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ABSTRACT

Recently, there has been increasing interest in extending relational
query processing to efficiently support extraction operators, such as
dictionaries and regular expressions, over text data. Many text pro-
cessing queries are sophisticated in that they involve multiple ex-
traction and join operators, resulting in many possible query plans.
However, there has been little research on building the selectivity
or cost estimation for these extraction operators, which is crucial
for an optimizer to pick a good query plan. In this paper, we define
the problem of selectivity estimation for dictionaries and regular
expressions, and propose to develop document synopses over a text
corpus, from which the selectivity can be estimated. We develop
three classes of document synopses: n-gram synopsis, bloom filter
synopsis and roll-up synopsis. We also develop techniques to de-
compose a complicated regular expression into subparts to achieve
more effective and accurate estimation. We conduct experiments
over the Enron email corpus using both real-world and synthetic
workloads to compare the accuracy of the selectivity estimation
over different classes and variations of synopses. The results show
that, the top-k stratified bloom filter synopsis and the roll-up syn-
opsis is the most accurate in dictionary and regular expression se-
lectivity estimation respectively.

1. INTRODUCTION

The field of database management has traditionally focused on
structured data, providing little or no help for the significantly larger
amounts of the world’s data that is unstructured. With the rise of
text-based applications on the web and elsewhere, information ex-
traction (IE) techniques and database with SQL extensions are used
over text to find patterns and extract objects as part of the query or
process.

Most of these SQL queries and IE processes over text involves
extraction operators, including dictionaries and regular expressions.
Dictionaries are used to look for specific entity memberships (e.g.,
countries, firstnames), and regular expressions (regex) are used to
find specific text patterns (e.g., emails, URLs). Many of those SQL
queries and IE processes involves multiple dictionaries and regexes,
where their selectivity estimation is crucial for an optimizer. This
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can be illustrated by the following scenario:

EXAMPLE 1. Suppose we have a Blogs table, containing the
id, text and author of all the blog posts. We also have an Author
table, containing name, address information of each author of the
blog posts. Query 1 is a SQL query extended with dictionary ex-
traction operator contains (text,dictionary) and regu-
lar expression operator text like ’pattern’. Query2is
an algebraic expression of an IE process with & i, and &y, denote
dictionary and regex extraction operator respectively. In addition,
X FotiowsTok(0,0) denotes that the left extraction should be immedi-
ately followed by the right extraction in text.

Query 1. Find all blog posts mentioning ”Euphonia”, a folk en-
semble, which also contains sentiment words (as defined by a list
of sentiment words) and are written by people living in Seattle.

SELECT x
FROM Blogs B, Author A

WHERE B.author=A.name and B.text like ’%Euphonia%’

and contains (B.text, sentiment.dict)
and A.address like ’'%Seattle%’

Query 2. Find all instances of a common first name (as defined
by an exhaustive list of first names), followed immediately by a
capitalized word.

E dict (firSt'diCt) D<]FollowsTok(O,O) gr@([A - Z]\W+)

To execute the first SQL query, the optimizer needs to decide in
which order to apply the three selection conditions involving ex-
traction operators. In addition, since dictionary and regex are
expensive operators and in most cases do not have more efficient
access method than sequential scan, the optimizer also needs to
decide when to execute the join operator to reduce the extraction.
These decisions all depend on the selectivity estimation of the dic-
tionary, regex and join operators.

Similarly, to execute the IE process in Query 2, the optimizer
needs selectivity estimation of the dictionary and regular expres-
sion operators to form a query plan to execute the more selective
extraction operator first. This plan maximally reduces the extrac-
tion, because the two extraction operators joins on the same docu-
ment. O

The goal of this paper is to study the selectivity estimation al-
gorithms and techniques for dictionaries and regular expressions
operators over text. As illustrated by the previous example, the se-
lectivity estimation for extraction operators is crucial in optimizing
(1) SQL queries over text data in a DBMS, and (2) information
extraction processes in declarative-IE systems like System T [14].

There is little previous literature studying the selectivity estima-
tion of dictionary and regex operators, as oppose to the vast number



covering the selectivity estimation of SPJ queries [4, 8, 15]. Stud-

ies over selectivity estimation for string predicates [3, 9, 10, 11,

12] focus on database entries with string values of limited length

and thus are not directly applicable for dictionary selectivity esti-

mation, where the underlying text can be of arbitrary length. The

same body of literature and those for XML path expressions [1, 18]

consider only simple patterns in the form of “wild cards” or path

expressions and therefore are not applicable for regex selectivity
estimation, which needs to support arbitrarily complex regexes.

Our main approach is to develop synopsis over a text corpus,
from which the selectivity of dictionary and regex operators can be
estimated. This is analogous to develop histograms over a column,
from which the selectivity of selection conditions can be estimated.

We develop three classes of document synopses. Firstly, we
develop variations of n-gram synopsis, which is a subset of {n-
gram, count} pairs computed from the text corpus. The selectivity
of both dictionary and regex operators can be estimated from this
class of synopsis, among which the top-k n-gram synopsis is the
most simple and accurate one. Secondly, we develop variations of
Bloom filter synopsis, which stores n-grams in bit-maps by apply-
ing hash functions. The Bloom filter synopsis can only support dic-
tionary selectivity estimation. Experiment results show that, given
the same size budget, the best Bloom filter synopsis, top-k strati-
fied Bloom filter synopsis, halves the error rate of the top-k n-gram
Synopsis.

Thirdly, we develop a novel technique to summarize a set of n-
grams by rolling-up characters into character classes, resulting in
roll-up synopsis, which is only used for regex selectivity estima-
tion. Because it summarizes rather than drops n-grams to reduce
the size of the synopsis, it achieves better accuracy compare to the
top-k n-gram synopsis of the same size. We also describe the pro-
cedure to decompose a complex regex into a set of simpler sub-
regexes, whose selectivities can used to more accurately estimate
the selectivity of the original regex.

