
Ranking Query Answers in Probabilistic Databases:

Complexity and Efficient Algorithms

Dan Olteanu Hongkai Wen

Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
{dan.olteanu,hongkai.wen}@cs.ox.ac.uk

Abstract—In many applications of probabilistic databases, the
probabilities are mere degrees of uncertainty in the data and are
not otherwise meaningful to the user. Often, users care only about
the ranking of answers in decreasing order of their probabilities
or about a few most likely answers.

In this paper, we investigate the problem of ranking query
answers in probabilistic databases. We give a dichotomy for
ranking in case of conjunctive queries without repeating relation
symbols: it is either in polynomial time or #P-hard. Surprisingly,
our syntactic characterisation of tractable queries is not the same
as for probability computation. The key observation is that there
are queries for which probability computation is #P-hard, yet
ranking can be computed in polynomial time. This is possible
whenever probability computation for distinct answers has a
common factor that is hard to compute but irrelevant for ranking.

We complement this tractability analysis with an effective
ranking technique for conjunctive queries. Given a query, we con-
struct a share plan, which exposes subqueries whose probability
computation can be shared or ignored across query answers. Our
technique combines share plans with incremental approximate
probability computation of subqueries.

We implemented our technique in the SPROUT query engine
and report on performance gains of orders of magnitude over
Monte Carlo simulation using FPRAS and exact probability
computation based on knowledge compilation.

I. INTRODUCTION

In this paper we study the problem of ranking the answers

of conjunctive queries in probabilistic databases, where the

ranking is based on the probabilities of the answers. A special

instance of this problem is computing the top-k most probable

answers [22]. This is a fundamental problem of high practical

relevance. In many applications of probabilistic databases, the

probabilities are mere degrees of uncertainty in the data, and

do not have otherwise any semantics that is meaningful to the

user. Often, users care only about ranking the answers and

want to retrieve a few most likely answers.

Two simple observations are at the core of our ranking

approach. Firstly, to compute the exact ranking of query

answers, approximate probabilities of the individual answers

may suffice. Secondly, the probability computation for distinct

query answers may share a common factor which can be

computed only once or even uniformly ignored for all answers.

These observations suggest that ranking is easier than exact

query evaluation. A result of this paper is a dichotomy

for ranking: We show that the syntactic notion of head-

hierarchical queries partitions the language of non-repeating

conjunctive queries into polynomial-time and #P-hard queries.

This notion is strictly weaker than that of hierarchical queries,

which separates tractable from hard queries for probability

computation [5]. Queries that are tractable for ranking are thus

not necessarily tractable for query evaluation.

Further inspection of these two observations leads to a

practical ranking approach, for which we need two main in-

gredients: an approximation procedure that can incrementally

refine lower and upper bounds on the probability of a query

answer, and a static analysis procedure on the query structure

to identify for which subqueries their computation can be

shared across distinct query answers.

Our ranking approach does precisely this: (1) we introduce

so-called share plans, which are statically inferred from the

query and expose subqueries whose probability computation

can be shared across several query answers, and (2) extend

an existing deterministic approximation procedure [18] to

incrementally compute bounds on the probability of shared

subqueries and of query answers. Alternatively, share plans

can be viewed as recipes for factorisations of the events of

query answers that enable at runtime easy identification of

factors common across query answers. Our approximation

scheme is based on incremental decomposition of the events of

query answers using knowledge compilation techniques such

as Shannon expansion and independence partitioning [8].

Example 1.1: Consider the social network database in

Fig. 1. Relation Trends stores popular keywords that appear

in user tweets, relation Follows records users (follower) who

follow tweets by other users (user), relation Mentions logs the

events that user2 has been mentioned by user1’s tweets, and

relation Tweets pairs users with their tweets.

We assume in this example that the relations are tuple-

independent, i.e., each relation has an event column E storing

pairwise independent Boolean random variables; we explain

the case of databases with arbitrary correlations later in the

paper. A tuple-independent database represents exponentially

many possible instances, with one instance for each total

valuation of the random variables in the database. For example,

a valuation that maps x1, y1, z1, and u1 to true and all other

variables to false defines the instance with the first tuple in

each of the four relations. The probability of this instance is

the product of the probabilities of x1, y1, z1, and u1 being true

and of all remaining variables being false. The uncertainty in

the data may originate from various sources, e.g., approximate

matching between keywords or incomplete user information.

Fig. 1 shows the answers of two queries together with their

events. The event of a join of two tuples t1 and t2 is the

Trends

keyword user E

#database Dan x1

#database Hongkai x2

#sensors Niki x3

#sensors Hongkai x4

#wimbledon Hongkai x5

#skylab Hongkai x6

Follows

user follower E

Dan Niki y1
Dan Hongkai y2
Niki Hongkai y3
Hongkai Dan y4
Hongkai Niki y5

Mentions

tweetId user1 user2 E

1 Hongkai Dan z1
2 Dan Niki z2
3 Hongkai Dan z3
1 Hongkai Niki z4
2 Dan Hongkai z5
4 Niki Hongkai z6

Tweets

tweetId user E

1 Hongkai u1

2 Dan u2

3 Hongkai u3

4 Niki u4

Q1(Z) :- Trends(X,Y), Follows(Y,Z)

follower E

Dan y4(x2 ∨ x4 ∨ x5 ∨ x6)
Niki y1x1 ∨ y5(x2 ∨ x4 ∨ x5 ∨ x6)
Hongkai y2x1 ∨ y3x3

Q2(X) :- Trends(X,Y), Follows(Y,Z),Mentions(U, Y, Z), Tweets(U,Y)

keyword E

#database Φ1 = x1(y1z2u2 ∨ y2z5u2) ∨ x2(y4z1u1 ∨ y4z3u3 ∨ y5z4u1)
#sensors Φ2 = x3y3z6u4 ∨ x4(y4z1u1 ∨ y4z3u3 ∨ y5z4u1)
#wimbledon Φ3 = x5(y4z1u1 ∨ y4z3u3 ∨ y5z4u1)
#skylab Φ4 = x6(y4z1u1 ∨ y4z3u3 ∨ y5z4u1)

Fig. 1: Social network database where each tuple is associated with a probabilistic event. Query Q1 asks for followers of users

who contributed to trends. Query Q2 asks for topics posted by users who have mentioned their followers.

conjunction of the events of t1 and t2. The event of a union

of two equal tuples t1 and t2 is the disjunction of the events

of t1 and t2. The event Φ of a query answer t is important

for query evaluation and ranking since the probability of Φ is

the probability of t [26]. To speed up ranking and even query

evaluation, we identify (sub)events that are shared by several

answers. In our example, the shared events are underlined. The

events are factorised such that it is easy to see whether they

share common factors. The structure of this factorisation can

be statically inferred from the query in a share plan. A share

plan for Q1 is the following:

Y

Trends(X, ∗) Follows(∗,Z)

This plan encodes the following. The query answers are values

of the head variable Z displayed in bold. The variable Y is

root, i.e., it occurs in all relation symbols. By fixing a value (*)

for Y , the subqueries Trends(X, ∗) and Follows(∗, Z) become

disconnected. Distinct answers can be paired with the same

tuples in relation Trends and share their events. Since the

relations are tuple-independent in our example, we can also

infer that for two distinct Y -values, the events of any of

the two subqueries are independent, and that the events of

subqueries Trends(X, ∗) and Follows(∗, Z) are independent.

To compute the probabilities of query answers, we need

to compute the probabilities of shared events only once. For

ranking, we may even discard the latter entirely. We explain

this for Q2 in Fig. 1. This query is hard for both probability

computation and ranking. A share plan for Q2 is as follows:

Y

Trends(X, ∗) Follows(∗, Z),Mentions(U, ∗, Z), Tweets(U, ∗)

The answers are X-values and several of them can be paired
with the same value of the root variable Y and thus share its
event. The following rewriting of Q2 makes this explicit:

Q2(X) :- Trends(X,Y), Q3(Y)

Q3(Y) :- Follows(Y,Z),Mentions(U,Y, Z), Tweets(U, Y)

For any two Y -values a and b, the events of the hard Boolean

queries Q3[Y/a] and Q3[Y/b] are independent, since Y is

a root variable in Q3. Therefore, the events of the query

answers can be expressed as disjunctions of sub-events that are

conjunctions of events from Trends and independent events of

hard Boolean queriesQ3[Y/a]. Fig. 1 shows the events of each
query answer factorised in a form that follows the structure

of the rewritten query and of the share plan. The (underlined)

event of the hard query Q3[Y/Hongkai] is common to the

events of all query answers and its probability computation can

be shared across all answers. Also, to decide P (Φ3) ≤ P (Φ4),
we only need to decide P (x5) ≤ P (x6).

