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Abstract— Neuroscientists increasingly use computational tools
to build and simulate models of the brain. The amounts of
data involved in these simulations are immense and efficielyt
managing this data is key.

One particular problem in analyzing this data is the scalabé
execution of range queries on spatial models of the brain.
Known indexing approaches do not perform well, even on toddyg
small models containing only few million densely packed syl
elements. The problem of current approaches is that with the
increasing level of detail in the models, the overlap in the
tree structure also increases, ultimately slowing down qug
execution. The neuroscientists’ need to work with bigger ad

more importantly, with increasi_ngly pletailed (denser) mockls, Fig. 1. Schema of a neuron’s morphology modeled with
motivates us to develop a new indexing approach.

To this end we developed FLAT, a scalable indexing approach cylmdgrs (left) and a visualization of_ a model microcitcui
for dense data sets. We based the development of FLAT on the comprised of thousands of neurons (right).
key observation that current approaches suffer from overlg in
case of dense data sets. We hence designed FLAT as an approach
with two phases, each independent of density.

Our experimental results confirm that FLAT achieves indepen The BBP targets both building as well as simulating brain
dence from data set size as well as density and also outperfos 1y 4als. The use of massively-parallel computing in the BBP
R-Tree variants in terms of 1/0 overhead from a factor of two .
up to eight. (BlueGene/P with 16k cores) nowadays allpws the placement

of several thousands of neurons in three dimensions to-recre
|. INTRODUCTION ate and simulate structurally accurate microcircuits [144

Scientists in various disciplines increasingly use coraputexample microcircuit of a few thousand neurons is shown in
tional tools to simulate, process and analyze experimeatal Figure 1 (right).

Computational tools make it substantially simpler for them  The microcircuits currently investigated in the Blue Brain
conduct scientific tasks. At the same time however, scisnti®roject contain up to 500,000 neurons, but it is foreseen to
are also increasingly buried in the data deluge produced blimately extend this by orders of magnitude to microditsu
their tools. Being able to access the relevant parts of theit the size of the human brair-{0'! neurons). More impor-
data, i.e., their spatial models, quickly in order to analyztantly, the circuits will at the same time become much more
understand, and prepare new experiments is pivotal for thefine grained, modeling the neurons at a subcellular levet wit

In this paper we thus develop a new index that efficientlyundreds of thousands of structural elements per neuron.
supports scientists in executing range queries on dense datTo support neuroscientists in analyzing spatial brain nsde
sets stemming from increasingly detailed spatial models. we want to develop an indexing approach that executes range

The work presented in this paper is motivated by owueries independent of the size and density of the brain
collaboration with the Blue Brain Project (BBP [17]). Withmodel. Achieving scalability for range queries is not just a
data acquired in anatomical research on the cortex of theblem in neuroscience, but also in many other scientific
rat brain the neuroscientists in the BBP build biophysicalldisciplines [8], [13] which use dense spatial data setsirigur
realistic models, the most detailed computer models of thtiee development of FLAT we make very few assumptions
brain to date, for simulation based research in neuroseienabout the data sets so that it can also be used for data skts wit
The project began by focusing on the elementary buildirgimilar characteristics. However, because the modelsiinse
block of the neocortex, a neocortical column of about 10,0@@&ses change only slowly, if at all, we focus on developing a
neurons. Morphologically speaking, each of these neurass Ibulkloading approach and do not consider updates.
branches extending into large parts of the tissue in order toThe remainder of the paper is structured as follows. We
receive and send out information to other neurons. Figurediscuss related work and its shortcomings in Section II. In
(left) shows a cell morphology, with cylinders modeling th&ection Il we analyze in more detail two use cases and show
branching of the dendrite and axon in three dimensions. how state-of-the-art approaches do not scale for our déta se




In Section IV we give a high level overview of FLAT. Sectionto STR, the Top down Greedy Split (TGS) [7] works top
V first discusses how we index the brain data and in Sectidown: it splits the data set into partitions so that on each
VI we explain how to evaluate a range query on the data. Wevel the area of each partition is minimized. This process
compare the approach to related approaches and benchmackiittinues recursively until each partition fits on a disk @ag
in Section VII. Finally, we use FLAT to index other data set3\Vhile bulkloading with TGS takes much longer than with
report on the results in Section VIII and conclude in Sectioother approaches, the resulting R-Tree outperforms tHaeHil

IX. R-Tree and STR on extreme data sets (extreme with respect
to skew, aspect ratio).
Il. RELATED WORK To improve handling of extreme data the Priority R-Tree
Database research has produced many approaches to sp@tftR-Tree) [1] has been proposed. It groups all elemertts wi
indexing [6] in recent years. extreme coordinates in the same dimension in the same node,

A first class of spatial indexes are point access methodiereby reducing the area and overlap of the remaining nodes
such as the KD-Tree [4] and the Quadtree [21], along with ifhis improves its performance on synthetic and extreme data
variant for 3D space, the Octree [11]. While these approactgets, making the PR-RTree outperform TGS.
are mainly used in memory, two extensions of the KD-Tree Despite the numerous improvements and approaches to al-
also work on disk, the KDB-Tree [5] and the Bkd-Tree [20]leviate the problem of overlap in the R-Tree, it still intraxs
The latter claims a better performance in the case of updaté@nsiderable I/O. The denser a data set is, i.e., the motialspa
These indexing techniques can, however, only be used ta inddements are in the same unit of space, the more overlap the
points and not spatial objects. Because our data set centdlaunding boxes of the R-Tree have, and hence the bigger the
volumetric elements, we would need to duplicate elemerlt® overhead of query execution becomes.
which occupy several partitions on the leaf level, thereby 1. M OTIVATION & USE CASES
increasing the index size several times.