Our key contributions can be summarized as follows:

o we formalize the problem of selectivity estimation for dictionary
and regex extraction operators over text data in database;

e we developed variations of three classes of document synopses
— n-grams synopsis, bloom filter synopsis, and roll-up synopsis
for the selectivity estimation of dictionary and regex operators;

o we developed more effective and accurate techniques to estimate
the selectivity of a complex regular expression by decomposing
it into sub-regexes;

e we conduct experiments over the Enron email corpus [5] using
both real-world and synthetic workloads, comparing the accu-
racy of dictionary and regex selectivity estimation over different
classes and variations of synopsis.

2. RELATED WORK

Selectivity estimation is a well-known technique for cost-based
query optimization. The selectivity estimation techniques have been
well developed for queries involving numerical attributes [4, 8, 15].
There are more recent studies over selectivity estimation for string
predicates [3, 9, 10, 11, 12] with a focus on substring or fuzzy
string matching. On the surface, selectivity estimation for dictio-
nary evaluation may be thought of as disjunction of multiple string
predicates. However, unlike matching for string predicates, match-
ing for a dictionary entry often requires ignoring the differences in
white space or cases. In addition, the underlying data for dictionary
matching can be text documents with arbitrary length, while previ-
ous techniques focus on database entries with string value of lim-
ited length. Therefore, previous selectivity estimation techniques
for string predicates are not directly applicable for selectivity esti-

mation for dictionaries. Shen et al describe an inverted-index based
approach for selectivity estimation for dictionaries [16] as part of
its optimization solution for information extraction. However, no
formal study is presented on the accuracy of this technique.

These studies on selectivity estimation techniques for string pred-
icates often supports simple patterns in the form of “Wildcard” (e.g.
Movie.name like %p%) as well. However, the regular expressions
supported by our work are typically in much more complex form.
Similarly, patterns considered by selectivity estimation techniques
for XML path expressions [1, 18] are much simpler than those con-
sidered in our work.

Language models [13] are widely used in communities of natural
language processing and information retrieval. Language models
try to capture the properties of a typical document in a collection,
which compensate for the unseen words and phrases. On the con-
trary, document synopsis we developed only try to summarize the
document corpus as succinctly as possible for accurate selectivity
estimation. Different purposes leads to different techniques, but we
based our n-gram synopsis on the n-gram language model. Recent
work [17] demonstrates how to use bloom filter [2], to replace the
n-gram language models. Based on this, we developed the strat-
ified bloom filter synopsis which drastically outperforms the data
structure proposed in [17].

3. SETUP

In this section, we will first introduce dictionary and regular ex-
pression operator as the most common span extraction operators
over text. Then we will setup the problem statement of this paper.
Finally, we will briefly go over some basic concepts and techniques
that we base our techniques on in later sections.

3.1 Span Extraction Operators

A span extraction operator identifies segments of text that match
a particular input pattern and produces spans corresponding to each
such text segment. There are two types of extraction operators:
Dictionary and Regular Expression.

DEFINITION 1  (DICTIONARY OPERATOR). A dictionary op-
erator & g evaluates a dictionary of words and phrases. For each
document, & gjo; returns spans that correspond to matches of the
dictionary words or phrases in the document. a

DEFINITION 2 (REGULAR EXPRESSION OPERATOR). A reg-
ular expression operator &y, evaluates a character-based regular
expression. For each document, &, returns spans that correspond
to matches of the regular expression in the document. a

3.2 Problem Definition

We focus on the following two problems in this paper: (1) build-
ing effective document synopsis, and (2) estimating selectivity of
& gic: and &, over the document synopsis. We now describe each
problem in detail.

Document Synopsis: The first problem is how to construct a doc-
ument synopsis for selectivity estimations of extraction operators.

DEFINITION 3 (DOCUMENT SYNOPSIS). A document synop-
sis @ is a summary of a document corpus D, where the size of the
synopsis is usually much smaller than the size of the document cor-
pus. a

A document synopsis ¢ that is built for selectivity estimation of
dictionary & 4, and regular expression &, best summarizes the
document corpus within the space constraint, to be able to estimate
the number of matches for such extraction operators.
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Figure 1: Sample Lattice for characters and character classes.

Selectivity Estimation: The second problem is given a particular
type of synopsis ¢, how to accurately estimate the selectivity of
extraction operators & y4;.; and & .. The selectivity of an extraction
operator is the expected number of matches of the operator over the
document corpus.

DEFINITION 4  (SELECTIVITY). Let & be an annotation rule
that only involves one extraction operator. The selectivity of & is
denoted as sel (&), where

sel (&) =E [ match(&,d € D))

with match(&,d) being the number of matches of & over a docu-
ment d. O

3.3 Bloom Filter

The Bloom filter is a space-efficient probabilistic data structure
that is used to test whether an element is a member of a set. Its
results might contain false positives, but not false negatives.

Each Bloom filter contains a bit array of m bits, and k different
hash functions, each of which maps or hashes an element to one of
the m array positions with a uniform random distribution. To add
an element, feed it to each of the k hash functions to get k array
positions. Set the bits at all these positions to 1.

To query for an element (test whether it is in the set), we feed
it to each of the k hash functions to get k array positions. If any
of the bits at these positions are 0, the element is not in the set,
because if it were, then all the bits would have been set to 1 when
it was inserted. If all are 1, then either the element is in the set, or
the bits have been set to 1 during the insertion of other elements.
The false positive rate of a Bloom filter is (1 — e/ mk where n
is the number of elements inserted. Solving for the value of k that
minimizes this false positive rate yields an overall false positive
rate of approximately (0.6185) 0 [6]. For compactness, we use this
approximate value in our equations throughout the paper.

3.4 Character Class Lattice

We introduce the term regex-ngram, which will be used in Sec-
tion 6. As oppose to n-gram and regular expressions, regex-ngram
is a special subset of regexes that serves as a summary of a set of
n-grams. The regex-ngrams are what the roll-up synopsis (Sec-
tion 6.3) consists of. The regex-ngrams are generated by rolling-up
the lattice of character classes.

Figure 1 shows a sample lattice of character classes. The lattice
contains three levels. The first level contains the uppercase char-
acters, lowercase characters and digits. The second level contains
character classes \p{Upper}, \p{Lower}, and \p{Digit},
and the containment relationship between the characters in level
one and the character classes in level two is shown in the figure.
Level three contains one character class \p{Alpha}, which con-
tains \p{Upper} and \p{Lower}.

