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Abstract— Neuroscientists increasingly use computational tools
to build and simulate models of the brain. The amounts of
data involved in these simulations are immense and efficiently
managing this data is key.

One particular problem in analyzing this data is the scalable
execution of range queries on spatial models of the brain.
Known indexing approaches do not perform well, even on today’s
small models containing only few million densely packed spatial
elements. The problem of current approaches is that with the
increasing level of detail in the models, the overlap in the
tree structure also increases, ultimately slowing down query
execution. The neuroscientists’ need to work with bigger and
more importantly, with increasingly detailed (denser) models,
motivates us to develop a new indexing approach.

To this end we developed FLAT, a scalable indexing approach
for dense data sets. We based the development of FLAT on the
key observation that current approaches suffer from overlap in
case of dense data sets. We hence designed FLAT as an approach
with two phases, each independent of density.

Our experimental results confirm that FLAT achieves indepen-
dence from data set size as well as density and also outperforms
R-Tree variants in terms of I/O overhead from a factor of two
up to eight.

I. I NTRODUCTION

Scientists in various disciplines increasingly use computa-
tional tools to simulate, process and analyze experimentaldata.
Computational tools make it substantially simpler for themto
conduct scientific tasks. At the same time however, scientists
are also increasingly buried in the data deluge produced by
their tools. Being able to access the relevant parts of their
data, i.e., their spatial models, quickly in order to analyze,
understand, and prepare new experiments is pivotal for them.

In this paper we thus develop a new index that efficiently
supports scientists in executing range queries on dense data
sets stemming from increasingly detailed spatial models.

The work presented in this paper is motivated by our
collaboration with the Blue Brain Project (BBP [17]). With
data acquired in anatomical research on the cortex of the
rat brain the neuroscientists in the BBP build biophysically
realistic models, the most detailed computer models of the
brain to date, for simulation based research in neuroscience.
The project began by focusing on the elementary building
block of the neocortex, a neocortical column of about 10,000
neurons. Morphologically speaking, each of these neurons has
branches extending into large parts of the tissue in order to
receive and send out information to other neurons. Figure 1
(left) shows a cell morphology, with cylinders modeling the
branching of the dendrite and axon in three dimensions.

Fig. 1: Schema of a neuron’s morphology modeled with
cylinders (left) and a visualization of a model microcircuit
comprised of thousands of neurons (right).

The BBP targets both building as well as simulating brain
models. The use of massively-parallel computing in the BBP
(BlueGene/P with 16k cores) nowadays allows the placement
of several thousands of neurons in three dimensions to recre-
ate and simulate structurally accurate microcircuits [14]. An
example microcircuit of a few thousand neurons is shown in
Figure 1 (right).

The microcircuits currently investigated in the Blue Brain
Project contain up to 500,000 neurons, but it is foreseen to
ultimately extend this by orders of magnitude to microcircuits
of the size of the human brain (∼1011 neurons). More impor-
tantly, the circuits will at the same time become much more
fine grained, modeling the neurons at a subcellular level with
hundreds of thousands of structural elements per neuron.

To support neuroscientists in analyzing spatial brain models
we want to develop an indexing approach that executes range
queries independent of the size and density of the brain
model. Achieving scalability for range queries is not just a
problem in neuroscience, but also in many other scientific
disciplines [8], [13] which use dense spatial data sets. During
the development of FLAT we make very few assumptions
about the data sets so that it can also be used for data sets with
similar characteristics. However, because the models in our use
cases change only slowly, if at all, we focus on developing a
bulkloading approach and do not consider updates.

The remainder of the paper is structured as follows. We
discuss related work and its shortcomings in Section II. In
Section III we analyze in more detail two use cases and show
how state-of-the-art approaches do not scale for our data sets.



In Section IV we give a high level overview of FLAT. Section
V first discusses how we index the brain data and in Section
VI we explain how to evaluate a range query on the data. We
compare the approach to related approaches and benchmark it
in Section VII. Finally, we use FLAT to index other data sets,
report on the results in Section VIII and conclude in Section
IX.

II. RELATED WORK

Database research has produced many approaches to spatial
indexing [6] in recent years.

A first class of spatial indexes are point access methods
such as the KD-Tree [4] and the Quadtree [21], along with its
variant for 3D space, the Octree [11]. While these approaches
are mainly used in memory, two extensions of the KD-Tree
also work on disk, the KDB-Tree [5] and the Bkd-Tree [20].
The latter claims a better performance in the case of updates.
These indexing techniques can, however, only be used to index
points and not spatial objects. Because our data set contains
volumetric elements, we would need to duplicate elements
which occupy several partitions on the leaf level, thereby
increasing the index size several times.

To index connected tetrahedral meshes, crawling approaches
like DLS [19] use approximate search algorithms coupled
with walking [19] but require the data set to be convex
and to contain connectivity information. While our data sets
contain connected objects (neuron branches), they also con-
tain concave regions, i.e., ’holes’. Concave regions can split
the connected data set inside a range query into two parts,
preventing the algorithm from crawling from one part to the
other. Known crawling approaches hence do not work for our
data.

Arguably the seminal data structure is the R-Tree [9]. The
R-Tree is a disk-based, multi-dimensional generalizationof the
B-Tree [2], which recursively encloses objects in minimum
bounding rectangles (MBRs). Several extensions of the basic
approach have been proposed. They can generally be divided
into two classes: bulkloaded R-Trees, where the data set is
known a priori, and R-Trees where elements are inserted
consecutively.

The R*-Tree [3] falls in the latter category and reduces over-
lap through an improved version of the node split algorithm
along with the removal and reinsertion of spatial elements
(once a node overflows). The R+-Tree [22] similarly tries to
avoid overlap through the duplication of the MBRs. Doing so
however leads to a much bigger index.