In this paper, we show how to efficiently approximate the

probabilities of events with shared factors and incrementally

refine their lower and upper bounds as much as needed to

compute top-k or ranked answers. ✷

The main contributions of this paper are as follows:

• We introduce a technique for ranking query answers and

computing the top-k most probable answers for conjunc-

tive queries in probabilistic databases. This technique

uses statically-derived share plans and a deterministic ap-

proximation procedure that can incrementally refine lower

and upper bounds on probabilities of query answers. Al-

though it works for databases with arbitrary correlations,

it is particularly effective for tuple-independent databases.

• We show that for non-repeating conjunctive queries on

tuple-independent databases ranking is either in polyno-

mial time or #P-hard and give a syntactic characterisation

of the tractable non-repeating conjunctive queries.

• We have implemented our technique in the SPROUT

query engine, which is part of the probabilistic database

management system MayBMS.

• Extensive experimental evaluation with tractable and hard

queries on probabilistic TPC-H and synthetic data sets

shows performance gains of orders of magnitude over

Monte Carlo simulation using FPRAS and exact proba-

bility computation based on knowledge compilation.

There is a solid body of work on ranking in probabilistic

databases that defines ranking as a function of probabilities

and additional score functions. The proposed techniques essen-

tially exploit the interplay of various ranking functions and un-

certainty in the data, e.g, [15]. A comprehensive survey of this

strand has been recently compiled by Ilyas and Soliman [13].

The closest in spirit to our work is a paper by Ré, Dalvi,

and Suciu, where ranking of query answers is based on proba-

bilities. Their approach is to run in parallel Monte-Carlo sim-

ulations for the events of query answers and approximate their

probabilities only to the extent needed to compute the top-k
answers. The approximation of probabilities is done using an

adaptation of the fully polynomial randomised approximation

scheme (FPRAS) for model counting of DNF formulas [27].

The use of FPRAS for ranking has three important limitations:

(1) the achieved ranking is only a probabilistic approximation

of the correct one; (2) running one more Monte Carlo step

does not necessarily lead to a refinement of probability bounds,

and hence the approximation is not truly incremental [26]; (3)

FPRAS sees events as black boxes and does not exploit their

structure for faster evaluation [14] nor sharing of common fac-

tors. Our approach has none of these limitations: it uses truly

incremental approximation and exploits sharing and structure

of the events. We show experimentally that the third limitation

severely hinders the scalability of FPRAS for ranking.

In a seminal paper [5], Dalvi and Suciu gave the di-

chotomy of probability computation for non-repeating con-

junctive queries and introduced the notion of safe plans. Our

share plans become safe plans in case of queries that are

tractable for probability computation, yet they are designed

to be particularly effective for hard queries, for which safe

plans cannot exist. Our ranking dichotomy builds upon the

dichotomy of probability computation, yet it is different.

Sharing computation for query evaluation and optimisation

has been considered in the context of inference in graphical

models [23] and answering queries using materialised views

in probabilistic databases [7]. Factorisations of events of query

answers are used for efficient probability computation in

probabilistic databases, where the events can be rewritten as

so-called read-once functions [16], [18], [24], and in prove-

nance and relational databases for the purpose of compact

representations and tractable query evaluation [19], [20].

II. PRELIMINARIES

A. Probabilistic Events and Databases

Let X be a finite set of independent Boolean random vari-

ables with positive rational probabilities given by a function

P . An event is a propositional formula over variables from

X. Two events are (syntactically) independent if their sets of

variables are disjoint. A valuation over X is an assignment of

each random variable in X to true or false.

A probabilistic relation is a relation with a distinct column

E that stores an event for each tuple. A probabilistic database

is a set of probabilistic relations. A database, where the events

are pairwise independent, is called tuple-independent. Fig. 1

shows a tuple-independent database with four relations.

A probabilistic database defines a finite set of possible

worlds by the one-to-one correspondence between worlds and

valuations over X: The world defined by a valuation ν consists

of the tuples whose associated events are satisfied by ν.

B. Queries

We consider the language of conjunctive (or select-project-
join) queries in datalog notation [1]. A query has the form

Q(X0) :- R1(X1), . . . , Rn(Xn),

where the query head is Q(X0) and the query body is

a conjunction of relation symbols R1(X1), . . . , Rn(Xn). A
variable that appears in two sets Xi andXj in the body defines

a join between relations Ri and Rj . The query variables in X0

are head variables and they must also appear in the body. All

other query variables are called existential.

A query Q can be represented as a graph, where relation

symbols, including Q’s head, are nodes and each query

variable induces an edge between each pair of symbols that

contains it. Each connected component in the graph corre-

sponds to a disjoint set of relation symbols in Q. The sub-

queries corresponding to different connected components are

disconnected in the sense that they do not have common query

variables. The head component is the connected component

that contains the query head. The head-restriction of Q is

the query defined by the head component of Q, i.e., obtained

from Q by dropping all relation symbols that represent edges

in non-head components of Q’s graph. Head restrictions of

Boolean queries are Boolean queries with empty bodies.

A query Q is non-repeating if no relation symbol occurs

more than once in Q. A query is hierarchical if for any two

existential variables, either their sets of relation symbols are

disjoint, or one set is contained in the other [5], [26]. A query

variable that appears in all relation symbols of Q is called root

of Q. The following weaker notion of hierarchical queries is

particularly relevant to this work.

Definition 2.1: A conjunctive query Q is head-hierarchical

if its head-restriction is hierarchical. ✷

Example 2.2: The query Q1 from the introduction is hi-

erarchical and hence head-hierarchical. The query Q2 is not

hierarchical, since its subquery Q3 is not hierarchical as

witnessed by query variables U and Z . The variable Y is

root in Q1 and both root and head in Q3. A modified query

Q′
2(X) :- Trends(X,Y), Q3(V) is head-hierarchical since its

head restriction Q′
2(X) :- Trends(X,Y) is hierarchical.

The following three queries are not hierarchical:

Qa(X) :- R1(X,Y), R2(Y,Z), R3(Y,Z, U), R4(Y,W),

R5(Y,W, V), R6(Y, V)

Qb(X,Z) :- R1(X,Y), R2(Y,Z), R3(Y,U), R4(Y,U,W),

R5(Y,W),R6(H),R7(H, I), R8(I)

Qc(X,Z) :- R1(X,U), R2(U, Y, Z), R3(Y, V,W),R4(Y, V),

R5(Y, V,H)

as witnessed by variables W and V for Qa, U and W for

Qb, and U and Y for Qc. The head-restriction Q′
b of Qb is

Qb without the last three relation symbols. Since Q′
b is not

hierarchical, Qb is not head-hierarchical. ✷

C. Query Evaluation

Semantically, conjunctive queries are evaluated in each

world. Given a query Q and a probabilistic database D, the

probability of a distinct answer t is the probability of t being
in the result of Q in the worlds of D, or equivalently,

Pr[t ∈ Q(D)] =
∑

A is a world of D: t∈Q(A)

Pr[A].

The semantics does not suggest a practical approach to

query evaluation, since the number of worlds is exponen-

tial in the number of random variables. The evaluation of

queries in probabilistic databases has two conceptually distinct

steps [26]: (1) the computation of answers, and (2) the

computation of probabilities of distinct answers. One widely

adopted approach to (1), which is also considered in this paper,

is to evaluate queries following the standard semantics, where

additionally the events of input tuples are copied along in

answer tuples, see Fig. 1 for an example. For step (2), we

use the well-known correspondence between the probabilities

of a tuple t in the query answer Q(D)and its event t.E: For

any query Q, probabilistic database D, and tuple t ∈ Q(D),
it holds that Pr[t ∈ Q(D)] = P (t.E).
The result of a top-k query (Q, k) is a set of k most probable

answers to the conjunctive query Q. The result of a rank-

k query (Q, k) is the same as top-k where in addition the

answers in the top-k set are ordered by their probabilities.

