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Abstract— Mapping complex metadata structures is crucial in 
a number of domains such as data integration, ontology 
alignment or model management. To speed up the generation 
of such mappings, automatic matching systems were 
developed to compute mapping suggestions that can be 
corrected by a user. However, constructing and tuning match 
strategies still requires a high manual effort by matching 
experts as well as correct mappings to evaluate generated 
mappings. We therefore propose a self-configuring schema 
matching system that is able to automatically adapt to the 
given mapping problem at hand. Our approach is based on 
analyzing the input schemas as well as intermediate matching 
results. A variety of matching rules use the analysis results to 
automatically construct and adapt an underlying matching 
process for a given match task. We comprehensively evaluate 
our approach on different mapping problems from the 
schema, ontology and model management domains. The 
evaluation shows that our system is able to robustly return 
good quality mappings across different mapping problems 
and domains. 

I. INTRODUCTION 
Finding mappings between complex metadata structures 

is a critical task in a number of domains such as data 
integration, ontology alignment or model transformation. 
We call this task schema matching, but it has also been 
named ontology alignment [22] or metamodel matching 
[11]. In order to speed up that task, semi-automatic schema 
matching systems were developed. These systems rely on 
matching algorithms, so called matchers, to compute a 
mapping suggestion that can be corrected by a user. A 
multitude of schema matching systems and matching 
algorithms were proposed (see [29], [27], [28], [1] or [2] 
for overviews). Except for some domain-specific matchers, 
the algorithms used in the different systems are often 
similar, e.g. they consider the linguistic and structural 
similarity of schema elements or the similarity of instance 
data. Many systems are constructed for a single schema 
type or domain and may even be tuned for specific 
benchmarks such as the OAEI Benchmark [10]. 

Constructing and tuning a schema matching system is a 
complex, manual and time-consuming task. Schema 
matching publications typically report the maximally 
achieved quality of automatically computed mapping 
suggestions using some specially tuned parameter 
configuration. Finding such configurations often requires 

substantial matching experience and expert knowledge as 
well as given perfect mappings. Some systems provide 
special user interfaces for tuning match configurations [4], 
[24]. 

However, such an approach cannot be adopted for 
applying a schema matching system in practice onto fully 
unknown matching problems. Moreover, users often do not 
have schema matching experience, so that they rely on 
default match configurations, i.e. a predetermined selection 
of matchers and combination of their match results. 
Unfortunately, these default configurations are often not 
robust enough to cope with largely differing matching 
problems of diverse domains. Hence, there is a need for 
adaptive and robust matching systems that return good 
mappings across different matching problems without 
manual tuning.  

There have already been some attempts to make parts of 
a matching system more adaptive and self-tuning 
[14][18][26][20]. For instance, the ontology alignment 
system RiMOM [18] computes two properties of the input 
schemas to later select or unselect a structural and a name-
based matcher.  However, these adaptations are fixed in the 
code and only deal with a small part of the tuning problem.   

In this paper, we propose a more comprehensive 
approach for a fully self-configuring schema matching 
system that can automatically construct and adapt a 
matching process for a given mapping problem. 
Specifically, we make the following contributions: 

• We introduce so-called features that are computed 
from the input schemas as well as from 
intermediate mapping results. Among others, we 
introduce the so called monogamy feature that 
allows predicting the quality of a mapping result 
without having a correct mapping. 

• Based on the features, we introduce several 
matching rules that represent expert knowledge on 
how to define or adapt a schema matching process. 
In particular, we introduce a rule for automatically 
finding parameters for the selection operator that 
selects the final match correspondences. 

• We propose an adaptive matching approach that 
integrates features and matching rules. A matching 
process is iteratively extended, rewritten and 



executed. The automatically computed process can 
also be edited by the user. 

• We evaluate our approach on a broad set of 
mapping problems from different domains and 
show its robustness. 
 

The remainder of this paper is organized as follows: 
Section 2 gives a short introduction into some preliminaries 
on schema matching. In Section 3 our self configuring 
matching approach is introduced consisting of features, 
matching rules and adaptive process construction. After 
that, Section 4 describes our self configuring schema 
matching system and our library of features and rules. We 
evaluate our approach in Section 5 and review related work 
on adaptive schema matching approaches in Section 6. 
Finally, we draw conclusions and give an outlook in 
Section 7. 

II. PRELIMINARIES 
Before getting into the details of features, matching rules 

and adaptive matching process execution we first need to 
give some definitions of the foundations of schema 
matching starting with our view of a schema. 

A schema consists of a number of schema elements. 
Each element carries a name, a data type, and optionally a 
description (called annotation) as well as instances. The 
kind of schema is not restricted and can refer to any 
metadata structure such as XML schema trees, ontologies, 
database schemas or meta-models. The goal of a schema 
matching system is to compute a mapping suggestion 
between a source schema S and a target schema T. For 
computing the mapping, most matching systems use several 
matchers as well as other operators for aggregation and 
selection. 

The matcher operator computes a similarity value for 
each pair of schema elements from the source schema S 
and the target schema T and constructs a similarity matrix 
of size |S|*|T| as output. An entry in the similarity matrix is 
a value between 0 and 1 that represents the similarity 
between two elements with 0 representing low and 1 
representing high similarity.  

Most currently promoted matching systems use a 
combination of different matching techniques for 
improving the quality of matching results. For that purpose 
an aggregation operator is used. It combines results of 
multiple similarity matrices computed by different 
matchers to a single aggregated similarity matrix. 