Several packing methods for the R-Tree have been proposed
to bulkload data sets which are known a priori. With these,
spatially close elements can be packed on the same disk page
in order to improve locality and to reduce overlap between
nodes. The Hilbert R-Tree [12] uses the Hilbert space filling
curve to order the objects. Consecutive elements in this order
are spatially close and are hence packed on the same page.
Sort-Tile-Recursive (STR) [16] recursively tiles the space,
sorts the elements in a tile along each dimension and thereby
also guarantees spatial proximity as well as small MBRs. With
this, STR outperforms the Hilbert R-Tree [16]. As opposed

to STR, the Top down Greedy Split (TGS) [7] works top
down: it splits the data set into partitions so that on each
level the area of each partition is minimized. This process
continues recursively until each partition fits on a disk page.
While bulkloading with TGS takes much longer than with
other approaches, the resulting R-Tree outperforms the Hilbert
R-Tree and STR on extreme data sets (extreme with respect
to skew, aspect ratio).

To improve handling of extreme data the Priority R-Tree
(PR-R-Tree) [1] has been proposed. It groups all elements with
extreme coordinates in the same dimension in the same node,
thereby reducing the area and overlap of the remaining nodes.
This improves its performance on synthetic and extreme data
sets, making the PR-RTree outperform TGS.

Despite the numerous improvements and approaches to al-
leviate the problem of overlap in the R-Tree, it still introduces
considerable I/O. The denser a data set is, i.e., the more spatial
elements are in the same unit of space, the more overlap the
bounding boxes of the R-Tree have, and hence the bigger the
I/O overhead of query execution becomes.

III. M OTIVATION & U SE CASES

Because the spatial data sets modeling the brain are both
very dense and concave, readily available indexing approaches
cannot be used. Using bounding box based indexing tech-
niques such as R-Tree based approaches [9] introduces sub-
stantial I/O overhead.

We illustrate this by indexing brain data sets of increasing
density with different bulkloading variants of the R-Tree.To
increase density we keep the volume the same but gradually
add elements to the model. We measure the overlap in the
first (Hilbert [12]), the most commonly used (STR [16]), and
the most recent (PR-Tree [1]) bulkloaded R-Tree by executing
point queries at random locations. The point query is an
excellent indication of overlap in an R-Tree: the number of
disk pages read to execute this query in an R-Tree without
overlap is equal to the height of the tree. The more disk pages
need to be read, the more overlap the R-Tree has.
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Fig. 2: Point query performance on R-Tree variants.

The results in Figure 2 clearly show that with increasing
density, the overlap also increases: the height of the tree is
5, yet the number of pages retrieved for a single point query
grows to more than 450 for the densest data set indexed with
the PR-Tree. The overlap problem in R-Trees has a substantial
impact on the range query performance in the following two
neuroscience use cases.



A. Structural Neighborhood

The structural connectivity in the BBP microcircuits, i.e.the
places where two neuron branches touch (and where electrical
impulses may hence leap over) is currently precomputed [14].
While this allows to build the circuits fast, it is not well suited
to detect proximity incrementally, i.e., detect the proximity of
fibers from other brain regions.

Data Set Density
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Number of Page Reads
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Fig. 3: Number of page reads per result for structural neigh-
borhood range queries on a Priority R-Tree.

To compute proximity incrementally, numerous requests
for the immediate neighborhood, e.g. all elements within a
distance of 5µm (5 × 10−7% of the space), along a neuron
fiber are executed in sequence.

Because R-Trees built on such dense data sets have con-
siderable overlap, executing these queries has a substantial
I/O overhead. To show this we index a brain model with a
bulkloaded Priority R-Tree and measure the number of page
reads per result element for very small random range queries
(each covering5 × 10−7% of the space). While keeping the
volume constant, we increase the number of elements in the
model and therefore the density.

The results in Figure 3 show that with a data set of 450
million elements the average number of page reads for each
element in the result set (of 56’000 elements) is 2.33. This is
already a substantial overhead and the trend indicates thatthis
approach will not scale with increasing density of the data set.
Clearly we have to find a more scalable approach to support
this use case better.

B. Large Spatial Subvolumes

For the purpose of visualization and analyses, e.g., tissue
density, specific subvolumes need to be retrieved with range
queries. The requested subvolume sizes are typically big and
can go beyond5× 10−4% of the data set space.

In the case of queries with increasing query volumes, the
number of overlapping minimum bounding rectangles (MBRs)
enclosing a query decreases, and hence fewer ambiguous paths
need to be followed in the R-Tree. The I/O due to overlap thus
decreases and overlap no longer dominates the overhead. At
the same time however, in order to retrieve a large result set,
the number of non-leaf pages which need to be read grows
substantially. The non-leaf pages in the R-Tree are the pages
which store hierarchy information as opposed to the leaf pages
which store the spatial elements.

We measure this overhead with an experiment showing the
total number of Gigabytes retrieved when querying the R-Tree
variants with 200 random queries (each of a size of5×10−4%

of the space) and compare it with the size of the actual
result set in Gigabytes. As Figure 4 shows, the difference is
significant, but more importantly, the ratio between the size
of the result and the size of the data the PR-Tree (the best
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Fig. 4: Total bytes read and result set size for large spatial
subvolume queries on R-Tree variants.

R-Tree in this experiment) retrieves grows from 3 to 4 with
the density of the data set. This overhead is mainly due to the
non-leaf pages which have to be read, i.e., organizing the data
hierarchically. Clearly we have to find an approach that scales
better.