To index connected tetrahedral meshes, crawling appreacr:gBecause the spatial data sets modeling the brain are both

ry dense and concave, readily available indexing appesac

nnot be used. Using bounding box based indexing tech-

W'tg twalklntg- [19] but trg?u!ref the t.dataviﬁ to b% (ionveéiques such as R-Tree based approaches [9] introduces sub-
and to contain connectivity information. ile our datasset, i /0 overhead.

contain connected objects (neuron branches), they alse CONwe illustrate this by indexing brain data sets of increasing

:ﬁm concavte (;egl(:ns, "te." hdoles. Concave reg|(1nsn(;ldm S|Odensity with different bulkloading variants of the R-Trd@
€ connected dala Set Inside a range query into two PaffRrease density we keep the volume the same but gradually
preventing the algorithm from crawling from one part to th%dd elements to the model. We measure the overlap in the

other. Known crawling approaches hence do not work for OHfst (Hilbert [12]), the most commonly used (STR [16]), and

data. ;
th t t (PR-T 1]) bulkloaded R-Tree b t
Arguably the seminal data structure is the R-Tree [9]. TI"Bee most recent ( ree [1]) bulkioade ree by exeguiin

. . o . L oint queries at random locations. The point query is an
R-Tree is a disk-based, multi-dimensional generalizadicthe N P query

. ; ) : ..~ excellent indication of overlap in an R-Tree: the number of
B-Tree [2], which recursively encloses objects in mINIMUggy pages read to execute this query in an R-Tree without

bounding rectangles (MBRs). Several extensions of thecha rlap is equal to the height of the tree. The more disk pages

approach have been proposed. They can generally be divi 844 to be read. the more overlap the R-Tree has.
into two classes: bulkloaded R-Trees, where the data set Is '

known a priori, and R-Trees where elements are inserted 1000
consecutively. tg 800 | - PR-Tree L -

The R*-Tree [3] falls in the latter category and reduces over « @ GiRRee

; ; . : T 2600 - s

lap through an improved version of the node split algorithm §&
along with the removal and reinsertion of spatial elements ﬁ.g 400 ¢
(once a node overflows). The R+-Tree [22] similarly tries to & 50 |-
avoid overlap through the duplication of the MBRs. Doing so 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
however leads to a much bigger index. 50 100 150 200 250 300 350 400 450

Several packing methods for the R-Tree have been proposed Density [Million Elements per 285um°]
to bulkload data sets which are known a priori. With these,
spatially close elements can be packed on the same disk pageFig. 2: Point query performance on R-Tree variants.
in order to improve locality and to reduce overlap between
nodes. The Hilbert R-Tree [12] uses the Hilbert space filling The results in Figure 2 clearly show that with increasing
curve to order the objects. Consecutive elements in thisrordlensity, the overlap also increases: the height of the Bee i
are spatially close and are hence packed on the same pé&geet the number of pages retrieved for a single point query
Sort-Tile-Recursive (STR) [16] recursively tiles the spacgrows to more than 450 for the densest data set indexed with
sorts the elements in a tile along each dimension and therebg PR-Tree. The overlap problem in R-Trees has a subdtantia
also guarantees spatial proximity as well as small MBRshWitmpact on the range query performance in the following two
this, STR outperforms the Hilbert R-Tree [16]. As opposedeuroscience use cases.

like DLS [19] use approximate search algorithms couple\é
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A. Structural Neighborhood SN T T D
The structural connectivity in the BBP microcircuits, itlee o [ ©o Size of Data Retrieved by Hilbert R-Tree R ég
places where two neuron branches touch (and where elédctrica € ¢ . ': gg \g:,
impulses may hence leap over) is currently precomputed [14] -g éﬁ q :. s% ﬁg{
While this allows to build the circuits fast, it is not wellised 2 4 % s S g% yg
to detect proximity incrementally, i.e., detect the projnof & 2 ét § E§ ﬁ% s%
fibers from other brain regions. a . : A ‘RN KN K
o 50 100 150 200 250 300 350 400 450
Data;e;n?:n'fs'?e'r"z':s"u":s 50 100 150 200 250 300 350 400 450 Density [Million Elements per 285“"13]
Number of age feads | 173 185 194 187 21 213 224 228 233 Fig. 4: Total bytes read and result set size for large spatial

~ subvolume queries on R-Tree variants.
Fig. 3: Number of page reads per result for structural neigh-

borhood range queries on a Priority R-Tree.

R-Tree in this experiment) retrieves grows from 3 to 4 with
To compute proximity incrementally, numerous requestie density of the data set. This overhead is mainly due to the
for the immediate neighborhood, e.g. all elements within gon-leaf pages which have to be read, i.e., organizing tke da
distance of am (5 x 10~"% of the space), along a neurorhierarchically. Clearly we have to find an approach thatescal
fiber are executed in sequence. better.
Because R-Trees built on such dense data sets have con- -
siderable overlap, executing these queries has a sulastarti Contributions
I/O overhead. To show this we index a brain model with a The contribution of this paper is the development of FLAT,
bulkloaded Priority R-Tree and measure the number of page indexing approach that scales for increasingly dense dat
reads per result element for very small random range quergess of the brain.
(each covering x 10~7% of the space). While keeping the We base the development of FLAT on the key observation
volume constant, we increase the number of elements in that, given any start element inside a query range, realysiv
model and therefore the density. visiting its neighbors inside the range only depends on the
The results in Figure 3 show that with a data set of 45@umber of elements in the result (and does not suffer from
million elements the average number of page reads for eamlerlap). However, to be sure that all elements inside the
element in the result set (of 56’000 elements) is 2.33. This guery range are visited, the data set needs to have infamati
already a substantial overhead and the trend indicateshtisat regarding what elements neighbor each other. This leaves us
approach will not scale with increasing density of the data swith two key challenges that we address in the development
Clearly we have to find a more scalable approach to suppoftFLAT.
this use case better. First, we develop an efficient mechanism to find a random
i start element inside the query range. The second, moreuttiffic
B. Large Spatial Subvolumes challenge is to compute what elements neighbor each other in
For the purpose of visualization and analyses, e.g., tissihe data set, i.e., neighborhood information. We thus dgvel
density, specific subvolumes need to be retrieved with range efficient method to compute neighborhood information
queries. The requested subvolume sizes are typically hig along with data structures from where to retrieve it effidien
can go beyond x 10~*% of the data set space. With this, FLAT scales for data sets of increasing densitg an
In the case of queries with increasing query volumes, thackles the problems of the two use cases, i.e., it avoiddagpve
number of overlapping minimum bounding rectangles (MBR&nd retrieval of an excessive number of non-leaf nodes.
enclosing a query decreases, and hence fewer ambiguoss patfAlbeit the ideas FLAT is based on are simple, they prove to
need to be followed in the R-Tree. The I/O due to overlap thiye very effective. We improve the query execution time far th
decreases and overlap no longer dominates the overheadpviously described two use cases, between a factor of 2 and
the same time however, in order to retrieve a large result sétfor the first and between a factor of 2 and 6 for the latter,
the number of non-leaf pages which need to be read groasmpared to the fastest R-Tree variant. In further expartme
substantially. The non-leaf pages in the R-Tree are thegpage also show performance improvements on other scientific
which store hierarchy information as opposed to the leaépaglata sets. The trends of our results strongly indicate thaTF
which store the spatial elements. will scale substantially better for more detailed brainadsets
We measure this overhead with an experiment showing thsed by the neuroscientists in the near future.
total number of Gigabytes retrieved when querying the ReTre
variants with 200 random queries (each of a siz& »l0~4% IV. THE FLAT APPROACH
of the space) and compare it with the size of the actual FLAT indexes spatial elements of arbitrary shape and uses
result set in Gigabytes. As Figure 4 shows, the differencetlisese elements as primary keys to retrieve further infaomat
significant, but more importantly, the ratio between theesifsuch as electrical properties etc.) about them. Simil&oly
of the result and the size of the data the PR-Tree (the b&sflree variants, FLAT wraps elements of arbitrary shape in