A roll-up operation replaces a lower level character or character
class with a higher level character class. For example, replacing an
“a” with a \p{Lower} is a roll-up operation.

4. N-GRAM SYNOPSIS

In this and the following two sections, we describe three different
kinds of document synopses ¢ over a document corpus D, includ-
ing n-gram synopsis, bloom filter synopsis, and roll-up synopsis.

Assume a document corpus D has M documents, and each docu-
ment d consists of a sequence of |d| tokens: {g1,...,g|4 }. In order
to keep a synopsis ¢ compact to fit in memory, we look at the prob-
lem of building document synopsis ¢, which do not contain more
than k bytes.

For each synopsis ¢ we describe the following algorithms:

1. ¢.BUILD(D, Kk): the algorithm to construct the synopsis from
a document corpus D, where & is the maximum size of the ¢
in bytes;

2. ¢.ESTCOUNT(ngram) / ¢.ESTCOUNT(re): the algorithm
to estimate the selectivity of an n-gram ngram or regular ex-
pression re over the corpus D from the synopsis ¢.

The selectivity of a dictionary over D can be estimated by itera-
tively calling ¢.ESTCOUNT(ngram) over every entry ngram in the
dictionary, and adding up all the counts.

4.1 Top-k N-gram Synopsis

The top-k n-gram synopsis of a document corpus D is an n-gram-
to-count map, which consists of the set of n-grams in D with high-
est counts. The construction algorithm for top-k n-gram synopsis
Oropk-BUILD(D, K) is as follows:

e Find all unique n-grams and their counts in corpus D;

e Sort n-grams by counts;

e iteratively pick the n-gram with the highest count, and insert the
{n-gram,count} pair into ¢y, until the total size of the synop-
Sis Propk €xceeds k bytes.

For n-grams in the synopsis, ¢iopk-ESTCOUNT(ngram) returns
the count correspond to ngram in the synopsis ¢yopk- For n-grams
that are not included in the synopsis @iopk, there are different ways
to estimate the count of ngram as described in Appendix 10.1. We
experimented with them, and decide to use the “LeftBackOff” esti-
mator. The “LeftBackOff” estimator finds the longest prefix of the
n-gram included in synopsis @ypk, if the remaining postfix is also
included in @yopk, then multiply the counts of the prefix and the
postfix divide by the total n-gram count. If the remaining postfix is
not in Pyopk, then multiply the count of prefix with “AvgValue”, the
average count across all dropped n-grams, divide by the total count.
If no prefix is found in @opk, the “LeftBackoff” uses “AvgValue”.

Given a regular expression re, @,k -ESTCOUNT(re) returns the
sum of counts of all the n-gram entries in Pyopk that matches re.

4.2 Other N-gram Synopses

A simple variation of the top-k n-gram synopsis is the bag-of-
words synopsis, which consists of the set of the one-grams in D,
instead of n-grams, with the highest counts. We also experimented
with more sophisticated variations, including probabilistic n-gram
synopsis, where low-count n-grams are included with probabili-
ties proportional to their counts, and wavelet-like n-gram synop-
sis, where counts of longer n-grams are estimated from that of the
shorter. However, we found that none of those synopsis outper-
forms top-k n-gram synopsis.

S. BLOOM FILTER SYNOPSIS

In the synopses described in the previous sections, most of the
space in the synopsis goes towards storing the tokens of the n-
grams. This pattern of space usage limits the number of n-grams



that can be stored within a given number of bytes. In this section,
we discuss an alternative class of synopsis that reduces this space
pressure by avoiding storing the n-grams themselves, and instead,
uses Bloom filters to represent sets of n-grams. This approach al-
lows the synopsis to store information about every n-gram in the
corpus, with the accuracy being controlled by the space allocated
to the filters.

5.1 Stratified Bloom Filter Synopsis

A Stratified Bloom Filter, or SBF, is a synopsis consisting of an

array of simple Bloom filters. The ith Bloom filter of this array rep-
resents the set of n-grams whose total counts, if encoded as binary
numbers, would have a “1” in the ith bit position.

Inserting an n-gram into an SBF synopsis is a straightforward
procedure: First, compute the total count of the n-gram in the doc-
ument corpus, and convert this count to a binary number. Then, for
each bit in the count that is set to “1”, insert the n-gram into the
corresponding Bloom filter.

The basic algorithm for finding the estimated count for a given n-
gram is also straightforward: Start with an estimated count of zero,
and look up the n-gram in each of the Bloom filters in the synopsis.
If the Bloom filter for bit i contains the n-gram, then add 2 to the
estimated count.

The simplest type of SBF synopsis is what we call the naive
Stratified Bloom Filter. A naive SBF divides the space budget for
the synopsis evenly among k Bloom filters (where £ is the highest
bit position that is set to one in any n-gram’s count), and then ap-
plies the basic insertion and estimation algorithms to these Bloom
filters.

As it turns out, a naive SBF makes a very poor synopsis for es-
timating dictionary selectivities, generally producing much greater
error rates at a given synopsis size than a top-k n-gram synopsis
(refer to results of SBF.naive in Section 7.2). Please refer to Ap-
pendix 10.2 to understand the nature of the errors that a SBF intro-
duces when estimating the selectivity of a dictionary.

5.2 Important SBF Optimizations

The naive SBF synopsis suffers from high estimation errors, which
stems from Bloom filter’s false positives, particularly on the Bloom
filters associated with higher-order bits. We have developed three
different optimizations to address these issues: (1) compensate for
false positives so as to bring the expected estimation error to zero,
(2) reallocate the total space budget among the different Bloom fil-
ters to reduce the variance of the estimation error by as much as
possible, and (3) avoid inserting n-grams with low counts.

We cover the first two methods in this section; the third method
effectively creates a hybrid of the SBF and top-k approaches, so we
devote a separate section (Section 5.3) to it.

5.2.1 Compensating for false positives

To compensate the one-sided estimation error of the naive SBF,
we use a corrective factor based on the false positive probability of
a Bloom filter. This correction is not applied at the level of individ-
ual lookup operations, since it is not possible to tell the difference
between a Bloom filter that contains the n-gram and Bloom filter
that has a false positive. Instead, we compensate for false posi-
tives across a series of lookups by applying a corrective factor to
the number of times each Bloom filter reported that a given n-gram
was not present.