C. Contributions

The contribution of this paper is the development of FLAT,
an indexing approach that scales for increasingly dense data
sets of the brain.

We base the development of FLAT on the key observation
that, given any start element inside a query range, recursively
visiting its neighbors inside the range only depends on the
number of elements in the result (and does not suffer from
overlap). However, to be sure that all elements inside the
query range are visited, the data set needs to have information
regarding what elements neighbor each other. This leaves us
with two key challenges that we address in the development
of FLAT.

First, we develop an efficient mechanism to find a random
start element inside the query range. The second, more difficult
challenge is to compute what elements neighbor each other in
the data set, i.e., neighborhood information. We thus develop
an efficient method to compute neighborhood information
along with data structures from where to retrieve it efficiently.
With this, FLAT scales for data sets of increasing density and
tackles the problems of the two use cases, i.e., it avoids overlap
and retrieval of an excessive number of non-leaf nodes.

Albeit the ideas FLAT is based on are simple, they prove to
be very effective. We improve the query execution time for the
previously described two use cases, between a factor of 2 and
4 for the first and between a factor of 2 and 6 for the latter,
compared to the fastest R-Tree variant. In further experiments
we also show performance improvements on other scientific
data sets. The trends of our results strongly indicate that FLAT
will scale substantially better for more detailed brain data sets
used by the neuroscientists in the near future.

IV. T HE FLAT A PPROACH

FLAT indexes spatial elements of arbitrary shape and uses
these elements as primary keys to retrieve further information
(such as electrical properties etc.) about them. Similarlyto
R-Tree variants, FLAT wraps elements of arbitrary shape in



axis aligned minimum bounding rectangles (MBR) and stores
both, the actual element and its MBR. To evaluate a query
FLAT tests, like the R-Tree, whether the MBR of an element
intersects with or is contained in a range query.

On a high level, FLAT uses the following data structures
and two phased query execution approach. Elements and
their MBR are stored as follows: spatially close elements are
stored on the same page on disk. For each page of elements
neighborhood information, i.e., pointers to other spatially close
pages are also stored. In particular, if disk pageA contains an
element which is close to another element on pageB, then
we store a pointer fromA to B. Additionally, for each page
the minimum bounding rectangle (the page MBR) enclosing
all elements on it is stored together with a reference to the
page. We use a traditional spatial index to index the page
MBRs and refer to it as the seed index. This concept, with
rectangles representing groups/pages of spatial elementsand
arrows expressing neighborhood, is illustrated in Figure 5.

Query Region

Fig. 5: FLAT: Spatially close elements are packed on the same
disk page (rectangle) and pointers (arrows) are added between
neighboring pages.

Given the seed index and the neighborhood information, the
result of range queries is computed in two phases:

• Seed Phase:Given a query range, an arbitrary page MBR
intersecting this range is retrieved from the seed index.
The key insight we use for this phase is that retrieving an
arbitrary element in a given range is a cheap operation,
even with an R-Tree. It does not suffer from overlap:
instead of having to follow all paths, only one single path
has to be followed from the root of the tree to one of the
leafs. The complexity of this operation is typically in the
order of the height of the R-Tree.

• Crawl Phase: With the page MBR retrieved in the seed
phase, a reference to the corresponding disk page is also
obtained. This page is retrieved and all spatial elements
on it are tested if they are in the query region. Following
this, its neighbor pages are retrieved recursively until no
more elements in the query range are found.

This approach ensures that evaluating a range query no
longer depends on the density of the data. The complexity of
the seed phase is in the order of the height of the tree and the
crawl phase depends on the size of the result set. At the same
time, the approach does not need to retrieve hierarchically
stored information.

Because the data sets in our use cases, as is true for many
scientific data sets, change infrequently and updates happen
in batches, reindexing is more efficient, and we hence do not
consider updates. Instead, and also because our data sets are
known a priori, we develop FLAT as a bulkloading approach.

V. FLAT I NDEXING

At the core of FLAT indexing is the algorithm to compute
the neighborhood information that ultimately allows it to crawl
through (possibly unconnected) data sets. In the following
section we first discuss the algorithm to compute the neigh-
borhood information, and then the data structures needed to
store this information.

A. Computing Neighborhood Information

To compute the neighborhood information we segment the
entire space into partitions, with each partition containing one
page. For a pageP and the partitionA it is contained in, we
consider a page as a neighbor ofP if its partition is adjacent
to or overlaps withA. For FLAT to work, we compute all
neighbors of a pageP , P ’s partition MBR (the MBR enclosing
the entire partitionA) andP ’s page MBR (the MBR enclosing
all the elements stored onP ). Figure 6 shows an example
partitioning with the partition MBRs (dashed lines) and the
page MBRs (solid lines) enclosing the elements stored on a
page. The neighbor relationships between pages are illustrated
with arrows.

The exact procedure used to partition the space does not
matter in order for FLAT’s query evaluation to work as
long as the resulting set of partitions satisfies two properties.
First, the partition procedure must not leave any empty space,
i.e., the union of all partitions must cover the entire space.
Second, each partition MBR must enclose the MBR of the
corresponding page.

Fig. 6: Partitioning procedure used to determine page MBRs
(solid lines) as well as partitions (dashed lines).