axis aligned minimum bounding rectangles (MBR) and storesBecause the data sets in our use cases, as is true for many
both, the actual element and its MBR. To evaluate a quesgientific data sets, change infrequently and updates happe
FLAT tests, like the R-Tree, whether the MBR of an elemer batches, reindexing is more efficient, and we hence do not
intersects with or is contained in a range query. consider updates. Instead, and also because our data sets ar
On a high level, FLAT uses the following data structureknown a priori, we develop FLAT as a bulkloading approach.
and two phased query execution approach. Elements and
their MBR are stored as follows: spatially close elemenés ar V. F_LAT I_ND'_EX'NG _
stored on the same page on disk. For each page of elemen#t the core of FLAT indexing is the algorithm to compute
neighborhood information, i.e., pointers to other sphtialose the neighborhood information that ultimately allows it tawl
pages are also stored. In particular, if disk pageontains an through (possibly unconnected) data sets. In the following
element which is close to another element on pagehen section we first discuss the algorithm to compute the neigh-
we store a pointer fromi to B. Additionally, for each page borhood information, and then the data structures needed to
the minimum bounding rectangle (the page MBR) enclosirgore this information.
all elements on it is §tpred toget_herl with a r(_aference to theT Computing Neighborhood Information
page. We use a traditional spatial index to index the pageé i ) )
MBRs and refer to it as the seed index. This concept, with TO compute the neighborhood information we segment the

arrows expressing neighborhood, is illustrated in Figure 5 Page. For a pag® and the partitionA it is contained in, we
consider a page as a neighborfif its partition is adjacent

= to or overlaps withA. For FLAT to work, we compute all
Q [ Q neighbors of a pag®, P’s partition MBR (the MBR enclosing
= /Q S the entire partitiord) and P's page MBR (the MBR enclosing
N SIAN S\ Q\ all the elements stored oR). Figure 6 shows an example
/7 /Q J s ——7 10 — 1 partitioning with the partition MBRs (dashed lines) and the
10 vé\‘/ I yQ g page MBRs (solid lines) enclosing the elements stored on a
y% '\ = “/ J 1 S page. The neighbor relationships between pages are dtastr
g |0 . with arrows. -
DO Dg Query Region The exact procedure used to partition the space does not

matter in order for FLAT's query evaluation to work as
Fig. 5: FLAT: Spatially close elements are packed on the sanmg as the resulting set of partitions satisfies two progert
disk page (rectangle) and pointers (arrows) are added batwegirst, the partition procedure must not leave any empty espac
neighboring pages. i.e., the union of all partitions must cover the entire space
Second, each partition MBR must enclose the MBR of the

corresponding page.
Given the seed index and the neighborhood information, the

result of range queries is computed in two phases: e s 1

« Seed PhaseGiven a query range, an arbitrary page MBR I
intersecting this range is retrieved from the seed index.
The key insight we use for this phase is that retrieving arl _— _—
arbitrary element in a given range is a cheap operationl, ° ﬁﬂ {%
even with an R-Tree. It does not suffer from overlap:’ |, iy SN
instead of having to follow all paths, only one single pathl_ =

has to be followed from the root of the tree to one of the, 6: Partitioni d dtod . MBR
leafs. The complexity of this operation is typically in th Ig. 6: Partitioning procedure used to determine page S

order of the height of the R-Tree (solid lines) as well as partitions (dashed lines).

o Crawl Phase: With the page MBR retrieved in the seed

phase, a reference to the corresponding disk page is alsqye yse an efficient algorithm based on STR [16] (see
obtained. This page is retrieved and all spatial elememlseydocode in Algorithm 1) to first sort the spatial elements
on it are tested if they are in the query region. Followingp, the x-dimension and then to partition them along this
this, its neighbor pages are retrieved recursively until fimension. Each resulting partition is again sorted and par
more elements in the query range are found. titioned based on the centers of the y-dimension. The same
This approach ensures that evaluating a range query procedure is repeated for the third dimension. The pantitio
longer depends on the density of the data. The complexity sifzes in each of the partitioning steps are chosen so that the
the seed phase is in the order of the height of the tree and fimal partitions contain at most as many spatial elementsaas ¢
crawl phase depends on the size of the result set. At the sadmeestored on one disk page. Once all partitions are calcylate
time, the approach does not need to retrieve hierarchicalhe partition MBRs and page MBRs are calculated. To make
stored information. sure the partition properties discussed before are sdtisfie




Algorithm 1 FLAT Indexing Algorithm

Input: elements: array of all spatial elements
size: number of spatial elements in data set
pagesize: number of elements on each disk page
rtree: R-Tree seed index