Finally, a selection operator extracts the most probable 
element pairs from a similarity matrix and sets all other 
values to zero. A number of selection strategies were 
proposed in literature [12][19] including Threshold, Delta 
and MaxN. Threshold simply filters all entries higher than a 
given threshold. The resulting similarity matrix is often 
sparse and only contains values for pairs with high 
similarity values. The MaxN-Strategy returns the N entries 
with the highest similarity value in each row or column of a 

matrix. In many cases MaxN with N=1 is used to determine 
1:1 mappings where each schema element in the source 
schema has at most one match partner in the target schema.  
Delta extends MaxN by a delta environment around the N 
highest values of a row or column in a similarity matrix. 
All entries within this delta environment are added to the 
MaxN selection result to retain several similarly probable 
match candidates. With the mentioned selection approaches 
(except Max1), an element can be part of several 
correspondences as useful for 1:n, n:1 or n:m mappings. 
From the selected matrix a mapping between a source 
schema S and a target schema T can be constructed. A 
mapping consists of a set of correspondences (s, t, sim) 
referring to a source- and a target element as well as a 
similarity value. 

Matching systems do not only differ in the 
implementation of these basic operators but also by the 
order in which these operators can be executed. In this 
paper we adopt the notion of matching processes similar to 
eTuner [17]. A matching process (or matching strategy) is 
represented by a directed acyclic graph describing the 
execution order of operators such as match, aggregation or 
selection. It contains all steps necessary to produce a 
mapping from two input schemas. Operators in the graph 
have one or more similarity matrices as input and return a 
similarity matrix as output. The topology of a matching 
process can vary substantially. Simple topologies that are 
commonly used are parallel, sequential and iterative 
execution of matchers as visualized in Fig.1. However, 
these basic topologies may also be combined within more 
sophisticated match strategies. 

 

 
Fig 1 Topologies: (a) parallel, (b) sequential, (c) iterative 

 
In general, tuning a matching system involves defining the 
underlying matching process structure, selecting the 
appropriate operators and parameterizing individual 
operators. This leads to a huge space of possible 
configurations of a matching system.  Currently the tuning 
is done manually and requires a lot of testing and matching 
experience. In this paper, we introduce a system that is able 
to automatically choose promising matchers, aggregation 
and selection operations and their parameters. Also the 
structure of the matching process can be automatically 



extended.  The user of our system does not need to tune 
before solving a new matching problem. 

III. ADAPTIVE MATCHING APPROACH 
In order to achieve full automation in the construction 

and configuration we took inspiration from how a matching 
expert interactively develops and executes a matching 
process. After analyzing the source and target schema, she 
selects appropriate matchers and constructs an initial 
matching process. The process is executed and the result is 
inspected. Depending on that result, certain parts or 
parameters of the matching process can be changed and 
extended manually. 

Our approach performs similarly but in an automatic 
way. In order to automate the analysis step, we rely on so-
called features. These are computed from the input schemas 
but also from the intermediate mapping results. Features try 
to give some indication about schema properties or the 
quality of a mapping. Based on the computed features so-
called matching rules are defined that represent expert 
knowledge about a relation between features and operators 
or process patterns. Finally, an adaptive process execution 
system selects and applies rules and incrementally executes 
the constructed process. In the following subsections 
features, matching rules and the adaptive process 
construction are introduced. 

A. Features 
In general a feature takes one or several schemas or 

similarity matrices as input and computes a value between 
0 and 1 as output. We distinguish between schema features, 
and matrix features. The notion of matrix features is newly 
introduced by this paper. 

Schema features try to describe properties of schemas 
and can be computed in a preprocessing step before 
actually executing a matching process. In simple cases they 
reflect the schema size or the relative frequency of schema 
element properties such as the availability of element 
descriptions or data type information. More complex 
features rely on value distributions of schema elements or 
structural properties. For instance, the average length of 
paths in a schema tree gives some indication on when to 
use a path matcher evaluating the name similarity of 
elements and their predecessors. Some schema features 
evaluate the degree of similarity between both input 
schemas. For example the structural and linguistic schema 
similarity can be used to decide about the appropriateness 
of applying a structure-based or name-based matcher [18].  

We additionally analyze intermediate similarity matrices 
after executing operators of the matching process to derive 
matrix features. They are used to evaluate the quality or 
similarity value distributions of similarity matrices. For 
instance a so called Noise feature computes the number of 
low valued entries in a similarity matrix in relation to the 
top-1 values in each row and column. The resulting feature 
can be used to evaluate the quality of a matrix and thus the 

operator that has generated it. Some matrix features take 
more than two matrices as input. They often describe the 
degree of commonalities and differences between multiple 
result matrices. For instance a feature could measure the 
overlap of top-1 values of different similarity matrices. If 
the overlap is high, more confidence could be put in the 
different matrices. 

In general, schema as well as matrix features formalize 
the results of a manual analysis step that a matching expert 
would generate before or while constructing a matching 
process, e.g. to select and  add matchers. 

B. Matching Rules 
We use schema and matrix features within so-called 

matching rules. A matching rule captures a design decision 
a matching process expert would take in specific situations 
to increase the quality of a process for a given mapping 
problem. 

A matching rule consists of the following parts:  
• A pattern that describes a part of a process graph 

where the rule can be applied to. The pattern can 
be empty, in particular within rules that start the 
process construction. 

• An action that applies a defined change to 
instances of the found pattern. This includes 
additions and changes of one or many (additional) 
operators to a process. 

• A relevance function that computes the relevance 
of the respective rule for the current matching 
process and match task. It is based on computed 
schema and matrix features on the input schemas 
and already computed similarity matrices and 
computes a relevance value between 0 and 1. The 
relevance is used to decide whether a rule is 
executed. 

• An optional check function that is used after a rule 
was applied to a process. It rates the quality of the 
changes that were introduced by the action. It also 
relies on matrix features to compute a value 
between 0 and 1. 