We use an efficient algorithm based on STR [16] (see
pseudocode in Algorithm 1) to first sort the spatial elements
on the x-dimension and then to partition them along this
dimension. Each resulting partition is again sorted and par-
titioned based on the centers of the y-dimension. The same
procedure is repeated for the third dimension. The partition
sizes in each of the partitioning steps are chosen so that the
final partitions contain at most as many spatial elements as can
be stored on one disk page. Once all partitions are calculated,
the partition MBRs and page MBRs are calculated. To make
sure the partition properties discussed before are satisfied,



Algorithm 1 FLAT Indexing Algorithm
Input : elements: array of all spatial elements

size: number of spatial elements in data set
pagesize: number of elements on each disk page
rtree: R-Tree seed index

Output : partitions: array of all resulting partitions
Data: xpart: set of partitions

ypart: set of partitions
zpart: set of partitions
partitions: set of partitions

calculate number of partitions in each dimension
pn = 3

√

size/pagesize

sort elements on x-coordinate of element center
makepn partitions of consecutive x-coordinate values
insert partitions intoxpart

foreach partition p ∈ xpart do
sort elements∈ p on y-coordinate of element center
makepn partitions of consecutive y-coordinate values
insert partitions intoypart

foreach partition p ∈ ypart do
sort elements∈ p on z-coordinate of element center
makepn partitions of cons. z-coordinate values
insert partitions intozpart

foreach partition p ∈ zpart do
calculate page MBRpageMBR of p
calculate partition MBRpartitionMBR of p
stretchpartitionMBR to containpageMBR
storepage andpartition MBR in rtree
insertp into partitions

end
end

end
foreach partition p ∈ partitions do

retrieve neighbors partitions in rtree intersecting with
partitionMBR of p
store p’s neighbors, pageMBR and partitionMBR
together withp in partitions

end
return partitions

each partition is stretched so that it encloses the MBR of the
corresponding page. Following this, all partition MBRs are
inserted into a temporary R-Tree, used solely to compute the
neighborhood information. Finally, for each partition, a range
query with the partition MBR is executed, and all intersecting
partitions, the neighbors, are retrieved.

B. Data Structures

The indexing algorithm returns a set of partitions, and for
each partition the spatial elements in it, the page MBR, the
partition MBR, and the neighbors. In the following section

we discuss how this information is stored in order to support
efficient query execution with FLAT. We particularly discuss
FLAT’s core data structures, theseed indexused to retrieve a
start element,metadataused to retrieve neighborhood infor-
mation, and finallyobject pagesused to store the actual data,
the spatial elements.

1) Seed Index:To start the search, theseed indexmust
return an arbitrary element inside the query range. Finding
an arbitrary spatial element inside a range is in many spatial
indexes independent of the density. In the R-Tree for example,
despite the overlap due to the data set density, only one of
several ambiguous paths through the tree needs to be followed.
The number of nodes visited/disk pages read is thus in the
order of the height of the R-Tree.

In FLAT we use an R-Tree to find a starting point for the
crawl phase. In thisseed indexwe index each page MBR (the
MBR of an object page), along with a pointer to the disk page
(object page). We modify the implementation of the R-Tree to
retrieve intersecting page MBRs along with its object page
until it finds an object page on which one element is in the
query range. Once such a page is found, querying the seed
index is stopped and the page is used as a starting point. In
the rare case of nearly or completely empty queries, several
leaf nodes may need to be visited until a page MBR is found.
If no object page can be found, then the query has no result.

2) Metadata & Neighborhood Information:Storing the
neighborhood information on the same pageP as the elements
is difficult, because depending on what elements are onP , a
different number of pointers needs to be stored on it. The
number of pointers that need to be stored cannot be known a
priori, and resorting to ad-hoc mechanisms, e.g., to reserve a
certain amount of space, leads to underfilled pages, defeating
the goal of storing as many elements as possible on one
page. We therefore store the neighborhood information and
the spatial elements separately.

The neighborhood information is stored in an additional data
structure referred to as metadata. FLAT stores per object page
one metadata record summarizing it, i.e. the record contains a
pointer to the object page, the page MBR, the partition MBR,
as well as pointers to the neighbors (to their metadata record)
of the object page.

When retrieving one metadata record, it is likely that its
spatially close neighbors are retrieved as well. To improve
performance we need to preserve the spatial locality of the
metadata records and therefore store them in the leafs of the
seed tree, i.e., we index each recordR with R’s page MBR as
key andR as value. The neighborhood information stored in
the records consequently contains pointers to the other records
inside the R-Tree leafs. Storing the records in the leafs of the
seed tree (an R-Tree) ensures that spatially close records are
stored on the same leaf page. At the same time, we fit as
many records as possible on each leaf to make good use of
disk space.

All data structures and their relations are illustrated in
Figure 7: several metadata records are stored on each of the
leafs in the seed index. Neighborhood information is stored
as pointers from one metadata record to another, possibly be-



tween different leaf nodes. Each metadata record also contains
a pointer to an object page.

Object Pages

Metadata Records
in Seed Tree Leafs

Seed Tree Index
Nodes

Fig. 7: The three data structures and their interaction: seed
tree, the metadata records in its leafs point to each other and
to the object pages.

3) Object Pages:To optimize the fill factor of the object
pages we pack the maximum number of elements (the exact
number depends on the size of the structural elements, e.g.,
for a mesh triangle 9 floats/doubles suffice, for an MBR/axis
aligned box it is 6 floats/doubles) on each disk page.

Also on the object pages we want to preserve spatial locality,
i.e., store spatially close objects on the same page. The parti-
tions STR produces preserve spatial locality better [16] than
Z-order [18] or Hilbert-packing [12]. Because Algorithm 1 is
based on STR, we can directly use its output (the partitions)
of Algorithm 1 to determine what elements to store together
on a disk page.