Output: partitions: array of all resulting partitions

Data: xpart: set of partitions
ypart: set of partitions
zpart: set of partitions
partitions: set of partitions

calculate number of partitions in each dimensio

pn = {/size/pagesize

sortelements on x-coordinate of element center
makepn partitions of consecutive x-coordinate values
insert partitions intorpart

foreach partition p € xzpart do
sort elements p on y-coordinate of element center

makepn partitions of consecutive y-coordinate values
insert partitions intaypart

foreach partition p € ypart do

sort elements p on z-coordinate of element center
makepn partitions of cons. z-coordinate values
insert partitions into:part

foreach partition p € zpart do
calculate page MBRageM BR of p

calculate partition MBRpartition M BR of p
stretchpartition M BR to containpageM BR
storepage and partition MBR in rtree
insertp into partitions

end

end

end

oreach partition p € partitions do

retrieve neighbors partitions in rtree intersecting with
partitionM BR of p

store p's neighbors, pageM BR and partitionM BR
together withp in partitions

end

return partitions

=

each partition is stretched so that it encloses the MBR of t
corresponding page. Following this, all partition MBRs ar
inserted into a temporary R-Tree, used solely to compute
neighborhood information. Finally, for each partition,ange
query with the partition MBR is executed, and all intersagti
partitions, the neighbors, are retrieved.

B. Data Structures

we discuss how this information is stored in order to support
efficient query execution with FLAT. We patrticularly dissus
FLAT’s core data structures, theeed indexused to retrieve a
start elementmetadataused to retrieve neighborhood infor-
mation, and finallyobject pagesised to store the actual data,
the spatial elements.

1) Seed Index:To start the search, theeed indexmust
return an arbitrary element inside the query range. Finding
an arbitrary spatial element inside a range is in many dpatia
indexes independent of the density. In the R-Tree for exampl
fgespite the overlap due to the data set density, only one of
several ambiguous paths through the tree needs to be fallowe
The number of nodes visited/disk pages read is thus in the
order of the height of the R-Tree.

In FLAT we use an R-Tree to find a starting point for the
crawl phase. In thiseed indexve index each page MBR (the
MBR of an object page), along with a pointer to the disk page
(object page). We modify the implementation of the R-Tree to
retrieve intersecting page MBRs along with its object page
until it finds an object page on which one element is in the
qguery range. Once such a page is found, querying the seed
index is stopped and the page is used as a starting point. In
the rare case of nearly or completely empty queries, several
leaf nodes may need to be visited until a page MBR is found.
If no object page can be found, then the query has no result.

2) Metadata & Neighborhood InformationStoring the
neighborhood information on the same pdgas the elements
is difficult, because depending on what elements aréd’pa
different number of pointers needs to be stored on it. The
number of pointers that need to be stored cannot be known a
priori, and resorting to ad-hoc mechanisms, e.g., to resarv
certain amount of space, leads to underfilled pages, defpati
the goal of storing as many elements as possible on one
page. We therefore store the neighborhood information and
the spatial elements separately.

The neighborhood information is stored in an additionahdat
structure referred to as metadata. FLAT stores per objey pa
one metadata record summarizing it, i.e. the record comnin
pointer to the object page, the page MBR, the partition MBR,
as well as pointers to the neighbors (to their metadata dg¢cor
of the object page.

When retrieving one metadata record, it is likely that its
spatially close neighbors are retrieved as well. To improve
performance we need to preserve the spatial locality of the
metadata records and therefore store them in the leafs of the
6eed tree, i.e., we index each recétavith R’'s page MBR as

8y andR as value. The neighborhood information stored in

e records consequently contains pointers to the otherdec

Ride the R-Tree leafs. Storing the records in the leafhef t
seed tree (an R-Tree) ensures that spatially close recoeds a
stored on the same leaf page. At the same time, we fit as
many records as possible on each leaf to make good use of
disk space.

All data structures and their relations are illustrated in

The indexing algorithm returns a set of partitions, and fdfigure 7: several metadata records are stored on each of the
each partition the spatial elements in it, the page MBR, theafs in the seed index. Neighborhood information is stored
partition MBR, and the neighbors. In the following sectiorms pointers from one metadata record to another, possibly be



tween different leaf nodes. Each metadata record alsoicenta | | 5 | > = |
a pointer to an object page. I 0 =T QI V74 I
I S < V7074 17\ I
] ] X ] <~ |

| Query Region

Seed Tree Index | [ R XK — |

Nodes | | |
| A I | gl
Metadata Records I @ = |¢—> B%” & / |
in Seed Tree Leafs = <[ I'p > 4 I I

! I I

Object Pages

Fig. 8: Partitions intersecting the query range must be consid-

] o ) ered during the breadth first search.
Fig. 7: The three data structures and their interaction: seed

tree, the metadata records in its leafs point to each other Fgorithm 2 Breadth-First Search Algorithm
to the object pages.

Input: mr: pointer to metadata record from seed index;
rg: range query
3) Object Pages:To optimize the fill factor of the object Output: result: set of spatial elements
pages we pack the maximum number of elements (the exBeta: queue: metadata record queue;
number depends on the size of the structural elements, e.g., Visited: set of visited object pages
fo_r a mesh tria}ngle 9 floats/doubles suffice, _for an MBR/ax'ki,t mr into queue
aligned box it is 6 floats/doubles) on each disk page. _
Also on the object pages we want to preserve spatial logalifynile queue # ) do
i.e., store spatially close objects on the same page. The pay dequeue metadata record from gueue

tions STR produces preserve spatial locality better [1&hth | object pagep referenced byn ¢ visited then
Z-order [18] or Hilbert-packing [12]. Because Algorithm 4. i if pageMBR ofin intersects withrg then

based on STR, we can directly use its output (the partitions) retrieve object page referenced inn
of Algorithm 1 to determine what elements to store together insertp into visited
on a disk page. foreach element € p do