If one were to probe a Bloom filter with n values that were never
inserted into the Bloom filter, then one would expect that the Bloom
filter would report that (1 — P[FP])n of the values were actually
present, where P[F P] is Bloom filter’s false positive rate. So divid-

ing the number of times the Bloom filter returned “not present” by
1 — P[FP] compensates for the false positive rate.

Using this correction factor requires turning the est Count pro-
cedure into a function that is applied across an entire dictionary file
instead of a single entry. Instead of computing a separate estimated
count for each dictionary entry, we track the number of times each
Bloom filter reported that a given n-gram in the dictionary was not
present. We then divide each n-gram’s count by the correction fac-
tor, 1 — P[FP], and subtract the result from the total number of
n-grams to produce an estimate of the number of counts that truly
contain a “1” in each bit position. Finally, we multiply these counts
by the appropriate powers of two to obtain an overall estimate of
the dictionary’s selectivity.

This updated procedure removes the bias from the SBF’s estima-
tor, but it does not change its variance. Also, since the correction
factor relies on each Bloom filter reporting that at least some of the
n-grams in the corpus are not present, it does not work when the
false positive probability is close to 1. Sections 5.2.2 and 5.3 ad-
dress the issues of reducing variance and correcting very high false
positive rates, respectively.

5.2.2  Allocating space across Bloom filters

Compensating for the expected error, as described in the previ-
ous section, creates an unbiased estimator, but the variance of this
estimator is just as high as before. We reduce this variance by using
a more effective method to allocate space across the Bloom filters.

Most of the variance in the estimation error of a naive SBF is
due to false positives on the higher-order bits. Reducing this vari-
ance requires allocating more of the synopsis’s space budget to the
Bloom filters corresponding to these bits, reducing their false pos-
itive rates. Note that one cannot just allocate all the space to the
higher-order bits; as they shrink in size, the Bloom filters for the
lower-order bits would quickly become just as big a source of vari-
ance.

We allocate the space budget among Bloom filters by solving
the following optimization problem: Minimize the variance of the
estimator by allocating space to different Bloom filters, subject to
the constraint that the total size of all the Bloom filters must add up
to the space budget.

To compute a concrete value of the variance of this estimator,
one needs to know the distribution of counts of the n-grams that
will be probed against the synopsis. To be conservative, we use a
“worst-case” estimate of this variance: the variance of the estimator
when all n-grams probed against the synopsis have a true count of
zero. Using the random variable V; to represent the false positive
rate for bit 7, we can express this variance as

k
Zz"v,} (1)

i=1

Var

As we noted in Section 3.3, V; is 1 with probability 0.6185" and
0 otherwise, where m; is the number of bits in the Bloom filter for
bit i and n; is the number of n-gram counts for which this bit is set
to 1. Substituting into the above equation, we obtain the following
optimization problem:
Minimize:
2m;

ko 2m; m ) 2m;
Y 2%0.6185 " +0.6185% —2110.6185 ™ 2

i=1

Subject to: |,
Y mi=M, mi>0forall1 <i<k 3)
i=1

where M is the total space budget.



This optimization problem is difficult to solve in principle, but
we found that a simple hill-climbing algorithm that iteratively re-
allocates space among Bloom filters in one-byte increments works
well in practice.

5.3 Top-k Stratified Bloom Filter Synopsis

The Stratified Bloom Filter synopsis as described so far stores
information about all n-grams in the corpus. When the number of
bits allocated to the synopsis is small relative to the total number
of unique n-grams, this policy can lead to two problems. First, the
variance of the estimator rises because fewer bits are available to
represent the counts of each n-gram. Second, as the space budget
decreases, eventually the false positive rate approaches 1.

The Top-K Stratified Bloom Filter addresses these two problems
by only storing information in the synopsis about the n-grams with
the top k counts. This approach effectively creates a hybrid of the
SBF and top-k synopsis types.

Removing the low-count n-grams from the synopsis reduces the
variance of the estimator, and also reduces the false positive rates
for all bits. However, the resulting synopsis will likely return a
count of zero for the n-grams that were removed.

Unlike the systematic error we corrected in Section 5.2.1, this
false negative error does not have a structure that allows for a sim-
ilar type of correction factor. Instead, we reduce the bias of the
estimator by balancing this negative error against the portion of the
false positive error that cannot be corrected. Recall that the cor-
rection factor described in Section 5.2.1 stops working as the false
positive probability approaches 1.

We define the uncorrectable false positive error as the expected
false positive error due to the Bloom filters false positive proba-
bilities greater than ¢, where c is a tuneable constant. We then a
hill-climbing algorithm to find the value of k (the number of n-
grams to retain) such that the total false positive and false negative
errors cancel each other out over the entire corpus. The algorithm
starts with k = |D| (that is, retain all n-grams) and gradually de-
creases the value of k. At each stage of the search, the algorithm
uses the technique described in the previous section to allocate the
space budget among Bloom filters, and computes expected false
negative and uncorrectable false positive errors. The search stops
when these errors cancel each other out.

6. REGEX SYNOPSIS

A straightforward way to estimate the selectivity of a regex is to
match the regex over a sample document collection. This approach
can suffer from the following two problems: first, due to the lim-
ited size permitted for the sample collection, and the randomness
in picking the samples, this approach can provide little guarantee in
accuracy; second, this approach can also be very expensive as the
given regex can be arbitrarily complex.

To overcome these issues, we first describe how to estimate the
selectivity of a complex regex from only subparts that can be matched
over n-grams. This rewrite can potentially reduce the estimation
cost as well. Then we propose a new document synopsis that sum-
marizes the {n-gram,count} pairs from the entire corpus to estimate
the selectivity for regexes. It obtains higher accuracy than using
sample document collection that is just a small subset of the entire
corpus, or using top-k n-gram synopsis that drops rather than sum-
marizes n-grams given a size budget. Finally, we show how such a
synopsis can be built efficiently.

