
A Self-Configuring Schema Matching System
Eric Peukert#1, Julian Eberius*2, Erhard Rahm**3

SAP Research, 01187 Dresden, Germany
1 eric.peukert@sap.com

 * Dresden University of Technology, Dresden, Germany
2 julian.eberius@tu-dresden.de

**University of Leipzig, Leipzig, Germany
3 rahm@informatik.uni-leipzig.de

Abstract— Mapping complex metadata structures is crucial in
a number of domains such as data integration, ontology
alignment or model management. To speed up the generation
of such mappings, automatic matching systems were
developed to compute mapping suggestions that can be
corrected by a user. However, constructing and tuning match
strategies still requires a high manual effort by matching
experts as well as correct mappings to evaluate generated
mappings. We therefore propose a self-configuring schema
matching system that is able to automatically adapt to the
given mapping problem at hand. Our approach is based on
analyzing the input schemas as well as intermediate matching
results. A variety of matching rules use the analysis results to
automatically construct and adapt an underlying matching
process for a given match task. We comprehensively evaluate
our approach on different mapping problems from the
schema, ontology and model management domains. The
evaluation shows that our system is able to robustly return
good quality mappings across different mapping problems
and domains.

I. INTRODUCTION
Finding mappings between complex metadata structures

is a critical task in a number of domains such as data
integration, ontology alignment or model transformation.
We call this task schema matching, but it has also been
named ontology alignment [22] or metamodel matching
[11]. In order to speed up that task, semi-automatic schema
matching systems were developed. These systems rely on
matching algorithms, so called matchers, to compute a
mapping suggestion that can be corrected by a user. A
multitude of schema matching systems and matching
algorithms were proposed (see [29], [27], [28], [1] or [2]
for overviews). Except for some domain-specific matchers,
the algorithms used in the different systems are often
similar, e.g. they consider the linguistic and structural
similarity of schema elements or the similarity of instance
data. Many systems are constructed for a single schema
type or domain and may even be tuned for specific
benchmarks such as the OAEI Benchmark [10].

Constructing and tuning a schema matching system is a
complex, manual and time-consuming task. Schema
matching publications typically report the maximally
achieved quality of automatically computed mapping
suggestions using some specially tuned parameter
configuration. Finding such configurations often requires

substantial matching experience and expert knowledge as
well as given perfect mappings. Some systems provide
special user interfaces for tuning match configurations [4],
[24].

However, such an approach cannot be adopted for
applying a schema matching system in practice onto fully
unknown matching problems. Moreover, users often do not
have schema matching experience, so that they rely on
default match configurations, i.e. a predetermined selection
of matchers and combination of their match results.
Unfortunately, these default configurations are often not
robust enough to cope with largely differing matching
problems of diverse domains. Hence, there is a need for
adaptive and robust matching systems that return good
mappings across different matching problems without
manual tuning.

There have already been some attempts to make parts of
a matching system more adaptive and self-tuning
[14][18][26][20]. For instance, the ontology alignment
system RiMOM [18] computes two properties of the input
schemas to later select or unselect a structural and a name-
based matcher. However, these adaptations are fixed in the
code and only deal with a small part of the tuning problem.

In this paper, we propose a more comprehensive
approach for a fully self-configuring schema matching
system that can automatically construct and adapt a
matching process for a given mapping problem.
Specifically, we make the following contributions:

• We introduce so-called features that are computed
from the input schemas as well as from
intermediate mapping results. Among others, we
introduce the so called monogamy feature that
allows predicting the quality of a mapping result
without having a correct mapping.

• Based on the features, we introduce several
matching rules that represent expert knowledge on
how to define or adapt a schema matching process.
In particular, we introduce a rule for automatically
finding parameters for the selection operator that
selects the final match correspondences.

• We propose an adaptive matching approach that
integrates features and matching rules. A matching
process is iteratively extended, rewritten and

executed. The automatically computed process can
also be edited by the user.

• We evaluate our approach on a broad set of
mapping problems from different domains and
show its robustness.

The remainder of this paper is organized as follows:
Section 2 gives a short introduction into some preliminaries
on schema matching. In Section 3 our self configuring
matching approach is introduced consisting of features,
matching rules and adaptive process construction. After
that, Section 4 describes our self configuring schema
matching system and our library of features and rules. We
evaluate our approach in Section 5 and review related work
on adaptive schema matching approaches in Section 6.
Finally, we draw conclusions and give an outlook in
Section 7.

II. PRELIMINARIES
Before getting into the details of features, matching rules

and adaptive matching process execution we first need to
give some definitions of the foundations of schema
matching starting with our view of a schema.

A schema consists of a number of schema elements.
Each element carries a name, a data type, and optionally a
description (called annotation) as well as instances. The
kind of schema is not restricted and can refer to any
metadata structure such as XML schema trees, ontologies,
database schemas or meta-models. The goal of a schema
matching system is to compute a mapping suggestion
between a source schema S and a target schema T. For
computing the mapping, most matching systems use several
matchers as well as other operators for aggregation and
selection.

The matcher operator computes a similarity value for
each pair of schema elements from the source schema S
and the target schema T and constructs a similarity matrix
of size |S|*|T| as output. An entry in the similarity matrix is
a value between 0 and 1 that represents the similarity
between two elements with 0 representing low and 1
representing high similarity.

Most currently promoted matching systems use a
combination of different matching techniques for
improving the quality of matching results. For that purpose
an aggregation operator is used. It combines results of
multiple similarity matrices computed by different
matchers to a single aggregated similarity matrix.