VI. FLAT QUERYING if element MBR intersectg;r then

i | putelement into result
FLAT uses a breadth first search to crawl the connected end

neighborhood of a start page. More precisely, FLAT finds end
a metadata record in the seed index that points to a page | onq
containing a spatial element which intersects with the ygjuer| if partitionMBR ofm intersects with-q then
range. It follows the neighborhood pointers to other resord foreach neighbor in m do
stored in other leafs of the R-Tree. The neighbor pointers | enqueuereighbor metadata record igueue
stored in a metadata recowt! are only followed if M’s end
partition MBR intersects with the query. Similarly, the ebj end

page is only read from disk i#/’s page MBR intersects with end

the query. The final output of the breadth first search is thgqg

set of spatial elements which intersect with the query regioeturn result

The algorithm is more formally described in Algorithm 2.
Algorithm 2 also shows that the choice of the start page

during the seed phase affects neither the accuracy nor effierefore uses the partition MBR of a paBeand checks if it
ciency of the search. Choosing a different starting eleroelt  intersects with the query region to decide if the neighbdrs o
changes the order in which the pages are visited. Because thgre visited. If it does intersect, then its neighbors artetes
algorithm keeps track of what pages have been visited, eachthe situation illustrated in Figure 8 also gives an intuitio
page is visited at most once. as to why a partitioning needs to have the two properties
Intuitively, evaluating a query can be stopped if no morgiscussed in Section V-B.2 in order to work with the breadth
neighbors with a page MBR intersecting the query can Bigst search:
found. If however this condition is used, the query in a case Empty Space: if we allowed empty space between

such as the one depicted in Figure 8 cannot be properly naitions, no neighborhood pointers would be inferred
evaluated. This example illustrates why FLAT needs to store ;.4 hence the breadth first search would not continue

and use the partition MBR. Using the shade_d page on the left .55 such empty spaces.

of Figure 8 as the start page, query evaluation would already

stop after looking at the first two neighbors: none of them « Partition MBR encloses Page MBR:if the partition
has a page MBR intersecting with the query region. FLAT does not enclose the page MBR, then situations may




occur where the page MBR intersects with the quegontains 100’000 neurons in a volume of 285°. For both
range, but the partition MBR does not. Other partitionse cases presented in Section Ill, the neurons are modeled
MBRs then cover the page MBR but effectively prevenwith 450 million cylinders (an example neuron modeled with
the page from ever being read. Figure 9 illustrates thiylinders is shown in Figure 1 left). Each cylinder is delsed
situation where partition MBRA (dashed line) does notby two end points and a radius for each endpoint. For a
entirely cover the page MBR (solid line). If the breadth fair comparison, we only store the MBRs of the cylinders
first search starts at page and partit@nit will continue on R-Tree leaf pages and on the FLAT object pages. All
to partition B but go no further because partition MBRapproaches therefore test if the range query intersedsthet

B does not intersect with the query rangewill never MBRs stored (axis aligned minimum bounding rectangles). We
be read. use double precision floating point numbers to represent the

coordinates of the MBRs.

- - - - --- L _"g T~ 71 Through experimentation and modeling by the neuroscien-
I | Query Region | | ] I tists, the brain model perpetually grows and at the same time
I | u g 711 ”| Al |  becomes more fine grained. To determine the trend of FLAT
I A\ d i\ - 2 I and the R-Trees, we progressively increase the densityeof th
I Cl I | data set in each experiment by adding more neurons to the
' I I%ﬂ | A same volume, i.e., 50 million more cylinders in every step.
I | %“ B I— — — =l With this we can extrapolate how FLAT performs for more
I C | I dense data sets of the brain model in the future.

Inspired by the two use cases described in Section Il we
Fig. 9: A scenario where the query is not evaluated properjefine two micro-benchmarks. The SN benchmark is derived
because the partition does not cover the page MBR. from the structural neighborhood use case and conseautivel
executes 200 spatial range queries each with a fixed volume of

5 x 10~ "% of the entire data set volume. The LSS benchmark
VIl. EXPERIMENTAL EVALUATION is derived from the large spatial subvolume use case and also

In the following section we describe the experimental setg(/;%nseCUtIVer executes 200 spatial range queries, butveith

& methodology, measure the performance of FLAT and stu ixed volume o6 x 10~4% of the entire data set. The location
the impact of data set characteristics on FLAT. We compa‘?‘@d aspectratio of all queries is chosen at random. Befate ea
FLAT against several bulkloaded R-Tree variants becau%ﬂery 1S execqted, the OS c_aches and disk buffers are cleared
bulkloaded trees outperform other R-Tree variants sucheas overwritten with an empty file).

R*-Tree [3], primarily due to better page utilization. Besa

the models of the brain change only slowly and the changes= Hilbert R-Tree fxlnggi-nding Neighbors -
occur as batches, reindexing with a bulkloading approach is ‘g 28|

240 wrm STR R-TREE | mmm Partitioning N
[ &~ PR-TREE .
200

160

simpler and more time efficient than updating.

A. Setup

Experimental Setup
The experiments are run on a Linux Ubuntu 2.6 machine
equipped with 2 quad CPUs AMD Opteron, 64-bit @ ; ™ 7 %
2700MHz and 4GB RAM. The storage consists of 4 SAS w0 100 150 20 250 300 5 400 450
(10000 RPM) disks of 300GB capacity each, striped to a Dataset Size in Million Elements
total of 1TB.
We use a readily available implementation of the STR Rsig. 10: Overall time to index for data sets of increasing
Tree [10] but adapt so it stores 85 elements on the legénsity.
level. Additionally, we use our own implementations of the
Hilbert R-Tree [12] as well as Priority R-Tree (PR-Tree) [1%6 )
to compare against FLAT. All approaches store data on tRe Time to Index
disk in 4K pages. The seed index also uses 4K nodes. The filindexing with the Hilbert R-Tree is simple: each element
factor for the R-Tree variants and the seed tree is set to 1003eds to be assigned a Hilbert value, the entire data set is
All implementations store 85 spatial elements on a 4K pageorted once on this value and the tree is built recursively.
For all the experiments the OS can use the remainiByilding the Hilbert R-Tree should therefore be very fast.
memory to buffer disk pages. For a fair comparison the Both the STR-bulkloaded R-Tree and FLAT use STR to
implementations of all approaches are single threaded.  pack the elements on pages. In doing so they sort the entire
data set in three steps of recursion in each dimension. gcki
Experimental Methodology the elements on disk therefore takes the same time for both
For the measurements we use data sets that model a smpfiroaches. Because FLAT also needs to find the neighbors
part of the brain with cylinders as spatial elements. Theehodf each partition we expect that will take longer to index.
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FLAT

sz Seed Tree + Metadata
o5 &3 Object Pages

20l PR-Tree

i i i i itti o === Non-Leaf Nod
elem(_en_ts as fit on one page) in each d|men3|or_1, splitting _the% 15| Leaf Nodes
remaining elements into two subsets and recursively apglyi "
the same procedure on the two subsets in the next dimension® or
5
0

