Recomputing Materialized Instances
after Changes to Mappings and Data

Todd J. Green !, Zachary G. Ives 2

'Department of Computer Science, University of California, Davis
Davis, CA 95616 USA

greenlcs.ucdavis.edu

2Department of Computer and Information Science, University of Pennsylvania
Philadelphia, PA 19104 USA

zives@cis.upenn.edu

Abstract—A major challenge faced by today’s information
systems is that of evolution as data usage evolves or new data
resources become available. Modern organizations sometimes
exchange data with one another via declarative mappings among
their databases, as in data exchange and collaborative data sharing
systems. Such mappings are frequently revised and refined as new
data becomes available, new cross-reference tables are created,
and corrections are made.

A fundamental question is how to handle changes to these
mapping definitions, when the organizations each materialize
the results of applying the mappings to the available data. We
consider how to incrementally recompute these database instances
in this setting, reusing (if possible) previously computed instances
to speed up computation. We develop a principled solution
that performs cost-based exploration of recomputation versus
reuse, and simultaneously handles updates to source data and
mapping definitions through a single, unified mechanism. Our
solution also takes advantage of provenance information, when
present, to speed up computation even further. We present an
implementation that takes advantage of an off-the-shelf DBMS’s
query processing system, and we show experimentally that our
approach provides substantial performance benefits.

I. INTRODUCTION

In the sciences, in business, and in government, there
is increasingly a need to create and maintain derived or
transformed data, often stored externally: consider data ware-
houses for supporting centralized analysis, master databases
for keeping curated results, data replicas that are released
after being “sanitized” for privacy reasons, portals for sharing
data across the life sciences, and so on. Traditionally, creation
and maintenance of these instances has been handled through
extract-transform-load (ETL) dataflows, which can perform
arbitrary translation and cleaning operations. Increasingly,
there is interest in using declarative schema mappings relating
the source and target instances [1], [2]. Declarative mappings
are not as general as ETL, but when applicable (see [3]), they
have many advantages: they can be composed so data can
be mapped from one database to another through transitive
connections [4] if direct mappings are unavailable; they can
be used to track data provenance [2]; and they can be used
to ensure consistency even in the presence of conflicts and
different viewpoints [5], [6]. A significant literature now exists
on materializing the target data instance when given a set of

declarative mappings: when there is a single source and target,
as in IBM’s Rational Data Architect and the related Clio [7]
research project, this is termed data exchange [1]; multiple
sources and targets are considered in peer data exchange
systems [8]; and an even more flexible model in which every
participant is a source and a target who can make updates is
that of update exchange as performed in collaborative data
sharing systems (CDSS) [9].

A major challenge in all such scenarios is that of evolution:
the target schema and/or the mapping between them might be
changed to meet new requirements or a new understanding of
the domain, to accommodate a new source, or to leverage
a correspondence (synonym) table. How do we efficiently
recompute the target instance in a data exchange setting, or
the set of all transitively dependent instances in collaborative
data sharing, given a new specification of the target instance
and its relationship to the source(s)? A natural question we
consider in this paper is whether the declarative nature of
schema mappings can again provide a benefit, in terms of
recomputing the affected instances: intuitively, a minor change
to a mapping should result in a relatively inexpensive update
to the affected data instances.

We show how this problem of supporting changes to
mappings (and possibly the target schema) in data exchange
and CDSS can be solved through novel techniques for what
we term multi-view adaptation: the problem of efficiently
recomputing a collection of materialized views when the view
definitions are changed [10]. In doing so we exploit the close
connection between declarative schema mappings and the data
exchange “chase” procedure with Datalog programs [2], [11]
— reading mappings as view definitions. Our solution enables
efficient recomputation of affected view (target) instances.
Moreover, because of our more general problem formulation,
our techniques are also applicable in a variety of other view
maintenance settings, even in conventional relational DBMSs.

To get a sense of the problem, we consider a CDSS scenario
and how mappings might change over time. (Data exchange
represents the simpler case where there is only a single source
and a single target.)

Example 1: Suppose we have a series of genomics

databases, exported in the formats preferred by different
communities. The initially supplied data (in the BioSQL [12]
format) includes biological data entries, plus a list of terms.
We export a list of genes as a new table related to the
original by an integrity constraint, which we supplement with
a table specifying which genes correspond to which organisms.
Finally, we export a table containing only genes for the
mouse (which happens to be the organism given ID 12 in our
database). In data exchange and CDSS, this is accomplished
by writing schema mappings in the form of constraints relating
the source tables with a set of exported target tables:

(my)

(m3)

bioentry(E,T,N) Nterm(T, “gene”) — gene(E,N)
gene(G,N) AN hasGene(G,12) — mousegene(G,N)

Later, we modify the mappings populating gene to join terms
through a synonym table, since the tables may use alternative
terms. Simultaneously, we modify the mappings for mousegene
to incorporate a correspondence table relating organism IDs
and scientific names, instead of selecting on organism ID 12,
we instead select on organism name “mus musculus.”

(my) bioentry(E,T,N) Nterm(T, “gene”) — gene(E,N)

(mh) gene(G,N) NhasGene(G,M) A
orgname(M, “mus musculus”) — mousegene(G,N)
(m3) bioentry(E,T,N) Nterm(S, “gene”) Ntermsyn(T,S) —

gene(E,N)

Now the system must recompute the two exported tables: as
it does so, it has the option to reuse data from any existing
materialized instances of gene and mousegene, as well as the
source BioSQL, GeneOrg, and Mouselab relations. Perhaps
it would first update gene, then recompute mousegene using
gene. O

The problem of multi-view adaptation poses a number of
challenges not directly or adequately addressed by previous
work. Existing techniques for view adaptation [10] typically
consider revisions to single view definitions as simple, atomic
changes in isolation, and they apply ad hoc case-based (rather
than cost-based) reasoning. Mapping adaptation [13] involves
modifying mappings in response to schema changes, and thus
could be a source of changes in our setting.

In general, we may need to insert and/or remove tuples
from the existing materialized views, as a means to efficiently
compute an updated instance; to add attributes by joining
existing materialized views with additional source data; or to
remove or reorder attributes by projection. In very dynamic
settings where the data is changing simultaneously with the
mappings, we may also have source data updates arriving even
as the view definitions are changing.

In this paper we tackle these challenges through techniques
based on optimizing queries using materialized views [14],
exploiting an enriched data model that we proposed in our
earlier work [15]. We consider the existing data sources, view
instances, and even the updated sources as materialized views;
we seek to rewrite the modified views to take advantage of
these instances via a unified mechanism. Our approach is

based on a cost-based search over a rich and well-characterized
space of rewritings, and is hence very general. We make the
following specific contributions.

o We recast the problem of supporting changes to declara-
tive schema mappings as one of multi-view adaptation.

« We extend the theoretical results of our previous
work [15] to handle queries and views using Skolem
functions, as needed in data exchange in CDSS.

« We present a unified strategy for solving multi-view
adaptation by enumerating possible query rewritings in
an enriched data model, where data and mapping updates
can be treated uniformly. The space of rewritings encom-
passes differential plans, which may include both inser-
tion and removal of values from existing view instances.

o We develop transformation rules and search strategies,
including effective pruning heuristics, for exploring the
space of rewritings.

o We build a layer over an existing off-the-shelf DBMS that
supports our multi-view adaptation techniques.

o We show that our techniques provide significant perfor-
mance gains for workloads designed to mimic empirically
observed rates of changes in schemas.