III. SHARE PLANS FOR RANKING AND PROBABILITY

COMPUTATION

Our ranking algorithm has two steps. Given a conjunctive

query Q, we first derive a share plan for Q, as explained in

this section. These plans are useful for (exact and approximate)

probability computation since they expose subqueries whose

probability computation can be shared across several query

answers. For ranking, the plan of the head-restriction of Q is

already sufficient, as discussed later in Section V. Share plans

can also be viewed as recipes for factorisations of the events

of query answers that enable at runtime easy identification of

factors that are common to such events.

The second step of our algorithm, given in Section IV,

takes as input the query answers together with their factorised

events and incrementally approximates the probabilities of the

answers and of their shared events until the desired ranking

is obtained. Both steps work for databases with arbitrary

correlations but we also discuss simplifications due to the

independence assumption for input database tuples.

A share plan for a query Q is a forest with one tree for

each connected component in the graph of Q. It has two

types of inner nodes, namely root variables and split variables,

and leaves that represent (possibly singleton) conjunctions of

relation symbols from the query body. We depict in a plan a

variable Y as Y if it is root and as Y if it is split.

The variables Ȳ are root in Q if they occur in all relation

symbols of Q. In this case, the events of the query answers

can be factorised as
∨

ā Q[Ȳ /ā], where the event of Q[Ȳ /ā]
is obtained by evaluating Q under the assignment Ȳ /ā and

plan (Query Q)

if Q is one relation symbol then return Q;

if Q = Q1, . . . , Qn s.t. ∀i, j : Qi, Qj are disconnected then

return plan(Q1), . . . , plan(Qn);

if Q has a maximal set Ȳ of root variables then

let Q′ = Q where all occurrences of Ȳ are replaced by *

in return Ȳ (plan(Q′));

if ∃ variables Ȳ such that Q = Q+(Ȳ), Q−(Ȳ) and

Q+ contains all relation symbols with Q’s head variables and

Q− has root variables Ȳ and several relation symbols then

return Ȳ (plan(Q+), plan(Q−));

return Q;

Fig. 2: Construction of share plans for conjunctive queries.

can be expressed as a conjunction of events of the subqueries

representing connected components of the graph of Q[Ȳ /ā],
where all edges induced by Ȳ are removed. Fig. 1 shows event

factorisations induced by root variables for two queries.

The variables Ȳ are split if Q can be rewritten as

Q(X̄) :- Q+(X̄, Ȳ), Q−(Ȳ), where X̄ are the head variables

of Q, Q+ contains all relation symbols with X̄ , and Q− has

root variables Ȳ . Split variables generalise root variables: In

case the split variables Ȳ are also root in Q+, then Ȳ would be

root in the entire query Q. Under an assignment Ȳ /ā for the

split variables Ȳ , the event of Q−[Ȳ /ā] is paired with events

of Q’s answers that have the same Ȳ -value. Split variables

are useful for factorising events of non-hierarchical queries,

for which root variables are not always possible.

Example 3.1: We give two share plans in the introduction.

Both plans have a root variable Y . The plan in Fig. 1 has a

relation symbol as the left leaf and a conjunction of relation

symbols as the right leaf. Both leaves represent the subqueries

Trends(X,Y) and Q3(Y) that are joined on Y . This plan can

be interpreted as follows: For a given Y -value a, the events

of several X-values (i.e., query answers) can be paired with

the same event of the subquery Q3[Y/a]. This factorisation of

events is shown in Fig. 1 for a particular input database.

Consider now the bottom-most share plan in Fig. 3; this

corresponds to the query Qc in Example 2.2. The topmost

node is a split variable. It separates the left subquery Q+,

which contains the head variables X and Z of Qc, and the

right subquery Q−, which has two variables Y and V that are

root and head. Thus, this plan sees Qc rewritten as follows:

Qc(X,Z) :- Q+(X,Y, Z), Q−(Y). It states that several query
answers, i.e., (X,Z)-values, can be paired with the same Y -

value a and thus share the event of Q−[Y/a]. Both subqueries

Q+ and Q− have additional root variables that are made

explicit in their plans. ✷

The construction of a share plan for a conjunctive query Q
is described in Fig. 2 by a recursive function plan. A relation

symbol is a plan with one node. If Q can be partitioned into

disconnected subqueries, then we return the forest of plans

Y

R1(X, ∗) Z

R2(∗, ∗) R3(∗, ∗, U)

R4(∗,W), R5(∗,W, V), R6(∗, V)

Y

R1(X, ∗) R2(∗,Z) R3(∗, V), R4(∗, V,W), R5(∗,W)

Y
U

R1(X, ∗) R2(∗, Y,Z)

Y, V

R3(∗, ∗,W) R4(∗, ∗) R5(∗, ∗, H)

Fig. 3: Share plans for queries Qa, Q
′
b, and Qc from Exam-

ple 2.2 (top to bottom). The plan for Qb (not shown) is the

one for Q′
b, where in addition there is one plan node for the

non-head component with relations symbols R6, R7, R8.

with one plan for each subquery. If Q has a (non-empty and

maximal) set Ȳ of root variables, then we create a variable

node for Ȳ and recurse on a modified query, where Ȳ are

considered fixed to constants (the constant * is used here). This

modification can allow to partition the query into disconnected

subqueries. In case none of the above rules apply, we choose a

split of the query into Q+ and Q−, as discussed above. There

may be several splits, since Q+ is not constrained to consist

of the relation symbols with head variables only. The smaller

Q+ is, the larger Q− and thus the events produced by Q− and

shared by Q+’s answers. This can lead in practice to better

performance for probability computation and ranking, since

the shared events of Q− tend to get larger and more complex

with the increase in the size of Q−. We rule out the case

of Q− consisting of one relation symbol; In our experiments,

sharing is severely limited and not rewarding in this case.

Example 3.2: We exemplify the construction of share plans

for the queries Qa and Qb from Example 2.2. Their plans

are shown in Fig. 3. For Qa, we first discover the root

variable Y . Under a fixed value a for Y , Qa[Y/a] can be

partitioned into three disconnected subqueries: R1(X, ∗), then
R2(∗, Z), R3(∗, Z, U), and R4(∗,W), R5(∗,W, V), R6(∗, V).
The first and third subqueries cannot be refined further; the

second one has the root variable Z .

For Qb, we first observe that it can be partitioned into two

disconnected subqueries: the first five relation symbols denoted

by Q′
b in Example 2.2, and the last three relation symbols. The

second subquery cannot be decomposed further. For Q′
b, we

find the root variable Y and under fixed values for Y , we

obtain three disconnected subqueries. ✷

Our algorithm can construct share plans efficiently: At

each recursion level, it needs polynomial time to check for

disconnected components, root variables, and split variables,

and it recurses further onto partitions of the query.

Proposition 3.3: For any conjunctive query, the algorithm

in Fig. 2 constructs a share plan in polynomial time. ✷

A special case is that of hierarchical queries.

Proposition 3.4: For any hierarchical query, the algorithm

in Fig. 2 constructs a share plan, where the inner nodes are

root variable nodes and the leaves are relation symbols. ✷

In the case of non-repeating hierarchical queries, share plans

become the safe plans proposed by Dalvi and Suciu [5].

We next discuss aspects concerning the use of share plans.

Event factorisation by share plans. Share plans can be seen

as layering the original query into strata, where each layer

corresponds to either root or split variables. The factorisation

of the events of the query answers precisely follows this

layering. If we execute the share plan bottom-up, we compute

both the query answers and the factorisation of their events.

Recall, for instance, the share plans of the queries Q1 and Q2

from the introduction. We first evaluate its subqueries at the

leaves of the plan. Then for each value of the root variable

Y , we create events that are conjunctions of events of the

two subqueries. Fig. 1 shows the events of the query answers

factorised according to these plans.

A caveat of the above approach is that a share plan fixes, to

some extent, the join ordering for query evaluation, although it

does this solely for the purpose of event factorisation. Earlier

work [17] has shown that the safe plans for non-repeating

hierarchical queries can dramatically limit the performance

of query evaluation by fixing the join orders so as to obtain

optimal factorisation of query events. It has been argued that

the structure of safe plans should only be used for the purpose

of event factorisation and be decoupled from the computation

of query answers, for which standard query plans can do a

much better job. This approach is also applicable here, but we

do not detail it due to space limitation.