The Priority R-Tree builds the tree by sorting the data set 30
in one dimension (on either the low or high coordinate in
this dimension), identifying the extreme elements (as many

o
S,

The extreme elements identified in every step in each dimesio g
are stored together in the same leaf node of the tree. Once
all leaf nodes are written, the same procedure is recuysivel
applied to the next higher level of the tree. This entire
procedure sorts the data several times recursively in each
dimension and thus takes quite a long time.

The results of the experiment shown in Figure 10, where we
index data sets of increasing size, confirm our expectations
to index the same data set FLAT takes longer than Hilbelgt,!\l Benchmark Results )
slightly longer than STR but is substantially faster thaa th'IM€ & Page Read Comparison o
PR-Tree. Optimizations for bulkloading the PR-Tree spegd [LAT does not suffer from problems related to density (like
indexing considerably [1]. But even with these optimizatip overlap) and hence scales better for dense data sets. As can

the PR-Tree remains slower than STR & FLAT because {f S€en in Figure 12, which shows the number of page reads

data needs to be sorted at least six times. twice in ear&guired to execute the benchmark, the amount of data read

dimension (once on the minimum and once on the maximui compute a query with FLAT is substantially smaller than
coordinate). with any of the R-Tree variants. The best R-Tree, the PR-
Indexing with FLAT is rather fast, and because indexinéree’ retrieves 8 times more data from disk than FLAT for the
only needs to be done very infrequently, once the model of t gns_est data_ set (450 m|II|qn elements in 285). )
brain changes, the cost of it is acceptable. More impostant This experiment also confirms previous results [16] showing

however, because the trend of FLAT is linear, we can exp At STR bulkloading outperforms Hilbert bulkloading. ls@
it to scale to denser data sets. corroborates results [1] indicating that the PR-Tree nexgui

less page reads than other bulkloaded R-Trees on extreime dat
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Fig. 11: Index size for data sets of increasing density.

C. Index Size

& o250
Both the R-Tree variants and FLAT store 85 spatial elementg-§ Hilbert AT T
on a disk page. The total size of the leaf pages of the R-Trees § 200 [ 72" e il e
. . . (2] ..o PR-T| 2 et
is thus the same as the size of FLAT's object pages. Also thg 3 150 | 2" F[a7®® e

non-leaf pages of the R-Trees and the seed tree pages of FL@}E

need the same space to be stored. The only difference is that,’

FLAT additionally stores the metadata in the seed tree. Thgg 501

FLAT index is hence bigger than the R-Trees as the experime@n: 0

in Figure 11 confirms. 50 100 150 200 250 300 350 400 450
In this experiment we have compared the size of the index Density [Million Elements per 285um"]

for data sets of increasing density for FLAT and the PR-Tree.

We only compare against the PR-Tree because the differ&fg. 12: Total number of page reads when executing the SN

bulkloading strategies only pack the elements differeimily benchmark.

quality but not in quantity, i.e., they pack different elamse

on the same page but always the same number. The spac€omparing the shape of the curves in this experiment

required, as well as the ratio between non-leaf and leafpageith the next measurement in Figure 13, where we measure

is exactly the same for all variants. the execution time of queries, it becomes obvious that the
The most important point this experiment demonstrategecution time for queries with FLAT and the R-Tree variants

however is that the size of the total index predominantig 1/0 bound. More importantly however, the trends for

depends on the number of elements, and that we can heegecution time and page reads indicate that FLAT scales

expect that it grows linear with increasing density of théadalinear for data sets of increasing density.

set.

100

Overhead Analysis
By measuring the information read from leaf and from non-
In the following experiments we compare the executioleaf pages for data sets of increasing density in Figure 14
of the SN and LSS benchmarks with FLAT and the R-Trefgight) we can corroborate the assumption that the R-Tree
variants regarding the number of disk pages read, as well(a® use the best R-Tree, the PR-Tree, as an example in
the time taken to execute the queries. this experiment) suffers from overlap. In this experimeré t
number of both types of pages grows with increasing density.

D. Use Case Benchmarking



7000 . .
gueries as much as small queries (because the overlap over-

= | —— FLAT : . , :

E 000 PR - head is amortized over a bigger result set) we still expe&TFL

£, 5000 | - P A . .

P P to perform better because it does not have to retrieve Itieirar

4000 ... . . .

E 3000 | L cal information (the subtree of non-leaf pages which cohnec

F P the root with the leaf pages). The experiment measuring the

@ 2000 pag P 9

D 1000 page reads for executing the LSS benchmark shown in Figure

= 0 : ‘ ‘ ‘ ‘ ‘ ‘ 16 confirms that FLAT needs to read fewer pages to compute
50 100 150 200 250 300 350 400 450 the result, and hence scales better for dense data sets. The
Density [Million Elements per 285um°] relative performance among the R-Tree variants is the same

as for the SN benchmark (and conforms with previous results
Fig. 13: Execution time for executing the SN benchmark. in literature).

o

% 25 )
More importantly however, the ratio between non-leaf td lea & € 2 f - e il P S
page reads increases. While for the sparsest data set (Sﬁé’1 5| Fﬁﬂree ______ A L o
million elements) the ratio is 2, it grows to 2.8 for the 85 | o
densest data set (450 million elements). This means thht wit :E,.g r
increasing density, more non-leaf pages need to be read p& Sos |
leaf page read. This clearly shows that overlap is a problem§Lr

for data sets of increasing density. 50 100 150 200 250 300 350 400 450
In the case of FLAT, page reads are due to the query in Density [Million Elements per 285um?]
the seed tree as well as reading metadata and object pages.
The first largely depends on the height of the tree, and hengig. 16: Total number of page reads when executing the LSS
can be considered constant, whereas the latter two dependheAchmark.
the result size. Because we keep the query size constant but

increase the density, the result sets become bigger. Thibea Similar to the SN benchmark, the query execution time is

seen in Figure 14 (left) where we measure the number of pages, jominated by the page reads. For data sets of increasing
read from the seed tree, from metadata, and object pages Qﬁsity, the trend of the execution time experiment shown in

data sets of increasing density. The page reads due to te $68 ,.e 17 has the same shape as the page read experiment
tree remain constant while the ones for metadata and objefb,vn in Figure 16.

pages grow with the result set size.