Finally, a selection operator extracts the most probable
element pairs from a similarity matrix and sets all other
values to zero. A number of selection strategies were
proposed in literature [12][19] including Threshold, Delta
and MaxN. Threshold simply filters all entries higher than a
given threshold. The resulting similarity matrix is often
sparse and only contains values for pairs with high
similarity values. The MaxN-Strategy returns the N entries
with the highest similarity value in each row or column of a

matrix. In many cases MaxN with N=1 is used to determine
1:1 mappings where each schema element in the source
schema has at most one match partner in the target schema.
Delta extends MaxN by a delta environment around the N
highest values of a row or column in a similarity matrix.
All entries within this delta environment are added to the
MaxN selection result to retain several similarly probable
match candidates. With the mentioned selection approaches
(except Max1), an element can be part of several
correspondences as useful for 1:n, n:1 or n:m mappings.
From the selected matrix a mapping between a source
schema S and a target schema T can be constructed. A
mapping consists of a set of correspondences (s, t, sim)
referring to a source- and a target element as well as a
similarity value.

Matching systems do not only differ in the
implementation of these basic operators but also by the
order in which these operators can be executed. In this
paper we adopt the notion of matching processes similar to
eTuner [17]. A matching process (or matching strategy) is
represented by a directed acyclic graph describing the
execution order of operators such as match, aggregation or
selection. It contains all steps necessary to produce a
mapping from two input schemas. Operators in the graph
have one or more similarity matrices as input and return a
similarity matrix as output. The topology of a matching
process can vary substantially. Simple topologies that are
commonly used are parallel, sequential and iterative
execution of matchers as visualized in Fig.1. However,
these basic topologies may also be combined within more
sophisticated match strategies.

Fig 1 Topologies: (a) parallel, (b) sequential, (c) iterative

In general, tuning a matching system involves defining the
underlying matching process structure, selecting the
appropriate operators and parameterizing individual
operators. This leads to a huge space of possible
configurations of a matching system. Currently the tuning
is done manually and requires a lot of testing and matching
experience. In this paper, we introduce a system that is able
to automatically choose promising matchers, aggregation
and selection operations and their parameters. Also the
structure of the matching process can be automatically

extended. The user of our system does not need to tune
before solving a new matching problem.

III. ADAPTIVE MATCHING APPROACH
In order to achieve full automation in the construction

and configuration we took inspiration from how a matching
expert interactively develops and executes a matching
process. After analyzing the source and target schema, she
selects appropriate matchers and constructs an initial
matching process. The process is executed and the result is
inspected. Depending on that result, certain parts or
parameters of the matching process can be changed and
extended manually.

Our approach performs similarly but in an automatic
way. In order to automate the analysis step, we rely on so-
called features. These are computed from the input schemas
but also from the intermediate mapping results. Features try
to give some indication about schema properties or the
quality of a mapping. Based on the computed features so-
called matching rules are defined that represent expert
knowledge about a relation between features and operators
or process patterns. Finally, an adaptive process execution
system selects and applies rules and incrementally executes
the constructed process. In the following subsections
features, matching rules and the adaptive process
construction are introduced.

A. Features
In general a feature takes one or several schemas or

similarity matrices as input and computes a value between
0 and 1 as output. We distinguish between schema features,
and matrix features. The notion of matrix features is newly
introduced by this paper.

Schema features try to describe properties of schemas
and can be computed in a preprocessing step before
actually executing a matching process. In simple cases they
reflect the schema size or the relative frequency of schema
element properties such as the availability of element
descriptions or data type information. More complex
features rely on value distributions of schema elements or
structural properties. For instance, the average length of
paths in a schema tree gives some indication on when to
use a path matcher evaluating the name similarity of
elements and their predecessors. Some schema features
evaluate the degree of similarity between both input
schemas. For example the structural and linguistic schema
similarity can be used to decide about the appropriateness
of applying a structure-based or name-based matcher [18].

We additionally analyze intermediate similarity matrices
after executing operators of the matching process to derive
matrix features. They are used to evaluate the quality or
similarity value distributions of similarity matrices. For
instance a so called Noise feature computes the number of
low valued entries in a similarity matrix in relation to the
top-1 values in each row and column. The resulting feature
can be used to evaluate the quality of a matrix and thus the

operator that has generated it. Some matrix features take
more than two matrices as input. They often describe the
degree of commonalities and differences between multiple
result matrices. For instance a feature could measure the
overlap of top-1 values of different similarity matrices. If
the overlap is high, more confidence could be put in the
different matrices.

In general, schema as well as matrix features formalize
the results of a manual analysis step that a matching expert
would generate before or while constructing a matching
process, e.g. to select and add matchers.

B. Matching Rules
We use schema and matrix features within so-called

matching rules. A matching rule captures a design decision
a matching process expert would take in specific situations
to increase the quality of a process for a given mapping
problem.

A matching rule consists of the following parts:
• A pattern that describes a part of a process graph

where the rule can be applied to. The pattern can
be empty, in particular within rules that start the
process construction.

• An action that applies a defined change to
instances of the found pattern. This includes
additions and changes of one or many (additional)
operators to a process.

• A relevance function that computes the relevance
of the respective rule for the current matching
process and match task. It is based on computed
schema and matrix features on the input schemas
and already computed similarity matrices and
computes a relevance value between 0 and 1. The
relevance is used to decide whether a rule is
executed.

• An optional check function that is used after a rule
was applied to a process. It rates the quality of the
changes that were introduced by the action. It also
relies on matrix features to compute a value
between 0 and 1.

To better explain the parts of a matching rule we
introduce a simple example rule for reducing noise of
matcher operators. The rationale of the rule is that low-
valued (< 0.1) similarity entries in a result matrix may
negatively influence a later aggregation. Reducing such
“noise” can thus increase result quality. Fig. 2 visualizes
the pattern and action of the rule. On the left, our notation
for rules is shown with the pattern above and the triggered
action to change the match process below the bar.
Additionally the conditions for the relevance and check
functions are specified. In the example on the right, the
pattern describes a process part that consists of a matcher
operator (mat) with some arbitrary preceding and following
operator. For each matcher operator meeting the pattern the
result matrix is used to determine the mentioned Noise
feature.

Fig. 2. Example matching rule

If the computed relevance is higher than the given

threshold (e.g. 0.6) a selection operator is inserted after the
matcher operator. The selection operator uses a very low
threshold t=0.1 to prune out only the noise but to retain all
other similarity values. In this rule no check function is
needed. In other cases the check can be used to ensure that
the rule application did improve the matching quality,
measured by features. If the check is negative the changes
of the action are reverted.

