

When a transactionTi with timestampts(Ti) attempts to
read a data pagep, TIPL reconstructs the version ofp current
as of ts(Ti). This is initiated by fetching the copy ofp from
flash memory (unless the correct version ofp is already cached
in buffer) and collecting all its committed log records fromthe
log sectors in buffer and flash memory. Then, while inspecting
each of the collected log recordsl in chronological order,l is
applied top if ts(l) < ts(Ti). In other words, all the committed
log records ofp whose timestamps are older thants(Ti) are
applied top to reconstruct the correct version ofp for Ti.

In the version reconstruction steps described above, it is
implicitly assumed that the copy ofp currently available in
the database is not newer thants(Ti). If the copy is newer
than ts(Ti), that is, it contains any data object updated at a
time later thants(Ti), the correct version ofp for Ti cannot
be reconstructed, becauseTIPL does not maintain any undo
log record. Section III-B describes how this problem of being
unable to reconstruct required versions can be prevented.

Cost of Version Reconstruction:In most existing database
servers with multiversion support, the current version of adata
object is stored in the data page, and the previous versions of
the data object are stored separately in rollback segments or
version stores. The current version stored in the data page
contains a pointer to its previous version, which may in turn
contain a pointer to even earlier version of the data object.
To reconstruct the correct version of a data pagep for a
transactionTi with timestampts(Ti), the chains of pointers
may have to be followed (in reverse chronological order)
starting from the current version until the correct versions
of all data objects (i.e., those with the latest timestamp less
than ts(Ti)) are found. If there exists a data object that
has been updated by multiple transactions, then its versions

may have beenscatteredphysically across multiple rollback
segments, because a transaction is typically assigned its own
rollback segment. The obvious drawback is that the cost of
reconstructing a correct version could be high if a long chain
of pointers had to be chased, causing as many random I/O
operations as the pointers to chase.

In contrast, TIPL stores log records in the same flash
memory block where their corresponding data pages are
stored. Furthermore, the log records belonging to the same
data page are clustered in one or more log sectors in the
block. Therefore, even for a data object frequently updatedby
many transactions, the correct version would be reconstructed
quickly by reading only a few log sectors sequentially from
the same flash memory block.

B. Read Consistent Merge

If a flash memory block runs out of free log sectors, a merge
operation is triggered by the IPL storage manager. When it
occurs, for each of the data pages stored in the block, all the
corresponding log records are applied to the page to compute
the latest version. All the newly computed data pages are then
moved to a clean flash memory block allocated by the IPL
storage manager, and the old flash memory block is garbage-
collected and erased.

If the merge operations are requested without consideration
of the status of transactions, the database system may fall into
an unrecoverable state [7]. Suppose a log record is about to be
merged to a data page, and the transactionTi that has created
the log record is still active. If the transactionTi gets aborted
or the entire system crashes after the merge, then there is no
way the change made byTi is rolled back. To address this
concern, aselective mergealgorithm has been proposed [7].
The selective merge guarantees recoverability from aborted or
incomplete transactions, simply by keeping log records from
being applied to data pages if the corresponding transactions
are still active at the time of merge.

The selective merge algorithm, however, does not support
the multiversion read consistency for concurrent transactions,
because it allows all committed change logs to be merged re-
gardless of the timestamps of change logs and the timestamps
of active transactions. To ensure that read consistency as well
as recoverability is supported, a log recordl can be merged to
its data pagep, only if (1) the transaction that created the log
recordl has committed, and (2) there is no active transaction
that will access the version ofp created by the log recordl. We
propose a new merge algorithm calledread consistent merge
to deal with the requirements. As is presented in Algorithm 1,
the read consistent merge algorithm satisfies the condition(2)
by allowing a log record to be merged only if its timestamp
is less than the timestamp of the oldest transaction among all
active ones (denoted byts(Toldest)). That is, a log recordl in a
block will be applied to its data pagep if ts(l) < ts(Toldest).
Otherwise, the log recordl will be carried over to a new block
without being merged top.

Note that the read consistent merge algorithm is more
conservative than the selective merge algorithm in that the



Algorithm 1 : Read Consistent Merge

Input: Bo: an old flash block to merge
Output: B: a new flash block with merged content

procedure Merge(Bo, B)
allocate a free flash blockB1:

if carry-over-fraction> τ then2:

attachB to Bo as an overflow log3:

returnBo asB4:

endif
for each committed log recordl in Bo do5:

if ts(l) < ts(Toldest) then6:

apply l to its data pagep7:

endif
endfor
write all data pages toB8:

compact and write all remaining log records toB9:

erase and freeBo10:

number of log records merged by the read consistent merge
is always no more than the number of log records that would
be merged by the selective merge. This may have a negative
impact on the overall performance ofTIPL with respect
to the utilization of flash memory and the cost of version
reconstruction. If there exists a long running transaction, then
the timestamp of the oldest active transaction,ts(Toldest) in
Algorithm (1), may become too old to merge a sufficient
number of log records in the block. Then, the log sectors will
be wasted because too many log records have to be carried
over to a clean flash memory block, and the cost of version
reconstruction will increase because more log records haveto
be applied to compute a correct version for a transaction.