Because the result set grows with increasing data density,
the initial cost of the seed query is amortized over a larger 900
result set and hence the total cost per result element derea 800 [ ——FLAT P
for FLAT. For the R-Tree variants on the other hand, the Eégg | -+ STR R-Tree a
pages read per result element increase because the densit@ soo | 7 iPert ReTree
increases with the data set size. This increases the overlag= 490
in the R-Trees and results in a growing number of page Eggg
reads per result element. The experiment in Figure 15, wheref 100 |
we measure the pages read per result element for both 0

approaches, clearly demonstrates this.

50 100 150 200 250 300 350 400 450
Density [Million Elements per 285um3]

- Hibert B-Tree Fig. 17: Execution time for executing the LSS benchmark.

R-Tree

Overhead Analysis

The difference between FLAT and the R-Tree variants, how-

ever, is not as significant as for the SN benchmark. This is

because the overlap only has a minor impact on larger volume

3 gueries. This can be seen in Figure 18 (right) where we aaalyz

Density [Million Elements per 285um~] the ratio of retrieved leaf and non-leaf pages for the LSS

) benchmark for FLAT and the PR-Tree, the best R-Tree variant

Fig. 15: Pages read per result element for the SN benchmayk: this use case. For both approaches the share of objees pag

or leaf pages respectively is substantially higher.

LSS benchmark results The overhead for the R-Tree variants (non-leaf pages),

Time & Page Read Comparison however, is still substantially higher than for FLAT (seeekt

Although overlap in the R-Tree variants does not affect bignd metadata). Instead of retrieving the subtree leaditigeto

Page Reads per
Result Element

50 100 150 200 250 300 350 400 450
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Fig. 14: Breakdown of data retrieved for both approaches for the Sittmark.
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Fig. 18: Breakdown of data retrieved for both approaches when exegthe LSS becnhmark.

result stored in the leaf pages, FLAT only uses the seed tfee FLAT Analysis

o find an arbitrary element in the range, and then uses thel’he characteristics of the data set have a direct influence

m.etadata .to find the relevant object pages. It thereforeeasca(l)n the number of pointers FLAT adds to the data set which
with the size of the result set.

The difference in overhead between FLAT and the PR turn has an impact on the performance of the FLAT query

S . : . - _execution. In the following section we study what particula
Tree is significant. Comparing Figure 18 (left) with Flgur%ﬁa set characteristics have an impact on the number of

18 (right) shows that the PR-Tree has an increasing overhe ointers, and we analyze the FLAT querying algorithm in more
with growing density (up to three times more overhead for trPetaiI ' y querying alg

densest data set). What is more important, however, is hew .
overhead develops relative to the result set size with asing 1) Impact of Data Set CharacteristicsThe number of

density. The page reads per result as a function of incrgasﬁpimerS FLA_‘T adds to the data set has an impact on the
data density shown in Figure 19 illustrate this. BecauseTFLAIUMPer of disk pages read to evaluate a query. The size of

amortizes the fixed cost of the seeding phase over an inogead/'® Metadata grows with the number of pointers as does the

result set, the page reads per element decrease. The Romire&Verage number of pointers per metadata record (the number

the other hand, retrieves a subtree of increasing size with of records stay_s the same because it depends solely on the
increasing result set size, and the page reads per elentarg h@umber of spatial element_s). Both these effects 'ea‘?' to more
grow. The impact of a subtree of increasing size however kétadata records read during each step of the crawling phase
not as severe as the effect of overheads caused by the ovegaﬁje following we therefor_e study the impact of different

in the R-Tree variants as seen in the SN benchmark. Stily wi@ctors on the number of pointers.

an increasing density of the data set, FLAT scales better by 350000 -

requiring less page reads per element than the R-Tree t@rian
2 300000 -+ 50M
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0.07 = 250000 [ o= %ggm
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Fig. 19: Pages read per result element when executing LSS
benchmark. Fig. 20: Distribution of the number of pointers per partition
with increasing data density.



Impact of Density increases linearly from 17.4 to 22.9 throughout the enéirge

We study the impact of an increasing density of the datd possible aspect ratios.

set on the number of pointers of each partition. For this we 2) FLAT Memory & Computation Overheadhe overhead
index neuroscience data sets of increasing density withTFLAn terms of memory footprint and computation during query
and measure how many partitions have a given number eéfaluation is not significant. The memory footprint for FLAT
pointers. As the distribution in Figure 20 shows, the medidncreases during the crawling phase but only grows line#tr wi
stays the same and it becomes more explicit with increasiti@ size of the result set of the query. The space used to store
density, and appears to converge at 30. From this we inf@e book keeping information (the queues of the breadth first
that even if the model of the brain becomes more detaileglgorithm) remains at 0.9% of the size of the result set.

the average number of pointers remains constant, and withvipst of the time evaluating queries is spent in retrieving

this the size of the metadata grows only linearly. data from disk. The share of time used for disk operations
N ) ranges for both benchmarks between 97.8% (for LSS on 50
Impact of Partition Size million) and 98.8% (for LSS on 450 million). The remaining

Because the number of pointers is determined by how majiye, the computational overhead, is spent on processiag th
partitions overlap with each other, the major factor inficiag age data. The majority of this time is used to compute
the average number of neighbor pointers is the size of thfersections of the page and partiton MBRs with queries.
partitions. To demonstrate this, we generate artificialadathe number of MBR intersections depends on the number of
sets W|th 10 m|”|0n e|ementS Wh|Ch are Uniformly randomlgpatia| elements stored on the Object pages and the number of
distributed in a volume 0f1&m3. We calculate the partitions neighbor pointers for each metadata entry. AsS we Showed in
for the data set and then incrementa”y increase the sizecof Ehe previous Subsection, the average number of neighbdrhoo
partitions. Figure 21 confirms that with an increasing parti pointers converges with an increasing data set density, and
size the average number of neighbor pointers grows as Wellence the share of time needed for calculating MBR intersec-

The volumes and the aspect ratios of the elements in tu§ns remains constant for increasingly dense data sets.
have a direct impact on the partition size because the ipartit

needs to be stretched to accommodate the elements in it. We

. . . ) VIIl. FLAT ON OTHER DATA SETS
have designed two experiments to illustrate this.