VI. FLAT QUERYING

FLAT uses a breadth first search to crawl the connected
neighborhood of a start page. More precisely, FLAT finds
a metadata record in the seed index that points to a page
containing a spatial element which intersects with the query
range. It follows the neighborhood pointers to other records
stored in other leafs of the R-Tree. The neighbor pointers
stored in a metadata recordM are only followed if M ’s
partition MBR intersects with the query. Similarly, the object
page is only read from disk ifM ’s page MBR intersects with
the query. The final output of the breadth first search is the
set of spatial elements which intersect with the query region.
The algorithm is more formally described in Algorithm 2.

Algorithm 2 also shows that the choice of the start page
during the seed phase affects neither the accuracy nor effi-
ciency of the search. Choosing a different starting elementonly
changes the order in which the pages are visited. Because the
algorithm keeps track of what pages have been visited, each
page is visited at most once.

Intuitively, evaluating a query can be stopped if no more
neighbors with a page MBR intersecting the query can be
found. If however this condition is used, the query in a case
such as the one depicted in Figure 8 cannot be properly
evaluated. This example illustrates why FLAT needs to store
and use the partition MBR. Using the shaded page on the left
of Figure 8 as the start page, query evaluation would already
stop after looking at the first two neighbors: none of them
has a page MBR intersecting with the query region. FLAT

Query Region

Fig. 8: Partitions intersecting the query range must be consid-
ered during the breadth first search.

Algorithm 2 Breadth-First Search Algorithm
Input : mr: pointer to metadata record from seed index;

rq: range query
Output : result: set of spatial elements
Data: queue: metadata record queue;

visited: set of visited object pages

put mr into queue

while queue 6= ∅ do

dequeue metadata recordm from queue

if object pagep referenced bym /∈ visited then
if pageMBR ofm intersects withrq then

retrieve object pagep referenced inm
insertp into visited
foreach element ∈ p do

if element MBR intersectsqr then
put element into result

end
end

end
if partitionMBR ofm intersects withrq then

foreach neighbor in m do
enqueueneighbor metadata record inqueue

end
end

end
end
return result

therefore uses the partition MBR of a pageP and checks if it
intersects with the query region to decide if the neighbors of
P are visited. If it does intersect, then its neighbors are tested.

The situation illustrated in Figure 8 also gives an intuition
as to why a partitioning needs to have the two properties
discussed in Section V-B.2 in order to work with the breadth
first search:

• Empty Space: if we allowed empty space between
partitions, no neighborhood pointers would be inferred
and hence the breadth first search would not continue
across such empty spaces.

• Partition MBR encloses Page MBR: if the partition
does not enclose the page MBR, then situations may



occur where the page MBR intersects with the query
range, but the partition MBR does not. Other partition
MBRs then cover the page MBR but effectively prevent
the page from ever being read. Figure 9 illustrates this
situation where partition MBRA (dashed line) does not
entirely cover the page MBRA (solid line). If the breadth
first search starts at page and partitionC, it will continue
to partitionB but go no further because partition MBR
B does not intersect with the query range.A will never
be read.

Query Region

A

B

C

A

C

B

Fig. 9: A scenario where the query is not evaluated properly
because the partition does not cover the page MBR.

VII. E XPERIMENTAL EVALUATION

In the following section we describe the experimental setup
& methodology, measure the performance of FLAT and study
the impact of data set characteristics on FLAT. We compare
FLAT against several bulkloaded R-Tree variants because
bulkloaded trees outperform other R-Tree variants such as the
R*-Tree [3], primarily due to better page utilization. Because
the models of the brain change only slowly and the changes
occur as batches, reindexing with a bulkloading approach is
simpler and more time efficient than updating.

A. Setup

Experimental Setup
The experiments are run on a Linux Ubuntu 2.6 machine
equipped with 2 quad CPUs AMD Opteron, 64-bit @
2700MHz and 4GB RAM. The storage consists of 4 SAS
(10’000 RPM) disks of 300GB capacity each, striped to a
total of 1TB.

We use a readily available implementation of the STR R-
Tree [10] but adapt so it stores 85 elements on the leaf
level. Additionally, we use our own implementations of the
Hilbert R-Tree [12] as well as Priority R-Tree (PR-Tree) [1]
to compare against FLAT. All approaches store data on the
disk in 4K pages. The seed index also uses 4K nodes. The fill
factor for the R-Tree variants and the seed tree is set to 100%.
All implementations store 85 spatial elements on a 4K page.

For all the experiments the OS can use the remaining
memory to buffer disk pages. For a fair comparison the
implementations of all approaches are single threaded.

Experimental Methodology
For the measurements we use data sets that model a small

part of the brain with cylinders as spatial elements. The model

contains 100’000 neurons in a volume of 285µm3. For both
use cases presented in Section III, the neurons are modeled
with 450 million cylinders (an example neuron modeled with
cylinders is shown in Figure 1 left). Each cylinder is described
by two end points and a radius for each endpoint. For a
fair comparison, we only store the MBRs of the cylinders
on R-Tree leaf pages and on the FLAT object pages. All
approaches therefore test if the range query intersects with the
MBRs stored (axis aligned minimum bounding rectangles). We
use double precision floating point numbers to represent the
coordinates of the MBRs.

Through experimentation and modeling by the neuroscien-
tists, the brain model perpetually grows and at the same time
becomes more fine grained. To determine the trend of FLAT
and the R-Trees, we progressively increase the density of the
data set in each experiment by adding more neurons to the
same volume, i.e., 50 million more cylinders in every step.
With this we can extrapolate how FLAT performs for more
dense data sets of the brain model in the future.

Inspired by the two use cases described in Section III we
define two micro-benchmarks. The SN benchmark is derived
from the structural neighborhood use case and consecutively
executes 200 spatial range queries each with a fixed volume of
5×10−7% of the entire data set volume. The LSS benchmark
is derived from the large spatial subvolume use case and also
consecutively executes 200 spatial range queries, but eachwith
a fixed volume of5×10−4% of the entire data set. The location
and aspect ratio of all queries is chosen at random. Before each
query is executed, the OS caches and disk buffers are cleared
(overwritten with an empty file).
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Fig. 10: Overall time to index for data sets of increasing
density.