C. Optimization of Read Consistent Merge

One way of dealing with the performance concern caused by
a long running transaction is to define the notion of database
snapshotnarrowly for each transaction. That is, the snapshot
is taken not for the entire database but only for the set of
relational tables accessed by a transaction, assuming thatthe
information is available from the query compiler or optimizer.
If that is the case, the timestampts(Toldest) in Line 6 of
Algorithm 1 can be refined to

min{ts(Ti) | active Ti accesses l′s table}.

Since this timestamp is no smaller (or older) thants(Toldest),
more log records are expected to be merged to data pages
without being carried over to a clean flash memory block.

Another way of dealing with a long running transaction (say
Tlong) is to exclude the transaction from consideration when
the read consistent merge is executed. In other words, the value
of ts(Toldest) in Line 6 is determined by all active transactions
excludingTlong.

In an example scenario shown in Figure 1, the timestamp
of Tlong would be used as the value ofts(Toldest) by the

’oldest

long

1

completed

active

2 3

Fig. 1. A Scenario with a Long-Running Transaction

read consistent merge algorithm, ifTlong were not excluded.
Furthermore, none of the three log recordsl1, l2 andl3 would
be merged to their data pages, because their timestamps would
be all newer than the timestamp ofTlong. With Tlong excluded,
however, the timestamp ofT ′

oldest will be used as the value
of ts(Toldest) instead ofTlong, and the log recordsl1 and l2
can be merged to their data pages. Here,T ′

oldest denotes the
oldest among the active transactions excludingTlong.

Po P

Po’ s
Log Sector

Bo
B

Backward
Link

Version Creation
for T

Fig. 2. Backward Link between the Old and New Blocks

This optimization strategy will merge log records more
aggressively, because any log record whose timestamp is older
than T ′

oldest can be merged. However, when a log recordl

is merged to a data pagep, if the following conditions are
satisfied:

(1) ts(Tlong) < ts(l) < ts(T ′

oldest), and
(2) p is accessed byTlong,

then the read consistent merge algorithm should not erase and
free the old block (denoted byBo in Algorithm 1) but instead
insert a backward link from the new block (denoted byB)
to the old one (Bo). (See Figure 2 for an illustration.) Then,
a correct version of the data pagep can be reconstructed for
Tlong from the old version ofp and its redo log records stored
in Bo. The old blockBo can be erased and freed afterTlong

terminates.
In effect, this strategy allows to provide database snapshots

for different transactions from different sets of versioned data
pages. Consequently, at the cost of additional space to keep
old flash memory blocks (e.g., Bo for Tlong), the cost of
version reconstruction will remain nominal for all the rest
of transactions without giving up the read consistency for a



long running transaction. It is worth noting that this strategy
can also be used to support time travel by deferring garbage
collection for old flash memory blocks likeBo.

D. Atomicity of Merge

The read consistent merge plays a key role in achieving
snapshot isolation and recovery under theTIPL scheme. A
merge operation involves copying data pages from an old flash
memory block to a newly allocated clean block. Since the
size of a flash memory block is typically much larger than
a page (e.g., typically 256KB for a block and 4KB for a
page), a merge operation will take long and may be prone
to be interrupted by a system failure. Obviously, without the
atomicity of merge (i.e., all or nothing), TIPL would not
guarantee the consistency of database.

Fortunately, it is relatively simple to ensure the atomicity
of merge. In most flash memory storage devices, there is
a software layer called flash translation layer (FTL) that
maintains a mapping table for flash memory blocks for logical-
to-physical address mapping.TIPL can guarantee the atomicity
of merge by allowing the physical address of a new blockB to
replace the physical address of an old blockBo in the mapping
table, only after copying pages fromBo to B is finished
successfully. In fact, this is similar to the shadow paging
mechanism proposed for atomic page propagation [19].

IV. RECOVERY

A system failure is inevitable in large scale database servers.
When it happens, the system must be recovered to a consistent
state such that the atomicity and durability of transactions are
ensured. In this section, we describe howTIPL eliminates
the need of undo recovery except for transactions aborted
during normal online processing. We then propose two novel
strategies calledthree phase commitand redundant logging
to ensure multiversion read consistency and durability of
transactions at low cost.