To better explain the parts of a matching rule we 
introduce a simple example rule for reducing noise of 
matcher operators. The rationale of the rule is that low-
valued (< 0.1) similarity entries in a result matrix may 
negatively influence a later aggregation. Reducing such 
“noise” can thus increase result quality. Fig. 2 visualizes 
the pattern and action of the rule. On the left, our notation 
for rules is shown with the pattern above and the triggered 
action to change the match process below the bar. 
Additionally the conditions for the relevance and check 
functions are specified. In the example on the right, the 
pattern describes a process part that consists of a matcher 
operator (mat) with some arbitrary preceding and following 
operator. For each matcher operator meeting the pattern the 
result matrix is used to determine the mentioned Noise 
feature. 



 

 
Fig. 2.  Example matching rule 

 
If the computed relevance is higher than the given 

threshold (e.g. 0.6) a selection operator is inserted after the 
matcher operator. The selection operator uses a very low 
threshold t=0.1 to prune out only the noise but to retain all 
other similarity values. In this rule no check function is 
needed. In other cases the check can be used to ensure that 
the rule application did improve the matching quality, 
measured by features. If the check is negative the changes 
of the action are reverted. 

We identified different types of rules that are shortly 
described in the following. As will be discussed below and 
visualized in Fig. 3 the different kinds of rules are applied 
in a certain order to control the degree of process 
adaptations.  

Starting rules can be applied to an empty process when 
no intermediate matrix was computed yet. In our system, 
starting rules mostly add basic matchers to the matching 
process that only take individual node attributes into 
account when computing similarities. Each application of a 
starting rule creates dangling nodes that are possible end-
points of the process and do not yet have following nodes. 
At these dangling nodes the process is further extended in 
the following steps. 

Aggregation rules add aggregation operators to a 
process and combine the results of several dangling 
operators from a matching process. A multitude of 
aggregation operators exist such as AVERAGE [4],  OWA 
[16], HARMONY[20] or MIN/MAX [4], each with 
advantages and disadvantages.  

Rewrite rules take a non-empty matching process MP 
as input and rewrite the process to a new matching process 
MP’. Rewrite rules change the structure of a given process 
without changing dangling output nodes. For instance the 
order of operators could be changed or additional 
operations can be added in between others. The noise 
reduction rule in Fig. 2 is an example for a rewrite rule. 

Refine rules add operators to dangling operators in 
order to increase result quality. For instance, some refine 
rules add structural matchers to a matching process to 
propagate already found similarity values and identify 
additional structural matches.  

Before finalizing a matching process, selection rules are 
applied. They are used to add a selection operator to the last 
dangling node of the current matching process. As 
discussed in Section II, possible selection strategies include 
Threshold, MaxN and Delta.  

 
 

C. Adaptive process construction 
Obviously different rule classes depend on each other 

since some rules add operators and dangling nodes and 
others such as aggregation rules consume the output of 
several operators. In order to restrict complexity we 
perform the application of rules only within a fixed number 
of stages as shown in the left part of Fig. 3. This limits the 
structural diversity an adaptively created process can have 
but simplifies the rule selection process significantly. If all 
rules would be able to compete in all stages of the process 
side-effects of rule application could not be controlled and 
termination could not be ensured. 

The process starts with importing the input schemas and 
analyzing them to compute the schema features. An empty 
matching process is created. In the next stage starting rules 
can be selected and applied. Starting rules mostly add basic 
matchers that compute similarities from single schema 
elements as done by the name-, datatype- or annotation 
matcher.

 
 

 
However, more complex starting rules can be defined 

that construct an advanced matching process structure, e.g. 
to enforce the sequential or parallel execution of several 
matchers. In the next stage the dangling nodes from 
applying the starting rules need to be combined and the 
result matrices are aggregated. If only one dangling node 
was created by starting rules, no aggregation node is added. 
After the aggregation, rewrite rules can be applied. If no 
relevant rewrite rules can be found, a selection rule is 
applied. Based on the selection result the process can be 
finished or refine rules can be applied iteratively.  

Within each stage of the process a predefined rule 
selection process is started (see right state chart from 
Figure 2). The selection process begins with filtering all 
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Fig. 3.  Stages and rule selection 



rules that can be executed within the current stage. This set 
of rules is only created once within a stage. If the remaining 
set of rules is empty the stage can be finished directly. If 
there are rules left to be applied, their relevance is 
computed for each rule using the rules relevance functions. 
The most relevant rule is selected and applied. Applying a 
rule implies changes to the current matching process. After 
that the current process is executed. However no operator is 
executed twice and only new or changed parts are executed. 
The matrix result of executing the most recently applied 
rule is evaluated using the rules check function. It can 
happen that rules are rated as relevant due to the existence 
of certain features in the source and target schema. 
However, after executing the matchers that were added by 
the rule the matrix result quality is sometimes very low, 
indicating that the most recent rule should be ignored. In 
that case the most recent rule effect is reverted. After 
executing a rule it is removed from the list of remaining 
rules. Again the most relevant rule is selected and the 
process continues until the set of applicable rules is empty. 

IV. ADAPTIVE MATCHING SYSTEM 
We have developed a matching system that supports the 

execution of matching processes and implements the 
proposed adaptive matching approach (see Fig. 4). To solve 
a match problem, the matching system obtains two schemas 
as input and returns a mapping as output. Ideally no further 
parameterization input should be needed when running the 
system. All necessary parameters should be defined 
automatically. 

The system consists of a registry that contains a number 
of feature analyzers, matching rules as well as an operator 
library that contains all necessary operators in particular the 
matchers, aggregation or selection operators. 

The core component of the system is the adaptive 
process construction that basically implements the 
proposed staged rule application approach. In a 
preprocessing step all schema features of the input schemas 
are computed and cached to avoid double computation.  