The case of tuple-independent databases. The factorisations

described by share plans apply to databases with arbitrar-

ily correlated tuples. Under the strong assumption of tuple-

independent databases, share plans for non-repeating con-

junctive queries become even more effective. In particular,

the events of two disconnected queries Q1 and Q2 become

independent and P (Q1 ∧ Q2) = P (Q1) · P (Q2). Also,

under different assignments Ȳ /ā1 and Ȳ /ā2 of the root

variables Ȳ of a query Q, the queries Q1 = Q[Ȳ /ā1] and
Q2 = Q[Ȳ /ā2] have independent events and P (Q1 ∨ Q2) =
1−(1−P (Q1)·(1−P (Q2)). These simplifications dramatically

improve probability computation and ranking. Earlier work

discusses the connection between read-once factorisations,

where each variable occurs at most once, and tractability of

query processing in probabilistic databases [16], [24], [26].

IV. INCREMENTAL APPROXIMATE PROBABILITY

COMPUTATION FOR EVENTS WITH SHARED FACTORS

In this section, we present the second ingredient of our

ranking technique: approximate probability computation for

events of query answers. We first discuss a method to compute

probabilities of events by decomposing them, and then show

how to use this method to rank events. Our approach is

based on earlier work on probability computation by event

decomposition in the SPROUT query engine [18], [10], and

on top-k probability computation [22].

A. Probability Computation by Event Decomposition

In earlier work [18], [10] we have introduced an incremental

algorithm for exact and approximate probability computation

of events. This approach is based on incremental decomposi-

tion of an event Φ using three types of decomposition:

1) Independent-or: Partition Φ into independent events

Φ1,Φ2 such that Φ is equivalent to Φ1 ∨ Φ2.

2) Independent-and: Partition Φ into independent events

Φ1,Φ2 such that Φ is equivalent to Φ1 ∧ Φ2.

3) Exclusive-or: Choose a variable x in Φ. Then, Φ is

equivalent to x ∧Φ|x ∨ ¬x ∧Φ|¬x, where the event Φ|α
is obtained from Φ by setting α to true. This is called

Shannon expansion.

These decompositions preserve equivalence, can be performed

in polynomial time in case the events Φ1 and Φ2 can be

obtained by efficient manipulations of Φ, and can be used to

efficiently compute probabilities of known tractable queries.

A decomposition tree, or d-tree, of an event Φ is obtained

by recursively decomposing Φ in the order given above. The

inner nodes are decomposition types, and the leaves are events.

A complete d-tree is obtained by applying the decomposition

rules until we reach clauses or simple literals at leaves.

The probability of an event can be computed in one traversal

of any of its d-trees, provided the probabilities at leaves are

known. This is because the probabilities at the inner nodes can

be computed efficiently. Let P be a function that maps events

to their probabilities. We then have:

P (independent-or(Φ1,Φ2)) = 1− [1− P (Φ1)] · [1− P (Φ2)]

P (independent-and(Φ1,Φ2)) = P (Φ1) · P (Φ2)

P (exclusive-or(Φ1,Φ2)) = P (Φ1) + P (Φ2).

Example 4.1: The event Φ = x1 ∧ y1 ∨ x1 ∧ y2 ∨ ¬x1 ∧ y2
can be decomposed using Shannon expansion into x1 ∧ (y1 ∨
y2) and ¬x1 ∧ y2. The first term can be decomposed into

independent parts x1 and y1∨y2, with the former decomposed

into independent parts y1 and y2. Then, we have: P (Φ) =
P (x1) · [1− (1−P (y1))· (1−P (y2))]+(1−P (x1)) ·P (y2).✷
D-trees can also be used to incrementally compute approx-

imate probabilities. Assume we are constructing a d-tree for

an event Φ, and that after every single decomposition step,

we are given lower and upper bounds on the probabilities of

the leaves. Then we can compute lower and upper bounds

on the probability of the event Φ as follows: for the lower

(upper) bound, assume that the probabilities at the leaves

are their lower (upper) bounds and apply the recursive com-

putation given above by the function P . The probability at

the root of the d-tree represents the lower (upper) bound on

the probability of Φ. By further decomposing the event, the

bounds become tighter and eventually converge to the exact

probability of Φ.
A crucial aspect of approximation based on d-trees is that

at any time the current bounds are included in the bounds

computed at the previous step. Moreover, this property holds

regardless of the algorithm used to compute bounds at the

leaves. To see this, assume that the lower and upper bounds

on the probability of Φ, as obtained by the algorithm sketched

above, are [L0, U0] before a decomposition step and [L1, U1]
after that step. If [L1, U1] 6⊆ [L0, U0], we can then obtain a new
pair [L,U] of correct bounds, where L = max(L0, L1) ≤ U =
min(U0, U1). Thus [L,U] ⊆ [L0, U0] and [L,U] ⊆ [L1, U1].
This bounds-monotonicity property makes our approach truly

incremental, yet it does not hold for the state-of-the-art ranking

approach based on Monte Carlo simulations [26].

A question remains: how to efficiently compute lower and

upper bounds at the leaves? There are several existing solutions

to this [18], [9], [10], [11], [26]. Most of them need at most

quadratic time in the size of the event and compute model-

based bounds: Given an event Φ, lower and upper bound

events ΦL and ΦU respectively are such that the satisfying

assignments of ΦL are also satisfying assignments of Φ, which
in turn are satisfying assignments of ΦU . In addition, these

bounds are optimal with respect to an event language L, such
as the language of monotone DNF events, if there are no events

Φ′
L and Φ′

U in L that are lower and respectively upper bounds

of Φ and that ΦL is a strict lower bound of Φ′
L and ΦU is

a strict upper bound of Φ′
U . Some bounds apply to monotone

DNF events only [18], [26], whereas others apply to arbitrary

events [9]. The decomposition-based approximation scheme

we consider here works with any of these solutions. In our

prototype, we used a combination of the ones in [18], [10]. In

the sequel, we assume that we are given an algorithm called

bounds to compute probability bounds at the leaves.

B. Decomposition of Events with Shared Factors

Decomposing events that have shared factors is naturally

supported by d-trees (and in fact by any knowledge compila-

tion technique such as BDDs or d-DNNFs).

Assume we are given the query answers and their events

factorised according to a share plan. We can identify at

runtime syntactically equal factors by scanning these events.

The main idea of handling events with shared factors is as

follows. We first enable sharing by naming common factors

and replacing all of their occurrences by their names. We can

now decompose the events as if the common factors would be

single variables until we reach leaves holding these variables

only. Those leaves become now pointers to the roots of the

d-trees of the common factors, hence the common factors are

only decomposed once and used by all events that contain

them. We then continue the decomposition in the d-trees of

those factors. In case of approximate probability computation,

the only additional difficulty is computing lower and upper

bounds at the leaves after each decomposition step. This has

now to consider common factors and, if possible, only compute

their bounds once for all sharing events. Although this is

the general picture, there are additional technical aspects and

restrictions that we will discuss after looking at an example.
Example 4.2: Let Ψ be the underlined factor that is com-

mon to all Q1’s events in Fig. 1. By naming it, we obtain:

Ψ = y4z1u1 ∨ y4z3u3 ∨ y5z4u1

Φ1 = x1(y1z2u2 ∨ y2z5u2) ∨ x2Ψ

Φ2 = x3y3z6u4 ∨ x4Ψ

Since Ψ is independent of the other parts of the events Φ1
to Φ4, we can decompose it separately from the rest. The
probabilities of these events are as follows:

P (Φ1) = 1− [1− P (x1) · P (u2) · (1− (1− P (y1z2))·

(1− P (y2z5)))] · [1− P (x2) · P (Ψ)]

P (Φ2) = 1− (1− P (x3y3z6u4))(1− P (x4) · P (Ψ))

The above expressions only use independent-or and
independent-and decompositions. To decompose Ψ, however,
we need Shannon expansion. The probability P (Ψ) is then:

P (y4) · P ((z1 ∨ y5z4)u1 ∨ z3u3) + (1− P (y4)) · P (y5z4u1).

The remaining folded sub-events can now be decomposed

using independent-and and independent-or. ✷

The above example shows a simplified case, where the

common factor is independent of the rest. This always holds

for events of non-repeating conjunctive queries on tuple-

independent databases, since such factors represent events of

subqueries over relations that do not occur in other subqueries.

In case of repeating queries on databases with arbitrary

correlations, this may not hold in general since any two

input events may share variables. In particular, the root query

variables cannot help us infer independence of sub-events

and disconnected queries do not necessarily have independent

events. In this case, the treatment of common factors during

decomposition becomes slightly more involved.