A. No Undo Recovery

Thestealis a buffer management policy commonly adopted
by most database servers. Under this policy, a dirty page frame
may be stolen from the buffer and written to the database even
before the transactions commit that have updated the page.
Consequently, when a database system restarts from a failure,
undo recovery must be carried out to roll back the changes
made by incomplete transactions.

The TIPL scheme also adopts the steal policy and allows
any in-memory log sector to be flushed to flash memory before
transactions that have added log records to the log sector
commit. It usually happens when an in-memory log sector
becomes full or its corresponding data page is evicted from
the buffer pool. This implies that, when it happens, some of the
changes made by an uncommitted transaction may be written
to stable storage.

A major departure from the conventional way of propa-
gating updates is, however, the fact thatTIPL leaves original
data pages intact in the database even after in-memory log

sectors are saved in flash memory. Since the original data
pages remain intact in the database,TIPL can roll back
uncommitted updates simply by eliminating (or ignoring) them
from flash memory log sectors by the read consistent merge
(shown in Algorithm 1). In summary, thoughTIPL adopts the
steal policy, the net effect is equivalent to that of the no-
steal policy. Hence the undo recovery becomes completely
unnecessary under theTIPL scheme, as long as it is ensured
that uncommitted log records are prevented from being merged
to data pages. Even though uncommitted log records stored in
flash memory will survive a failure, they will be eventually
discarded by read consistent merge operations during normal
online processing resumed after the failure.

Individual Rollback: The only exception to theno undo
recovery rule by TIPL is rolling back transactions that are
aborted during normal online processing (e.g., by a deadlock).
When a transactionT is aborted, all the locks held byT
are usually released immediately making all the uncommitted
changes visible unless they are rolled back. Thus, all the
uncommitted changes made byT must be rolled back before
T is removed from the list of active transactions (or the
transaction table).

In addition to the standard steps taken such as adding an
abort record forT to the system log, there are three things
that should be taken care of for an aborted transaction:

(1) uncommitted updates reflected in the cached images of
data pages,

(2) uncommitted updates still kept in in-memory log sectors,
and

(3) uncommitted updates already flushed in flash memory
log sectors.

For an aborted transactionT , if there is a cached image of
any data page containingT ’s uncommitted updates, the cached
image will be restored to a consistent state by reversing the
effects of the uncommitted updates. The uncommitted updates
are recorded in log records that may reside in the buffer pool
or flash memory. Therefore, this process may involve reading
log records from flash memory.

As for the steps (2) and (3), ifT ’s log records are still kept in
memory, they will be removed from the in-memory log sectors.
In contrast, forT ’s log records that have already been flushed
to flash memory,TIPL does not perform any explicit operation
to remove them from the log sectors in flash memory. Instead,
TIPL leaves them in flash memory until they are discarded by
the read consistent merge algorithm, when the flash memory
blocks containing the log records are merged.

One might be concerned that these uncommitted updates
could present inconsistent database snapshots for other trans-
actions, during the period while uncommitted updates remain
in flash memory. However,TIPL still guarantees multiversion
read consistency even at the presence of the uncommitted
updates in flash memory. This is becauseTIPL can reconstruct
correct versions from original data pages and committed up-
dates only, as described in Section III-A. In other words, those
uncommitted updates remaininvisible to other concurrent
transactions until they are removed permanently.



One might wonder if the benefits ofno undo restart
might be canceled by existing techniques such as deferred
modifications that have been already adopted by commercial
DBMSs. For instance, when the buffer pool is large enough,
uncommitted dirty pages do not have to be stolen. Thus, undo
log records are kept in memory and undo recovery can be
avoided. The performance gain by deferred modification could
be significant in practice. However, this deferred modification
technique alone does not obviate the need of undo recovery
altogether, especially when aggressive writes are desired, for
instance, as required by incremental checkpointing for fast
recovery [20]. This is the case when flash memory based
DBMSs can benefit from theTIPL’s no undo strategy.

B. Three Phase Commit

The no-force is another buffer management policy com-
monly adopted by most database servers to avoid excessive
I/O for committing transactions.TIPL also adopts the no-force
policy. When a transaction commits, in-memory log sectors
are forced out to flash memory if they contain at least one
log record of a committing transaction. This is equivalent to
flushing the log tail to a stable storage when a transaction
commits in the conventional database systems, except that the
log records to be forced out may come from one or more buffer
frames in the pool instead of a single system-wide log tail. To
expedite commit-time force-out operations, each transaction
needs to keep track of dirty pages updated by itself.