The paper is organized as follows. In Section II, we recall
background concepts from data exchange and CDSS, and give
a formal problem statement. Section III outlines how query
reformulation can be used to adapt to changes in schema
mappings and/or data. Section IV describes how we search
the space of possible reformulations to find an efficient multi-
view adaptation plan. Section V experimentally demonstrates
that our approach provides significant speedups. We discuss
related work in Section VI and wrap up in Section VIIL.

II. BACKGROUND AND PROBLEM STATEMENT

The problem of multi-view adaptation incorporates aspects
of view and mapping adaptation, as well as update propaga-
tion. Our motivation for studying this problem comes from
data exchange systems such as [1], [11] and collaborative
data sharing systems (CDSSs) including ORCHESTRA [2] and
others [5], [16]. We first recall the data exchange model and
its generalization to CDSS, then describe how we represent
changes to mappings and to data, before formalizing our
problem statement.

A. Data Exchange

A data exchange setting consists of a source schema S and
a target schema T, assumed to be disjoint from S, along with
sets X and X, of source-target and target-target dependencies,
respectively. In our treatment, these dependencies are assumed
to be given as tuple-generating dependencies (tgds)." A tgd is
a first-order logical assertion of the form

VX VY (¢(X.Y) = 3Z y(X,Z)), (1)

IClassical data exchange also incorporates equality-generating dependen-
cies, but these are unsupported by systems such as Clio and ORCHESTRA.
Source-target tgds and egds together are equivalent to another standard
formalism, GLAV mappings [14].

where the left hand side (LHS) of the implication, ¢, is a
conjunction of relational atoms over variables X and Y, and the
right hand side (RHS) of the implication, v, is a conjunction
of relational atoms over variables X and Z. For readability, we
will generally omit the universal quantifiers and simply write

0(X,Y)—3Z y(X,Z), 2)

as in the examples from Section I. A tgd is called source-target
(resp. target-target) if ¢ uses only relation symbols from S
(resp. relation symbols from T), while y uses only relation
symbols from T.

Given a fixed data exchange setting as above, the data
exchange problem is as follows: given a database instance
I over the source schema S, compute a database instance J
over the target schema T such that / and J jointly satisfy
the dependencies in X, and J satisfies the dependencies in
Y,. Moreover, since there may be many such instances J,
we require additionally that J be a universal solution, which
can be used to compute the certain answers to (positive)
queries over T. The main result of [1] is to show that
universal solutions can be computed using the classical chase
procedure [17]. (See [1] for precise definitions of universal
solutions, certain answers, and the chase; they are not crucial
here.)

While the classical data exchange literature focuses on the
chase procedure for carrying out data exchange, practical
systems (including Clio and ORCHESTRA) typically use a
different method for computing universal solutions, based
on compiling the sets ¥, and X, of dependencies into an
executable Datalog program using standard techniques [2],
[11].2

Example 2: The tgds m; and my from the introduction can
be used to generate the following Datalog program:

(m1) gene (E,N)
(mp) mousegene (G, N)

:— bioentry(E,T,N), term(T,"gene").
:— gene(G,N), hasGene(G,12).
Evaluating the program has the effect of “exchanging” data
from the source tables bioentry, term, hasGene, termsyn,
and orgname fo the target tables gene and mousegene. The
result will be the set of data instances in Figure 1. Note that
this Datalog can be easily converted to SQL for execution
by an off-the-shelf DBMS (with additional control logic if the
Datalog program is recursive). O
As can be seen (2) above, tgds may sometimes con-
tain existentially-quantified variables on the RHS. For in-
stance, consider a source schema having table people (name,
address) and a target schema having tables names (ssn,
address) along with the

name) and addresses (ssn,

source-target tgd
people(N,A) — 3S names(S,N) A addresses(S,A).

In this case, the compilation procedure will introduce a Skolem
function £ into the Datalog rules as a convenient way to
“invent” a fresh ssn value in the target tables:

2Technically, the generated Datalog program implements a variant of the
classical chase known as the oblivious chase [18]. Clio uses a generalization
of the techniques presented here to work with nested collections.

Source tables

bioentry ferm termsyn
eid tid name tid name W
MGI:88139 26 BCL2-like I || 26 gene 6 28 |
MGI:87904 26 actin, beta 28 factor |———
hasGene orgname
gid orgid orgid name
MGI:88139 12 12 mus musculus
MGI:87904 12 15 plasmodium falciparum

Target tables

mousegene gene
gid name gid name
MGI:88139 BCL2-like 1 MGI:88139 BCL2-like 1
MGI:87904 actin, beta MGI:87904 actin, beta
Fig. 1. Data instances for running example.

names (£ (N,A), N) :- people(N,A).
addresses (£ (N,A), A) :— people(N,A).

In this paper, we focus on such generated programs, and
in fact we will assume for simplicity of presentation that
mappings are simply given as Datalog programs (possibly
with Skolem terms). Thus from now on we will use the terms
“mappings” and “Datalog rules” interchangeably. Additionally,
we assume that the set X, of target-target dependencies is
acyclic, in which case the generated Datalog program will
be non-recursive.

B. Update Exchange

CDSS generalizes the data exchange model to multiple
sites or peers, each with a database, who agree to share
information. Peers are linked with one another using a network
of declarative (and compositional) schema mappings of the
same kind as are used in data exchange. Each mapping defines
how data or updates applied to one peer instance should
be transformed [2], [16] and applied to another peer’s data
instance.’

Under the CDSS model, every peer has a materialized
local database instance, against which users pose queries and
make updates. Periodically, the peer refreshes its materialized
instance through an operation called update exchange: it first
publishes the set of updates made to its local instance, then
it uses the set of all others’ published updates and the set
of schema mappings to recompute a new data instance. For
purposes of this paper, update exchange can be thought of as
an incremental version of data exchange, which propagates the
effects of changes to each peer, in the form of insertions and
deletions. (Other aspects of update exchange include trust and
local curation updates, which are discussed in [2].) As above,
we assume an acyclic set of CDSS mappings.

Example 3: Refer to Figure 2 for a CDSS corresponding
to our example from the previous section; for simplicity we
use the same source and target relations but partitioned them

3In addition, trust conditions may be used to help arbitrate conflicts [5],
[6], but we do not consider these in this paper.

Before source addition After source addition & mapping modification

BioSQL BioOntology

(BioSQL)
” bioentry H term “

MouseLab
hasGene
my'

Example of a CDSS mapping relations to peers.

‘ termsyn ‘ ‘ orgname ‘

MouseLab
hasGene
W

Fig. 2.

across peers. Tables bioentry and term are supplied by
BioSQL. A schema mapping my uses these relations to add
data to gene in participant GeneOrg. Finally, MouselLab
imports data from GeneOrg using mapping m;. O

Within this update exchange scenario, there are two kinds
of changes that can occur, either separately or together. The
first is that one may change the mapping definitions in the
system, requiring that we recompute the instance associated
with each affected target schema.

Example 4: Suppose a new participant BioOntology is
added to the above CDSS. Now both mappings m| and my are
modified to incorporate its relations, termsyn and orgname,
by joining BioSQL tuples with these. O

The second is that one may publish changes to the source
data at one of the peers, requiring again that we recompute
the instance associated with each affected target schema.