B. Time to Index

Indexing with the Hilbert R-Tree is simple: each element
needs to be assigned a Hilbert value, the entire data set is
sorted once on this value and the tree is built recursively.
Building the Hilbert R-Tree should therefore be very fast.

Both the STR-bulkloaded R-Tree and FLAT use STR to
pack the elements on pages. In doing so they sort the entire
data set in three steps of recursion in each dimension. Packing
the elements on disk therefore takes the same time for both
approaches. Because FLAT also needs to find the neighbors
of each partition we expect that will take longer to index.



The Priority R-Tree builds the tree by sorting the data set
in one dimension (on either the low or high coordinate in
this dimension), identifying the extreme elements (as many
elements as fit on one page) in each dimension, splitting the
remaining elements into two subsets and recursively applying
the same procedure on the two subsets in the next dimension.
The extreme elements identified in every step in each dimesion
are stored together in the same leaf node of the tree. Once
all leaf nodes are written, the same procedure is recursively
applied to the next higher level of the tree. This entire
procedure sorts the data several times recursively in each
dimension and thus takes quite a long time.

The results of the experiment shown in Figure 10, where we
index data sets of increasing size, confirm our expectations:
to index the same data set FLAT takes longer than Hilbert,
slightly longer than STR but is substantially faster than the
PR-Tree. Optimizations for bulkloading the PR-Tree speed up
indexing considerably [1]. But even with these optimizations,
the PR-Tree remains slower than STR & FLAT because all
data needs to be sorted at least six times, twice in each
dimension (once on the minimum and once on the maximum
coordinate).

Indexing with FLAT is rather fast, and because indexing
only needs to be done very infrequently, once the model of the
brain changes, the cost of it is acceptable. More importantly
however, because the trend of FLAT is linear, we can expect
it to scale to denser data sets.

C. Index Size

Both the R-Tree variants and FLAT store 85 spatial elements
on a disk page. The total size of the leaf pages of the R-Trees
is thus the same as the size of FLAT’s object pages. Also the
non-leaf pages of the R-Trees and the seed tree pages of FLAT
need the same space to be stored. The only difference is that
FLAT additionally stores the metadata in the seed tree. The
FLAT index is hence bigger than the R-Trees as the experiment
in Figure 11 confirms.

In this experiment we have compared the size of the index
for data sets of increasing density for FLAT and the PR-Tree.
We only compare against the PR-Tree because the different
bulkloading strategies only pack the elements differentlyin
quality but not in quantity, i.e., they pack different elements
on the same page but always the same number. The space
required, as well as the ratio between non-leaf and leaf pages,
is exactly the same for all variants.

The most important point this experiment demonstrates
however is that the size of the total index predominantly
depends on the number of elements, and that we can hence
expect that it grows linear with increasing density of the data
set.

D. Use Case Benchmarking

In the following experiments we compare the execution
of the SN and LSS benchmarks with FLAT and the R-Tree
variants regarding the number of disk pages read, as well as
the time taken to execute the queries.
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Fig. 11: Index size for data sets of increasing density.

SN Benchmark Results
Time & Page Read Comparison
FLAT does not suffer from problems related to density (like
overlap) and hence scales better for dense data sets. As can
be seen in Figure 12, which shows the number of page reads
required to execute the benchmark, the amount of data read
to compute a query with FLAT is substantially smaller than
with any of the R-Tree variants. The best R-Tree, the PR-
Tree, retrieves 8 times more data from disk than FLAT for the
densest data set (450 million elements in 285µm3).

This experiment also confirms previous results [16] showing
that STR bulkloading outperforms Hilbert bulkloading. It also
corroborates results [1] indicating that the PR-Tree requires
less page reads than other bulkloaded R-Trees on extreme data.
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Fig. 12: Total number of page reads when executing the SN
benchmark.

Comparing the shape of the curves in this experiment
with the next measurement in Figure 13, where we measure
the execution time of queries, it becomes obvious that the
execution time for queries with FLAT and the R-Tree variants
is I/O bound. More importantly however, the trends for
execution time and page reads indicate that FLAT scales
linear for data sets of increasing density.

Overhead Analysis
By measuring the information read from leaf and from non-
leaf pages for data sets of increasing density in Figure 14
(right) we can corroborate the assumption that the R-Tree
(we use the best R-Tree, the PR-Tree, as an example in
this experiment) suffers from overlap. In this experiment the
number of both types of pages grows with increasing density.
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Fig. 13: Execution time for executing the SN benchmark.

More importantly however, the ratio between non-leaf to leaf
page reads increases. While for the sparsest data set (50
million elements) the ratio is 2, it grows to 2.8 for the
densest data set (450 million elements). This means that with
increasing density, more non-leaf pages need to be read per
leaf page read. This clearly shows that overlap is a problem
for data sets of increasing density.

In the case of FLAT, page reads are due to the query in
the seed tree as well as reading metadata and object pages.
The first largely depends on the height of the tree, and hence
can be considered constant, whereas the latter two depend on
the result size. Because we keep the query size constant but
increase the density, the result sets become bigger. This can be
seen in Figure 14 (left) where we measure the number of pages
read from the seed tree, from metadata, and object pages for
data sets of increasing density. The page reads due to the seed
tree remain constant while the ones for metadata and object
pages grow with the result set size.

