Approximate String Membership Checking: A
Multiple Filter, Optimization-Based Approach

Chong Sun, Jeffrey Naughtod, Siddharth Barman

Computer Science Department, University of Wisconsin, ited
1210 W. Dayton St., Madison, WI 53705 USA
!sunchong@s. wi sc. edu
“naught on@s. wi sc. edu
3sid@s. wi sc. edu

Abstract—We consider the approximate string membership candidate strings in the documents are first passed through
checking (ASMC) problem of extracting all the strings or the filter and only the strings that pass the filter are subgect
substrings in a document that approximately match some stng 15 5 more expensive verification with the actual dictionary

in a given dictionary. To solve this problem, the current stae-of-
art approach involves first applying an approximate, fast fiter, strings. Many filters, including the length filter, counteteii

then applying a more expensive exact verification algorithno the ~ Position filter [8], prefix filter ([7], [9]), LSH filter [10], oken
strings that pass the filter. Correspondingly, many string flters distribution filter (TDF) [11], ISH filter [6], and others, tia
have been proposed. We note that different filters are good at peen proposed. These filters use only partial informati@uab
eliminating different strings, depending on the characteistics of the dictionary strings (e.g., the length filter [8] uses reyri
the strings in both the documents and the dictionary. We susgct | hs while th fist fi ’ 7 fi f stri "
that no single filter will dominate all other filters everywhere. e.ngt S.W et (_apre IX 'te_r[]US(?S pre |x§so s_t”ng_m 9
Given an ASMC problem instance and a set of string filters, we Since different filters use different information, diffetdilters
need to select the optimal filter to maximize the performance are good at eliminating strings with different propertigge
Furthermore, in our experiments we found that in some cases a suspect that no single filter will dominate everywhere, &s th
sequence of filters dominates any of the filters of the sequeadn properties of the strings to check affect the effectiversess

isolation, and that the best set of filters and their orderingdepend ffici f the string filt For example. if hd men
upon the specific problem instance encountered. Accordingl we elnciency or the string niters. For example, It eéach docuine

propose that the approximate match problem be viewed as an String has far fewer tokens than every dictionary stringnth
optimization problem, and evaluate a number of techniquesdr the length filter may be the best filter to use; on the other hand

solving this optimization problem. the length filter may not be efficient if each string to check ha
nearly the same number of tokens as some dictionary string.
If it is indeed the case that no single filter dominates all
We consider a common and ubiquitous string membaesther filters for all problem instances, then given an approx
ship checking problem: given a dictionary of strings, and mate string membership checking problem instance and a set
collection of documents, find all occurrences of strings @f available string filters built over the dictionary strisygve
substrings in the documents that approximately match someed to select the optimal filter for this problem instance to
string in the dictionary. String membership checking isdusenaximize the overall membership checking performance. A
in many applications, including collecting customer feaco further observation is that since filters take sets of string
on products by scanning thousands of emails, aggregatingut and produce sets of strings as output, we can condatena
evaluations of a movie from many reviews and identifyinilters, so that, for example, a string membership checking
mentions of entities to extract information from Web pagealgorithm could involve applying a filtef; to the document
For example in DBLife [1], the mentions of entities, e.g.strings, then a filterfo to the strings that pasg;, then
researchers, publications and conferences, are locatedriy performing a final, exact check on only the strings that pass
Web pages in the database community, and further structutesth f; and f,. We found in our experiments that in many
information is collected to build the web portal. There hasib cases a sequence of the filters dominates any of the filters
a great deal of research on how to efficiently conduct boih isolation, and that the choice of filters and their ordgrin
exact string membership checking [2], [3] and approximair a pipeline affects performance. Because the choice of
string membership checking [4], [5], [6], [7], [8], [9]. Imhis filters and their ordering in a pipeline affects performance
paper, we focus on approximate membership checking. the multiple filter approach to string membership checkimg i
A naive approach to the string membership problem &n optimization problem. To the best of our knowledge, this
to iteratively consider each document string (or subsj)ringoptimization problem has not been studied in the literature
checking with the dictionary for matches. There is a growingtudying the problem is the goal of this paper.
consensus that a better way to do this is to adopt a filter-We describe our extended filter-verification framework with
verification approach [9], in which some quick approximatan optimizer for approximate string membership checking in
filter is constructed based upon the dictionary strings,thed Figure I. The extended framework consists of two phases: the

I. INTRODUCTION

Dictionary [Strings Section VI and conclude in Section VII.