Example 5: Refer to the data instances of Figure 1. Suppose
that BioSQL makes the following updates:

e Remove bioentry(MGI:87904, 26, “actin,beta’)

o Add bioentry(MGI:1923501, 26, “cDNA 0610007P08”)

o Add term(26, element)

Update exchange would propagate the effects to the Gene-
Org and MouselLab nodes, in this case, removing the tu-
ples containing MGI : 87904 from the gene, hasGene, and
mousegene relations. The standard procedure for propagating
the effects is a variant of the delta-rules based count algo-
rithm [19], discussed in more detail in Section I1. O

C. Representing Mapping Changes

Given that schema mappings can be translated to Datalog
programs, the task of adapting to mapping changes is clearly
a generalization of view adaptation [10], [20], [21], where
the standard approach has been to describe a change in a
view definition as a sequence of primitive updates (e.g., add a
column, project a column, etc.). In general, schema or mapping
updates are indeed likely to be formed out of sequences of
such steps (we in fact simulate these updates in generating
the experimental workload for this paper, in Section V).

However, we argue against using this way to express
changes to views, because it encourages a sequential process
of adaptation, and enforces a priori constraints on allowable
changes. Instead, we develop a method that looks holistically
at the differences between old and new views. We assume we
are simply given a new set of mappings or view definitions,
and we still have access to the old definitions, as well as their
materialized instances.

Example 6: After the CDSS mappings from Example 4 have
been updated, we have:

(my)
(m3)

()

gene (E,N)
gene (E, N)

:— bioentry(E,T,N), term(T,"gene").
:— bioentry(E,T,N), term(S,"gene"),
termsyn (T, S) .
:— gene (G,N), hasGene(G,M),
orgname (M, "mus musculus") .

mousegene (G, N)

As peers perform update exchange, we seek to recompute their
data instances in compliance with the new mappings. O

D. Representing Data and Updates: Z-Relations

The original work on CDSS represented updates to each
relation as a pair of “update relations:” a table containing a
set of tuples to insert plus a table of tuples to delete, where
the same tuple could not appear more than once (even in both
relations). Ideally we would like a cleaner formalism in which
insertions and deletions could be combined in a way that is
commutative and associative.

These goals led us to define the device of Z-relations
(introduced in our previous theoretical work [15], and closely
related to the count-annotated relations used in classical view
maintenance algorithms [19]). Here “updates” refers to both
changes to source data (as in update exchange), and any ensu-
ing updates to derived IDB relations that arise in performing
update exchange and in performing multi-view adaptation.

Intuitively, a Z-relation is like a bag (multiset) relation,
except that tuple multiplicities may be either positive or nega-
tive. In the context of updates, positive multiplicities represent
insertions, while negative multiplicities represent deletions. A
virtue of Z-relations is that they allow a uniform representation
of data, and updates to data. If R is a table (a Z-relation), and
AR is an update to R (another Z-relation), then the result of
applying AR to R is just the Z-relation RUAR. Thus, update
application reduces to computing a simple union query.

Example 7: Refer to Example 5. We can capture the updates
in two Z-relations, Abioentry and Aterm, representing changes
to apply to bioentry and term, respectively:

Abioentry A
MGI:87904 26 actin, beta -1 ;gm 1 :
MGI-1923501 26 cDNA 0610007p0s | 1 | 20 clement [T]

a

As defined in [15], the semantics of the relational algebra
on Z-relations is the same as for bag relations, except that the
difference operator is allowed to yield negative tuple multiplic-
ities. (In contrast, bag semantics uses “proper subtraction” and
truncates negative multiplicities to zero.) We also extend our
Datalog syntax to allow both ordinary positive rules, as well
as differential rules, where the head of the rule is marked with
a minus sign. For instance, we express the relational algebra
query g =r—s, where r and s are unary, using a pair of rules
g(x) :- r(x) and -g(x) :- s(X).

The modified behavior of the difference operator under Z-
semantics is very useful for multi-view adaptation, as we argue
in Section III-B. It also turns out to be “friendly” with respect
to automated reasoning: for example, checking equivalence of
relational algebra queries using difference is undecidable under

bag semantics [22]* and set semantics [23], but decidable in
PSPACE for queries on Z-relations [15]. We will show in
Section III-C that this result extends even further to relational
algebra queries using Skolem functions, and discuss how to
optimize queries using materialized views with Z-relations (the
key to solving the main problems of this paper, discussed
shortly).

Example 8: Refer to Figure 3, which consists of updates to
be applied to the data instance of Figure 1, given the mapping
my. The well-known delta rules [19] reformulation can give
the change Agene to apply to gene (a Z-relation), given as
inputs the changes Abioentry and Aterm (also Z-relations)
and the original source relations bioentry and term. The
change Mbioentry can be applied to bioentry, resulting in
the Z-relation bioentry’. From this intermediate relation, the
base relations, and the deltas, we can compute a set of changes
Agene, again a Z-relation, to apply to gene, yielding gene’.
O

E. Problem Statement

Our goal in this paper is to support efficient recomputation
of multiple target instances—multi-view adaptation—for situ-
ations matching either or both of two subproblems. Here and
in the rest of the paper, by “Datalog” we mean non-recursive
Datalog extended with Skolem functions (which may be used
freely in the heads or bodies of rules) and differential rules as
discussed above, evaluated under Z-semantics.

Subproblem 1: Supporting Changes to Mappings. During
normal CDSS operation, an administrator may add, remove,
or revise a schema mapping. Our goal is to take into account
the effects of these modified mappings in recomputing each
CDSS peer instance, when each peer next performs update
exchange.

More precisely, we are given a Datalog program P, an EDB
database instance I, an IDB database instance J = P(I), and
an arbitrarily revised version P’ of P. The goal is to find an
efficient plan to compute J' = P'(I), possibly using J.

Subproblem 2: Supporting Changes to Data. Basic CDSS
operation entails intermittent participation by the peers. Each
peer only periodically performs an update exchange operation,
which publishes a list of updates made recently by the peer’s
users. Between update exchange operations, there is a good
chance that the set of mappings changed (as above) and
several peers in the network have published updates. Thus, as
the CDSS is refreshing a peer’s data instance during update
exchange, it must take into account any changes to mappings
and any newly published updates.

In this case, we are given a Datalog program P, an EDB
database instance I, an IDB database instance J = P(I), an
arbitrarily revised version P’ of P, and a collection Al of
updates to I. The goal is to find an efficient plan to compute
J' =P (IUAI), possibly using J.

4Actually, [22] proves that bag containment of unions of conjunctive queries
is undecidable, but the extension to bag-equivalence is immediate, since A is
bag-contained in B iff A — B is bag-equivalent to 0.

III. BASIC APPROACH TO MULTI-VIEW ADAPTATION

In contrast to previous work [10], which focused on tak-
ing sequences of primitive updates to view definitions and
processing each update in step, our basic strategy for multi-
view adaptation is to treat both problems uniformly as special
cases of a more general problem of optimizing queries using
materialized views (OQMYV).

A. Optimizing Queries Using Materialized Views

The idea of handling changes to mappings (Subproblem 1)
using OQMYV is very natural: in this case, the materialized
IDB instance J = P(I) for the old version P of the Datalog
program on [serves as our collection of materialized views,
which can be exploited to compute the result J' = P'(I) of the
new Datalog program P'.