Because the result set grows with increasing data density,
the initial cost of the seed query is amortized over a larger
result set and hence the total cost per result element decreases
for FLAT. For the R-Tree variants on the other hand, the
pages read per result element increase because the density
increases with the data set size. This increases the overlap
in the R-Trees and results in a growing number of page
reads per result element. The experiment in Figure 15, where
we measure the pages read per result element for both
approaches, clearly demonstrates this.
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Fig. 15: Pages read per result element for the SN benchmark.

LSS benchmark results
Time & Page Read Comparison
Although overlap in the R-Tree variants does not affect big

queries as much as small queries (because the overlap over-
head is amortized over a bigger result set) we still expect FLAT
to perform better because it does not have to retrieve hierarchi-
cal information (the subtree of non-leaf pages which connect
the root with the leaf pages). The experiment measuring the
page reads for executing the LSS benchmark shown in Figure
16 confirms that FLAT needs to read fewer pages to compute
the result, and hence scales better for dense data sets. The
relative performance among the R-Tree variants is the same
as for the SN benchmark (and conforms with previous results
in literature).
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Fig. 16: Total number of page reads when executing the LSS
benchmark.

Similar to the SN benchmark, the query execution time is
also dominated by the page reads. For data sets of increasing
density, the trend of the execution time experiment shown in
Figure 17 has the same shape as the page read experiment
shown in Figure 16.
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Fig. 17: Execution time for executing the LSS benchmark.

Overhead Analysis
The difference between FLAT and the R-Tree variants, how-
ever, is not as significant as for the SN benchmark. This is
because the overlap only has a minor impact on larger volume
queries. This can be seen in Figure 18 (right) where we analyze
the ratio of retrieved leaf and non-leaf pages for the LSS
benchmark for FLAT and the PR-Tree, the best R-Tree variant
for this use case. For both approaches the share of object pages
or leaf pages respectively is substantially higher.

The overhead for the R-Tree variants (non-leaf pages),
however, is still substantially higher than for FLAT (seed tree
and metadata). Instead of retrieving the subtree leading tothe
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Fig. 14: Breakdown of data retrieved for both approaches for the SN benchmark.
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Fig. 18: Breakdown of data retrieved for both approaches when executing the LSS becnhmark.

result stored in the leaf pages, FLAT only uses the seed tree
to find an arbitrary element in the range, and then uses the
metadata to find the relevant object pages. It therefore scales
with the size of the result set.

The difference in overhead between FLAT and the PR-
Tree is significant. Comparing Figure 18 (left) with Figure
18 (right) shows that the PR-Tree has an increasing overhead
with growing density (up to three times more overhead for the
densest data set). What is more important, however, is how the
overhead develops relative to the result set size with increasing
density. The page reads per result as a function of increasing
data density shown in Figure 19 illustrate this. Because FLAT
amortizes the fixed cost of the seeding phase over an increasing
result set, the page reads per element decrease. The R-Tree,on
the other hand, retrieves a subtree of increasing size with an
increasing result set size, and the page reads per element hence
grow. The impact of a subtree of increasing size however is
not as severe as the effect of overheads caused by the overlap
in the R-Tree variants as seen in the SN benchmark. Still, with
an increasing density of the data set, FLAT scales better by
requiring less page reads per element than the R-Tree variants.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

50 100 150 200 250 300 350 400 450

 P
a

g
e

 R
e

a
d

s
 p

e
r

 R
e

s
u

lt
 E

le
m

e
n

t

Density [Million Elements per 285µm
3
]

FLAT
PR-Tree
STR R-Tree
Hilbert R-Tree

Fig. 19: Pages read per result element when executing LSS
benchmark.

E. FLAT Analysis

The characteristics of the data set have a direct influence
on the number of pointers FLAT adds to the data set which
in turn has an impact on the performance of the FLAT query
execution. In the following section we study what particular
data set characteristics have an impact on the number of
pointers, and we analyze the FLAT querying algorithm in more
detail.

1) Impact of Data Set Characteristics:The number of
pointers FLAT adds to the data set has an impact on the
number of disk pages read to evaluate a query. The size of
the metadata grows with the number of pointers as does the
average number of pointers per metadata record (the number
of records stays the same because it depends solely on the
number of spatial elements). Both these effects lead to more
metadata records read during each step of the crawling phase.
In the following we therefore study the impact of different
factors on the number of pointers.
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Impact of Density
We study the impact of an increasing density of the data
set on the number of pointers of each partition. For this we
index neuroscience data sets of increasing density with FLAT
and measure how many partitions have a given number of
pointers. As the distribution in Figure 20 shows, the median
stays the same and it becomes more explicit with increasing
density, and appears to converge at 30. From this we infer
that even if the model of the brain becomes more detailed,
the average number of pointers remains constant, and with
this the size of the metadata grows only linearly.

Impact of Partition Size
Because the number of pointers is determined by how many
partitions overlap with each other, the major factor influencing
the average number of neighbor pointers is the size of the
partitions. To demonstrate this, we generate artificial data
sets with 10 million elements which are uniformly randomly
distributed in a volume of 8mm3. We calculate the partitions
for the data set and then incrementally increase the size of the
partitions. Figure 21 confirms that with an increasing partition
size the average number of neighbor pointers grows as well.

The volumes and the aspect ratios of the elements in turn
have a direct impact on the partition size because the partition
needs to be stretched to accommodate the elements in it. We
have designed two experiments to illustrate this.
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In the first experiment we generate an artificial data set of
10 million uniformly randomly distributed elements in 8mm3,
and increase the volume of each element (the length of the
elements are the same along each axis) but its position remains
the same. This experiment confirms that an increase of the
element volume does indeed have an impact on the average
number of pointers per partition, as increasing the object size
by a factor of 5 incurs a 10% increase in pointers.