We identified different types of rules that are shortly
described in the following. As will be discussed below and
visualized in Fig. 3 the different kinds of rules are applied
in a certain order to control the degree of process
adaptations.

Starting rules can be applied to an empty process when
no intermediate matrix was computed yet. In our system,
starting rules mostly add basic matchers to the matching
process that only take individual node attributes into
account when computing similarities. Each application of a
starting rule creates dangling nodes that are possible end-
points of the process and do not yet have following nodes.
At these dangling nodes the process is further extended in
the following steps.

Aggregation rules add aggregation operators to a
process and combine the results of several dangling
operators from a matching process. A multitude of
aggregation operators exist such as AVERAGE [4], OWA
[16], HARMONY[20] or MIN/MAX [4], each with
advantages and disadvantages.

Rewrite rules take a non-empty matching process MP
as input and rewrite the process to a new matching process
MP’. Rewrite rules change the structure of a given process
without changing dangling output nodes. For instance the
order of operators could be changed or additional
operations can be added in between others. The noise
reduction rule in Fig. 2 is an example for a rewrite rule.

Refine rules add operators to dangling operators in
order to increase result quality. For instance, some refine
rules add structural matchers to a matching process to
propagate already found similarity values and identify
additional structural matches.

Before finalizing a matching process, selection rules are
applied. They are used to add a selection operator to the last
dangling node of the current matching process. As
discussed in Section II, possible selection strategies include
Threshold, MaxN and Delta.

C. Adaptive process construction
Obviously different rule classes depend on each other

since some rules add operators and dangling nodes and
others such as aggregation rules consume the output of
several operators. In order to restrict complexity we
perform the application of rules only within a fixed number
of stages as shown in the left part of Fig. 3. This limits the
structural diversity an adaptively created process can have
but simplifies the rule selection process significantly. If all
rules would be able to compete in all stages of the process
side-effects of rule application could not be controlled and
termination could not be ensured.

The process starts with importing the input schemas and
analyzing them to compute the schema features. An empty
matching process is created. In the next stage starting rules
can be selected and applied. Starting rules mostly add basic
matchers that compute similarities from single schema
elements as done by the name-, datatype- or annotation
matcher.

However, more complex starting rules can be defined

that construct an advanced matching process structure, e.g.
to enforce the sequential or parallel execution of several
matchers. In the next stage the dangling nodes from
applying the starting rules need to be combined and the
result matrices are aggregated. If only one dangling node
was created by starting rules, no aggregation node is added.
After the aggregation, rewrite rules can be applied. If no
relevant rewrite rules can be found, a selection rule is
applied. Based on the selection result the process can be
finished or refine rules can be applied iteratively.

Within each stage of the process a predefined rule
selection process is started (see right state chart from
Figure 2). The selection process begins with filtering all

sufficient

no

yes

Filter Rules by State

Compute Relevance

Execute Process (non
executed parts)

Apply rule

Not sufficient

Stage Finished

Check Result

Rules left

Stage Begin

 revert Refine

Starting

Rewrite

Selection

Import &
Analyze

Finish

Aggregate

Fig. 3. Stages and rule selection

rules that can be executed within the current stage. This set
of rules is only created once within a stage. If the remaining
set of rules is empty the stage can be finished directly. If
there are rules left to be applied, their relevance is
computed for each rule using the rules relevance functions.
The most relevant rule is selected and applied. Applying a
rule implies changes to the current matching process. After
that the current process is executed. However no operator is
executed twice and only new or changed parts are executed.
The matrix result of executing the most recently applied
rule is evaluated using the rules check function. It can
happen that rules are rated as relevant due to the existence
of certain features in the source and target schema.
However, after executing the matchers that were added by
the rule the matrix result quality is sometimes very low,
indicating that the most recent rule should be ignored. In
that case the most recent rule effect is reverted. After
executing a rule it is removed from the list of remaining
rules. Again the most relevant rule is selected and the
process continues until the set of applicable rules is empty.

IV. ADAPTIVE MATCHING SYSTEM
We have developed a matching system that supports the

execution of matching processes and implements the
proposed adaptive matching approach (see Fig. 4). To solve
a match problem, the matching system obtains two schemas
as input and returns a mapping as output. Ideally no further
parameterization input should be needed when running the
system. All necessary parameters should be defined
automatically.

The system consists of a registry that contains a number
of feature analyzers, matching rules as well as an operator
library that contains all necessary operators in particular the
matchers, aggregation or selection operators.

The core component of the system is the adaptive
process construction that basically implements the
proposed staged rule application approach. In a
preprocessing step all schema features of the input schemas
are computed and cached to avoid double computation.

After every change of the process the matching process
execution is called to execute the new operators. This
creates new intermediate similarity matrices that can be
analyzed by subsequent matrix features. Currently the
adaptive execution always starts with an empty process. In
the future we plan to also support the adaptation of existing
matching processes.

In the following, each of the components is described.
Moreover, the most important feature analyzers and
matching rules are introduced in detail.

A. Feature Analyzer Library
The feature analyzer library offers a set of analyzers to

compute different schema and matrix features. Schema
features are mostly used for computing the relevance of a
rule. Matrix features can be used in both the relevance
computation as well as the check function after a rule has
been applied and the modified process has been executed.
An important property of feature analyzers is that their
computational complexity should be low to reduce their
impact on execution efficiency. The library currently
contains more than 20 feature analyzers as shown in Table I
together with the required input. Some of these are simple
existence features that check the availability of certain
properties for matching like data types or annotations.
There are also more advanced analyzers, e.g., to analyze
the distribution of matches between two schemas or to
compute a structural similarity. The library of feature
analyzers can easily be extended. In the following we
introduce the most important feature analyzers per class.