For handling changes to data (Subproblem 2), we cast
the problem as an instance of OQMV as follows. Let
S ={Si,...,S,} be the EDB relations of P, with updates
recorded in EDB relations AS = {ASj,...,AS,}, and let T =
{T1,...,T,,} be the IDB relations of P. We construct a new
Datalog program P’ from P by replacing every relation symbol
R occurring in P by a relation symbol R’, representing the
updated version of R. Additionally, for each EDB relation
S; €8S, we add to P’ rules of the form

S? S and S? — AS;

which apply the updates in AS; to S;, producing the new
version S;. Now the goal is to find an efficient plan to compute
P’, given the materialized views of P.

Finally, in the most general case we also allow changes to
data and mappings simultaneously. Here, the revised version
P’ of the Datalog program P is assumed to be given over IDB
predicates S’ = {S/,...,S,} defined as above, rather than S.

In the remainder of this section, we present foundational
aspects of our approach to OQMV in detail, beginning with
our novel use of differential plans (Section III-B), a term
rewrite system for OQMV which supports differential plans
(Section III-C), and an extension of our approach to ex-
ploit provenance information of the kind present in CDSS
(Section III-D). We focus mainly on OQMV from a logical
perspective; Section IV will present our actual implementation
of these ideas.

B. Differential Plans

Although in data exchange and CDSS, view definitions are
typically positive, when view definitions are modified we often
want to compute a difference between the old and new view.
For example, if a view v is defined by two Datalog rules m;,
my, and rule m; is replaced by n), to produce the new version
V' of the view, one plan to consider for adapting v into V' is to
compute my, subtract it from v, then compute m’2 and union
in the result. The result is precisely /.0

Carrying this plan out as a query requires considering
query reformulations using a form of negation or difference.

SUnder bag or Z-semantics, but not (in general) set semantics! (Intuitively,
this is because the identity (A UB) — B = A fails under set semantics.)

Source table updates as Z-relations

Delta rules

Abioentry Agene (G,N) :- Abioentry(E,T,N), term(T,"gene").
MGI37904 26 actin, beta = L—— Agene (G,N) :- bioentry’ (E,T,N), Aterm(T, gene").
MGI:1923501 26 cDNA 0610007P08 | 1 e St 11 gene’ (G,N) :- gene (G, N) .

MGI:1923503 26 ¢DNA 0610006L08 | 2 gene’ (G,N) :- Agene(G,N).

Target table updates as Z-relations Agene ,

- - gene

bioentry' MGI:87904 actin, beta -1 - —

MGI:88139 26 BCL2-like 1 1 MGI:88139 BCL2-like I ! MOT1923501 cDNA 0610007908 | 3
MGI:1923501 26 ¢DNA 0610007P08 | 1 MGI:1923501 ¢DNA 0610007P08 | 2 MGI1923503 ZDNA 0610006L08 | 4
MGI:1923503 26 ¢DNA 0610006L08 | 2 MGI:1923503 ¢DNA 0610006108 | 4 :

Fig. 3.

We explain how we incorporate such reformulations in our
approach to OQMYV in the next section.

C. Rule-Based Reformulation

The foundation of our strategy for OQMYV in our setting is
a small set of equivalence-preserving rewrite rules, forming a
term rewrite system. The approach here extends the theoretical
results of our earlier work [15] to deal with a richer class of
queries and views, where queries and views may use Skolem
functions. In Section IV we will use these rewrite rules as the
core building blocks of a practical reformulation algorithm.

Briefly, the term rewrite system contains four rules:

1) view unfolding. Replace an occurrence of an IDB pred-
icate v in a rule for IDB predicate ¢ by its definition.
If ¢ has n rules and v has m rules, the result will have
n+m—1 rules for q.

2) cancellation. If r|, r, are rules in the definition for ¢
that have different signs but are otherwise isomorphic,
then remove them.

3) view folding. View unfolding in reverse: replace occur-
rences of the bodies of an IDB view definition v in the
rules for ¢ with the associated view predicate. If g has
n~+m rules and v has m rules, the result will have n+ 1
rules for g.

4) augmentation. Cancellation in reverse: if r|,r, are iso-
morphic rules with ¢ in their heads, then negate one of
them and then add both to the definition of ¢.

We defer formal definitions of these rewrite rules to the
long version of this paper, and here just illustrate with some
examples of the rules in action.

Example 9: Consider the view definition for gene that was
updated in Example 6. The old and new versions of gene’s
definition (we refer to these as gene and gene', respectively),
may be written in Datalog syntax as follows:

gene (G, N) :— bioentry(G,T,N), term(T,"gene").
gene’ (G,N) :- bioentry(G,T,N), term(T,"gene").
gene’ (G,N) :- bioentry(G,T,N), term(S,"gene"),

termsyn (T, S) .

Since the first rule for gene’ is identical to the definition of
gene, we can use view folding to produce

gene’ (G,N) :- gene(G,N).
gene’ (G,N) :- bioentry(G,T,N), term(S,"gene"),
termsyn (T, S) . [m]

Updates and delta rules with Z-relations.

Example 10: Continuing with Example 8, the delta rules
plan for recomputing view gene shown in Figure 3 can be
seen as a reformulation of the Datalog query Agene,

Agene (G, N)
—-Agene (G, N)

:— bioentry’ (E,T,N),
:— gene(G,N) .

term’ (T, "gene") .

using the materialized views bioentry’, term’, and gene as
shown below:

bioentry’ (E,T,N)
bioentry’ (E,T,N)

:— biocentry(E,T,N).
:— A bioentry(E,T,N).

term’ (T, "gene") :- term(T,"gene").

term’ (T, "gene") :- Aterm(T, "gene").

gene (G,N) :- biocentry(E,T,N), term(T,"gene").
The reformulation involves unfolding all occurrences of
bioentry’ and term’, then applying cancellation, and then
using folding with bioentry’ and term’. O

A conceptually important fact is that by repeatedly applying
these four rules, we can in principle find any equivalent
reformulation of a Datalog query (under Z-semantics):

Theorem 1: The above term rewrite system is sound and
complete wrt Z-semantics. That is, for any P,P' € Datalog,
we have P rewrites to P' iff P and P' are equivalent under
Z-semantics.

The proof of completeness (omitted here) makes use of
the fact that the closely related problem of checking query
equivalence is decidable under Z-semantics:

Theorem 2: Equivalence of queries expressed in relational
algebra extended with Skolems under Z-semantics is decidable
in PSPACE. The problem remains decidable for deciding
equivalence of queries with respect to a set of materialized
views, where views and queries are expressed in relational
algebra extended with Skolems.

This is a straightforward extension of a result from our
previous work [15] to incorporate Skolem functions, and is
nevertheless surprising because the same problems are, as
already noted earlier, undecidable under set semantics or bag
semantics, even without Skolem functions.

Although the term rewrite system is complete, the space of
all possible rewritings is very large—indeed, infinite! (Aug-
mentation, for example, can always be performed ad infini-
tum.) A practical implementation can afford to explore only
a small portion of the search space, in a cost-based manner,
with the goal of finding a good (not necessarily optimal) plan
quickly. Section IV describes how we accomplish this.

D. Exploiting Provenance

In performing multi-view adaptation, it is often useful to
be able to “separate” the different disjuncts of a union, or
to “recover” values projected away in a view. We would
like, therefore, some sort of index structure capturing this
information that can be exploited for efficient adaptation.
In fact, such a structure already exists in CDSSs in the
form of provenance information [2], [24], [25]. Intuitively,
CDSS provenance records, for each IDB tuple, the ways that
tuple could be derived from other facts in the database. To
accomplish this, the CDSS maintains a provenance table for
each mapping rule, which captures the relationship between
the source tuples used to derive a target tuple, and the target
tuple itself.