Assume again that several events share a factor Ψ, yet Ψ
is not independent of them. The decompositions of the events

happen as before, yet when a leaf with Ψ is reached, the actual

truth value at that leaf is not that of Ψ alone, but is instead

that of Ψ conditioned by all decisions on the truth of variables

made by Shannon expansion steps on the path from that leaf to

the root of the d-tree. That is, although Ψ can be decomposed

once for all events, its d-tree d does not contribute in equal

amounts to all these events and their leaves. To compute the

contribution of d to a particular leaf, we need one pass over d
and only consider the probabilities of those branches that do

not contradict the decisions at that leaf.
Example 4.3: Consider the events Φ1 and Φ2 that share Ψ:

Ψ = x1x2 ∨ x1x3 ∨ ¬x2x3

Φ1 = x2Ψ

Φ2 = (x1 ∨ x3)Ψ

A d-tree d for Ψ can be obtained by Shannon expansion on

x2, after which we are left with two leaves: Ψ|¬x2
= x3 and

Ψ|x2
= x1. Then P (Ψ) = P (¬x2) · P (x3) + P (x2) · P (x1).

A d-tree d1 for Φ1 has one Shannon expansion node for x2

and two children: Ψ in case x2 = true, and false otherwise. In

the first case, only one branch (x2x1) in d satisfies x2 = true

and hence the probability of the leaf Ψ in d1 is P (x1). The
probability of d1 is then P (x2x1).
For Φ2, there are two leaves Ψ in a d-tree d2 reachable via

the paths p1 = x1 and p2 = ¬x1x3. Under p1, both branches

in d are satisfied and thus the probability at the leaf Ψ in

d2 is P (¬x2) · P (x3) + P (x2). Under p2, no branch in d is

satisfied, thus the probability at the leaf Ψ in d2 is 0. As for

top (Integer k, Events e1, . . . , en)

let Di = partial d-tree for event ei,∀1 ≤ i ≤ n;

let critical region [L, U] = [0, 1];

while L ≤ U do

let [Li, Ui] = bounds (Di),∀1 ≤ i ≤ n;

compute order πl s.t. Lπl(1) ≥ · · · ≥ Lπl(n);

compute order πu s.t. Uπu(1) ≥ · · · ≥ Uπu(n);

let critical region [L,U] = [Lπl(k), Uπu(k+1)];

foreach 1 ≤ i ≤ n do

if [L, U] ∩ [Li, Ui] 6= ∅ then

decompose until progress made (Di);

end-while

return {eπl(1), . . . , eπl(k)}

Fig. 4: Computing the set of top-k most probable events. To

compute rank-k, we run top-k, then top-(k − 1) on the top-k
set and so on.

d, the probability of d2 is P (x1) · (P (¬x2) ·P (x3) +P (x2)).
Indeed, Ψ and Φ2 are equivalent events. ✷

We thus compute a d-tree representing the composition of

d-trees for events Φi and Ψ. A similar technique is known

for OBDDs [3]: Computing an OBDD for the composition of

Boolean functions f1 and f2, where a variable x from f1 is

replaced by f2, can be done in polynomial time in the size of

the OBDDs for f1 and f2.

C. Ranking Algorithm

Our ranking algorithm is described in Fig. 4. The idea is

to approximate the probabilities of the events of the query

answers to the extent needed to separate the top-k most prob-

able events from the others. It achieves this by incrementally

refining the lower and upper bounds of the events until there

are k lower bounds that are greater than the upper bounds

of the other events. To compute approximate probabilities of

the events, we can use any of the two decomposition-based

approaches from Sections IV-A and IV-B. In the former case,

the events are decomposed separately from each other, whereas

in the latter case, we use share plans to exploit common

factors. In the ranking algorithm, event decomposition is done

by a call to the algorithm decompose until progress made.

The algorithm bounds computes probability bounds of d-trees

for events efficiently.

For each event ei, we keep a partially constructed d-tree

Di together with its probability bounds [Li, Ui]. In case there

are no k lower bounds greater than the upper bounds of

the other events, we further decompose the events in order

to tighten their bounds. Although decomposing all events is

certainly correct, it is not efficient in general, especially when

we already know that (a) some events have already made it in

the top-k′ < k (their lower bounds are larger than the upper

bounds of the other n− k′ events), and (b) some other events

will never make it in the top-k (their upper bounds are lower

than the lower bounds of at least k other tuples). It is therefore

desirable to only spend time on those events for which it is

not yet clear to which category they belong. This defines the

critical region [22]: this is the interval [L,U] where L is the

k-th highest lower bound, and U is the k+1-st highest upper
bound. All events, whose bounds intersect the critical region,

are further decomposed until their bounds get tightened. As

argued in Section IV-A, each decomposition step does not

widen the bounds interval.

The process of ordering of events by their probability

bounds and of checking these bounds against the critical

region denotes a separation step. We found experimentally that

separation steps are more expensive than decomposition steps

in d-trees, especially when k is large or the events are rather

small, and preferred to invest more time in decompositions

than in separation steps.

Non-uniqueness of top-k. There are cases when the top-k set

is not unique: this can happen when several events have equal

probabilities. In such cases, the outcome of our algorithm

depends on the order of events in the input.

From top-k to rank-k. The algorithm given in Fig. 4 only

computes a set of top-k most probable events. To rank them,

we can then call top-(k − 1) on this set, then top-(k − 2),
and so on. To improve performance, the d-trees of the top-k
events are kept between the runs so that event decomposition

resumes from the previous round.

Shared events for probability computation and ranking.

There is a subtle, yet significant difference in the way sharing

can be used for (exact or approximate) probability computation

versus ranking. For probability computation, factors common

to several events, as exposed by share plans, can be poten-

tially decomposed once for all these events. For ranking, this

decomposition is not exhaustive but performed as much as

needed to separate the probability bounds of answer events,

as discussed above. In addition, only the tree of the share

plan representing the head component is relevant for ranking,

the remaining trees can be safely discarded. This argument is

followed in more detail in Section V.

V. DICHOTOMY FOR RANKING QUERY ANSWERS

We study the following ranking problem: Given a conjunc-

tive query Q, a tuple-independent probabilistic database D,

and any two answers t1, t2 ∈ Q(D), does P (t1) ≤ P (t2)
hold? This problem is trivial for Boolean conjunctive queries,

since their answer is top-1 regardless of its probability (which

is non-zero since the variables have non-zero probabilities).

In this section, we show that the head-hierarchical queries are

precisely those non-repeating non-Boolean conjunctive queries

for which ranking can be decided in polynomial time. This

result settles an open problem raised by Dalvi and Suciu [6].

A. The ranking problem is in PP

The complexity class PP is the set of decision problems that

can be solved by a nondeterministic polynomial-time Turing

machine where the acceptance condition is that at least half of

computation paths accept. MAJ SAT is a natural PP-complete

problem [25], [12]: Given a formula Φ and a positive integer

i, does Φ have at least i satisfying assignments? A simpler,

yet still PP-complete, version of this problem asks whether at

least half of the assignments of Φ are satisfying. We will use

both versions in our reductions.

PP is tightly connected to the class #P of functions that

count the number of accepting paths of nondeterministic

polynomial-time Turing machines [2]: PPP= P#P. This means

that the class of decision problems computable in polynomial

time using #P oracles coincides with the class of decision prob-

lems computable in polynomial time using PP oracles. Thus,

PP-complete problems are decision problems that capture the

inherent computational complexity of #P-complete problems.

Membership in PP. The ranking problem is in PP by the

following argument1. Let F and G be the events of two an-

swers t1 and t2 respectively. We thus have that P (t1) = P (F)
and P (t2) = P (G). In case of conjunctive queries, the events

F and G are positive DNF formulas; the following argument

holds however for arbitrary events.
The problem is to check whether P (F) ≤ P (G). Define

the disjoint events A = F ∧ ¬G and B = G ∧ ¬F . Then,

P (F) ≤ P (G) ⇔ P (A) ≤ P (B), since

P (A) = P (F) + P (¬G)− P (F ∨ ¬G)

= P (F)− P (G) + P (G ∧ ¬F) = P (F)− P (G) + P (B).

Now denote A′ = A∨¬A¬B and B′ = B∨¬A¬B. Clearly,
A′ ∨B′ = true. Then,

P (A′) = P (A) + P (¬A¬B). P (B′) = P (B) + P (¬A¬B)

Hence, P (A) ≤ P (B) ⇔ P (A′) ≤ P (B′) ⇔ P (B′) ≥ 1/2.