TABLE I

FEATURES IN THE LIBRARY

Schema Features Input Matrix Features Input
{*}-Existence S ∨ T CrossMatches M, S ∧ T
NodeTokenRatio S ∨ T MatchDistribution M, S ∧ T
NameMeaningfulnes S ∨ T Harmony M
PathVariance S ∨ T MultiMappings M
RepeatingElements S ∨ T Monogamy M
SchemaDepth S ∨ T Selectivity M
 Noise M
SimilarLanguage S ∧ T Complementarity M
TokenOverlap S ∧ T Unanimity M
NameSimilarity S ∧ T
StructuralSimilarity S ∧ T
StructuralContain S ∧ T

B. Schema Features

1) {Name, Datatype, Annotation, Instance}-Existence:
These existence features specify the percentage of elements
that carry a Name, Data type, Annotation, or Instance,
respectively.

Adaptive Process
Construction

Process Execution Engine

Source
Schema

Target
Schema

Mapping

 Rules Feature
Analyzer

 Operators

Fig. 4. Adaptive Matching System

2) NameMeaningfulness: NameMeaningfulness was
originally proposed for Rimom [18] to assess which
percentage of schema element names is considered
meaningful. This feature is implemented using a dictionary
such as WordNet for looking up element names or their
components. In the OAEI Benchmarks, some schemas were
artificially changed by scrambling labels. Based on that
feature, Rimom was able to entirely skip any name
matching in such cases.

3) NodeTokenRatio: NodeTokenRatio analyzes the
names of schema elements. It often occurs that schema
designers only use a small set of terms and concatenate
them to name schema elements. This easily creates
ambiguity. With the help of this feature, an appropriate
name matcher such as TF/IDF can be chosen that tries to
include the relative importance of terms into the
computation of name similarities [25].

4) RepeatingElements: RepeatingElements measures
how often element names and their content are repeated
within a schema. In particular in XSD schemas, types are
often reused which creates ambiguity and high values in the
repeating elements feature.

5) StructuralSimilarity: StructuralSimilarity was already
proposed in Rimom [18] and was slightly adapted in
UFOme [26]. It is a lightweight measure to compute how
similar the structural shapes of two schemas are. A high
structural similarity is an indicator to increase the relevance
of structure-based matchers.

All proposed schema features can be computed before

process execution. Additionally we need matrix features
that are computed while executing the process.

C. Matrix Features

1) Selectivity: Selectivity tries to evaluate the
confidence of a result matrix that was computed by a
matcher or sub process. It computes the distance of the top-
1 entry in a row or column to the next highest entry in the
same row and column. The rationale is that a high distance
of the best candidate match to the next possible matches
implies that the candidate match is certain. A low distance
on the other hand shows more uncertainty. For a vector V
sorted in descending order (so that 𝑉0 is the similarity of
the best, and V1 of the next best candidate) we compute the
selectivity of the vector as:

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑉) = �0 𝑖𝑓 𝑉0 = 0,
𝑉0 − 𝑉1 𝑒𝑙𝑠𝑒.

For a similarity matrix M with n×m entries the selectivity
value fselectivity can be computed as follows:

𝑓𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦�𝑀𝑖,∗� + ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑀∗,𝑗)𝑚

𝑗=1
𝑛
𝑖=1

2 ∗ |�𝑚𝑖,𝑗 � 𝑚𝑖,𝑗 > 0}|

All selectivities of rows and columns are summed up and
divided by the number of candidate entries in the matrix. If

the selectivity is very low, the likelihood that after a
selection many 1:n, n:1 or n:m matches (so called multi
matches) will result is very high. For example, a high
selectivity indicates to use a MaxN selection with N=1
when a selection strategy needs to be defined.

2) CrossMatches: CrossMatches computes how
structurally consistent a computed mapping is, i.e. how
structurally close the matching target elements of
structurally close source elements are. A low structural
consistency is an indicator for low precision mappings. In
order to increase structural consistency special constraint
based selection approaches as proposed in ASMOV [15]
could be used.

3) MultiMatches: MultiMatches represents the ratio of
multi matches to the number of 1:1 matches on an already
selected similarity matrix. This feature is used to compute
the relevance of rules that reduce the number multi matches.

4) Monogamy: Monogamy computes how close all
found mapping pairs in a matrix are to a monogamic
relationship. The feature is inspired by the Harmony value
of [20] for automatically deriving aggregation weights.
Harmony counts the number of entries in a similarity
matrix that are single maximal entries both on its row and
column. Many matchers compute matrices with many
multimatches even though the correct mapping is a 1:1
mapping. In these cases the harmony value is sometimes
very low even though the final mapping quality might be
good. To better cope with computed multimatches the
monogamy value can be used. In a monogamic relationship
each partner of a match pair should only be involved in this
and possibly no other match relationship. The more each
partner is involved with other partners, the lower the
computed monogamy value is. Therefore the first mapping
in Fig. 5 (left) has a low monogamy value, whereas
monogamy for the second mapping is higher (see below).

Monogamy is closely related to the stable marriage
property [13]. However, it is not restricted to 1:1 mappings
but allows measuring how close existing n:m relationships
are to a 1:1 relationship. In the evaluation we will show that
this value is a robust indicator of a good quality mapping
result, even though the actual F-Measure cannot be
computed without a gold standard. However, for mapping
problems where the correct intended mapping is not mainly
1:1, the monogamy should not be applied. Such cases can
be identified with the help of the MultiMatches and
RepeatingElements features.

Fig. 5. Monogamy: distance to a stable relationship

To further explain the monogamy measure, we illustrate

for the example in Fig. 6 how the monogamy feature is

computed. At the top the initial matrix and the
corresponding mapping is visualized. To compute the
monogamy all entries of the matrix are iterated and the
number of partners (entries with similarity>0) in the row
and column are counted (1). The partner number for each
entry is put into a separate partner matrix (2). Finally each
similarity value is divided by its partner count which
weights entries by the number of partners (3). The weighted
similarities are then summed up by row, divided by the
number of non-zero entries in the row and finally averaged
to the resulting monogamy value of 0.27. As second
example, assume that each red line in Fig.5 refers to a
similarity of 0.7. The monogamy for mapping 5 (left)
computes to 0.17 whereas for mapping 5 (right) it is 0.44.