6.1 Regex and Subregex

The intuition is that each regex can be viewed as being composed
of multiple subregexes sequentially in conjunctive form. If we can

R: \bTo:\s*.1,200\s*\n (>\s*) *\s* (CC) :\s*
Ry: To:

Ri:\s*.1,200\s*\n (>\s*)

Ry: \s*(CC) :\s*

Figure 2: Sample regex and its subregexes.

REWRITE (R)
ListOfTBR.reset(); TBR.reset()
for each character c; € R do
if matchesTokStart(c;) thenT BR.append(c;);
endif
if matchesTokMiddle(c;) thenT BR.append(c;);
else
if matchesTokEnd(C;) then
ListOfTBR.add(TBR);TBR.reset();
elseT BR.reset();
10 endif endif endfor
11 return merge(ListOfTBR)

OO N W —

Figure 3: Algorithm for rewriting a regex into 7 BRs.

decompose the regex in such as way that some of its subregexes
can be matched against the ngram-based synopsis discussed earlier,
then the lowest selectivity of such subregexes provides an upper
bound on the selectivity of the original regex. For instance, the
regex R in Figure 2 is composed of Ry, R, and R, sequentially
(denoted as RgR;R,). Both the subregexes Ry and R, corresponds
to two tokens in the original corpus and their selectivity thus can be
estimated using the ngram-based synopsis. Since the subregexes
are composed together to form the original regex in conjunctive
form, the selectivity of the original regex is no more than the lowest
selectivity of Rg and R;.

Formally, we denote a regex as R and each of its subregex as
R; (i € [0,m]) where R = RyR;...R;. Then we have sel(R) <
min( sel(Ry), ..., sel(R;;)). In order to utilize n-gram synopsis,
we only use the subregexes of R that matches at token boundary.
For simplicity, from now on we refer to such subregexes as token
bounded subregexes, denoted as T BRs.

Figure 3 describes the algorithm to rewrite a regex into a set of
TBRs. We start from the left of a regex, and first identify a character
that matches the start of a token. Then we keep on looking unless
we find a character class that matches the end of a token. If before
finding a “end-of-token” character class, we find another a charac-
ter that is not in the middle of a token, we discard whatever we have
found so far and start again. If we find a “end-of-token” character
class, then we have successfully found a subregex candidate. The
algorithm returns the merged list of all subregex candidates.

Depending on the subregexes generated and how they are com-
posed together to form the original regex, the accuracy of the se-
lectivity estimated based on T'BRs varies. By measuring the good-
ness of the estimation using error rate of the estimation, denoted as
e( sel (R)), we have the following regex classification algorithm:

0 if m=0,Ro=R. (G1)
(0,8],6 <1 ifm=0andRyCR.  (G2)
e(sel(R)=< (8,c],c <o if m > 1, VR; matches (G3)

strings of limited length.

(c,00) otherwise. (G4)

As shown in Section 7.3, the TBRs generated from most regexes
from a real Named Entity Resolution workload fall into the first
three conditions in the above equation.

6.2 Roll-Up Synopsis

Given the TBRs generated from a regex, one way to estimate the

selectivity is to match all TBRs with every n-gram in the top-k n-



gram synopsis. However, the estimation error can be significant,
as the regex could match many less frequent n-grams, which are
dropped by the top-k n-gram synopsis. Moreover, the bloom filter
synopsis cannot be used, because it hashes n-grams into bit-maps
without storing them literally. But for regex selectivity estimation,
we need the original n-grams to perform the match. To address
these issues, we propose the roll-up synopsis.

The intuition of the roll-up synopsis is that rather than dropping
low-count n-grams as in top-k n-gram synopsis, we summarize n-
grams into regex-ngrams (refer to Section 3.4) to provide more ac-
curate selectivity estimation. In most cases, the summaries over
sets of n-grams are sufficient for regex selectivity estimation, as
regexes themselves match sets of n-grams. The basic technique to
summarize n-grams is to merge n-grams by rolling-up the charac-
ter class lattice described in Section 3.4. Multiple n-grams can be
rolled-up into one regex-ngram. In order to decide, which roll-up
operations to perform for each n-gram, we rely on a utility function.

The utility function of a set roll-up operations over a set of n n-
grams that result in the same regex-ngram consists of two parts: (1)
benefit: the number of unique n-gram reduced (n— 1); and (2) cost:
the error induced by the summarization. Since the roll-up operation
induce error over each instance of a unique n-gram, the error can
be estimated by d x X' n; X ¢;, where n; is the number of roll-up
operations, ¢; is the count of the ith n-gram, and d is the weight
of the cost relative to benefit. Putting cost and benefit together, the
utility function is as follows:

f = n—1—-dxXl nxc 4
(nj>=0,c;>=1,n>=1,d >=0)

According to Equation (4), the maximization of the utility func-
tion will guide us to merge more n-grams (i.e., higher n) and merge
n-grams that have fewer roll-ups and low counts (e.g., lower d;,
¢;’s) to minimize the estimation error.

The goal of the construction algorithm for the roll-up synopsis
is to find the set of roll-up operations performed on each n-gram
to achieve the global maximum utility value. The global maximum
utility value which is the sum of the utility value of all the resulting
regex-ngrams. The search space of this optimization algorithm is
exponential to the number of unique n-grams, thus a brute force
algorithm is computationally infeasible.

We use a greedy algorithm to construct the roll-up synopsis by
picking, at each step, one regex-ngram with the maximum utility
value to include in the roll-up synopsis, and rolling up all n-grams
that match this regex-ngram. The algorithm ¢y p.BUILD(D, k) to
construct the roll-up synopsis from a set of n-grams generated from
a corpus D contains following steps:

1. For each unique n-gram a € o from D, generate all possible
regex-ngrams that can be derived by one or more of the roll-
up operations from a;

2. For each unique candidate regex-ngram b € 3 generated from
step one, compile the set of n-grams o, that can be merged
into b, and compute the utility value f(b) = n—d x X(c¢; X
n;), where n is the number of unique n-grams in @, and
d x X(c; X n;) is the weighted sum of their counts;

3. Pick the candidate regex-ngram b’ € 3 with the highest utility
value to be included in the roll-up synopsis and perform the
roll-up operations for all n-grams in 0y

4. Remove the n-grams in @ from the other ¢y, where b €
B\{b'}, and recompute the utility values for each remaining
candidate regex-ngrams in 8 = B\{b'};

5. Repeat step 3 and 4, until no roll-up operation can increase
the global utility value, or the synopsis reaches a predefined
budget size .