In case of uniform probability distributions, the latter inequal-

ity is the PP-complete problem MAJ SAT for arbitrary formu-

las B′. In case of non-uniform probability distributions, the

same argument used for membership in #P of the probability

computation problem can be made here [26](page 47).

B. The Dichotomy

Our syntactic characterisation of queries for which ranking

is tractable with respect to data complexity is given next.

Theorem 5.1: Fix a non-repeating non-Boolean conjunctive

query Q.

• If Q is head-hierarchical, then, for any tuple-independent

database, the ranking problem is in polynomial time.

• If Q is not head-hierarchical, then the ranking problem

is #P-hard. ✷

A corollary of Theorem 5.1 is that either ranking all answers

can be done in polynomial time, or finding the top-1 (most

probable) answer is #P-hard.

For the tractability result, we note that if Q is head-

hierarchical, then its head-restriction is hierarchical by Def-

inition 2.1. The query Q has then the following pattern:

Q(X̄) :- Q1(Ȳ), Q2(Z̄), where X̄ ⊆ Ȳ , Ȳ ∩ Z̄ = ∅, the head-
component Q1 is hierarchical, and Q2 can be hierarchical or

non-hierarchical. We next show that to rank Q’s answers, it

suffices to compute the exact probabilities of Q1’s answers.

Since Q1 is hierarchical, this can be done in polynomial time

by known algorithms using safe plans [5] and OBDDs [16].

1Personal communication with Dan Suciu, July 2011.

Consider two answers a1 and a2. Then,

P (Q[X̄/āi]) = P (Q1[X̄/āi], Q2(Z̄)) = P (Q1[X̄/āi]) · P (Q2(Z̄)).

P (Q[X̄/ā1]) ≤ P (Q[X̄/ā2]) ⇔

P (Q1[X̄/ā1]) · P (Q2(Z̄)) ≤ P (Q1[X̄/ā2]) · P (Q2(Z̄)) ⇔

P (Q1[X̄/ā1]) ≤ P (Q1[X̄/ā2]), since P (Q2(Z̄)) ≥ 0.

The exact probabilities of Q1’s restrictions P (Q1[X̄/ā1]) and
P (Q1[X̄/ā2]) can be computed in polynomial time.

For the hardness part, we first show that MAJ SAT for

positive bipartite DNF formulas (MAJ-PP2DNF for short)

is #P-hard under a polynomial-time Turing reduction from

the #P-complete problem #SAT for positive bipartite DNF

formulas (#PP2DNF for short). We then give a polynomial-

time many-one reduction from MAJ-PP2DNF to ranking for

any (non-Boolean) non-head-hierarchical query.

Reduction from #PP2DNF to MAJ-PP2DNF. We know that

#PP2DNF is #P-complete [21], [26]. Assume we are given any

PP2DNF Φ with n variables. Then, we can compute#Φ using

at most n calls to a MAJ-PP2DNF oracle for Φ. This means

that MAJ-PP2DNF is at least as hard as the #PP2DNF under

polynomial-time Turing reduction. We first ask MAJ-PP2DNF

with i = 2n−1. If true, then we ask with i = 2n−1 + 2n−2;

otherwise, i = 2n−2. We thus do binary search to determine

the right value #Φ. The decision tree of this binary search is

exponential in n, yet has depth at most n. To find #Φ, we
only need to construct exactly one of its paths.

Reduction from MAJ-PP2DNF to ranking for non-head-

hierarchical queries. Let Φ be a PP2DNF, We would like to de-

cide the #P-hard problem MAJ-PP2DNF for Φ where at least

half of the assignments of Φ are satisfying. Equivalently, we

would like to decide P (Φ) ≥ 1/2, where Φ is over n Boolean

random variables with uniform probability distribution.

Consider any non-head-hierarchical query Q(X̄) and two

(distinct) answers ā1 and ā2. Then, the Boolean queries

Q[X̄/ā1] and Q[X̄/ā2] are not head-hierarchical, and in

particular not hierarchical. Given Φ, we create a tuple-

independent database D with random variables being the n
variables of Φ. Most importantly, D is such that (1) the event

of Q[X̄/ā1] is precisely Φ and (2) the event of Q[X̄/ā2] is one
clause which is independent of Φ and for which the probability

is 1/2. The ranking problem becomes then P (Φ) ≥ 1/2. The
database D is (R1

1 ∪ R2
1, . . . , R

1
m ∪ R2

m), which consists of

one database Di = (Ri
1, . . . , R

i
m) for each of the two steps

such that ∀1 ≤ j ≤ m : R1
j ∩R2

j = ∅.
The construction of the database D1 is exactly as in

the hardness proof of query evaluation for non-hierarchical

queries [5], [26] and is skipped. The second construction step

is such that, for any queryQ, we construct each of the relations

R2
1, . . . , R

2
m referred in the query to consist of a single tuple

associated with fresh random variables x2
1 to x2

m such that

exactly one of them has probability 1/2 and the others have

probability 1. The database D2 is only used to generate the

answer a2, whose event x2
1 ∧ . . . ∧ x2

m has probability 1/2.

Ranking vs. Query Evaluation. The hardness of ranking is

not the same as hardness of query evaluation, which asks

Query scale 0.1 scale 0.5 scale 1

Q6 (11618, 11618, 7) (57301, 57301, 7) (114159, 114159, 7)
Q15 (2460, 1651, 7) (11935, 11935, 7) (24047, 16001, 7)
Q16 (3095, 2476, 50) (16015, 12812, 50) (32280, 25824, 50)
Q17 (14893, 14420, 50) (77817, 75302, 50)(156305, 151262, 50)
Q2 (2958, 1601, 5) (14557, 7807, 5) (29522, 15859, 5)
Q9 (72419, 34694, 25)(365780, 175219, 25)(728040, 348759, 25)
Q20 (2729, 2925, 5) (32473, 16627, 5) (63568, 32548, 5)

Fig. 5: Characteristics of TPC-H query answers. Each table

entry represents (#variables,#clauses,#tuples) for the answer

of the corresponding query and data scale factor.

Query/Data #answers #vars #clauses N · f/s avg(f)
Qa/1 99 19876 34200 143 2.879
Qa/6 99 1296 32880 7 2.768
Qa/12 100 737 35160 3 2.930

Qb/1 297 8358 98154 144 2.899
Qb/6 297 677 115092 7 2.808
Qb/12 300 463 79110 3 2.930

Fig. 6: Characteristics of query answers on synthetic data sets

1, 6, and 12. While the number of answers and clauses are

kept in the same range, the number of variables decreases and

the sharing factor increases when going from data set 1 to 12.

for exact probabilities of query answers. It is known that

the hierarchical queries are those non-repeating conjunctive

queries that can be evaluated in polynomial time [5]. All

hierarchical queries are head-hierarchical, but not all head-

hierarchical queries are hierarchical. In terms of complexity,

there are (head-hierarchical) queries that are hard for query

evaluation (non-hierarchical ones), but still tractable for rank-

ing. Consider in the argument following Theorem 5.1 that Q2

is non-hierarchical. Then, Q is not hierarchical and thus hard

for query evaluation, but remains head-hierarchical and thus

tractable for ranking.

VI. EXPERIMENTAL EVALUATION

Setup: The experiments were performed on an Intel Quad

Processor Q8300 64bit/3.7GB/Linux 2.6.38/gcc 4.5.2. We re-

port wall-clock execution times of queries run with a warm

cache obtained by running a query once and then reporting

the average runtime over five subsequent, identical executions

with query answers and their events materialised to disk.

Algorithms: We experimentally evaluated ranking tech-

niques on two specific problems: (1) compute the top-k most

probable query answers (top), and (2) in addition to (1), order

the top-k answers by probabilities (rank). We considered two

flavours of the approach described in this paper:

shared: This is our technique based on share plans and

approximate probability computation.

plain: This is a vanilla version of shared without share

plans, and hence the incremental approximate computation is

done independently for each query answer.

Both flavours are implemented within the SPROUT query

engine, which extends the PostgreSQL 8.3.3 backend.

We compare our technique with several existing techniques.