Fig. 6. Monogamy computation

Certainly also other matrix features can be computed

such as the average of all similarity values in a matrix or
the DICE-Value [4]. However these features can only be
used in combination with others since the information that
can be derived from these values is low.

D. Rule registry
Based on the presented features a number of rules were
defined that are put into the matching rule registry (see
Table II). The rule registry can be extended by additional
rules. Currently many rules are simple and add a specific
matcher if the associated relevance value is high. Before
adding complex rules we need to make use of the basic
decisions a matching process expert would make. However,
we have also started to add more complex rules that add
more than one operator to a matching process.
Table II gives an overview of several rules in our library
ordered by their rule type. Start rules are typically used to
add simple element-level matchers based on name, type,
annotation and instance similarity while structural matchers
are added by refine rules.

TABLE II

MATCHING RULES IN THE LIBRARY

Matching Rule Type Matching Rule Type
AddInstanceMatcher Start AddSelectDelta Select
AddWeightedName-
Matcher

Start AddSelectMaxN Select

AddTokenName-
Matcher

Start AddAverageAgg Agg

AddDataType-
Matcher

Start AddPathMatcher Refine

AddAnnotation-
Matcher

Start AddSiblingMatcher Refine

AddNoiseReducing-
Select

Rewrite AddChildren-
Matcher

Refine

SequentialRewrite Rewrite AddParentMatcher Refine
AddBlockingMatcher Rewrite AddStatistics-

Matcher
Rewrite

In the following we briefly describe selected rules.

1) AddWeightedNameMatcher: This rule adds an
enhanced name matcher that includes a term weighting
feature. This is useful when schema names are based on a
restricted set of terms. The weighting approach is able to
reduce the importance of terms based on their occurrence
counts similar to TF/IDF in information retrieval. When we
developed and evaluated the WeightedNameMatcher in [25]
we could identify typical use cases where this matcher
performs well. These cases are specified in the rule with the
help of the NameExistence, NodeTokenRatio and
RepeatingElements features. In particular, NameExistence
should indicate the existence of meaningful names.
Furthermore, NodeTokenRatio should be relatively small
and RepeatingElements relatively high (e,g,. > 0.8) to
indicate the repeated use of the same terms. The rationale
behind that is that repeating elements could also lead to a
lower NodeTokenRatio since repeated elements increases
the number of nodes but does not increase the number of
used tokens. However, in that case the weighting could
decrease matching quality. The rule also includes a check
function based on the monogamy value. If a very low
monogamy (< 0.1) indicates a low-quality mapping, given a
1:1 mapping is expected, the rule is rolled back, by
removing the added operator.

2) AddPathMatcher: AddPathMatcher introduces a path
matcher taking the currently computed similarity matrix as
input for computing the path similarity. The relevance
function of the PathMatcher rule relies on the PathVariance,
SchemaDepth, Selectivity as well as the MultiMatches
feature. If the SchemaDepth value is very low in one of the
input schemas a flat schema structure can be assumed. That
leads to a low relevance of the PathMatcher rule. If the
PathVariance is high, the MultiMatches feature has a high
value and the Selectivity is low then also the relevance for
the path matcher is higher. This means that the path
matcher is particularly useful to increase the selectivity of a

similarity matrix or reduce the number of multi matches.
The check function computes the monogamy value and
additionally checks whether the Selectivity value increased
and the MultiMatches value decreased. The rule was
inspired by [5]. In their work a fixed process was described
that takes multi mappings of node-based matchers and
applies a name-path matcher to them, to resolve the found
multi mappings to 1:1 correspondences.

3) AddSelectDelta: AddSelectDelta is a rule that can be
applied after each refine iteration. Its relevance is computed
from the MultiMatches, MatchDistribution and
SchemaSizeRatio feature. If there are multi matches
involved and the difference of schema sizes is high then the
probability that multi matches should be part of the final
result is higher. Additionally we evaluate if the distribution
of matches across the bigger schema is equal or if
multimatches are structurally close. For instance a source
element could match to both a target element and its parent.
Certainly in that case only one of the two matches should
be taken for the final result and a MaxN (N=1) selection
should be added instead. The delta selection allows
including additional matches to the MaxN selection.
However defining the delta value is complex and different
from use case to use case. Hence for each use case, we test
different delta values and compute the monogamy value for
the possible selection result. The delta value producing the
highest monogamy value is chosen for the selection
operator. In the evaluation we show that this adaptive
computation of the delta value increases result quality.

For space reasons, not all matching rules can be
described in detail. However, in general, the rules relevance
functions rely on features that best project the possible
result quality of the added operator. In the check function
we make heavy use of the monogamy value. In particular
for the element-based matchers it helps to drop irrelevant
matchers. Note that a good rule captures a relation between
features and operators that is stable even across different
matching tasks and domains. This is obvious for rules
based on existence features. For other rules such as
AddWeightedNameMatcher this involves more analysis as
described above. Thus from the evaluations of any newly
introduced matching technique one can often derive good
matching rules.

E. Adaptive Execution Example
For better understanding we explain the adaptive

construction when matching two anatomy taxonomies that
will also be used in the evaluations. In Fig. 7 different
states of the adaptive construction are visualized.

Our system starts with constructing a new process with
an input node that imports the source and target schemas
and computes the schema features. In (1) the
AddWeightedNameMatcher starting rule was applied due to
a high number of repeating tokens in element names. In (2)
the AddDataTypeMatcher rule was relevant and executed.

However it was then removed due to a low quality
computed by the check function. After all relevant starting
rules were executed an aggregation rule can be executed (3)
that combines dangling nodes. In the example, only one
dangling node exists so that the Aggregation operator can
be removed. In (4) the AddNoiseReducingSelect rewrite
rule was applied and a selection operator was added after
the matcher operator. In (5) the AddSelectDelta rule was
executed and a final Aggregation operator with a maximum
aggregation strategy was added. Additionally two refine
rules were executed that add a path and a leaves matcher.
The AddPathMatcher rule is selected since the result matrix
of the name matching still contains some multi matches as
measured by the MultiMatches feature. In (6) the
AddSelectDelta rule was applied adding its result to the
existing Aggregation node.