EXAMPLE 2. Suppose we have a set of three n-gram and count
pairs {“the” 100, “Abc” 1, “All” 10}. In step one, we generate
all possible regex-ngrams, where some regex-ngrams can be gen-
erated from multiple n-grams. For example, “the” can generate
33 candidate regex-ngrams, one of which \p{Alpha} {3} can be
generated from all three n-grams.

In step two, the utility values can be computed for each regex-

ngram. For example, if we set d = 0.01, the utility value for \p {Alpha} {3}

is f(\p{Alpha}{3})=2-0.01 x (6%x1004+6%1+6x*10) =
—4.66. The benefit is 2 because all three n-grams can be rolled-up
into it. The number of roll-up operations for each n-gram is 6, be-
cause they all have three characters, and each characters roll-up
two levels in the character class lattice.

In step three, we pick the regex-ngram with the highest utility

value: A\p{Lower} {2}, where f(A\p{Lower}{2})=1-0.01 x

(2% 1+2x%10) = 0.78, and perform the roll-ups on “Abc” and
“All”. In step 4, we do the book keeping to remove “Abc” and
“All” from the n-gram list of other regex-ngrams.

In this toy example, no more roll-up can be performed, and the
final set of regex-ngrams in the roll-up synopsis is: y={ “the”
100, "A\p{Lower}{2}” ]l}. In general if the synopsis has not
been reduced to the expected size budget, we iteratively call step
three and four to perform more roll-ups to reduce the size of the
SYROPSIS. O

6.3 Pruning the Search Space

Although the greedy algorithm described in the previous section
reduce the computation from exponential to the number of n-grams
of the brute force algorithm to linear, the computation needs to be
done for each n-gram is still expensive. This computation involves
generating all candidate regex-ngrams 3 from each n-gram, and
picking out the one with the highest utility. This a search problem
where the search space is B with size as large as O(N - 2maxlen),
where N is the number of n-grams and maxlen is the maximum
length of the n-gram and 2 signifies the boolean decision of whether
to roll-up a character or not. For long n-grams, this search space
can be prohibitively large.

We used two rules to prune this search space while still find the
regex-ngram with the highest utility value. Both rules explore the
characteristics of the utility function in Equation (4). The first rule
states that any roll-up operation that does not merge additional n-
grams has a decreasing utility value. The second rule states that the
utility value of a set of roll-up operations f(b2) is larger than the
utility value of a other set f(b1) if and only if:

2 1
n2—nl > dXZ?Zlcixni—Zj?zlcjxnj
> dxE2cixn ®)

Based on these two rules, the algorithm to find the regex-ngram
with the highest utility value can be found in Appendix 10.3.

6.4 Matching Function

The selectivity estimation function of a regex over the roll-up
SYnopsis @roiup-ESTCOUNT(re) involves: (1) Rewrite the regex
into subregexes according to the rewrite algorithm in Section 6.1;
(2) If the subregexes cannot give an accurate estimate of the se-
lectivity of the regex according to the classification algorithm in
Section 6.1, fall back to match the regex over a sample document
collection to estimate the selectivity; (3) Otherwise, we match each
subregex over the regex-ngrams in the roll-up synopsis and take the
lowest estimated selectivity of the matched regex-ngrams as the es-
timation.

The matching algorithm of a subregex over a regex-ngram is sim-
ilar to the Java regex matching engine [7], except that the matching
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Figure 4: Average error for all dictionaries: Top-k N-gram vs. Strati-
fied Bloom-Filter Synopsis.

also considers the containment relationship between characters and
character classes is described in Section 3.4.

7. EVALUATION

Having described three types of document synopsis and the se-
lectivity estimation functions for dictionaries and regexes over them,
we now present the experiment results comparing the accuracy of
selectivity estimation over different synopsis.

7.1 Setup

We implemented the n-gram, bloom filter and roll-up synopsis
as described in Section 4, 5, 6 in Java 1.6. We conducted the exper-
iments reported here on a 2.5GHz duo core Intel Pentium 4 Win-
dows 7 system with 4GB RAM.

Dataset: The dataset we used in all the experiments is from the

collection of 256,000 emails in the Enron corpus [5].

Baseline Synopsis: Random sample synopsis is constructed by ran-

domly picking a sample document collection, whose size is bounded

by a budget of N tokens.

Workload I: NamedEntity Rules: A set of rules taken from a

named entity annotator (NEA) developed in System T for Lotus

Notes 8.01 and several other IBM products.

o NERegexes A set of 32 regular expressions chosen based on the
profiling result of the NEA over Email, including the five most
expensive regular expressions and the five least expensive ones,
as well as 22 others from the middle of the distribution.

e NEDicts A set of 137 dictionaries chosen from the NEA, as well
as from the annotators described in [14]. The dictionaries ranged
in size from one entry to 90,000 entries.

Workload II: Synthetic Queries: For increased coverage of the

query space, we also ran experiments with synthetic workloads.

e GeNgrams We randomly pick 100 n-grams from the corpus D.

e GeRegexes We generate a set of level two regex-ngrams from
all the n-grams in a corpus D, by rolling up all lowercases and
uppercases into \p{Lower} and \p{Upper}, and digits into
\p{Digit}. Then randomly pick 100 from this set.

7.2 Dictionary Selectivity Estimation:
N-gram vs. Bloom-Filter Synopsis

In this experiment, we first compare the accuracy of dictionary
selectivity estimation over top-k n-gram synopsis (TopkNgram),
stratified bloom filter (SBF) (see Section 5.1), and top-k stratified
bloom filter (TOpkSBF) synopsis (see Section 5.3). We measure
the average estimation error rate (y-axis) over all dictionaries in
NEDicts for the three synopsis given different space budget (x-
axis), varying from 10 thousand to 1 million bytes.

In Figure 4, the results show that at small synopsis sizes (< 20k),
SBF has higher error rate compares to the TopkNgram. This is
because SBF contains all n-grams, which is overflowing the bloom
filters. At larger synopsis sizes (> 50k), SBF achieves lower aver-
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Figure 5: Average error for all dictionaries: different Bloom-Filter
based Synopsis.

age error, because it has enough space to store all the n-grams with
a low false positive rate.