KL: This algorithm is based on the state-of-the-art multi-

simulation top-k algorithm [22], where the core Monte Carlo

algorithm is replaced by an improved variant which is a

 10

 100

 1000

 10000

 100000

 1e+06

 6e+06

Q6:[0.1 0.5 1] Q15:[0.1 0.5 1] Q16:[0.1 0.5 1] Q17:[0.1 0.5 1]

W
a

ll-
c
lo

c
k
 t

im
e

 i
n

 m
s
e

c
 (

lo
g

s
c
a

le
)

Tractable modified versions of TPC-H queries

Ranking on TPC-H tuple-independent databases with scale factors 0.1, 0.5, and 1

Timeout KL0.1
dtree

shared(top)0.3
shared0.3

shared1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Q15: [0.1 0.5 1] Q16: [0.1 0.5 1] Q17: [0.1 0.5 1]

D
e

c
o

m
p

o
s
it
io

n
/S

e
p

a
ra

ti
o

n
 s

te
p

s
 (

lo
g

s
c
a

le
)

Tractable modified versions of TPC-H queries (Q6 dropped)

Ranking on TPC-H tuple-independent databases with scale factors 0.1, 0.5, and 1

dtree
shared(top)0.3(d)

shared0.3(d)
shared1(d)

shared(top)0.3(s)
shared0.3(s)

shared1(s)

 10

 100

 1000

 10000

 100000

 1e+06

 6e+06

Q2:[0.1 0.5 1] Q9:[0.1 0.5 1] Q20:[0.1 0.5 1] Q21:[0.1 0.5 1]

W
a

ll-
c
lo

c
k
 t

im
e

 i
n

 m
s
e

c
 (

lo
g

s
c
a

le
)

Hard TPC-H queries (modified versions)

Ranking on TPC-H tuple-independent databases with scale factors 0.1, 0.5, and 1

TimeoutKL0.1
dtree

shared0.2
shared1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Q2:[0.1 0.5 1] Q9:[0.1 0.5 1] Q20:[0.1 0.5 1] Q21:[0.1 0.5 1]

D
e
c
o

m
p

o
s
it
io

n
/S

e
p

a
ra

ti
o

n
 s

te
p

s
 (

lo
g

s
c
a

le
)

Hard TPC-H queries (modified versions)

Ranking on TPC-H tuple-independent databases with scale factors 0.1, 0.5, and 1

dtree
shared0.2(d)

shared1(d)
shared0.2(s)

shared1(s)

Fig. 7: Ranking in the TPC-H scenario: Comparison of performance and number of separation/decomposition steps. In the

legend: 0.2, 0.3, and 1 mean that 20%, 30%, and respectively 100% of the top most probable answers are identified and ranked

amongst themselves; (d) and (s) stand for decomposition steps and separation steps respectively.

combination of the Karp-Luby FPRAS unbiased estimator for

DNF counting [27] adapted to probability computation and the

Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo

estimation [4]. This core algorithm is available in MayBMS

2.1. The multisimulation component of this approach is also

implemented in MystiQ [22].

dtree: This is a state-of-the-art probability computation

technique for relational algebra queries on probabilistic

databases implemented in SPROUT [18], [10]. It incrementally

decomposes the event of each answer using a knowledge

compilation approach based on independence partitioning and

Shannon expansion. Before each decomposition step, it checks

whether the event is a DNF of pairwise independent clauses,

in which case it computes the exact probability of the event

and stops. We use dtree to compute the exact probabilities of

all query answers and then sort them by their probabilities.

Experiment Design: The key observations underlying this

work are that (1) ranking does not require the computation

of exact probabilities of query answers, and that (2) the

computation of approximate probabilities of query answers for

the purpose of ranking can be shared across query answers.

We experimentally confirm these observations using TPC-H

and our own synthetic data sets as well as a set of queries

that are either hard for ranking (and thus also for query

evaluation), or easy for query evaluation (and thus also for

ranking). In all these settings, we show that our ranking

technique shared can be more than five orders of magnitude

faster than KL, and up to two orders of magnitude faster

than dtree. We explain this performance gap by analysing

the amount of sharing and, where applicable, the amount

of separation and decomposition steps needed for each of

these techniques. The conclusion is that sharing computation

across query answers, as exposed by share plans, in addition

to incremental approximate probability computation, which is

done as much as needed to ensure separation of tuples in the

critical rank region, can be extremely effective.

Data sets and Queries. We consider two data sets: TPC-H

and our own synthetic data. TPC-H databases are generated by

a modified version of the TPC-H data generator (version 2.8),

where each tuple is associated with a fresh Boolean variable

with a random probability distribution [18], [10]. We consider

scale factors 0.1, 0.5, and 1 (scale 1 means the database size is

1 GB on disk), and four tractable and four hard TPC-H queries,

which are modified by dropping aggregations and by adding

ranking. Query Q6 is a selection on the large lineitem table,

the other three tractable queries, namely Q15, Q16, Q17, are

joins of two tables. The hard queries Q2, Q9, Q20, and Q21 are

joins on four to six relations. Fig. 5 gives characteristics of the

events of these queries. Their events are in the critical region

of variable-to-clause ratios for which probability computation

is hard in general [18].

To study the effect of an increase in the degree of sharing

across answers on the performance of ranking, we evaluated

the hard queries Qa and Qb discussed in Sections II-B and III

on synthetic data. Fig. 6 gives characteristics of their events.

The data sets are generated as follows. Let dom(A) be the

active domain of a query variable A. For Ā = (A1, . . . , An),

we let dom(Ā) =
n
×
i=1

dom(Ai). For both queries Qa and Qb,

let Y be the split variable, X̄ be the head variables, and

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12

W
a

ll-
c
lo

c
k
 t

im
e

 i
n

 m
s
e

c
 (

lo
g

s
c
a

le
)

Data sets

Performance for rank and top. Query Qa.

dtree
plain1

plain0.1
shared1

shared0.3
shared(top)0.3

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12

#
D

e
c
o

m
p

o
s
it
io

n
 s

te
p

s
 (

lo
g

s
c
a

le
)

Data sets

Decomposition steps for Query Qa.

dtree
plain0.1
shared1

shared0.3

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12

#
S

e
p

a
ra

ti
o

n
 s

te
p

s
 (

lo
g

s
c
a

le
)

Data sets

Separation steps for Query Qa.

plain0.1
shared1

shared0.3

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7 8 9 10 11 12

W
a

ll-
c
lo

c
k
 t

im
e

 i
n

 m
s
e

c
 (

lo
g

s
c
a

le
)

12 synthetic data sets

Performance for rank and top. Query Qb.

dtree
plain1

plain0.1
shared1

shared0.3
shared(top)0.3

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8 9 10 11 12

#
D

e
c
o

m
p

o
s
it
io

n
 s

te
p

s
 (

lo
g

s
c
a

le
)

Data sets

Decomposition steps for Query Qb.

dtree
plain0.1
shared1

shared0.3

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12

#
S

e
p

a
ra

ti
o

n
 s

te
p

s
 (

lo
g

s
c
a

le
)

Data sets

Separation steps for Query Qb.

plain0.1
shared1

shared0.3

Fig. 8: Ranking in the synthetic data scenario: Comparison of performance and number of separation/decomposition steps. In

the legend: 0.2, 0.3, and 1 mean that 20%, 30%, and respectively 100% of the top most probable answers are identified and

ranked amongst themselves; (d) and (s) stand for decomposition steps and separation steps respectively.

V̄ be the set of remaining query variables. We define the

following parameters: f is the number of distinct Y -values

that can be paired with the same X̄-value, s is the number

of distinct X̄-values that can be paired with the same Y -

value. We let |dom(X̄)| = N , where N is an input parameter,

and |dom(Y)| = N · f/s. We generate relations Ri(X̄, Y, V̄)
as follows. If neither X̄ nor Y are empty, we first draw N
random values from dom(X̄), and for each distinct X̄-value,

we randomly draw f values from dom(Y) to pair with it. Then

for each distinct (X̄, Y)-value, we draw one random V̄ -value

from its active domain. If X̄ is empty, then we first draw

|dom(Y)| random Y -values, and for each distinct value we

draw a number of c random V̄ -values. We fixed N = 100,
f = 3, and c = 50 and obtained 12 data sets by varying s
over 2, 5, 10, 20, 30 ,40, 50, 60, 70, 80, 90, 100. We thus

decrease the domain of Y -values and increase the likelihood

that more X̄-values are paired with the same Y -value, and

with this also the likelihood of sharing across query answers.

Experiment 1: Ranking for Tractable TPC-H Queries.