However, there is a potential drawback in this approach
with respect to propagating changes to the database. Note
that there are two separate processes involved in the update
propagation: (1) copying change logs from the in-memory log
sectors to flash memory blocks, and (2) merging the change
logs stored in the flash memory log sectors to the data pages in
the flash memory block. (The merge operations are performed
by the read consistent merge algorithm shown in Algorithm 1.)
Note also that these two types of operations are performed
independently from each other. Suppose a read consistent
merge is initiated for a flash memory block containing a log
record of a transactionT . If T had committed and its entry
had already been removed from the transaction table, then the
read consistent merge algorithm could not tell the status ofT

and which log records are committed.
One remedy for this problem is to keep the transaction status

even for committed ones in the transaction table until all of
their log records are merged to data pages in flash memory.
Since there is no way to upperbound the time gap between the
two types of operations without creating a superfluous interde-
pendency between them, the status of committed transactions
may have to be maintained in the transaction table for a long
while. The size of a transaction table may grow quickly as
the transaction throughput increases, and this may become a
non-trivial burden on a large scale OLTP system.

We propose athree phase commitprocedure for committing
transactions to address this concern. This procedure has an
additional phase that precedes the IPL no-force policy. When

a transactionT is ready to commit, the three phase commit
procedure is carried out as follows.

1: Add anentrust log record to the in-memory log
sector for each data page updated byT .

2: Force out the in-memory log sector of each data page
updated byT to the corresponding flash memory log
sector.

3: Write acommit log record to the system log.

Theentrust is a new type of log records that helps decide
quickly which log records are committed or not. An entrust
log record contains only two pieces of information, namely,
the type identifier of a log record and the identifier of a
committing transaction. Therefore, the additional overhead
for adding entrust log records is expected to be negligible.
The commit log record in Phase Three is no different from
the commit record used by a conventional recovery system.
No transaction is considered committed until the commit log
record is written to the system log. Once a commit log record
is successfully written, the entry ofT can be removed from
the transaction table.

There is still a remaining concern about recoverability. Sup-
pose the commit procedure has been initiated for a transaction
T . Then, for the data pages updated byT , entrust log records
are added to their in-memory log sectors, which are then
forced out to one or more flash memory blocks that store the
data pages. Since theTIPL storage manager can initiate a read
consistent merge independently of the commit procedure, any
of those flash memory blocks can be merged before a commit
record forT is written to the system log. What happens if the
system crashes at this moment, that is, after one of the flash
memory blocks is merged but before a commit record forT

is written to the system log? As the commit record is not yet
written to the system log,T is not considered committed and
the changes made byT must be rolled back. However, it will
be impossible to roll all of them back, because some of the
changes have already been merged to the data pages in the
flash memory block.

Fortunately, this potentially problematic scenario can be
prevented with ease by disallowing anyT ’s log record to be
merged between the second and third phases of the commit
procedure. Specifically, a log recordl in Line 5 of Algorithm 1
is considered committedonly if

(1) an entrust log record havingl’s transaction id is
found in the log sector,and

(2) the transaction id ofl is not found in the transaction
table.

When a read consistent merge is initiated for a block, the
merge algorithm can tell that a commit procedure has already
started for a transactionT , if an entrust log record withT ’s
id is found in a log sector of the block. Then, it looks up the
transaction table and determines thatT is committed indeed
if T is not in the transaction table any longer. Otherwise,T is
considered still active andT ’s log records will not be merged.



Fig. 3. Architecture for Redundant Logging

C. Redundant Logging

As will be discussed in Section V, the three phase commit
can make the logic for a system restart extremely simple by
eliminating the redo recovery altogether. However, it may incur
additional I/O operations during the normal online processing.
Whenever a transaction commits, one or more in-memory log
sectors must be forced out to flash memory if they contain
at least one log record of the committing transaction. This
procedure will increase the likelihood of those in-memory log
sectors to be flushedprematurelyto flash memory before they
become full of log records. For a transaction that updates a
large number of data pages, the commit time delay will grow
considerably because many in-memory log sectors need to be
flushed. Besides, due to the premature force-out of in-memory
log sectors, the flash memory blocks will be consumed and
erased more frequently, which will in turn add to the overall
cost of transaction processing and shorten the life space of
flash memory drives.

To address this limitation, we propose an alternative to the
three phase commit policy. In order to smooth out potentially
spiky commit time cost, the alternative policy attempts to be
more truthful to the notion ofno force by reinstating the
conventional system-wide redo logging in addition to the in-
page logging, as shown in Figure 3. For the reason, we call
this new policy aredundant logging.

Under the redundant logging policy, there will be three type
of logging activities that occur in the system log during the
normal online processing.