Build Il. RELATED WORK

Approximate string matching is a classic problem in com-

Filter & Verfication .)
puter science and many algorithms have been proposed for

Toolkit : . . .

its solution [16]. As an extension to many-many comparisons

""""""""""""" = the approximate string join (or string similarity join) asses
Input| Strings o that we have two string collections and identifies all the

Optimizer approximately matching string pairs, with one string froacle

\ / \ collection. In [8], Gravano et al. exploit the existing fite@s
Ouput|Members in commercial databases to support approximate string join

Filter Verify based on tokenizing each string into a set of q-Grams. Irg[7],
Query Candidate database primitive query operatetsjoin (set similarity join)

is implemented to handle string joins. To efficiently evadua
approximate string joins, most recent work adopts the filter
Fig. 1. ASMC Framework with Optimizer verification framework [9], in which we first apply a rough,
fast filter, and only do a detailed check for similarity if a
string in one collection passes the filter built on the sigred
build phase and the query phase. The build phase is offligg.strings in the other collection.
in which we build all the potentially useful string filters@n \any signature schemes have been proposed. The counter
verification operators based on the dictionary strings.hEagjter, length filter and position filter, presented in [8] euthe
string filter or verification operator is considered as alt@ gt distance similarity. The prefix filter was proposed if [7
the “toolkit.” More tools could be incrementally added inb® and |ater extended in [9]. A novel signature scheme PartEnum
toolkit as new filters and verification operators are devetbp pased orpartitioning andenumeratiorwas presented in [17],
The query phase is an online phase, in which we condygtwhich by controlling the number of string partitions, we
dictionary membership checking for the incoming docume@harantee that any two approximately matching strings must
strings. The optimizer analyzes the characteristics oftdth® e the same in at least one or more partitions. The token
ument strings, the string filters, and the verification ofie®a gistribution filter in [11] compares the token distribution
As a result of this analysis, the optimizer determines whigl two strings to determine whether they can approximately
string filters to use, and how to order those filters. Thi§atch or not. LSH (locality sensitivity hashing) [10], e
optimization problem is similar to the expensive predicaie property that similar strings have similar hash valibes,
placement problem in relational database optimizatior},[12t may not return all the approximately matching stringse(th
[13], and the pipelined filter ordering problem in streamadaiomplete result). We do not consider filters that return an
processing [14], [15]. It is different, however, in that thés a incomplete result in this work.
final, exact verification step, so all of the filters are op#ibn Approximate string membership checking ([6], [18], [19],
We summarize our contributions in this paper as foIIows.[ZO]) is another variation on the approximate string matghi
« We propose that the approximate string membershigoblem, in which we view one string collection as the dictio
checking problem be viewed as an optimization problemary and process a second collection of strings (or docwshent
« We study this optimization problem, and prove that ifo check if each string in the second collection approxifiyate
general it isN P-hard. We also study special cases of thghatches some dictionary string. In [19], efficient exacibalg
problem, and develop several approximation algorithmighms are proposed to conduct approximate string checking
for its solution. based on merging token inverted lists. In [6], the ISH (Iteer
« We conduct experiments with both synthetic and redignature-based Hashtable) structure is presented with th
data to evaluate (a) the premise that no single filtéscus on reducing the filter checking time. In contrast to the
dominates, that multiple filters can dominate single filtergnverted list, the ISH filter stores a list of string signasir
and that the order of filters affects performance, an@ther than the string ids, for each string token. In [20g th
(b) the efficacy of our proposed algorithms to solve thguthors check whether a document string can approximately
optimization problem. match a dictionary string by merging the inverted lists of
In the rest of the paper, we start with a survey of the relatéokens for all the tokens in the document string. They foaus o
work in Section II. In Section Ill, we discuss the basics gbrogressive computation, discussed in [6], to avoid theimed
the approximate membership checking problem and the filtelant computation of merging the same set of inverted lists in
verification framework. We consider the approximate strinchecking all the substrings of one document string. Praiyes
membership checking problem as an optimization problem cdmputation is orthogonal to the filtering techniques andlae
selecting the optimal single filter and building the optimatot consider progressive computation in comparing differe
filter pipeline using multiple filters separately in Sectith filters in our work. Different filters have been used in an ad ho
and Section V. Finally we conduct a performance study fashion to accelerate the membership checking, e.g., tiggHe

filter is used in [19], [20]. However, none of the previoudilter f if and only if f cannot guarantee that no string i
work exploits the many existing string filters and uses thematches. In the verification step, we computémn(s’, s,.) for
systematically. The work in [21], [22] focuses on using cesi each strings’ passing the filterf and each string, € R. If
similarity metrics based on TF/IDF to approximately matckim(s’,s.) > 7, we says’ approximately matches. ands’ is
one string against the strings in a large database. a member ofR. With an effective filter, many fewer candidate
As mentioned previously, we view the approximate menstrings are checked than would be checked with the naive (no
bership checking problem as an optimization problem thélter) approach.
is closely related to some work in query optimization [23]) !
especially the predicate placement problem [12], [13] isaid C. The String Filters
in relational database query optimization, and the pigelin Most string filters are built based on different string signa
set cover problem (or the filter ordering problem) studied iture schemes, such as using the string length or the prefix [7]
stream data processing [14], [15]. The pipelined set coves the signature. A filtef built over a dictionary of strings
problem (or the min-sum set cover problem [24]) has be@onsists of the signatures of all the dictionary strings) &p-
proven to beN P-hard. However, our problem differs fromically also uses some index structure (e.g., ISH structéje [
the predicate placement problem and the pipelined set cot@ispeed the application of a filter to the strings.
problem in that the final verification step means that allriite We use two properties to characterize a filter: its filtering
are optional; the problem is not “apply all these filters ie thcost f¢ and its filtering ratiof”. Suppose we have a filtéf.
optimal way,” instead, it is “decide which of these filters t&Suppose that we have a setsf, strings as the input tg,
apply and how to order them so that the entire memberskipd that it takes time to apply the filter to these strings, and