The TopkSBF combines the merits of top-k n-gram synopsis at
small synopsis sizes, and that of the stratified bloom filter at larger
sizes. As we can see, the error rates of TOPkSBF are smaller than
that of SBF, and half that of TopkNgram for most synopsis sizes.

In addition, we compare the accuracy of different variations of
bloom filter synopsis. Figure 5 shows the accuracy of selectivity es-
timation of six variations of bloom filter synopsis. SBF.naive is the
naive stratified bloom filter described in Section 5.1; SBF.trackFalse
is SBF.naive with the optimization to compensate for the false pos-
itives; SBF.reDist is SBF.naive with the optimization to allocate
space unequally among bloom filters; SBF is SBF.naive with two
optimizations; TOpkSBF is the top-k stratified bloom filter; and
finally naiveBF inserts each n-gram into a single big bloom filter.

As we can see, naiveBF, SBF.naive, and SBF.trackFalse per-
form the worst—the error rate does not drop under 1 until the syn-
opsis size increases beyond 5 million bytes. SBF.reDist performs
better, where the error rate drops to below 1 after 1 million bytes.
SBF and TopkSBF perform better by far—the error rate drops be-
low 1 at size 50k for SBF and at as low as 10k for TopkSBF.

7.3 Regex Selectivity Estimation: Regex
Rewriting and Classification Algorithms

In this experiment, we present the effectiveness and accuracy of
the regular expression rewriting and classification algorithms de-
scribed in Section 6.1.

The regular expression rewriting algorithm decomposes a regular
expression into a set of TBRs (token bounded subregexes), where
the selectivity of the regex is estimated by the lowest selectivity of
the TBRs. We use the rewriting algorithm to rewrite the 32 regexes
in NERegexes workload, then use the classification algorithm to
classify the regexes based on how its TBRs are composed together
and finally compute the error rate of estimating the selectivity of
a regex from its TBRs. The results are listed in Table 6. Table 6
also shows for each group an example regex and the subregexes
they are written into. As can be seen, out of the 32 regexes, 16 are
classified as G1, with their estimates exactly the correct selectivity;
7 are identified as G2, with their estimates within 0.2 error rate; 5
of them are classified as G3, with the error rate of their estimates
falling between 0.2 and 1; and only 4 are G4 regexes, with error
rate larger than 1.

The results shows that the selectivity of most regular expressions
in NERegexes workload can be accurately estimated by the selec-
tivity of their subregexes. The results also demonstrates that our
classification algorithm can effectively classified regexes of differ-
ent expected error rate based on how their subregexes are composed
together. It thus can be used to pick out the one whose subregexes
cannot provide an accurate estimate, for which we use the baseline
random sample synopsis.
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Figure 7: Average error rate for all Group 1 to 3 regexes in NERegex:
roll-up vs. top-k n-gram vs. random sample synopsis.

7.4 Regex Selectivity Estimation:
N-gram vs. Roll-Up Synopsis

In this experiment, we compare the accuracy of regex selectiv-
ity estimation over top-k n-gram synopsis (TopkNgram), roll-up
synopsis (RollUp) (see Section 6.3), and random sample synop-
sis (Random). We measure the average estimation error rate (y-
axis) over all regexes in G1 to G3 (described in Section 6.1) of
NERegexes for the three synopsis given different space budget (x-
axis), varying from 0.5 million entries to 3.5 million entries. Since
the entries include unigrams, bigrams and trigrams in RollUp and
TopkNgram, we allow the upper bound of the space budget—three
times as many tokens—for Random synopsis to be conservative.

In Figure 7, the results show that the error rates of two runs of the
Random synopsis, Random1 and Random2, are quite different
from each other with smaller synopsis sizes (< 2m). Moreover, the
error rates do not decrease monotonically with the increase of the
synopsis sizes. This is because the randomness in the set of doc-
uments included in Random synopsis. In general, the error rate
of Random is much higher than both TopkNgram and RollUp.
Comparing TopkNgram and RollUp, we can see that the error rate
of TopkNgram is two times that of RollUp at size 0.5m, and grad-
ually decreases to be the same as RollUp. The error rate of RollUp
keeps the same at 0.02 from 0.5m to 3.5m, which corresponds to
the error rate of the regex rewriting algorithm.

We also conducted the experiment to compare the accuracy of
the TopkNgram and RollUp synopsis with synthetic workloads
GeNgrams and GeRegexes. We measure the average error rate
where the size budget is 0.5m. Using GeNgrams, the average er-
ror rate is 0.3 for RollUp, 0.1 for TopkNgram; using GeRegexes
on the other hand, the average error rate is 0.005 for RollUp, 0.32
for TopkNgram. This result shows that the RollUp synopsis is less
accurate in estimating selectivity for regexes containing n-grams,
because a lot of them are rolled-up into regex-ngrams. But, RollUp
greatly outperforms TopkNgram in accurately estimating the se-
lectivity for regexes containing no ngram.

7.5 Summary

The results showed that accurate selectivity estimation, of error
rate less than 0.1, can be achieved by supporting document synop-
sis as small as 100k bytes, less than 1/1000 size of the text cor-
pus. The experiments reported in Section 7.2 demonstrated that the
top-k stratified bloom filter halves the error rate of dictionary se-

operators over text data, including dictionaries and regular expres-
sions, is becoming increasingly acute. A lot of text processing
queries involve multiple extraction and join operators, resulting in
many possible query plans. However, there has been little research
on building the selectivity estimation for these extraction operators.
In this paper, we proposed a document synopsis-based approach
for selectivity estimation. We developed three classes of document
synopsis: n-gram synopsis, bloom filter synopsis and roll-up syn-
opsis. Our experimental results show that these synopsis are com-
pact and enable accurate selectivity estimations. As future work,
we intend to look at cost estimation of extraction operators and ex-
tend an query optimizer to use these statistics.
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10. APPENDIX

Section 10.1 describes four different estimator for an n-gram not
in the top-k n-gram synopsis. Section 10.2 explains in detail the
nature of the errors introduced by a naive SBF when estimating
the selectivity of a dictionary. Section 10.3 provides more details
on the algorithm that efficiently prune the search space to find the
regex-ngram that has the highest utility value.