 

 
 

 

After every change of the process the matching process 
execution is called to execute the new operators. This 
creates new intermediate similarity matrices that can be 
analyzed by subsequent matrix features. Currently the 
adaptive execution always starts with an empty process. In 
the future we plan to also support the adaptation of existing 
matching processes.  

 
In the following, each of the components is described. 
Moreover, the most important feature analyzers and 
matching rules are introduced in detail. 

A. Feature Analyzer Library 
The feature analyzer library offers a set of analyzers to 

compute different schema and matrix features. Schema 
features are mostly used for computing the relevance of a 
rule. Matrix features can be used in both the relevance 
computation as well as the check function after a rule has 
been applied and the modified process has been executed. 
An important property of feature analyzers is that their 
computational complexity should be low to reduce their 
impact on execution efficiency. The library currently 
contains more than 20 feature analyzers as shown in Table I 
together with the required input. Some of these are simple 
existence features that check the availability of certain 
properties for matching like data types or annotations. 
There are also more advanced analyzers, e.g., to analyze 
the distribution of matches between two schemas or to 
compute a structural similarity. The library of feature 
analyzers can easily be extended. In the following we 
introduce the most important feature analyzers per class. 

TABLE I 

FEATURES IN THE LIBRARY 

Schema Features Input Matrix Features Input 
{*}-Existence S ∨ T CrossMatches M, S ∧ T 
NodeTokenRatio S ∨ T MatchDistribution M, S ∧ T 
NameMeaningfulnes S ∨ T Harmony M 
PathVariance S ∨ T MultiMappings M 
RepeatingElements S ∨ T Monogamy M 
SchemaDepth S ∨ T Selectivity M 
  Noise M 
SimilarLanguage S ∧ T Complementarity M 
TokenOverlap S ∧ T Unanimity M 
NameSimilarity S ∧ T   
StructuralSimilarity S ∧ T   
StructuralContain S ∧ T   

B. Schema Features 

1)  {Name, Datatype, Annotation, Instance}-Existence:  
These existence features specify the percentage of elements 
that carry a Name, Data type, Annotation, or Instance, 
respectively. 
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Fig. 4.  Adaptive Matching System 



2)  NameMeaningfulness: NameMeaningfulness was 
originally proposed for Rimom [18] to assess which 
percentage of schema element names is considered 
meaningful. This feature is implemented using a dictionary 
such as WordNet for looking up element names or their 
components. In the OAEI Benchmarks, some schemas were 
artificially changed by scrambling labels. Based on that 
feature, Rimom was able to entirely skip any name 
matching in such cases. 

3)  NodeTokenRatio: NodeTokenRatio analyzes the 
names of schema elements. It often occurs that schema 
designers only use a small set of terms and concatenate 
them to name schema elements. This easily creates 
ambiguity. With the help of this feature, an appropriate 
name matcher such as TF/IDF can be chosen that tries to 
include the relative importance of terms into the 
computation of name similarities [25]. 

4)  RepeatingElements:  RepeatingElements measures 
how often element names and their content are repeated 
within a schema. In particular in XSD schemas, types are 
often reused which creates ambiguity and high values in the 
repeating elements feature. 

5)  StructuralSimilarity: StructuralSimilarity was already 
proposed in Rimom [18] and was slightly adapted in 
UFOme [26]. It is a lightweight measure to compute how 
similar the structural shapes of two schemas are. A high 
structural similarity is an indicator to increase the relevance 
of structure-based matchers. 

 
All proposed schema features can be computed before 

process execution. Additionally we need matrix features 
that are computed while executing the process. 

C. Matrix Features 

1)  Selectivity:  Selectivity tries to evaluate the 
confidence of a result matrix that was computed by a 
matcher or sub process. It computes the distance of the top-
1 entry in a row or column to the next highest entry in the 
same row and column. The rationale is that a high distance 
of the best candidate match to the next possible matches 
implies that the candidate match is certain. A low distance 
on the other hand shows more uncertainty. For a vector V 
sorted in descending order (so that 𝑉0 is the similarity of 
the best, and V1 of the next best candidate) we compute the 
selectivity of the vector as: 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑉) = �0           𝑖𝑓 𝑉0 = 0,
𝑉0 − 𝑉1       𝑒𝑙𝑠𝑒.  

For a similarity matrix M with n×m entries the selectivity 
value fselectivity can be computed as follows: 

𝑓𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦�𝑀𝑖,∗� +  ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑀∗,𝑗)𝑚

𝑗=1
𝑛
𝑖=1

2 ∗ |�𝑚𝑖,𝑗 � 𝑚𝑖,𝑗 > 0}|
 

All selectivities of rows and columns are summed up and 
divided by the number of candidate entries in the matrix. If 

the selectivity is very low, the likelihood that after a 
selection many 1:n, n:1 or n:m matches (so called multi 
matches) will result is very high.  For example, a high 
selectivity indicates to use a MaxN  selection with N=1 
when a selection strategy needs to be defined. 

2)  CrossMatches: CrossMatches computes how 
structurally consistent a computed mapping is, i.e. how 
structurally close the matching target elements of 
structurally close source elements are. A low structural 
consistency is an indicator for low precision mappings. In 
order to increase structural consistency special constraint 
based selection approaches as proposed in ASMOV [15] 
could be used. 

3)  MultiMatches: MultiMatches represents the ratio of 
multi matches to the number of 1:1 matches on an already 
selected similarity matrix. This feature is used to compute 
the relevance of rules that reduce the number multi matches. 