Example 11: For the two mappings from Example 2, we
create a relation that, given the definition of the mapping,
records sufficient information to allow us to recover the source
and target tuples. This requires us to store the values of the
bound variables in the provenance table p,, for each mapping
m, yielding tables py,, (E,N,T) for rule m\, and p,(G,N) for
rule my. For the data instance of Figure 1, the tables are:
Pm, Pmy

E N T G N
MGI:88139 26 BCL2-like 1 MGI:88139 BCL2-like 1
MGI:87904 26 actin, beta MGI:87904 actin, beta

The population and maintenance of provenance tables in
CDSS is accomplished via a simple translation of Datalog
rules, in effect reducing the problem of update exchange with
provenance to the same problem without provenance (but
providing additional optimization opportunities).

Formally, for a Datalog rule m in the collection P of
mappings

A<+ By,...,By

where Xi,...,X, is the list of variables occurring in the body
of the rule (in some arbitrary order), we replace m by the pair
of rules

pm(Xl,...,Xn) — Bl,...,Bn,
A <« pm(le"'aXn)'

where p,, is a fresh n-ary IDB predicate called the provenance
table for m. In other words, we split the original rule into a
new projection-free rule to populate the provenance table, and
a second rule that performs a projection over the provenance
table. Because the rule for p,, is projection-free, it preserves
potentially useful information that we can (and will) exploit
later for optimization. The table also identifies the particular
contribution of this rule to the view definition.

Example 12: The complete set of rules for provenance and
target tables would now be:
(m) p_ml(E,T,N)
(m2) p_m2 (G, N)
(m3) gene (E,N)
(m4) mousegene (G, N)

:— bioentry(E,T,N), term(T,"gene").
:— gene(G,N), hasGene(G,12).

:— p_ml(E,T,N).

:— p_m2(G,N). [m]

Importantly, from the point of view of OQMYV, the prove-
nance tables in CDSS are “just more views.” Therefore they

S——
Published
updates

Statistics on updates

Revised
mappings|

Unapplied
Existing Poer updates
MapeIng instance
updater
SQL queries
Schemas
. Adapt- Source & | DBMS/
provenance ation view data » cloud QP [y Recomputed
tables instance

data

e —
Peers’ mat.

view instances

—
System Peers’ source
catalog Jocios data instances
Fig. 4. CDSS system architecture with multi-view adaptation support (new
components/dataflows highlighted in bold)

are automatically exploited (when present) by the rule-based
reformulation scheme presented in Section III-C. Moreover,
traditional data exchange systems can be easily modified to
support this form of provenance, and hence benefit from its
presence during multi-view adaptation, by pre-processing the
input set of schema mappings using the transformation above.

It is worth noting that the tradeoffs to maintaining prove-
nance are much the same as those for other indexing methods:
creating or updating a provenance relation adds very little
computation overhead, but it of course takes more space and
creates higher I/O costs. See [2] for a detailed analysis of the
overhead.

Example 13: Suppose the mappings from Example 12 are
revised, such that gene now retains an additional attribute
from biocentry, which is ignored in the updated rule for
mousegene.

(ms) gene’ (E,T,N)
(mg) mousegene’ (G, N)

:— bioentry(E,T,N), term(T,"gene").
:— gene’ (G, T,N), hasGene(G,M),

orgname (M, "mus musculus") .
Without provenance tables, we can infer (using the rewrite
rules from Section III-C) that mousegene’ has not actually
changed, so we revise mg to read

(mg) mousegene’ (G,N) :- mousegene (G,N),

However we are forced to recompute gene’ from scratch.
With provenance tables, though, we can also recompute gene’
more efficiently, directly from the provenance table associated
with gene:

(ms) gene’ (E,T,N) :- p_ml(E,T,N). O

IV. IMPLEMENTING ADAPTATION

Next we discuss how we translate the basic approach to
multi-view adaptation presented in Section III into a practical
implementation, in particular, in the context of ORCHESTRA.

A. Architecture Overview

Our work in this paper involves the addition of a new
multi-view adaptation module into the CDSS architecture, as
indicated by the boldfaced components in Figure 4. The multi-
view adaptation module is given Datalog programs based on
both old and new mappings, along with information about any
pending updates to source data.

The basic strategy of the multi-view adaptation module is
to pair the rules for reformulation presented in the last section
with cost estimation (invoking a proxy for the DBMS’ cost
estimator) and a cost-based search strategy. The output of the
module is an update plan. This is not a physical query plan,
but rather a sequence of Datalog queries which construct the
updated version of the source relations and views. These are
then translated to SQL and executed in sequence.

The rest of this section describes the adaptation engine,
focusing first on the high-level ideas (Section IV-B) before
diving into implementation details (Section IV-C).

B. Cost-Based Search

The multi-view adaptation module begins by performing a
topological sort of the updated view definitions in P’ (since
some views may be defined in terms of other views), then
processes the views sequentially, beginning with those views
that do not depend on any others. For each view, the engine
first finds an optimized plan (using the procedure described
below), then invokes the underlying DBMS to execute the
plan and materialize the view. The view definition is then
added to the list of materialized views, so that it is available
to subsequently processed views.

As already noted, the space of possible reformulations is
far too large to be explored exhaustively. Instead, our system
uses an iterative hill climbing algorithm that explores a smaller
portion of the space of rewritings. The “exhaustiveness” of the
algorithm can be tuned via several parameters that we describe
below, and also takes into account a time budget. By setting the
budget to some fraction of the estimated cost of the input plan,
we guarantee that the algorithm imposes at most a bounded
overhead in the worst case where no better plan can be found
even after extensive search.

The basic idea in the procedure is to start at the bottom of
the hill (by unfolding all view predicates in the query ¢ and
applying cancellation), then use folding and augmentation to
climb up towards plans of lesser cost. One technical issue here
involves the use of augmentation: at any point in the process,
augmentation can be applied in an unbounded number of ways,
and moreover, applying it will invariably result in a plan of
higher cost. Meanwhile the real benefit of augmentation is
that it enables subsequent folding operations that would not
otherwise be possible.

Example 14: Consider a query q and view definition v

q(X) = r(X,2), r(z,d), t(X).
a(X) = r(X,d), r(d,z2), t(X).
v(U,V) := r(U,wW), r(W,V).
v(U,V) := r(U,V), r(v,wW).
v(U,V) := s(U,c,V).

Note that although the bodies of two of the rules in v have
matches in g, the third rule in v does not, hence view folding
cannot be directly applied. However, by applying augmenta-
tion and then view folding, we obtain

g(x) - v(X,d), t(X). -q(X) :- s(X,c,d),
We therefore use in our algorithm a modified version of the
term rewrite system from Section III where augmentation and
view folding are replaced by a single compound rule

t(X) . [m]

5) view folding with remainder. Replace occurrences of
the bodies of some bodies of a view definition v in the
rules for g with the associated view predicate. Account
for the unmatched bodies by adding remainder terms.

In Example 14, view folding with remainder can be applied
to produce the reformulation, with -q(X) :- s(X,c,d),
t (X) being the remainder.

C. Algorithm Implementation

The algorithm uses several data structures in optimizing a
query:

o A pending queue A of plans, ordered by their estimated

costs, implemented using a priority queue.

e A completed set B of plans for the query, disjoint from

A, implemented using a hash set.

o Temporary scratch queues C1,C, of plans and costs, also

sorted by estimated cost using priority queues.