A: When a transaction updates a data object, a redo log
record is added to the system log (tail) in addition
to adding one to the in-memory log sector. (See the
top half of Figure 3.)

B: When an in-memory log sector is flushed to flash
memory, apage-check log record is added to the
system log (tail).

C: When a transactionT commits, anentrust log
record is added to the in-memory log sector for each
data page updated byT , and acommit log record
for T is added to the system log. Then, the system
log tail including the commit record is flushed to a

stable storage butwithout forcing out any in-memory
log sector to flash memory. (See the bottom half of
Figure 3.)

The page-check is a new type of log records that helps
reconstruct in-memory log sectors at the system restart time.
As will be described in detail in Section V, a page-check log
record plays a role similar toincremental checkpointing[15]
on per-page basis. It helps avoid repeating unnecessary I/O
operations at the system restart, particularly for hot datapages,
because their in-memory log sectors tend to be filled up and
flushed to flash memory blocks frequently.

A page-check log record contains the id of a data page
whose in-memory log sector is being flushed and a window
of timestamps of all log records stored in the log sector. The
timestamp window is not essential for recovery but added to
the page-check log record as an additional fail-safe measure
for matching an in-memory log sector with its page-check log
record. Note that whether an update log record is considered
committed or not is still determined the same way, by the two
conditions given in Section IV-B.

If the system crashes after a transactionT commits, the
only things that are guaranteed to survive the crash are the
log records written to the system log. SinceT ’s in-memory
log sectors are not forced out whenT commits, some ofT ’s
redo log records created byTIPL may be lost. This implies
that adoption of the redundant logging policy necessitatesthe
redo recovery at the system restart.

V. SYSTEM RESTART

When a database system restarts from a failure, the system
executes typically a multi-phase recovery procedure in order to
ensure the atomicity and durability of transactions. In general,
it must redo the effects of committed transactions that havenot
reached the persistent storage before the crash, and undo the
effects of incomplete transactions that have already reached the
persistent storage before the crash. However, theTIPL scheme
can make the restart procedure a great deal simpler than the
conventional recovery systems. This section describes howa
database system can restartinstantly after a crash or recover
by an efficientredo-onlyrecovery procedure.



A. Instant Restart

As described in Section IV-A, except for transactions
aborted during normal database processing,TIPL eliminates
the need of rolling back any changes made by incomplete
transactions. Consequently, the system restart procedurecan
dispense with the undo recovery altogether.

If the three phase commit policy presented in Section IV-B
is adopted for committing transactions, the system restart
procedure will be simplified even further. A transaction is
considered committed only when a commit log record is
written to the system log. For any transactionT that has
committed following the three phase commit,T must have
saved all of its changes in a form of redo log records flushed
from in-memory log sectors to flash memory log sectors along
with other log records such as entrust log records, before the
system crashes.

Some or all of theT ’s redo log records may have been
merged to data pages in flash memory, if read consistent merge
operations had been invoked by theTIPL storage manager
during the time period between theT ’s commit time and
the time of system crash. Irrespective of that, however, it
is still guaranteed that no change made byT is lost once
T is committed under this policy. When the database server
restarts after the crash, all theT ’s remaining redo log records
are preserved, will survive any future system crash, and will
be eventually merged to data pages during normal database
processing.

The implication of this is indeed significant. Essentially,
the three phase commit policy enables the database system
to recover from a crash without explicit redo recovery. Since
TIPL does away with the undo recovery as is mentioned above,
with the three phase commit policy adopted for committing
transactions, a database system can recover from a crash
without any explicit or separate phases for undo or redo
recovery. It can resume normal database processing instantly
from the very moment when it restarts from a crash.

B. Redo-Only Recovery

If the redundant logging policy is adopted instead of the
three phase commit, then redo recovery must be performed
to recover a system from a failure. This is because redo log
records are not forced out when a transaction commits under
this policy. Some of the redo log records may have remained
in in-memory log sectors and have been lost at the time of a
system crash. Since the redo log records stored in in-memory
log sectors are the only information that can be lost at a system
crash, the goal of thisredo-onlyrecovery is to restore the in-
memory log sectors up to the state at the time of crash.

The redundant logging adds a redo log record redundantly
to the system log for each change made by a transaction. The
system log is maintained in a stable storage, and all the redo
log records in the system log will survive a system failure
(possibly except for a few log records kept in the log tail).
Thus, the in-memory log sectors can be restored from the log
records saved in the system log by following a conventional
multi-phase recovery procedure such as ARIES [12]. In fact,

at a high level, the redo-only recovery procedure proposed
in this section is quite similar to the first two phases of the
ARIES recovery algorithm. We assume that a transaction table
and a dirty page table are maintained during normal database
processing and they are force-written to the system log by
indirect checkpointing.