Fig. 7. Example adaptive construction

V. EVALUATION
In the evaluation we want to investigate the effectiveness
and robustness of our approach. For that reason we
compare our adaptive schema matching system to currently
known alternative approaches for diverse problems.

A. Test Data
We consider a wide range of schema mapping problems

from different domains. To be comparable to existing work
we also include the OAEI-Benchmark and the ModelCVS
Benchmark in our evaluation. Table III lists the used
datasets together with the number #M of considered
mapping scenarios.

TABLE III

TEST DATASETS

Test sets #M Mapping Types
Purchase Order 10 Small XSD schemas
Enterprise Services 52 Large&Small XSD, IDOC
OAEI Benchmark 110 Synthetic ontology
Anatomy 1 Large-sized taxonomy
ModelCVS 10 Hard metamodel

The Purchase Order dataset and mappings were already

used in the early evaluations from COMA [4] and they are
publicly available. We also use them for computing a
default configuration to compare against. Additionally we
can compare us indirectly to the published COMA results
for that dataset. The Enterprise services dataset contains a
big set of mappings between service interfaces from an
SAP Enterprise Services Repository. The set contains a big
diversity of problem sizes and complexities. In particular
the mappings involving SAP Intermediate Document
Formats (IDOC) are challenging since the names are often
cryptic. The OAEI Benchmark from 2010 consists of 110
smaller synthetically generated ontology mappings. The
Anatomy mapping is also provided by the OAEI. It is a
relatively large real-world mapping scenario with very high
schema similarity. About 60 percent of the correspondences
are trivial due to a very high name similarity. Finally we
use the ModelCVS dataset from [11] that provides
metamodel matching problems that differ strongly in the
way elements are named and structured.

B. Setup
We precomputed a best configuration for the Purchase

Order dataset similar to the way the default strategy
proposed in [4] was computed. For that purpose we
generated all possible matcher combinations and created a
parallel matching process. We tested different selection
strategies and delta parameters to find an optimal matcher
combination and selection strategy. Due to the huge space
of parameter settings and combinations this process took
several days to finish. We call this computed strategy our
DEFAULT configuration. It consists of the matchers
WeightedName, Path, Children, Leaf, Sibling and Datatype.
The best selection strategy found was parameterized with
delta=0.021 and a threshold=0.5.

Secondly we implemented an alternative, learning-based
approach called meta level learning that was proposed in
[8]. This approach is a valid comparison since it includes
schema features in a learning process of a decision tree to
increase adaptivity. The learning also takes the Purchase
Order dataset as gold mappings. We include all schema
features in the learning process. The learning was
implemented using the Weka 1 library. The computed
decision trees are then translated into matching processes
without loss of information. In order to reduce possible
overfitting we restricted the size of the decision tree. We
then executed the default configuration, the decision tree
and our new adaptive matching system with all provided
mapping problems.

C. Overall Results
The results of our evaluations are shown in Fig. 8. For

each dataset we compared the average achieved F-Measure

1 http://www.cs.waikato.ac.nz/~ml/weka/index.html

of the individual approaches DEFAULT, DT and ADAPT.
For the Purchase Order dataset the adaptive approach
(ADAPT) is only closely behind the DEFAULT
configuration and the computed decision tree (DT). The
slightly better outcome for DEFAULT is not surprising
since it was computed on this dataset by testing all possible
parameter configurations. Also DT was trained on that
dataset. However we can already see that it is hard even for
a learned process to be better than the DEFAULT
configuration since the diversity of matches is too big to
derive a representative rule in a decision tree. If the size of
the tree would not be restricted the results get slightly better.
However, such a strategy will likely overfit as already
experienced by the authors of [8]. Our adaptive processes
selected similar starting rules for adding a Name,
WeightedName and a Datatype matcher, since all Purchase
Order schemas do not contain annotations or instances and
the naming style is very similar. In the selection of refine
rules differences show up. AddSibling and AddChildren
were often triggered but in some cases reverted after
executing the check function. This behavior could decrease
performance and in the worst case every matcher of a
library is executed once. However, executing and
investigating the results of rules increases certainty in the
adaptive process. Also the found value for the final delta
selection differed between 0.001 and 0.021.

In the Enterprise Services test cases our adaptive
strategy achieves about 10% better results than the
DEFAULT strategy. This is due to the adaptive selection of
the appropriate matchers and the automatic definition of the
selection delta. A number of schemas in the Enterprise
Services dataset contain annotations. In order to be
comparable we simply added an annotation matcher to the
DEFAULT matcher configuration. However the increase in
F-Measure was only about 2 percent. Surprisingly the
learned decision tree DT failed to return reasonably good
results. In the Purchase Order test cases many
correspondences are trivial in that average similarity values
of matches are close to 1. This is also detected by the
decision tree so that a lot of correct matches with lower
similarity are pruned early in the tree. Obviously the
DEFAULT strategy is much more robust regarding that
problem. The variance of selected rules in the Enterprise
Services dataset was higher than for the Purchase Orders.
In some cases only the AddNameMatcher starting rule was
applied and only the AddNamePath refine rule survived the
check function.

In the OAEI test cases we achieve a reasonably high F-
Measure. Here we are nearly 14 percent better than the
DEFAULT strategy. DT again fails to return good results.
Again we added an Instance and an Annotation matcher to
the DEFAULT strategy in order to be comparable. Almost
no quality increase was measured since the strict selection
thresholds filtered out possible additional correspondences.