Rewrite rule (5) is encapsulated within a reformulation
iterator: given a plan p and a materialized view v, iter(p,v)
is the reformulation iterator which, via repeated calls to
iter(p,v).next(), returns all plans that can be produced from p
and v using a single application of the rule.® While conceptu-
ally straightforward, the implementation of the reformulation
iterator class is probably the most intricate piece of code in
our implementation.

Pseudocode for the algorithm appears as Algorithm 1. Given
program P, query ¢, and time budget ¢, it starts looping with B
empty, A containing the original plan for g, and the unfolded
version of g. Each step chooses the cheapest plan from A,
moves it to B, uses the reformulation iterator to find adjacent
plans in the search space, and then adds them (and their
estimated costs) to A. The algorithm is greedy in the sense
that it always explores the most promising path first, but a
certain number of alternatives are also kept in the pending
queue to be considered if time allows.

The scope of the algorithm’s search is controlled by several
tuning parameters: c;, the maximum number of rewritings
added to A per step; ¢y, the maximum number of rewritings
using a particular view added to A per step; and ¢4, the
maximum allowed size of the pending queue. ¢, is introduced
(in addition to c;) to ensure diversity despite limited resources.

Note that in line 2 of the algorithm, we insert the original
plan for g into A. This ensures that if reformulation does not
find a better alternative, the original plan itself will be returned,
and g will be “recomputed from scratch.”

To get good performance, we also specially optimize two
main operations on the critical path.

Isomorphism testing. The search algorithm frequently tests
isomorphism of rules or view definitions. This must be done
when adding plans to the pending queue or completed set, to
detect if the plan is already present. It is also used heavily
as a subroutine inside the reformulation iterator. We use hash
consing to make this a fast operation: whenever a new rule

OIf p and v contain many self-joins, there can be exponentially many such
plans, but the number is always finite.

Algorithm 1 optimizeUsingViews(P, g, t)

1: A.clear(),B.clear()
2: A.insert(g,cost(g))
3: ¢’ < unfold(P,q)
4: A.insert(q’,cost(q"))
5: while current time - start time <t do
6: (p,c) « A.poll()
7: B.insert(p,c)
8: Cj.clear()
9: for all ve P do
10: Cy.clear()
11: it < iter(p,v)
12: while it.hasNext() do
13: p’ « itnext()
14: C, .insert(p’,cost(p'))
15: end while
16: for i =1 to min(Cy.size(),cy) do
17: Cj.insert(C.poll())
18: end for
19: end for
20: count < 0
21: while C|.notEmpty() and count < ¢, and B.size() < ¢, do
22: (p',¢’) + Cy.poll()
23: if neither A nor B contains (p/,c’) then
24: A.insert(p’,¢’)
25: count < count +1
26: end if

27: end while
28: end while
29: return cheapest plan for ¢ in A or B

or view definition is allocated, we first check to see whether
an isomorphic rule or definition already exists; if so, we
reuse the existing object. Outside of allocation, we can check
isomorphism by simply comparing pointers.

Cost estimation is also frequently performed. The underlying
DBMS’ estimator (SQL explain) proved to be too slow,
involving a round-trip to the DBMS and a full planning op-
eration inside the DBMS. We therefore implemented our own
proxy cost estimator, which constructs a reasonable physical
plan via heuristics, and returns its cost.

D. RDBMS Implementation Issues

Implementing multi-view adaptation over a conventional re-
lational database system requires us to deal with two additional
subtleties, since neither Z-relations nor provenance are built
into a standard database management system.

Support for Z-relation semantics is accomplished via
a straightforward encoding scheme where multiplicities are
recorded using an explicit integer-valued count attribute, in
the spirit of [19]. In the SQL code generated from Datalog
rules, joins in a select-from-where clause multiply the
count attributes of joined tuples; unions and projections sum
counts; and difference operations subtract counts.

Provenance information is stored in relational tables—one
per mapping—following the implementation of [2]. Such map-
ping tables are automatically exploited (when present) without
any changes to the core adaptation engine, as explained in
Section III-D.

V. EXPERIMENTAL EVALUATION

We now study how effective our multi-view adaptation tech-
niques are in recomputing ORCHESTRA data instances after
mappings and data change. ORCHESTRA can use a variety of
centralized or distributed query engines to do data exchange
and update exchange; in this case we targeted PostgreSQL 8.4.
The adaptation engine comprised approximately 9,500 lines of
Java code.

While schema mappings are known to frequently evolve
(motivating, e.g., [26]), we are unaware of any standard
benchmark for mapping evolution suitable for our needs.’
Hence we (1) take the CDSS mapping generator of [2] (which
creates simulated CDSS instances and mappings based on
bioinformatics data), and then (2) develop synthetic updates
to the mappings and schemas, informed by the schema mod-
ification operation distributions observed in [29].

Peers, instances, and mappings. The CDSS mapping gener-
ator takes the SWISS-PROT protein database and “re-factors”
it to produce multiple peer’s relations, by randomly choosing
n attributes from the original database schema. In this way we
create 24 peer relation instances. Long strings from SWISS-
PROT are encoded in the database using a CLOB-style encod-
ing. As it creates peers, the generator adds mappings (view
definitions), consisting of 1-4 mapping rules with 1-5 atoms
each. For 16 of the peers’ relations, we create corresponding
“source” relations populated with approximately S00K-600K
tuples by uniform random sampling from the original instance.
Data from these source relations is mapped directly to the
associated peers’ relations, as well as to the other peer relation
instances. For each source relation and materialized view, we
also create a primary index on the first column.

Synthetic schema changes. We randomly generate change
workloads, using compositions of primitive modification op-
erations shown in Table I following the frequencies listed
in Table II. For adding, dropping, and renaming columns,
we use the distributions empirically observed for Wikipedia
in [29, Table 4]. We also add common modifications specific
to schema mappings, such as adding or removing a join with
a correspondence table.
View definitions are generated as follows:
o For each view, an arity k and a number of rules are
chosen uniformly at random from the ranges listed above;
a random sequence ?1,...,# of distinct attribute types are
selected for the columns.
« Each rule was generated by randomly joining a set of
source relations “covering” the attribute types in the head.
For the settings above, the average number of tuples in each
materialized view v is roughly 250K times its number of rules.

Experimental setup and questions. Experiments were run
under OpenJDK 1.6.0 on an Intel Xeon X3450 processor with
8GB RAM and 64-bit Ubuntu Server 10.04. Query processing

"For example, STBenchmark [27] uses a fundamentally different data
model, nested relations; and the synthetic benchmark of [28] addresses only
schema evolution.

1

Normalized running time
Normalized running time

il

NMmo oS R
INEN AR

AvG HEEEEETD)

) N
= [NIRRE ISR IR

View #

Fig. 5. Mixed workload (mapping changes only);
no provenance tables

1

Normalized running time
Normalized running time

18 ==
i —
14 ==

o~
BN
View #

Fig. 8. Mixed workload (mapping and data
changes); no provenance tables

Fig. 9.

Normalized running time
[

View #

Fig. 11. Sequential vs. combined change handling (mapping
and data changes); no provenance

in this configuration was primarily CPU rather than I/O bound.
We set the constants described in Section IV-C as follows:
the search considers up to ¢y = 8 rewritings per step, at most
¢, =4 rewritings per view, and a max pending queue length
of ¢, = 128.
We consider the following questions:
1) What are the performance gains of multi-view adaptation?
2) Do different mapping changes have different savings?
3) How does the multi-view adaptation algorithm handle
mixed workloads of mapping changes plus data updates?
4) When does it make more sense to do full recomputation,
as opposed to incremental recomputation?