The first analysis phase of the proposed redo-only recovery
is identical to that of the ARIES. It starts the analysis phase
by fetching the transaction table and the dirty page table from
the latest checkpointing record stored in the system log. It
then scans the rest of the log records in the forward direction
to restore the transaction table and the dirty page table up to
the current state as of the time of a crash. Then, at the end
of the analysis phase, the transaction table contains a listof
all transactions active (i.e., either committed or incomplete) at
the time of the crash, and the dirty page table contains the
information enough to determine the scope of redo recovery
(i.e., the location of a redo log record in the system log where
the redo recovery must start) [12].

Then, in the redo phase, the history is repeated by re-
executing all the log records in the system log including
redo, commit, abort, transaction begin, transaction end, and
page-check log records. A clear distinction from the
ARIES recovery lies in the way redo log records are processed
and page-check log records are utilized to speed up the redo
recovery process. When a redo log recordl is encountered,
TIPL add l to its corresponding in-memory log sector, which
will be allocated in the buffer pool if it has not been created
yet. Note that this redo action does not involve fetching any
data page from the database.

If a page-check log recordc is encountered,TIPL repeats
history simply by discarding the in-memory log sector forc

and all its redo log records. This is because we can determine
that the in-memory log sector forc has already been forced-
out to flash memory from the fact thatc is found in the system
log.1 Again this redo action does not involve fetching any data
page from the database.

Towards the end of the redo phase, the database buffer
pool may be left with in-memory log sectors that contain
log records. These log records are yet to be flushed to flash
memory, because there is no more matching page-check log
record left in the system log. The in-memory log sectors
containing the log records areorphaned in the sense that
they are not accompanied by corresponding data pages in the
database buffer pool. This abnormal situation happens, because
data pages are never fetched from database during the redo-
only recovery.

In order to restore the database system to a state consistent
with all committed transactions in the transaction table,TIPL
flushes all the orphaned in-memory log sectors to the corre-
sponding log sectors in flash memory. Each time an orphaned
in-memory log sector is flushed successfully,TIPL adds a

1Some of the redo log records by an incomplete transaction mayhave
been flushed together to flash memory log sectors before the crash. Those
incomplete log records will be eventually eliminated byTIPL read consistent
merge operations.



page-check log record to the system log. Finally, when all
the orphaned in-memory log sectors are flushed successfully,
the system becomes ready to resume normal operations and
accept new transactions.

Although it does not allow instant restart, the redo-only
recovery supports fast recovery from a failure, because it per-
forms the minimum I/O operations required for redo recovery.
As for the I/O operations, the redo-only recovery does not read
the system log records more than a conventional multi-phase
recovery algorithm would do, does not fetch any data page
from the database, and does not force out any in-memory log
sector more than once by utilizing the page-check log records.

Crash during Recovery:For completeness, consider what
would happen if a system crashes again while its recovery
procedure is in progress. If it happens during the analysis
phase, all the work done so far will be lost but there will
be no effect on the state of database. Thus, when the system
restarts again, the analysis phase will be repeated with the
same IPL log, the same system log and the same database.

If the system crashes during the redo phase, some of the
orphaned in-memory log sectors constructed during the redo
phase may survive the crash if they have been flushed to
flash memory and their page-check log records have been
successfully written to the system log. When the system
restarts again, the analysis and redo phases will be repeated
but the amount of in-memory log sectors to be written during
the redo phase will be less, because the in-memory log sectors
that were flushed in the first redo will not be redone a second
time due to the page-check log records.

VI. PERFORMANCEEVALUATION

In order to understand the performance implications of
TIPL, we evaluate the time and space overhead incurred
by read consistent merge operations using a workload trace
obtained from a PostgreSQL server that supports multiver-
sion concurrency control. We also evaluate the performance
implications of TIPL with respect to the proposed recovery
schemes.

Under the previous IPL scheme, log records are blindly
applied to their data pages when a block containing them
is merged. In contrast,TIPL merges log records selectively
and carries over the rest in order to support both multiversion
read consistency and fast recovery. Thus, log records being
carried over are the only cause of additional overhead by
TIPL over the original IPL. For this reason, we will use the
average amount of carry-over log records as one of the key
performance metrics.

A. Settings for TPC-C Benchmark

In order to understand the performance implications of read
consistent merge operations, it is essential to measure how
often and how much log records are carried over to a new
block without being merged to data pages.

This in turn requires keeping track of transactions that read
various versions of data objects. Since some of those read
requests may be served by data objects cached in memory, not

all the logical read operations can be captured by a database
server logging process or even by a kernel level I/O tracing
tool. We modified the source codes of the PostgreSQL server
to obtain a trace of all I/O operations including those logical
reads from a TPC-C benchmark.