4)   Monogamy: Monogamy computes how close all 
found mapping pairs in a matrix are to a monogamic 
relationship. The feature is inspired by the Harmony value 
of [20] for automatically deriving aggregation weights. 
Harmony counts the number of entries in a similarity 
matrix that are single maximal entries both on its row and 
column. Many matchers compute matrices with many 
multimatches even though the correct mapping is a 1:1 
mapping. In these cases the harmony value is sometimes 
very low even though the final mapping quality might be 
good. To better cope with computed multimatches the 
monogamy value can be used. In a monogamic relationship 
each partner of a match pair should only be involved in this 
and possibly no other match relationship. The more each 
partner is involved with other partners, the lower the 
computed monogamy value is. Therefore the first mapping 
in Fig. 5 (left) has a low monogamy value, whereas 
monogamy for the second mapping is higher (see below). 

Monogamy is closely related to the stable marriage 
property [13]. However, it is not restricted to 1:1 mappings 
but allows measuring how close existing n:m relationships 
are to a 1:1 relationship. In the evaluation we will show that 
this value is a robust indicator of a good quality mapping 
result, even though the actual F-Measure cannot be 
computed without a gold standard. However, for mapping 
problems where the correct intended mapping is not mainly 
1:1, the monogamy should not be applied. Such cases can 
be identified with the help of the MultiMatches and 
RepeatingElements features. 

 

 
Fig. 5. Monogamy: distance to a stable relationship 

 
To further explain the monogamy measure, we illustrate 

for the example in Fig. 6 how the monogamy feature is 



computed. At the top the initial matrix and the 
corresponding mapping is visualized. To compute the 
monogamy all entries of the matrix are iterated and the 
number of partners (entries with similarity>0) in the row 
and column are counted (1). The partner number for each 
entry is put into a separate partner matrix (2). Finally each 
similarity value is divided by its partner count which 
weights entries by the number of partners (3). The weighted 
similarities are then summed up by row, divided by the 
number of non-zero entries in the row and finally averaged 
to the resulting monogamy value of 0.27. As second 
example, assume that each red line in Fig.5 refers to a 
similarity of 0.7. The monogamy for mapping 5 (left) 
computes to 0.17 whereas for mapping 5 (right) it is 0.44. 

 

 
Fig. 6.  Monogamy computation 

 
Certainly also other matrix features can be computed 

such as the average of all similarity values in a matrix or 
the DICE-Value [4]. However these features can only be 
used in combination with others since the information that 
can be derived from these values is low. 

D. Rule registry 
Based on the presented features a number of rules were 
defined that are put into the matching rule registry (see 
Table II). The rule registry can be extended by additional 
rules. Currently many rules are simple and add a specific 
matcher if the associated relevance value is high. Before 
adding complex rules we need to make use of the basic 
decisions a matching process expert would make. However, 
we have also started to add more complex rules that add 
more than one operator to a matching process. 
Table II gives an overview of several rules in our library 
ordered by their rule type. Start rules are typically used to 
add simple element-level matchers based on name, type, 
annotation and instance similarity while structural matchers 
are added by refine rules.   
 
 
 

TABLE II 

MATCHING RULES IN THE LIBRARY 
 

Matching Rule Type Matching Rule Type 
AddInstanceMatcher Start AddSelectDelta Select 
AddWeightedName-
Matcher 

Start AddSelectMaxN Select 

AddTokenName-
Matcher 

Start AddAverageAgg Agg 

AddDataType-
Matcher 

Start AddPathMatcher Refine 

AddAnnotation-
Matcher 

Start AddSiblingMatcher Refine 

AddNoiseReducing-
Select 

Rewrite AddChildren-
Matcher 

Refine 

SequentialRewrite  Rewrite AddParentMatcher Refine 
AddBlockingMatcher Rewrite AddStatistics-

Matcher 
Rewrite 

 
In the following we briefly describe selected rules. 

1)  AddWeightedNameMatcher: This rule adds an 
enhanced name matcher that includes a term weighting 
feature. This is useful when schema names are based on a 
restricted set of terms. The weighting approach is able to 
reduce the importance of terms based on their occurrence 
counts similar to TF/IDF in information retrieval. When we 
developed and evaluated the WeightedNameMatcher in [25] 
we could identify typical use cases where this matcher 
performs well. These cases are specified in the rule with the 
help of the NameExistence, NodeTokenRatio and 
RepeatingElements features. In particular, NameExistence 
should indicate the existence of meaningful names. 
Furthermore, NodeTokenRatio should be relatively small 
and RepeatingElements relatively high (e,g,. > 0.8) to 
indicate the repeated use of the same terms.  The rationale 
behind that is that repeating elements could also lead to a 
lower NodeTokenRatio since repeated elements increases 
the number of nodes but does not increase the number of 
used tokens. However, in that case the weighting could 
decrease matching quality. The rule also includes a check 
function based on the monogamy value. If a very low 
monogamy (< 0.1) indicates a low-quality mapping, given a 
1:1 mapping is expected, the rule is rolled back, by 
removing the added operator.  

2)  AddPathMatcher: AddPathMatcher introduces a path 
matcher taking the currently computed similarity matrix as 
input for computing the path similarity. The relevance 
function of the PathMatcher rule relies on the PathVariance, 
SchemaDepth, Selectivity as well as the MultiMatches 
feature. If the SchemaDepth value is very low in one of the 
input schemas a flat schema structure can be assumed. That 
leads to a low relevance of the PathMatcher rule. If the 
PathVariance is high, the MultiMatches feature has a high 
value and the Selectivity is low then also the relevance for 
the path matcher is higher. This means that the path 
matcher is particularly useful to increase the selectivity of a 



similarity matrix or reduce the number of multi matches. 
The check function computes the monogamy value and 
additionally checks whether the Selectivity value increased 
and the MultiMatches value decreased. The rule was 
inspired by [5]. In their work a fixed process was described 
that takes multi mappings of node-based matchers and 
applies a name-path matcher to them, to resolve the found 
multi mappings to 1:1 correspondences. 