Fig. 8. Evaluation results for adaptive execution

In order to be able to rate the quality of the adaptive

process we added the results from Falcon and Rimom from
the 2010 OAEI contest. Rimom achieved an F-Measure
that is 7% better while Falcon performed worse than our
strategy. We also constructed a manually defined matching
process that achieves F-measure values around 92%. We
did not include this in the result comparison since the goal
of the adaptive approach is automatic adaptivity and
robustness for diverse problems, not achieving the maximal
possible F-Measure for a single dataset. The variance of
selected rules on the OAEI dataset was also very high. In
particular the selection of the starting rules was very
intuitive. If most labels are scrambled a name-based
matcher is not selected as starting rule. If instances are
present the AddInstanceMatcher rule was used.
Additionally in many cases the adaptive matching process
executed multiple iterations of refinement rule execution
which rarely happened for the other datasets.

For the ModelCVS case the differences to the
DEFAULT strategy are smaller. However this is also due to
the difficulty of the mapping problem. In some cases the F-
Measure is lower than 0.2 so that rules based on a projected
result quality are skipped although they might have worked
well. However we still win more than 10 percent to the best
achieved matching results achieved by the ModelCVS
group [11].
Finally in the Anatomy case we again win around 13
percent in comparison to a default strategy. We are also
close to the best-performing system AgreementMaker
(AGREEM) [3] in the OAEI anatomy track that achieved
an F-measure of 87 percent in 2010. Unfortunately we were
not able to run the decision tree due to the size of the
matching problem. Currently we run into memory issues
due to the high number of match nodes in the tree.

In summary the proposed adaptive approach performed
better than the considered competitor approaches for almost
all datasets. If strategies are tuned for a specific dataset like
DEFAULT or DT better results can be achieved
individually. However, due to the size of existing datasets a
process as proposed for computing the default strategy is
not feasible for the other mapping problems.

D. Adaptive Selection
After having shown the strength of the adaptive

matching approach we now want to evaluate the value of
the newly introduced monogamy value. For that purpose
we ran a non-adaptive static matching process on two
scenarios and iteratively changed the threshold of a
threshold-based selection strategy at the end of the process.
With each threshold we computed the monogamy of the
result matrix. The result is shown in Fig.9.

What can be seen is that there is a very strong correlation
between the F-Measure of the strategy and the computed
monogamy value. Thus we could select the threshold that
achieves the highest monogamy for obtaining a good F-
measure. For comparison we also computed the Harmony
values which do not provide the needed correlation. The
two examples are taken from the Purchase Order dataset.

Fig. 9. Using Monogamy to define threshold values

When only few n:m correspondences are in the result

matrix the monogamy feature can also help to derive a
suitable delta value for delta-selection operator. Instead of a
threshold we changed the delta value from 0 to 0.2 and
measured the monogamy (Fig. 10). Again, choosing the
maximum monogamy value gives some indication for a
good delta value and final F-Measure. Note that the
monogamy works well for 1:1 matches that may have a few
1:n correspondences. For all other cases the monogamy
should not be used for finding a delta value. In these cases,
a static value would be preferable. Since we already have a
number of features available we can predict when to use the
adaptive delta selection.

Fig. 10. Using Monogamy to define delta values

VI. RELATED WORK
Different approaches were proposed in the past to make

schema matching systems more adaptive. First attempts
tried to increase adaptivity on the operator level. The
AVERAGE aggregation operator and the DELTA selection
strategy from [4] were already quite robust without the
need to analyze schemas and mappings. This was also
reproduced in our evaluation with the DEFAULT strategy.
A first approach that also relies on the analysis of the
mapping was the harmony based aggregation as described
above [20]. However, the usefulness of this approach seems
restricted to the OAEI Benchmark and we could not
reproduce the effects on other datasets. However the
harmony value served us as an input to our newly
developed monogamy feature.

Another promising attempt to adapt matching systems to
the problem was introduced by eTuner [17]. This system is
able to construct a synthetic gold standard by iteratively
perturbing one of the input schemas. Since the perturbation
rules are known, a mapping between the original source
and the perturbed schema is known. This synthetic gold
standard is then used to tune a given matching process.
However, their proposed approach seems not feasible in
practice. First they ignore the target schema and perturb
only the source. The perturbation rules are static so that the
generated gold standard does not differ much for different
mapping problems. The synthetic gold standard could differ
a lot from the original mapping problem, so that the system
will be tuned wrongly and return weak results.

First approaches were proposed that use a rule based
selection of matchers, selection and combination operators.
However, these attempts are very restrictive. Either they
fully rely on a questionnaire [21] that involves a lot of
manual user input or they use hard-coded rules as Rimom
[18] or Falcon [14] do. These two systems were among the
first to exploit a preprocessing and analysis of the input
schemas to be matched. Based on structural similarity or
name similarity, an edit-distance- or structural matcher is
included in the matching process. These selection criteria
are fixed into code while we support a modular adaptation
approach based on separately managed matching rules and
features.

Meta level learning [8] was the first to recognize the
need to have more schema features for creating adaptive
processes. However the problem is that in practice, often no
or no suitable gold mappings are available for learning.
Additionally, the mapping problems a system is faced with
differ a lot so that learned models often are not able to
return results with a good quality. The authors
acknowledge that their learning approach easily overfits
with the learning base. Also with increasing sizes of
decision trees the performance drops significantly. Other
learning techniques like MatchPlanner [7], YAM [6], [8] or
[9] might not suffer that strongly from overfitting, but they
do not consider schema features. MatchPlanner constructed
decision trees from a given knowledge-base of correct
mappings. In [12] the sequence and selection of matchers to
apply is also learned from a knowledge base. The approach
tries to “skim” the best correspondences from each matcher
execution and finally combines all results. YAM extends
the MatchPlanner work and proposes to apply different
classifiers for different mapping use cases. However, the
user is asked to select the appropriate classifier or to use a
default classifier learned over a huge mapping knowledge
base. Our system does not propose a default strategy. Also
the user is not involved in the selection of appropriate
strategies.
Expressing knowledge as rules was also proposed by the
UFO-ME [26] strategy prediction module. However they
mainly re-implemented the rules and internal process
defined in Rimom. Also they did not consider rule
selections and relevance computation. Additionally, their
major goal was to provide the user with the predicted
strategy for further editing. In contrast to that, our approach
does not involve the user in the configuration difficulties.
Others introduced a rule-based rewrite approach for
matching processes [23]. Their approach was restricted to
performance optimization and ignored the quality aspect.
However, the proposed rules could be integrated as rewrite
rules to our rule registry. To our knowledge, our approach
is the first to introduce matrix features and rules that rely
on these features.