The TPC-C database was populated with 10 warehouses
of about 1.5GB data, and the benchmark was run on a
Linux system (kernel 2.6.28) with an AMD dual-core 2.7GHz
processor and 3GB RAM. The buffer cache of the PostgreSQL
server was set to 50MB.

We implemented an event-driven simulator that models the
read consistent merge ofTIPL as described in Section III-B.
When a read consistent merge is invoked for a flash memory
block, the simulator determines whether merge can be per-
formed immediately for individual log records in the block for
read consistency by checking the timestamps of the log records
and relevant transactions. When there is any log record that
needs to be carried over, the simulator determines the amount
of additional log space required for the log record.

B. Multi-version Read Consistency

Using the simulator and the trace described above, we
observed how often log records are carried over for read
consistency and measured the average volume of log data
to be carried over. Among the 12,240 flash memory blocks
(128KB each) used to store the TPC-C database, 10,299 blocks
were updated during the benchmark and a read consistent
merge was requested at least once for 6,529 blocks of those
updated blocks. A total of 37,230 read consistent merges were
requested, and 32,153 (or 86%) of them did not involve any log
record to be carried over. In other words,TIPL did not incur
any additional overhead (both in time and space) to maintain
read consistency for about 86% of merge operations. For the
rest of merges (i.e., 14% of all merges), the average amount
of log records to be carried over was about 2800 Bytes (i.e.,
less than six sectors) per merge.

Overall, the amount of overhead for the read consistent
merges was quite nominal at approximately 400 Bytes (or
smaller than a sector) per merge each requested for a flash
memory block of 128 KB.

Multiversion read consistency in general imposes a sub-
stantial amount of overhead on a database system in both
space (for maintaining multiple versions) and time (for recon-
structing relevant versions). In a traditional database server, a
version reconstruction, as described in Section III, requires
many random accesses for pages scattered across several
rollback segments. In contrast,TIPL can reconstruct a version
quickly by maintaining multiple versions concisely in a set
of physiological log records and keeping them co-located
with corresponding data objects. Considering the low cost
of version reconstruction byTIPL, the space overhead of .5
KB per merge each requested for a 128 KB flash memory
block observed above in the TPC-C benchmark appears to be
perfectly acceptable.



C. Fast Recovery

As is described in Section IV-A,TIPL ensures that uncom-
mitted log records are not merged to data pages. In order to
evaluate its additional overhead, the simulator measures the
amount of uncommitted log records that need to be carried
over.

Due to a high degree of transaction concurrency, there
existed at least one uncommitted log record at almost every
moment of time when a merge was requested. For the reason,
unlike the case of read consistency, log records needed to be
carried over more often for the sake of undo-free recovery of
TIPL for the same trace described above. However, the average
volume of log records to carry over was still quite low at 200
Bytes per merge. This implies thatTIPL can support both read
consistency and undo-free recovery with additional overhead
no more than 600 Bytes per merge (again, each requested for
a 128 KB flash memory block) to deal with carrying over log
records.

The three phase commit policy aims at eliminating the need
of redo recovery. For the reason, the three phase commit
policy is somewhat similar to the force commit policy in
that changes made by a committing transaction are flushed to
database. However, the absolute amount of writes required by
the three phase commit is expected to be much smaller than the
force commit policy would require, becauseTIPL writes only
the physiological log records of the changes without writing
the updated pages themselves. The reduction in the absolute
amount of writes will be significant for OLTP workloads where
most data pages are updated only once before propagation.
Given the low latency of flash memory, the performance gain
obtained by reduced amount of writes will be magnified in
flash memory database systems.

In the TPC-C benchmark, we observed that the average
volume of log records each transaction produced was approxi-
mately 3.4 KB in total or 140 Bytes per page. Given the sizes
of an entrust log record and apage-check log record
are no more than 8 Bytes and 16 Bytes, respectively, the space
and I/O overhead required for the three-phase commit and
redundant logging policies are considered negligible.

VII. R ELATED WORKS

Recent advances in flash memory SSD technology have
increased the I/O bandwidth and throughput of storage de-
vices based on flash memory significantly, and it has been
demonstrated that this new storage medium can be used to
improve the throughput of large scale OLTP systems by orders
of magnitude with much less energy consumption [21], [1].
This impressive development has been realized by various
research and development endeavors for better hardware and
software such as multi-channel architecture, over-provisioned
capacity, large DRAM buffer, flash translation layers, wear
leveling algorithms, and so forth. In particular, flash translation
layers play a significant role in overcoming the limitations
of flash memory such as erase-before-write and the limited
number of erase cycles [22], [14], [4].