100000 - We also use FLAT to index other scientific data sets

S _. o X representing spatial information in order to see how itqrenfs
E"g 90000 % compared to the PR-Tree. We have taken the Nuage [15]
& = g0000 | o xx data sets which model the n-body problem, a simulation of
‘; "E’ X how the universe evolved since the big bang. These data sets
g_g 70000 1 22X x contain spatial information modeled with vertices repntiseg
@ > 60000 |, 00X dark matter, gas and stars. They contain 16.8, 16.8 and 12.4
< 50000 ‘ ‘ ‘ ‘ million vertices in space amounting to a size of 768, 768,
15 18 21 24 27 568MB respectively. In addition to this, we index a data set
Average Number of Neighbor Pointers representing a small section of the brain containing 1600

neurons. This model is different than the other data setd use
Fig. 21: Distribution of the number of pointers per partitiorbecause it is modeled with a surface mesh containing 173
with increasing partition volume. million 3D triangles (7.9 GB on disk). Finally we index a 3D
model of the “Lucy” angel statue represented by 252 million
In the first experiment we generate an artificial data set sfirfface mesh triangles (11GB on disk).
10 million uniformly randomly distributed elements imgn?, Like the table in Figure 22 shows, FLAT requires more time
and increase the volume of each element (the length of tleeindex and also more space to store the same information
elements are the same along each axis) but its position nemdor all the data sets. Similarly to the experiments with the
the same. This experiment confirms that an increase of theuroscience data sets discussed previously, the adaition
element volume does indeed have an impact on the averéigee and space required is only modest however.
number of pointers per partition, as increasing the objeet s

by a factor of 5 incurs a 10% increase in pointers. Index Size(MB) | Building Time (sec)
In the second experiment we generate a data set of 10 Dataset | FLAT PRTree| FLAT  PRTree
million uniformly randomly distributed elements each wih
constant volume of 38n® in 8mm3. We keep the position Nuage (dark matter) | 1050 998 | 135 916
the same but vary the aspect ratio as follows: for each elgmen Nuage (stars) | 1050 998 | 138 1021
its length in each dimension is randomly set between 5 and Nuage(gas) | 780 739 | 102 721
35um. The lengths on all axes are normalized (by choosing an Brain Mesh ]10939 10304 | 1736 9901
axis at random) in order to obtain elements of equal volume. Lucy Statue | 15558 15032 | 2954 21868

This experiment also confirms that the aspect ratio has an ) o
influence on the number of pointers: the average numddp- 22: Index size and building time for each of the data sets.



Because these models are not as densely packed ass#ts which only require infrequent updates. We demonstrate
neuroscience data sets, we do no expect FLAT to outperfotiis with experiments on other scientific data sets whereTFLA
the PR-Tree substantially. We benchmark with two sets afso reduces the query execution time.

queries: the “small volume queries” set which contains 200
queries with a fixed volume of x 10~7% of the particular

data set volume, and the “large volume queries” set whicHI
contains 200 queries with a fixed volumeiok 10~*% of the

data set volume. The location and aspect ratio of all queries
is selected randomly. [2]
(3]

Large Volume Queries
Execution Time (sec)

FLAT PR-Tree %Speed-Up

Small Volume Queries
Execution Time (sec)

Dataset | FLAT PR-Tree %Speed-Up

(4]

Nuage (dark matter) 5.0 6.4 21 12.7 14.7 14
Nuage (stars) | 4.0 53 24 141 124 6 [5]
Nuage (gas) 4.6 6.2 25 8.4 153 44 6
Brain Mesh 5.3 12.8 58 28.0 28.0 35 [ ]
Lucy Statue 15.2 24.5 38 16.9 22.2 24 [7]

Fig. 23: Execution time and speedup of small and IargefS]
volume queries.

The results in the table in Figure 23 show a speed up J?]
query execution time by using FLAT from 21-58% for “small
volume queries” and around 6-44% for “large volume querieg10]
As discussed before, queries with larger volumes do noesuff; ;
as much from the overlap in the R-Tree as do small queries,
and hence less speed up is achieved.

With these experiments we show that FLAT can also 61e2]
used to improve performance on other spatial data sets. The
biggest performance gains are obtained when using it oredeHs!
data sets, e.g., meshes.

IX. CONCLUSIONS [14]

In this paper we identify the problem of indexing dense
spatial data used in brain simulations. As we show, kno
approaches do not scale with the density of the data or req
connectivity information in the data set. For dense spaltish
which does not contain enough or no connectivity informatio
we have developed FLAT. Compared to the bulkloaded R-Trae
variants, FLAT requires more space and time to index our data
sets. Indexing, however, is done only rarely, when the model
of the brain is updated. [17]

More importantly however, our approach is very efficient
for range queries, the predominant type of query executed!
by the neuroscientists working with this data. The quefyg
runtime only depends on the height of the seed index and
the size of the result set. With it, queries can be answered
with significantly fewer disk page reads and hence also |
much less time. For a data set of only 450 million elements,
FLAT already outperforms the best bulkloaded R-Tree in o 1
experiments, the PR-Tree, up to a factor of eight for the
structural neighborhood use case. The trends indicatetibat [22]
benefit will be even bigger for larger and denser data setd use
in the near future in the Blue Brain project.

Because we only make a few assumptions about data set
characteristics, FLAT can also be used for other spatiad dat

n
15]
i
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