A. Multi-view adaptation performance.

We first study the benefits of our query reformulation meth-
ods (compared to complete re-computation). Using the distri-
butions in Table II, we generated compositional sequences of
24 primitive changes to apply to the view definitions, and then
ran multi-view adaptation. We timed the combined costs of
reformulation, optimization, and execution.

Figure 5 shows the time to adapting each view, normalized
against the running time of recomputing the view from scratch.
We present the views along the x-axis in decreasing order

o -------llllllllIIIII‘

co o< oo

Fig. 6. Mixed workload (mapping changes only);
with provenance tables

Ono provenance B with provenance

Normalized running time
°
=

|

0 =
S & & & e e e & &
\\,é‘ o\‘)@ \\\,«(‘ & E>°° bé\ o\‘\'& o\‘)@
moNmUOMNEHnTDImOony O & Y & bb" oQ‘, § & &
z & F Q,b& T K K ¢ @
N N >
View # N S 2>@Q
& @Q

Fig. 7. Microber;’chnblark for primitive
change types

o

£

K=

oo

c

€ 1

c

E Nno provenance

T

S

s

£

E

I I I I I I I z° with provenance
S egegy g ae g e yn gL~ g 0
2 0 16 32 48 64 80 96 112 128
. View # . # primitive changes to view definitions
Mixed workload (mapping and data
changes); with provenance tables . . .
ges) P Fig. 10. Running time vs. number of

primitive changes

2

Z.unuIIIIIIIHH““

CHMANNNONITNANM ATONNOLTOMANX
- - N HA N - IS IR IR IR B NI

Normalized running time

AVG EEmmmm——

View #
Fig. 12. Sequential vs. combined change handling (mapping
and data changes); with provenance tables

of speedup (each labeled by its view ID). We see notable
speedups for just under half of the queries. Only View 13
shows a significant performance penalty: this is due to the
overhead of query reformulation, combined with minor errors
in the query cost estimation. The average speedup (the last bar
labeled “AVG,” is around 40%).

Recall that data provenance provides, in effect, an index
of derivations for the tuples in a view, separated by each
conjunctive subquery. Figure 6 repeats the same experiment
when provenance relations are available; sorting the views by
speedup results in a different ordering from the previous case,
so we again include view IDs for direct comparison. Here we
see significantly improved performance versus the prior case:
two views have the same performance as before, and all others
are sped up. The average speedup is around 80%.

B. Adaptation microbenchmark.

Clearly there was wide variation across views in the
previous experiment. To better understand why, we isolate
performance with different fypes of mapping changes: see
Figure 7. Again, we separately measure speedups based on
whether provenance is available; and provenance makes a
significant difference here. For dropping a source relation

TABLE I
PRIMITIVE MODIFICATION OPERATIONS.

Add column. Add a new column to a source relation, with a default
value. For a source relation r, of arity n we pick a fresh default value
¢ and model the updated relation as a new materialized view

r" (X1, .., Xp, C) = (X1, ..., Xp).

We then update views that use r to use r’ instead, by replacing every
occurrence of r (Xy, ., X)) With v’ (X1, ..., X., c).

Drop column. Drop a column from a source relation. For a source
relation r, we model the updated relation as a new materialized view

r’'" (X1, ..., Xp—1, C) 1= (X1, ..., Xp).

that replaces the dropped column with a fresh default value c. We
then replace all occurrences of r in view rules with r’.

Move column. Swaps two columns within a source relation. For
a source relation r, we model the updated relation as a new
materialized view

' (Xny X2y ooy Xp—1, X1) i Xy, ooo., X))

We then update the views that use r to use r’ instead, by replacing

every occurrence of r (X, L, X)) With v/ (X,,X0, «., Xn_1,
X1).
Add source. Add a new rule to a view v, randomly generated

according to the procedure described above.
Drop source. Drop a rule from a view v containing at least 2 rules.

Add correspondence. Choose a variable X in the head of a rule for
view v, choose a source relation r with an attribute of the same type
at position i, and choose another position j # i in the source relation.
Modify the rule for v by replacing X in the head with a fresh variable
Y, and by adding an r atom to the rule containing X at position i,
Y at position j, and fresh variables at all other positions.

Drop correspondence. Choose a variable X in the head of a rule for
view v, choose a predicate atom A in the body of the rule containing
X and a join variable Y, and choose a predicate atom B in the body
of the rule containing Y and another variable Z not occurring in
the head of the rule. Replace X with Z in the head of the rule, and
remove atom A.

Add view column. Choose a position i in the head of a rule v. For
each rule for the view, choose a body variable X not occurring in
the head of the rule, and insert X at position i in the list of variables
in the head of the rule.

Drop view column. Choose a position i in the head of a rule v. For
each rule for view v, delete variable at that position from the head.

TABLE I
FREQUENCY OF PRIMITIVE CHANGES.

change | % freq. | change | % freq.
add column 16 drop column 9
move column 5 add source 16
drop source 9 add correspondence 16
drop correspondence 9 add view column 12
drop view column 8

column, there is high speedup if provenance is available (since
provenance tables directly support this operation), whereas
without provenance we may need to do a full recomputation.
Adding or renaming a source relation column generally does
not require recomputation, and is inexpensive. Adding a source
merely involves unioning in its results. Dropping a source,
adding or removing a join with a correspondence table, or

adding a column to the view, achieve their best speedup when
provenance is available. Finally, dropping a column in a view
is inexpensive as it can be done directly over the materialized
relation.

C. Simultaneous mapping and data changes.

Part of the promise of our approach is that it can simul-
taneously handle updates to data and to the mappings. We
repeat the workload sequences of Section V-A, but also apply
1,000 data update operations (insertions and/or deletions) to
each source table. For this “mixed workload,” we are forcing
incremental update propagation as well as view adaptation.
Figures 8 and 9 correspond to Figures 5 and 6, respectively,
for this case. In these cases, the cost of additionally applying
the updates makes the operations more expensive than in the
mapping-change-only case. We continue to see a clear benefit
from our multi-view adaptation techniques, with an average
of an additional 15% speedup without provenance, and 46%
with provenance.

The benefits of multi-view adaptation over a mixed work-
load exceed those of applying the mapping changes and the
updates separately, as we show next. Figures 11 and 12 isolate
the performance impact of combining the optimization of
the data and mapping changes. Here, we compare, for the
same workloads, the costs of propagating the data updates
(deltas) through the original views first, then performing
the recomputation; versus applying the deltas and mapping
changes at the same time. We see relative speedups of 19%
without provenance and 13% with provenance relations.

D. Limits of view reuse.

Finally, we investigate when the optimal multi-view adapta-
tion strategy degrades to simply recomputing the views from
the base relations, where the changes become too extensive
to make adaptation viable. We use the experimental setup
of Section V-A, but vary the number of mapping changes in
the input workload from 0-128 updates. Figure 10 shows that
without provenance information, the threshold is between 24-
32 changes. (The line is not completely monotonic because
later updates may reverse the effects of previous ones.) With
provenance tables, even sequences of 128 changes show
significant benefit; extrapolation of the data suggests that the
threshold would be after around 256 changes.