Fig. 7 compares the performance of KL, dtree, and shared for

the four tractable TPC-H queries. In all but two cases, KL does

not finish to rank the top 10% answers for the smallest scale

factor 0.1 within the allocated time of 600 minutes, which is

up to five orders of magnitude larger than the time used by

the other two techniques. dtree and shared have comparable

performance. The events of Q6 are independent sums of

independent variables, and both dtree and shared detect this

and avoid decomposition; shared needs slightly more time due

to the overhead of sharing detection. For the other tractable

queries, there is more sharing across answers and thus shared

performs better than dtree even when all answers need to be

ranked, cf. Experiment 4. The number of decomposition steps

(Fig. 7 top right) for both approaches is less than the number

of event variables, which confirms that both techniques are

able to exploit the tractability of query evaluation. Moreover,

shared needs at least tenfold less decomposition steps than

dtree due to approximation and sharing; the separation steps

needed by shared, but inexistent in case of dtree, use up

most of the performance gain brought by the reduction in the

number of decomposition steps of shared.

Experiment 2: Ranking for Hard TPC-H Queries. In

contrast to tractable queries, for hard queries the performance

gap between dtree and shared widens to at least one order

of magnitude, cf. Fig. 7. This is because the events of hard

queries are more complex and, on one hand, exact probability

computation (dtree) can require exponentially many steps in

the number of its variables, and on the other hand, shared

employs approximate probability computation and exploits

sharing across query answers. In case of Q9, the difference

in the number of decomposition steps becomes five orders of

magnitude, the other queries witness a difference of up to two

orders. KL did not finish for any query and scale factor and

is only shown in the figure for scale 0.1.

Experiment 3: Ranking for Hard Queries on the Synthetic

Data Sets. For Qa(X) :- R1(X,Y), Qa2(Y), the performance

gap between dtree and shared increases as we move from data

set 1 to 12. This is explained by an increase in sharing across

query answers; due to sharing, the large events corresponding

to different Y -values of Qa2(Y) are only decomposed once for

all answers. Fig. 8 shows this effect for time performance and

number of decomposition steps. For Qb, the relation between

dtree and shared remains roughly the same for all 12 data sets,

which is about two orders of magnitude for both performance

and number of decomposition steps.

Experiment 4: Ranking All Answers vs. Exact Probability

Computation. Figs. 7 and 8 show that ranking all answers

using our technique (shared1) is faster than exact probability

computation followed by sorting (dtree) for both TPC-H and

synthetic data sets. This is more evident in case of hard queries

- with gains of up to two orders of magnitude, since for hard

queries the probability of the events cannot be computed in

general by a number of steps bounded in a polynomial of

the number of event variables. This experiment clearly shows

that for ranking we need not compute the exact probabilities,

but incrementally approximate lower and upper bounds on the

probabilities until we can separate them. The right-bottom

plot in Fig. 7 shows that the difference in the number of

decomposition steps between shared1 and dtree can be up

to five orders of magnitude for Q9.

Moreover, even without sharing, our technique plain can

perform much better than dtree, cf. Experiment 7.

Experiment 5: Ranking All Answers vs. Ranking A Few

Top Answers. Figs. 7 and 8 suggest that in our experiments

ranking all answers is about a factor of two more expensive

than ranking the top 20% or 30% answers only, in terms

of execution time and number of decomposition steps; the

numbers of separation steps in the two cases witness a larger

gap. This is because the process of ranking the top answers

usually requires to work on the probability bounds of all

answers in order to separate the top ones; after that, it is only

a matter of finding the possibly many new critical regions of

answers that require separation, and for each such region, a

few decomposition steps would suffice to obtain separation.

Experiment 6: Ranking vs. Top-k. We compared the perfor-

mance of our technique for the two problem flavours: rank and

top in both TPC-H and synthetic data scenarios. For tractable

TPC-H queries, the difference is rather insignificant: for Q6

and Q15 this is because they only have seven answers; Q16

and Q17 have 50 answers and the number of decomposition

and separation steps increase twofold when moving from

computing the top-30% (i.e., 15) answers to also ranking these

answers amongst themselves. Similar observations also apply

to the synthetic data set, cf. Fig. 8.

Experiment 7: Effect of Sharing. To understand the impact

of sharing on performance (time and number of steps), we

compared shared against plain on the synthetic data sets.

Fig. 8 shows that sharing accounts for most of the performance

gain: Ranking all answers using sharing is up to two (one)

orders of magnitude faster than ranking only the top 10%

answers without sharing for the query Qa (respectively Qb).

The difference in the number of decomposition steps needed

by the two techniques reaches about two orders of magnitude

for data set 12. Without sharing, plain is still faster than dtree.

The speedup in case of Qb is more than tenfold: Although

both algorithms do not exploit sharing across answers, plain

incrementally seeks approximate probabilities that are enough

to rank the answers, whereas dtree needs to compute the exact

probabilities of answers even if this is not always necessary.

VII. CONCLUSION

In this paper we introduce a technique for ranking query

answers in probabilistic databases and discuss the complexity

of the ranking problem. This technique is based on share plans

and incremental approximate probability computation.

ACKNOWLEDGMENTS

Olteanu’s work was funded by the FP7 ERC grant FOX

number FP7-ICT-233599 and EPSRC grant PrOQAW. Wen’s

work was funded by EPSRC EP/G069557/1 FRESNEL

project. The authors would like to thank Robert Fink, Dan

Suciu, and Martin Theobald for useful discussions and the

reviewers for their helpful comments.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] D. Angluin. On counting problems and the polynomial-time hierarchy.
TCS, 12, 1980.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Computers, 35(8), 1986.

[4] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. An optimal algorithm
for monte carlo estimation. SIAM J. Comput., 29(5):1484–1496, 2000.

[5] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. VLDB Journal, 16(4), 2007.

[6] N. Dalvi and D. Suciu. Management of probabilistic data: Foundations
and challenges. In Proc. PODS, 2007.

[7] N. N. Dalvi, C. Re, and D. Suciu. Queries and materialized views on
probabilistic databases. J. Comput. Syst. Sci., 77(3), 2011.

[8] A. Darwiche and P. Marquis. A knowlege compilation map. Journal of
AI Research, 17:229–264, 2002.

[9] R. Fink and D. Olteanu. On the optimal approximation of queries using
tractable propositional languages. In ICDT, 2011.

[10] R. Fink, D. Olteanu, and S. Rath. Providing support for full relational
algebra in probabilistic databases. In ICDE, 2011.

[11] W. Gatterbauer and D. Suciu. Optimal upper and lower bounds for
boolean expressions by dissociation. CoRR, abs/1105.2813, 2011.

[12] J. Gill. Computational complexity of probabilistic Turing machines.
SIAM J. Comput., 6(4), 1977.

[13] I. F. Ilyas and M. A. Soliman. Probabilistic Ranking Techniques in
Relational Databases. Morgan & Claypool, 2011.

[14] C. Koch and D. Olteanu. Conditioning probabilistic databases. PVLDB,
1(1), 2008.

[15] J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in
probabilistic databases. VLDB Journal, 20(2), 2011.

[16] D. Olteanu and J. Huang. Using obdds for efficient query evaluation on
probabilistic databases. In Proc. SUM, 2008.

[17] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query plans
for tuple-independent probabilistic databases. In Proc. ICDE, 2009.

[18] D. Olteanu, J. Huang, and C. Koch. Approximate confidence computa-
tion for probabilistic databases. In Proc. ICDE, 2010.

[19] D. Olteanu and J. Závodný. On factorisation of provenance polynomials.
In Theory and Practice of Provenance (TaPP), 2011.

[20] D. Olteanu and J. Závodný. Factorised representations of query results:
Size bounds and readability. In ICDT, 2012.

[21] J. S. Provan and M. O. Ball. The complexity of counting cuts and of
computing the probability that a graph is connected. SIAM J. Comput.,
12(4), 1983.

[22] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In Proc. ICDE, 2007.

[23] P. Sen, A. Deshpande, and L. Getoor. Exploiting shared correlations in
probabilistic databases. VLDB, 2008.

[24] P. Sen, A. Deshpande, and L. Getoor. Read-once functions and query
evaluation in probabilistic databases. In VLDB, 2010.

[25] J. Simon. On some central problems in computational complexity. PhD
thesis, Cornell University, 1975.

[26] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probablistic Databases.
Morgan & Claypool, 2011.

[27] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