3)  AddSelectDelta: AddSelectDelta is a rule that can be 
applied after each refine iteration. Its relevance is computed 
from the MultiMatches, MatchDistribution and 
SchemaSizeRatio feature. If there are multi matches 
involved and the difference of schema sizes is high then the 
probability that multi matches should be part of the final 
result is higher. Additionally we evaluate if the distribution 
of matches across the bigger schema is equal or if 
multimatches are structurally close. For instance a source 
element could match to both a target element and its parent. 
Certainly in that case only one of the two matches should 
be taken for the final result and a MaxN (N=1) selection 
should be added instead. The delta selection allows 
including additional matches to the MaxN selection. 
However defining the delta value is complex and different 
from use case to use case. Hence for each use case, we test 
different delta values and compute the monogamy value for 
the possible selection result. The delta value producing the 
highest monogamy value is chosen for the selection 
operator. In the evaluation we show that this adaptive 
computation of the delta value increases result quality.  

For space reasons, not all matching rules can be 
described in detail. However, in general, the rules relevance 
functions rely on features that best project the possible 
result quality of the added operator. In the check function 
we make heavy use of the monogamy value. In particular 
for the element-based matchers it helps to drop irrelevant 
matchers. Note that a good rule captures a relation between 
features and operators that is stable even across different 
matching tasks and domains. This is obvious for rules 
based on existence features. For other rules such as 
AddWeightedNameMatcher this involves more analysis as 
described above. Thus from the evaluations of any newly 
introduced matching technique one can often derive good 
matching rules. 

E. Adaptive Execution Example 
For better understanding we explain the adaptive 

construction when matching two anatomy taxonomies that 
will also be used in the evaluations. In Fig. 7 different 
states of the adaptive construction are visualized.  

Our system starts with constructing a new process with 
an input node that imports the source and target schemas 
and computes the schema features. In (1) the 
AddWeightedNameMatcher starting rule was applied due to 
a high number of repeating tokens in element names. In (2) 
the AddDataTypeMatcher rule was relevant and executed. 

However it was then removed due to a low quality 
computed by the check function. After all relevant starting 
rules were executed an aggregation rule can be executed (3) 
that combines dangling nodes. In the example, only one 
dangling node exists so that the Aggregation operator can 
be removed. In (4) the AddNoiseReducingSelect rewrite 
rule was applied and a selection operator was added after 
the matcher operator. In (5) the AddSelectDelta rule was 
executed and a final Aggregation operator with a maximum 
aggregation strategy was added. Additionally two refine 
rules were executed that add a path and a leaves matcher. 
The AddPathMatcher rule is selected since the result matrix 
of the name matching still contains some multi matches as 
measured by the MultiMatches feature. In (6) the 
AddSelectDelta rule was applied adding its result to the 
existing Aggregation node. 
 

 
Fig. 7.  Example adaptive construction 

V. EVALUATION 
In the evaluation we want to investigate the effectiveness 
and robustness of our approach. For that reason we 
compare our adaptive schema matching system to currently 
known alternative approaches for diverse problems.  

A. Test Data 
We consider a wide range of schema mapping problems 

from different domains. To be comparable to existing work 
we also include the OAEI-Benchmark and the ModelCVS 
Benchmark in our evaluation. Table III lists the used 
datasets together with the number #M of considered 
mapping scenarios.  

TABLE III 

TEST DATASETS 
 

Test sets #M Mapping Types 
Purchase Order 10 Small XSD schemas 
Enterprise Services 52 Large&Small XSD, IDOC  
OAEI Benchmark 110 Synthetic ontology  
Anatomy 1 Large-sized taxonomy  
ModelCVS 10 Hard metamodel  



 
The Purchase Order dataset and mappings were already 

used in the early evaluations from COMA [4] and they are 
publicly available. We also use them for computing a 
default configuration to compare against. Additionally we 
can compare us indirectly to the published COMA results 
for that dataset. The Enterprise services dataset contains a 
big set of mappings between service interfaces from an 
SAP Enterprise Services Repository. The set contains a big 
diversity of problem sizes and complexities. In particular 
the mappings involving SAP Intermediate Document 
Formats (IDOC) are challenging since the names are often 
cryptic. The OAEI Benchmark from 2010 consists of 110 
smaller synthetically generated ontology mappings. The 
Anatomy mapping is also provided by the OAEI. It is a 
relatively large real-world mapping scenario with very high 
schema similarity. About 60 percent of the correspondences 
are trivial due to a very high name similarity. Finally we 
use the ModelCVS dataset from [11] that provides 
metamodel matching problems that differ strongly in the 
way elements are named and structured.  

B. Setup 
We precomputed a best configuration for the Purchase 

Order dataset similar to the way the default strategy 
proposed in [4] was computed. For that purpose we 
generated all possible matcher combinations and created a 
parallel matching process. We tested different selection 
strategies and delta parameters to find an optimal matcher 
combination and selection strategy. Due to the huge space 
of parameter settings and combinations this process took 
several days to finish. We call this computed strategy our 
DEFAULT configuration. It consists of the matchers 
WeightedName, Path, Children, Leaf, Sibling and Datatype. 
The best selection strategy found was parameterized with 
delta=0.021 and a threshold=0.5. 

Secondly we implemented an alternative, learning-based 
approach called meta level learning that was proposed in 
[8]. This approach is a valid comparison since it includes 
schema features in a learning process of a decision tree to 
increase adaptivity. The learning also takes the Purchase 
Order dataset as gold mappings. We include all schema 
features in the learning process. The learning was 
implemented using the Weka 1  library. The computed 
decision trees are then translated into matching processes 
without loss of information. In order to reduce possible 
overfitting we restricted the size of the decision tree. We 
then executed the default configuration, the decision tree 
and our new adaptive matching system with all provided 
mapping problems. 