Nonetheless, if flash memory SSDs are used as a simple
replacement of disk drives, a database system may not be
able to fully exploit the advantages of flash memory nor
fully overcome its disadvantages. Rather, as is demonstrated
in previous work [7], [9], some of the key components of
database server design may well be revisited so that they
becomeawareof the distinct characteristics of flash memory.
The TIPL scheme presented in this paper has been inspired
by the same spirit and developed as a flash-aware design for
transaction management.

Not much work has been reported in the literature about
transactional support for flash memory based storage and
database systems so far. In this section, we briefly review
research results related to this work in the area of transactional
file system, multiversion-based recovery, and more traditional
recovery techniques.

Transactional Flash File Systems:There have been a few
recent attempts to provide transactional support for file sys-
tems, for example,transactional flash[23] and Light-weight
Time shift FTL (LTFTL)[24]. In order to support various useful
features such as atomic writes, rollback, undelete, and time
travel operations in a file system, they exploit the existence
of multiple versions of a page, which are produced by out-of-
place updates in flash memory, much like what we do inTIPL.
In addition, unlike pure FTL-based approach, they assume
more functional interfaces other than the usual read and write
in order to provide tighter interaction between the file system
and flash memory. UnlikeTIPL, however, these approaches
write a whole page as a unit of update propagation instead
of writing change logs, and thus a force commit policy is
mandatory for them to ensure atomicity and consistency. The
main drawback of the approaches is the storage overhead for
maintaining old version pages and the overhead of garbage
collection (performed in the background) to clean up old
version pages.

Multiversion Based Database Recovery:Several multiver-
sion based database recovery techniques had been proposed in
the early 1980s such as theatomic actionsby Reed [18] and
its variants [25], [26]. Some of the recent multiversion based
snapshot isolation approaches[13], [16] can be traced backto
these pieces of work. The existence of multiple versions makes
it easier to implement multiversion concurrency control and
guarantee the atomicity of transactions.

Like the transactional flash file systems, the multiversion
based recovery approaches use a whole page as a unit of
version and adopt a force policy for commit protocol. In
addition, these approaches are often criticized for its coarse
lock granularity, space overhead from multiple versions, and
write bandwidth [27]. This criticism is also shared by the
transactional flash file systems mentioned above. It is inter-
esting to note that the transactional flash file systems and
the multiversion based database recovery techniques attempt
to achieve a similar goal at different layers of the system
hierarchy.

Other Recovery Techniques:Besides the popular ARIES-
style database recovery, several important recovery techniques



have been proposed. We review two of them that are closely
related toTIPL.

The shadow page mechanism has been proposed as a
straightforward way of achieving database recovery [19]. The
main advantage is that neither undo nor redo recovery is
necessary under this approach. To the best of our knowledge,
there is at least one commercial database product marketed
for embedded systems with flash memory, called Polyhedra
FlashLite [28], that uses this approach. However, the shadow
paging mechanism has not been widely adopted by major
database systems, because of its limited scalability due to
garbage collection overhead, storage space overhead, heavy
fragmentation of a table object, and inflexible concurrency
control [29]. The same criticism will be still valid even when
the shadow paging is used for flash memory.

There is another recovery strategy that has been proposed
based onundo at read timeapproach [30]. Under this recovery
method, undo is not done in the recovery phase, but is done at
read time after restart. On fetching a data item, it is checked
whether the data item is created by a successfully committed
transaction. If not, it is ignored and then its previous version
is retrieved. Theno undorecovery byTIPL is quite similar to
this approach. To some extent, this recovery method similar
to the deferred rollback approaches [31], [20].

VIII. C ONCLUSION

This paper proposes a novel scheme calledtransactional
IPL (TIPL), which is built on the in-page logging (IPL) scheme
as an underlying platform for buffer and storage management.
TIPL makes dual use of log records for multiversion read
consistency and recovery as well as write performance op-
timization for flash memory based database systems. The dual
use of log records allows us to explore a new design space for
flash-aware transaction support, and enablesTIPL to achieve
low-cost transactional support in a way drastically different
from conventional disk-based transaction systems.

By eliminating the need of write-ahead logging for undo
recovery,TIPL reduces the runtime overhead of transactional
support during normal database processing. Besides,TIPL
further reduces the runtime overhead required for multiversion
read consistency by reconstructing versions efficiently and by
providing optimization techniques for long running transac-
tions. When a database system restarts from a failure,TIPL
can shorten the recovery time significantly. By adopting the
three phase commit or the redundant logging method,TIPL
can recover the system instantly or by the redo-only recovery
procedure from the failure.
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