VII. CONCLUSIONS & OUTLOOK
We proposed a new self-configuring and adaptive

schema matching system that is able to return good
mapping results for very different schema mapping
problems. Our system relies on a number of schema and
matrix features that are computed from the input schemas
as well as from intermediate results of a matching process.
These features are used in matching rules to select matchers,
aggregation and selection operators and to adapt matching
processes. An adaptive matching process selects and
executes rules based on their computed relevance. This
automatically creates a complex matching process that is
adapted to the problem at hand. We also proposed the
monogamy feature that provides an indication about the
quality of a mapping without requiring a gold standard.

In our evaluations we could show the strength of our
approach. With our system we were able to compete with
other manually tuned matching systems even though we
intended to achieve good matching results across different
mapping problems.

The proposed approach is in its initial version so that
there is still room for improvement. First, the current set of
rules can be extended to support more complex adaptations,
e.g. to split the process control flow based on the type of
elements to be matched. Each branch can then be tuned
differently. Secondly we began to integrate a learning
solution into our system that allows learning the relevance
functions of individual rules. This might be a promising
combination of learning and adaptive matching since
currently the relevance functions are defined manually
when the rule is designed. Finally, we want to further close
the gap to manually tuned matching processes by
identifying additional rules and features.

REFERENCES
[1] Z. Bellahsene, A. Bonifati and E. Rahm (eds.), Schema Matching

and Mapping, Springer-Verlag, 2011.
[2] P.A. Bernstein, J. Madhavan and E. Rahm. Generic Schema

Matching, Ten Years Later, PVLDB, 2011
[3] I.F. Cruz and F. Palandri, C. Stroe, AgreementMaker: Efficient

Matching for Large Real-World Schemas and Ontologies, PVLDB
Volume 2, 2009.

[4] H. H. Do and E. Rahm, COMA - A System for Flexible
Combination of Matching Approaches. VLDB Proc., 2002.

[5] H. H. Do and E. Rahm, Matching Large Schemas: Approaches and
Evaluation, Inf. Syst., 32(6), 2007.

[6] F. Duchateau, et. al., YAM: a Schema Matcher Factory, CIKM,
2009.

[7] F. Duchateau, Z. Bellahsene and R. Coletta, A Flexible Approach
for Planning Schema Matching Algorithms, COOPIS, 2008

[8] K. Eckert, C. Meilicke and H. Stuckenschmidt, Improving
Ontology Matching using Meta-level Learning. In ESWC, 2009.

[9] M. Ehrig, S. Staab and Y. Sure, Bootstrapping Ontology Alignment
Methods with APFEL, In WWW '05, 2005.

[10] J. Euzenat, et. al., Results of the Ontology Alignment Evaluation
Initiative 2010, Workshop on Ontology Matching, 2010.

[11] J.-R. Falleri, et. al., Metamodel matching for automatic model
transformation generation, MoDELS '08, 2008.

[12] A. Gal and T. Sagi, Tuning the Ensemble Selection Process of
Schema Matchers, Information Systems 35, 2010

[13] D. Gusfield and R. W. Irving, The Stable Marriage Problem:
Structure and Algorithms. MIT Press, 1989.

[14] W. Hu and Y. Qu, Falcon-AO: A practical ontology matching
system, Web Semant., 6(3), 2008.

[15] Y. R , Jean-Mary, E. P Shironoshita and M. R. Kabuka, Ontology
matching with semantic verification, Web Semantics Journal 7/3,
2009.

[16] Q. Ji, P. Haase and G. Qi, Combination of Similarity Measures in
Ontology Matching by OWA Operator, IPMU'08, 2008.

[17] Y. Lee et. al., eTuner: tuning schema matching software using
synthetic scenarios, The VLDB Journal, 16(1), 2007.

[18] J. Li, et al., RiMOM: A Dynamic Multistrategy Ontology Alignment
Framework, IEEE Transactions on Knowledge and Data
Engineering, 21(8), 2009.

[19] C. Meilicke and H. Stuckenschmidt, Analyzing Mapping Extraction
Approaches. ISWC - Workshop on Ontology Matching, 2007.

[20] M. Ming, P.Yefei and S. Michael, A Harmony Based Adaptive
Ontology Mapping Approach. SWWS'08, 2008.

[21] M. Mochol and A.Jentzsch, Towards a Rule-Based Matcher
Selection, EKAW '08, 2008.

[22] N. F. Noy and M. A. Musen, The PROMPT
Suite:Interactive Tools for Ontology Merging and Mapping, Int. J.
Hum.-Comput., Stud. 2003.

[23] E. Peukert, H. Berthold and E. Rahm, Rewrite Techniques for
Performance Optimization of Schema Matching Processes, EDBT,
2010.

[24] E. Peukert, J. Eberius and E. Rahm, AMC - A Framework for
Modelling and Comparing Matching Systems as Matching
Processes. ICDE (Demo), 2011.

[25] E. Peukert and E. Rahm, Restricting the Overlap of Top-N Sets in
Schema EDBT 2011 Workshop on New Trends in Similarity
Search (NTSS), 2011

[26] G. Pirrò and D. Talia, UFOme: An ontology mapping system with
strategy prediction capabilities, Data Knowl. Eng. 69(5), 2010.

[27] E. Rahm and P. A. Bernstein, A Survey of Approaches to Automatic
Schema Matching, The VLDB Journal 10, 2001.

[28] E. Rahm: Towards Large-Scale Schema and Ontology Matching.
In: Schema Matching and Mapping, Springer-Verlag, 2011.

[29] P. Shvaiko and J. Euzenat, A Survey of Schema-Based Matching
Approaches, Journal on Data Semantics IV, 2005.