C. Overall Results 
The results of our evaluations are shown in Fig. 8. For 

each dataset we compared the average achieved F-Measure 

                                                 
1 http://www.cs.waikato.ac.nz/~ml/weka/index.html 

of the individual approaches DEFAULT, DT and ADAPT. 
For the Purchase Order dataset the adaptive approach 
(ADAPT) is only closely behind the DEFAULT 
configuration and the computed decision tree (DT). The 
slightly better outcome for DEFAULT is not surprising 
since it was computed on this dataset by testing all possible 
parameter configurations. Also DT was trained on that 
dataset. However we can already see that it is hard even for 
a learned process to be better than the DEFAULT 
configuration since the diversity of matches is too big to 
derive a representative rule in a decision tree. If the size of 
the tree would not be restricted the results get slightly better. 
However, such a strategy will likely overfit as already 
experienced by the authors of [8]. Our adaptive processes 
selected similar starting rules for adding a Name, 
WeightedName and a Datatype matcher, since all Purchase 
Order schemas do not contain annotations or instances and 
the naming style is very similar. In the selection of refine 
rules differences show up. AddSibling and AddChildren 
were often triggered but in some cases reverted after 
executing the check function. This behavior could decrease 
performance and in the worst case every matcher of a 
library is executed once. However, executing and 
investigating the results of rules increases certainty in the 
adaptive process. Also the found value for the final delta 
selection differed between 0.001 and 0.021. 

In the Enterprise Services test cases our adaptive 
strategy achieves about 10% better results than the 
DEFAULT strategy. This is due to the adaptive selection of 
the appropriate matchers and the automatic definition of the 
selection delta. A number of schemas in the Enterprise 
Services dataset contain annotations. In order to be 
comparable we simply added an annotation matcher to the 
DEFAULT matcher configuration. However the increase in 
F-Measure was only about 2 percent. Surprisingly the 
learned decision tree DT failed to return reasonably good 
results. In the Purchase Order test cases many 
correspondences are trivial in that average similarity values 
of matches are close to 1. This is also detected by the 
decision tree so that a lot of correct matches with lower 
similarity are pruned early in the tree. Obviously the 
DEFAULT strategy is much more robust regarding that 
problem. The variance of selected rules in the Enterprise 
Services dataset was higher than for the Purchase Orders. 
In some cases only the AddNameMatcher starting rule was 
applied and only the AddNamePath refine rule survived the 
check function.  

In the OAEI test cases we achieve a reasonably high F-
Measure. Here we are nearly 14 percent better than the 
DEFAULT strategy. DT again fails to return good results. 
Again we added an Instance and an Annotation matcher to 
the DEFAULT strategy in order to be comparable. Almost 
no quality increase was measured since the strict selection 
thresholds filtered out possible additional correspondences.



 

 
Fig. 8.  Evaluation results for adaptive execution 

 
In order to be able to rate the quality of the adaptive 

process we added the results from Falcon and Rimom from 
the 2010 OAEI contest. Rimom achieved an F-Measure 
that is 7% better while Falcon performed worse than our 
strategy. We also constructed a manually defined matching 
process that achieves F-measure values around 92%. We 
did not include this in the result comparison since the goal 
of the adaptive approach is automatic adaptivity and 
robustness for diverse problems, not achieving the maximal 
possible F-Measure for a single dataset. The variance of 
selected rules on the OAEI dataset was also very high. In 
particular the selection of the starting rules was very 
intuitive. If most labels are scrambled a name-based 
matcher is not selected as starting rule. If instances are 
present the AddInstanceMatcher rule was used. 
Additionally in many cases the adaptive matching process 
executed multiple iterations of refinement rule execution 
which rarely happened for the other datasets. 

For the ModelCVS case the differences to the 
DEFAULT strategy are smaller. However this is also due to 
the difficulty of the mapping problem. In some cases the F-
Measure is lower than 0.2 so that rules based on a projected 
result quality are skipped although they might have worked 
well. However we still win more than 10 percent to the best 
achieved matching results achieved by the ModelCVS 
group [11].  
Finally in the Anatomy case we again win around 13 
percent in comparison to a default strategy. We are also 
close to the best-performing system AgreementMaker 
(AGREEM) [3] in the OAEI anatomy track that achieved 
an F-measure of 87 percent in 2010. Unfortunately we were 
not able to run the decision tree due to the size of the 
matching problem. Currently we run into memory issues 
due to the high number of match nodes in the tree. 

In summary the proposed adaptive approach performed 
better than the considered competitor approaches for almost 
all datasets. If strategies are tuned for a specific dataset like 
DEFAULT or DT better results can be achieved 
individually. However, due to the size of existing datasets a 
process as proposed for computing the default strategy is 
not feasible for the other mapping problems. 

D. Adaptive Selection 
After having shown the strength of the adaptive 

matching approach we now want to evaluate the value of 
the newly introduced monogamy value. For that purpose 
we ran a non-adaptive static matching process on two 
scenarios and iteratively changed the threshold of a 
threshold-based selection strategy at the end of the process. 
With each threshold we computed the monogamy of the 
result matrix. The result is shown in Fig.9. 

What can be seen is that there is a very strong correlation 
between the F-Measure of the strategy and the computed 
monogamy value. Thus we could select the threshold that 
achieves the highest monogamy for obtaining a good F-
measure. For comparison we also computed the Harmony 
values which do not provide the needed correlation. The 
two examples are taken from the Purchase Order dataset.  