Summary of results. Overall, we conclude from our ex-
periments that (1) our strategy, of using query reformula-
tion with differences, significantly speeds the refreshing of
materialized view instances; (2) provenance tables provide
significant benefits, as seen in the microbenchmarks as well
as the workload sequences; (3) processing mapping changes
and deltas together provides significant benefit; (4) especially
with provenance tables, the reformulation approach is superior
even for significant numbers of changes to the mappings.

VI. RELATED WORK

Our work targets data exchange [1] and CDSS [2], [16],
where autonomous databases are interrelated through schema

mappings, and where data provenance [25] is maintained.
We focus on the Datalog rules (view definitions) generated
from the schema mappings. Mapping evolution [30] or adap-
tation [13] is a complementary problem, in which one of the
schemas changes and the view or mapping definitions need to
be updated.

Support for evolution of schemas, and of view definitions
(view adaptation), has previously been studied in data ware-
house settings [20], [21], where the emphasis has been on han-
dling schema modification operations, or sequences thereof, as
opposed to directly using cost-based query reformulation of
the new view definition. Evolution has also been studied when
multiple models, possibly at different levels of abstraction,
must be co-evolved [26].

Our problem of using materialized views to more effi-
ciently compute results, and its basic techniques, are related
to methods for materialized view selection [31], [32], [33].
Such work develops strategies for choosing which common
subexpressions to consider materializing and sharing, based
on workloads; in fact, [33] uses a transformation rule-based
approach to enumerate the search space. Our setting differs in
that the materialized views already exist; we are searching over
the ways of combining (and differencing) views. Our problem
is a case of the well-studied problem optimizing queries using
views [34], [14], for which less attention has been given to
queries and views using negation (see [35]). Our work uses a
form of negation, the difference operator under Z-semantics,
that is incomparable to the classical set difference.

Finally, we propagate changes made to the base relations
to the derived instances; this is a case of (deferred) view
maintenance [19], [21], [36], [37].

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel solution to multi-view adapta-
tion, the problem of efficiently supporting changes to schema
mappings or view definitions, by applying new techniques for
optimizing queries using materialized views and differential
query plans. We presented a practical, cost-based search
strategy for handling changes to mappings and data in a
seamless way. Using an implementation built over an off-the-
shelf DBMS, we showed that our approach provides significant
speedups, particularly when provenance tables are present.

In the future, we hope to extend our results to recursive
Datalog, perhaps via a hybrid approach that uses Z-relations
when possible and falls back to classical techniques otherwise.

REFERENCES

[1] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa, “Data exchange:
Semantics and query answering,” TCS, vol. 336, pp. 89-124, 2005.

[2] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Update
exchange with mappings and provenance,” in VLDB, 2007, amended
version available as Univ. of Pennsylvania report MS-CIS-07-26.

[3] S. Dessloch, M. A. Herndndez, R. Wisnesky, A. Radwan, and J. Zhou,
“Orchid: Integrating schema mapping and etl,” in /CDE, 2008.

[4] A.Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov, “Schema mediation
in peer data management systems,” in /CDE, March 2003.

[5] W. Gatterbauer and D. Suciu, “Data conflict resolution using trust
relationships,” in SIGMOD, 2010.

[6]
[7]
[8]
[9]

(10]

(11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]
(31]

[32]

[33]
[34]
[35]
(36]

[37]

N. E. Taylor and Z. G. Ives, “Reconciling while tolerating disagreement
in collaborative data sharing,” in SIGMOD, 2006.

M. A. Hernandez, R. J. Miller, and L. M. Haas, “Clio: A semi-automatic
tool for schema mapping,” in SIGMOD, 2001.

A. Fuxman, P. G. Kolaitis, R. J. Miller, and W.-C. Tan, “Peer data
exchange,” in PODS, 2005.

Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor, V. Tannen, P. P.
Talukdar, M. Jacob, and F. Pereira, “The ORCHESTRA collaborative data
sharing system,” SIGMOD Rec., 2008.

A. Gupta, I. S. Mumick, J. Rao, and K. A. Ross, “Adapting materialized
views after redefinitions: techniques and a performance study,” Inf. Syst.,
vol. 26, no. 5, 2001.

L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin,
“Translating web data.” in VLDB, 2002.

BioSQL project home page, http://www.biosql.org.

C. Yu and L. Popa, “Semantic adaptation of schema mappings when
schemas evolve,” in VLDB, 2005.

A. Y. Halevy, “Answering queries using views: A survey,” VLDB J.,
vol. 10, no. 4, 2001.

T. J. Green, Z. G. Ives, and V. Tannen, “Reconcilable differences,”
Theory of Computing Systems, vol. 49, no. 2, 2011.

L. Kot and C. Koch, “Cooperative update exchange in the Youtopia
system,” in Proc. VLDB, 2009.

S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

A. Cali, G. Gottlob, and M. Kifer, “Taming the infinite chase: Query
answering under expressive relational constraints,” in KR, 2008.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views
incrementally,” in SIGMOD, 1993.

C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Update rewriting
and integrity constraint maintenance in a schema evolution support
system: Prism++,” PVLDB, vol. 4, no. 2, 2010.

A. Koeller and E. A. Rundensteiner, “Incremental maintenance of
schema-restructuring views,” in EDBT, 2002.

Y. E. Toannidis and R. Ramakrishnan, “Containment of conjunctive
queries: Beyond relations as sets,” TODS, vol. 20, no. 3, pp. 288-324,
1995.

Y. Sagiv and M. Yannakakis, “Equivalences among relational expres-
sions with the union and difference operators,” J. ACM, vol. 27, no. 4,
pp. 633-655, 1980.

T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in PODS, 2007.

J. Cheney, L. Chiticariu, and W. C. Tan, “Provenance in databases: Why,
how, and where,” Foundations and Trends in Databases, vol. 1, no. 4,
2009.

J. F. Terwilliger, P. A. Bernstein, and A. Unnithan, “Worry-free database
upgrades: automated model-driven evolution of schemas and complex
mappings,” in SIGMOD, 2010.

B. Alexe, W. C. Tan, and Y. Velegrakis, “STBenchmark: towards a
benchmark for mapping systems,” PVLDB, vol. 1, no. 1, 2008.

P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash, “Implementing
mapping composition,” in VLDB, 2006.

C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema evolution
in Wikipedia — toward a web information system benchmark,” in /CEIS
(1), 2008.

Y. Velegrakis, R. J. Miller, and L. Popa, “Preserving mapping consis-
tency under schema changes,” The VLDB Journal, vol. 13, no. 3, 2004.
H. Gupta and I. S. Mumick, “Selection of views to materialize under a
maintenance cost constraint.” in /CDT, 1999.

H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham, “Materialized
view selection and maintenance using multi-query optimization,” in
SIGMOD, 2001.

D. Theodoratos, S. Ligoudistianos, and T. K. Sellis, “View selection for
designing the global data warehouse,” TKDE, vol. 39, no. 3, 2001.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim, “Opti-
mizing queries with materialized views,” in ICDE, 1995.

F. Afrati and V. Pavlaki, “Rewriting queries using views with negation,”
Al Commun., vol. 19, pp. 229-237, August 2006.

W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom, “Perfor-
mance issues in incremental warehouse maintenance,” in VLDB, 2000.
J. J. Lu, G. Moerkotte, J. Schue, and V. Subrahmanian, “Efficient
maintenance of materialized mediated views,” in SIGMOD, 1995.