10.1 Estimators for Top-k Ngram Synopsis

The following are four different estimators @ pk.ESTCOUNT(ngram)

of the count of a ngram not included in @yp:

o “MaxLikelihood”: returns a count of zero

e “AddOne”: returns a count of one, also adds 1 to the counts of
every n-gram in the synopsis

e “AvgValue”: returns the average count across all n-grams that
were excluded from the synopsis

o “LeftBackoff”: finds the longest prefix of the n-gram included
in synopsis @yopk, if the remaining postfix is also included in
Oropk> then multiply the counts of the prefix and the postfix di-
vide by the total n-gram count. If the remaining prefix is not in
Oropk,> then multiply the count of prefix with “AvgValue” divide
by total count. If no prefix is found in ¢;opk, the “LeftBackoff”
technique falls back on ”AvgValue”.

10.2 Error Analysis for Naive SBF

The estimation error of the Stratified Bloom Filter synopsis de-
pends on the counts of the n-grams that are inserted into the synop-
sis. This relationship is best explained with an example. Consider
an SBF synopsis with 10 Bloom filters. Since there is one Bloom
filter per bit, this synopsis can encode any n-gram count between
0 and 2047. Imagine that the counts for every n-gram in the cor-
pus have been inserted into this synopsis, using the basic insertion
procedure outlined above.

Recall that the error of a Bloom filter is one-sided: If an item has
been inserted into a Bloom filter, lookup operations on the Bloom
filter will always indicate the presence of the item inside the Bloom
filter. If, on the other hand, an item has not been inserted into the
Bloom filter, the lookup operation may report that a given element
is present even though it is not.

Now consider what happens if one probes our example synopsis
with an n-gram whose true count (the number of times the n-gram
appears in the corpus) is 2047. The binary representation of 2047
is 1111111111 (ten 1’s), so this example n-gram must have been
inserted into every Bloom filter. Any subsequent lookup operation
will find this n-gram to be present in every Bloom filter, so the
estimation algorithm will always report an estimated count of 2047
for the n-gram. Hence, the estimation error for this hypothetical
n-gram will always be zero.

Now consider what happens if the synopsis is used to estimate
the count of an n-gram whose true count is zero. Since the n-gram’s
count is zero, the n-gram should not be present in any of the Bloom
filters. However, a lookup operation a given Bloom filter may gen-
erate a false positive. If we denote the false positive probability
of the ith Bloom filter by the random variable V;, then the overall
estimation error is the sum of the (independent) errors across the
different bit positions:

207 12y + . 20V (6)

For n-grams with true counts between 0 and the maximum count,
the estimation error will fall between these two extremes. In gen-

eral, for an SBF with £ Bloom filters, the error is given by
b .
Y 2V Y
i=1

1 if bit  is not 1

where z; = .
0 otherwise

and V; is a random variable as in

Equation 6.

In most text corpora, the distributions of n-gram counts tend to
be quite uneven, with a few very large counts and a large number
of small counts. This type of distribution creates a problem for a
naive SBF synopsis, as the errors from the Bloom filters associated
with higher-order bits quickly add up. For example, in the Enron
corpus used in our experiments, the most common n-gram occurs
about 14 million times (meaning that 23 bits are required to store
these counts), while the averge n-gram count is only about 26.3.
Imagine if, in an SBF synopsis over this corpus, the Bloom filter
for bit 23 had a false probability of 0.001 percent. Then, for any
n-gram whose true count was less than 223, the error from this bit
alone would have an expected value of 223 x 0.00001, or about
83.9. This expected error is more than three times the average n-
gram count for the corpus.

Worse, the variance of this error is also approximately 83.9.
Since the false positive probabilities of a Bloom filter for individual
n-grams are nearly uncorrelated, this variance adds up very quickly
when one is trying to estimate the selectivity of a large dictionary.

10.3 Details on Pruning the Search Space

The algorithm to find the regex-ngram, generated by rolling-up
level one characters to level two character classes, that has the high-
est utility value in one step of the greedy algorithm described in
Section 6.3 is as follows:

1. For each unique ngram we generate a level two regex-ngram
by rolling-up each character or digit into level two character
classes;

2. For each unique level-two regex-ngram b, if it matches only
one ngram, the original ngram has the highest utility of all the
regex-ngrams generated from it based on rule 1); if it mathes
more than one ngram, compile the list of matched ngrams o;

3. Enumerate all the combinations of the ngrams in o, that can
generate a different regex-ngram from b, which has the com-
plexity of O(len) where len is the length of ngrams merge
into b;

4. For each combination, if it excludes more than d X X;cq, ¢; X
n; number of ngrams in @, then its utility function is less than
b, otherwise computes its utility value;

5. Pick the highest value regex-ngram to include in the roll-up
synopsis from the ones we computed the utility value, and
perform book-keeping.

Similar algorithm is used to find the regex-ngram, generated by
rolling-up lavel two character classes to level three character classes,
that has the highest utility value.

EXAMPLE 3. Suppose we have the set of ngram and count pairs
oy ={"Jun” 10, *Jul” 20, "Aug” 100}. At step one, we generate
all the level two regexes, in this case only one b =
\p{Upper}\p{Lower} {2}. At step two we generate the set
of ngrams oy = {"Jun”, "Jul”, "Aug”} matches to it. At step
three, the combinations of this set of ngrams can be enumerated
by looking at each position: at position 1, the combinations are:



{"Jun”, "Jul”}; at position 2, the combinations are { "Jun”, "Jul”,
”Aug”}; at position 3, the combinations are 0.

In step four, we check if each combination contains more than
(3—dx(10-3420-3+4100-3)) ngrams. When d = 0.01, only the
second combination, that generates a regex n-gram
\p{Upper}tu\p{Lower}, satisfies the condition. Thus in step
four, we compute its utility value, which is higher than the utility
value of \p{Upper}\p{Lower} {2}. Thus, we pick
\p{Upper}tul\p{Lower} to be included in the roll-up synopsis
in step five. m|