In the second experiment we generate a data set of 10
million uniformly randomly distributed elements each witha
constant volume of 18µm3 in 8mm3. We keep the position
the same but vary the aspect ratio as follows: for each element,
its length in each dimension is randomly set between 5 and
35µm. The lengths on all axes are normalized (by choosing an
axis at random) in order to obtain elements of equal volume.
This experiment also confirms that the aspect ratio has an
influence on the number of pointers: the average number

increases linearly from 17.4 to 22.9 throughout the entire range
of possible aspect ratios.

2) FLAT Memory & Computation Overhead:The overhead
in terms of memory footprint and computation during query
evaluation is not significant. The memory footprint for FLAT
increases during the crawling phase but only grows linear with
the size of the result set of the query. The space used to store
the book keeping information (the queues of the breadth first
algorithm) remains at 0.9% of the size of the result set.

Most of the time evaluating queries is spent in retrieving
data from disk. The share of time used for disk operations
ranges for both benchmarks between 97.8% (for LSS on 50
million) and 98.8% (for LSS on 450 million). The remaining
time, the computational overhead, is spent on processing the
page data. The majority of this time is used to compute
intersections of the page and partition MBRs with queries.
The number of MBR intersections depends on the number of
spatial elements stored on the object pages and the number of
neighbor pointers for each metadata entry. As we showed in
the previous subsection, the average number of neighborhood
pointers converges with an increasing data set density, and
hence the share of time needed for calculating MBR intersec-
tions remains constant for increasingly dense data sets.

VIII. FLAT ON OTHER DATA SETS

We also use FLAT to index other scientific data sets
representing spatial information in order to see how it performs
compared to the PR-Tree. We have taken the Nuage [15]
data sets which model the n-body problem, a simulation of
how the universe evolved since the big bang. These data sets
contain spatial information modeled with vertices representing
dark matter, gas and stars. They contain 16.8, 16.8 and 12.4
million vertices in space amounting to a size of 768, 768,
568MB respectively. In addition to this, we index a data set
representing a small section of the brain containing 1600
neurons. This model is different than the other data sets used
because it is modeled with a surface mesh containing 173
million 3D triangles (7.9 GB on disk). Finally we index a 3D
model of the “Lucy” angel statue represented by 252 million
surface mesh triangles (11GB on disk).

Like the table in Figure 22 shows, FLAT requires more time
to index and also more space to store the same information
for all the data sets. Similarly to the experiments with the
neuroscience data sets discussed previously, the additional
time and space required is only modest however.

Dataset

Nuage (dark matter) 1050 998 135 916

FLAT PR-Tree

Nuage (stars)

Nuage (gas)

Brain Mesh

Index Size(MB) Building Time (sec)

FLAT PR-Tree

1050 998

780 739

10939 10304

138 1021

102 721

1736 9901

Lucy Statue 15558 15032 2954 21868

Fig. 22: Index size and building time for each of the data sets.



Because these models are not as densely packed as the
neuroscience data sets, we do no expect FLAT to outperform
the PR-Tree substantially. We benchmark with two sets of
queries: the “small volume queries” set which contains 200
queries with a fixed volume of5 × 10−7% of the particular
data set volume, and the “large volume queries” set which
contains 200 queries with a fixed volume of5×10−4% of the
data set volume. The location and aspect ratio of all queries
is selected randomly.

Dataset

Nuage (dark matter) 5.0 6.4 21

FLAT PR-Tree

Nuage (stars)

Nuage (gas)

Brain Mesh

4.0 5.3

4.6 6.2

5.3 12.8

24

25

58

Lucy Statue 15.2 24.5 38

12.7 14.7 14

FLAT PR-Tree

14.1 12.4

8.4 15.3

28.0 28.0

6

44

35

16.9 22.2 24

%Speed-Up

Small Volume Queries Large Volume Queries

%Speed-Up

Execution Time (sec) Execution Time (sec)

Fig. 23: Execution time and speedup of small and large
volume queries.

The results in the table in Figure 23 show a speed up of
query execution time by using FLAT from 21-58% for “small
volume queries” and around 6-44% for “large volume queries”.
As discussed before, queries with larger volumes do not suffer
as much from the overlap in the R-Tree as do small queries,
and hence less speed up is achieved.

With these experiments we show that FLAT can also be
used to improve performance on other spatial data sets. The
biggest performance gains are obtained when using it on dense
data sets, e.g., meshes.

IX. CONCLUSIONS

In this paper we identify the problem of indexing dense
spatial data used in brain simulations. As we show, known
approaches do not scale with the density of the data or require
connectivity information in the data set. For dense spatialdata
which does not contain enough or no connectivity information,
we have developed FLAT. Compared to the bulkloaded R-Tree
variants, FLAT requires more space and time to index our data
sets. Indexing, however, is done only rarely, when the model
of the brain is updated.

More importantly however, our approach is very efficient
for range queries, the predominant type of query executed
by the neuroscientists working with this data. The query
runtime only depends on the height of the seed index and
the size of the result set. With it, queries can be answered
with significantly fewer disk page reads and hence also in
much less time. For a data set of only 450 million elements,
FLAT already outperforms the best bulkloaded R-Tree in our
experiments, the PR-Tree, up to a factor of eight for the
structural neighborhood use case. The trends indicate thatthe
benefit will be even bigger for larger and denser data sets used
in the near future in the Blue Brain project.

Because we only make a few assumptions about data set
characteristics, FLAT can also be used for other spatial data

sets which only require infrequent updates. We demonstrate
this with experiments on other scientific data sets where FLAT
also reduces the query execution time.
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