 

 
Fig. 9. Using Monogamy to define threshold values 



 
When only few n:m correspondences are in the result 

matrix the monogamy feature can also help to derive a 
suitable delta value for delta-selection operator. Instead of a 
threshold we changed the delta value from 0 to 0.2 and 
measured the monogamy (Fig. 10). Again, choosing the 
maximum monogamy value gives some indication for a 
good delta value and final F-Measure. Note that the 
monogamy works well for 1:1 matches that may have a few 
1:n correspondences. For all other cases the monogamy 
should not be used for finding a delta value. In these cases, 
a static value would be preferable. Since we already have a 
number of features available we can predict when to use the 
adaptive delta selection. 

 

 
Fig. 10. Using Monogamy to define delta values 

VI. RELATED WORK 
Different approaches were proposed in the past to make 

schema matching systems more adaptive. First attempts 
tried to increase adaptivity on the operator level. The 
AVERAGE aggregation operator and the DELTA selection 
strategy from [4] were already quite robust without the 
need to analyze schemas and mappings. This was also 
reproduced in our evaluation with the DEFAULT strategy. 
A first approach that also relies on the analysis of the 
mapping was the harmony based aggregation as described 
above [20]. However, the usefulness of this approach seems 
restricted to the OAEI Benchmark and we could not 
reproduce the effects on other datasets. However the 
harmony value served us as an input to our newly 
developed monogamy feature. 

Another promising attempt to adapt matching systems to 
the problem was introduced by eTuner [17]. This system is 
able to construct a synthetic gold standard by iteratively 
perturbing one of the input schemas. Since the perturbation 
rules are known, a mapping between the original source 
and the perturbed schema is known. This synthetic gold 
standard is then used to tune a given matching process. 
However, their proposed approach seems not feasible in 
practice. First they ignore the target schema and perturb 
only the source. The perturbation rules are static so that the 
generated gold standard does not differ much for different 
mapping problems. The synthetic gold standard could differ 
a lot from the original mapping problem, so that the system 
will be tuned wrongly and return weak results.  

First approaches were proposed that use a rule based 
selection of matchers, selection and combination operators. 
However, these attempts are very restrictive. Either they 
fully rely on a questionnaire [21] that involves a lot of 
manual user input or they use hard-coded rules as Rimom 
[18] or Falcon [14] do. These two systems were among the 
first to exploit a preprocessing and analysis of the input 
schemas to be matched. Based on structural similarity or 
name similarity, an edit-distance- or structural matcher is 
included in the matching process. These selection criteria 
are fixed into code while we support a modular adaptation 
approach based on separately managed matching rules and 
features.  

Meta level learning [8] was the first to recognize the 
need to have more schema features for creating adaptive 
processes. However the problem is that in practice, often no 
or no suitable gold mappings are available for learning. 
Additionally, the mapping problems a system is faced with 
differ a lot so that learned models often are not able to 
return results with a good quality. The authors 
acknowledge that their learning approach easily overfits 
with the learning base. Also with increasing sizes of 
decision trees the performance drops significantly. Other 
learning techniques like MatchPlanner [7], YAM [6], [8] or 
[9] might not suffer that strongly from overfitting, but they 
do not consider schema features. MatchPlanner constructed 
decision trees from a given knowledge-base of correct 
mappings. In [12] the sequence and selection of matchers to 
apply is also learned from a knowledge base. The approach 
tries to “skim” the best correspondences from each matcher 
execution and finally combines all results. YAM extends 
the MatchPlanner work and proposes to apply different 
classifiers for different mapping use cases. However, the 
user is asked to select the appropriate classifier or to use a 
default classifier learned over a huge mapping knowledge 
base. Our system does not propose a default strategy. Also 
the user is not involved in the selection of appropriate 
strategies.  
Expressing knowledge as rules was also proposed by the 
UFO-ME [26] strategy prediction module. However they 
mainly re-implemented the rules and internal process 
defined in Rimom. Also they did not consider rule 
selections and relevance computation. Additionally, their 
major goal was to provide the user with the predicted 
strategy for further editing. In contrast to that, our approach 
does not involve the user in the configuration difficulties. 
Others introduced a rule-based rewrite approach for 
matching processes [23]. Their approach was restricted to 
performance optimization and ignored the quality aspect. 
However, the proposed rules could be integrated as rewrite 
rules to our rule registry.  To our knowledge, our approach 
is the first to introduce matrix features and rules that rely 
on these features.  
 
 



VII. CONCLUSIONS & OUTLOOK 
We proposed a new self-configuring and adaptive 

schema matching system that is able to return good 
mapping results for very different schema mapping 
problems. Our system relies on a number of schema and 
matrix features that are computed from the input schemas 
as well as from intermediate results of a matching process. 
These features are used in matching rules to select matchers, 
aggregation and selection operators and to adapt matching 
processes. An adaptive matching process selects and 
executes rules based on their computed relevance. This 
automatically creates a complex matching process that is 
adapted to the problem at hand. We also proposed the 
monogamy feature that provides an indication about the 
quality of a mapping without requiring a gold standard.  

In our evaluations we could show the strength of our 
approach. With our system we were able to compete with 
other manually tuned matching systems even though we 
intended to achieve good matching results across different 
mapping problems. 

The proposed approach is in its initial version so that 
there is still room for improvement. First, the current set of 
rules can be extended to support more complex adaptations,  
e.g. to split the process control flow based on the type of 
elements to be matched. Each branch can then be tuned 
differently. Secondly we began to integrate a learning 
solution into our system that allows learning the relevance 
functions of individual rules. This might be a promising 
combination of learning and adaptive matching since 
currently the relevance functions are defined manually 
when the rule is designed. Finally, we want to further close 
the gap to manually tuned matching processes by 
identifying additional rules and features. 
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