checking time is minimized.” Nyt Strings pasg’. Then the filter ratio g1 — 1y /74,) and
the filtering cost ist/n;,. Note that the same filter can have
. PRELIMINARIES different f¢ and f on different datasets and different filters

In this section, we introduce the approximate string mengan have differenf” and f¢ on the same dataset.
bership checking problem and describe the filter-veriforati
approach. IV. USING A SINGLE STRING FILTER

)]) . In this section, we consider using a single string filter to
A. Approximate String Membership Checking (ASMC) gplve the ASMC problem. As mentioned previously, many
Assume we have a string dictionaRy An input strings’ is string filters have been proposed, and different filters leen
a member of a dictionary if and only if there exists a string designed based on different string information. As a result
s» € R such thatsim(s’,s,) > 7, wheresim(s’,s,) is a the performance (filtering ratio and filtering cost) of arsfri
string similarity function and- is a similarity threshold. Many filter depends on the characteristics of both the document
similarity metrics have been proposed, edaglit similarityand strings and dictionary strings. In the following, we anayz
Jaccard similarity Formally, we define the approximate stringlifferent properties of three string filters, the lengthefit
membership checking (ASMC) problem as in [6]: prefix filter and token distribution filter, to motive our work
Definition 1: Given a string dictionary, a string similarity on the optimization problem of selecting the optimal filter f
function sim() and a similarity threshold, find every string a given ASMC problem instance.
or substrings’ in a string document such that3 s, € R Length Filter [8]: Assume we have two strings; =

and sim(s’,s,) > 7, in which case we say’' approximately (tj’,t5,...,t5) ands; = (¢7,t57,...,tm) (m > v). We

matchess,.. represent each string as a sequence of tokens (e.g., words,
) o phrases or g-Grams}, ta, ...,t;). Assume we use Jaccard

B. Filter-verification Framework similarity with a matching threshold to check strings. String

A naive approach to the ASMC problem is to iteratively, approximately matches; only if |s; Ns;|/|s; Us;| > 7, In
take each string or substring in an input document and which |s;Ns;| refers to the number of common tokensjrand
compute the similarity betweesi and every dictionary string, s;, and|s; Us;| refers to the total number of tokens énand
outputting s’ as a dictionary member i&’ approximately s;. Correspondingly, we gei; matchess; only if 7 - |s;| <
matches some dictionary string. Generally this approach|is| < |s;|/7. Checking two strings using the length filter
expensive. means comparing the string lengths, which is very efficient.

The filter-verification approach eliminates many candidatédowever, the length filter can not differentiate stringshwit
strings using filters before computing the string similaritsimilar lengths. For example, two strings = (t1, to, ..., t10)
function. As the name suggests, the approach includes tenadss = (t11, t12, .. ., tag) @pproximately match based on the
phases: filtering and verification. The filtering phase ftselength filter.
consists of two steps: building a filter over the dictionary Prefix Filter [7]: Suppose strings; ands; havel. common
strings, and checking the document strings against the. filteokens. Based on Jaccard similarity, matchess; only if
To conduct membership checking for a string documgnt l./(m+v—I.) > 7. Accordingly,s; ands; must have at least
and a dictionaryR, we first build a filterf with R and then [. = (m +v)-7/(1 + 7) tokens in common to approximately
check each string it with f. We say a strings passes a match each other. Therefore, presuming we set the string

prefix length to bel,, s; approximately matches; only B. Cost Estimation

if there are at least/. + I, — v) common tokens in the T search for the optimal string filter and verification
prefixes ofs; ands; Here, we assume all the tokens in eacBperator, we need to calculate the cost of using each pessibl
string follow a universal ordering, and the string prefixe®/ pjan over all the document strings. Assuming we use a fiiter
the first/, tokens in the string. Checking two strings usingo|iowed by a verification operatar in the plan, the time cost
the prefix filter means measuring the common tokens of tB?checkingm document strings isv- f¢+m- (1— f7)-v°, in
two strings in the string prefix. Therefore, the prefix filte{ynich f¢ is the filtering ratio andf” is the filtering cost, and®
can not differentiate two strings which have many commag the verification cost of checking each string passing tres fi
tokens in the prefix but few common tokens in other parts 9f The problem is that we do not knofi¢ and f7, and cannot
the strings. For example, two strings = (t1,%2,...,t10) afford to compute them exactly by testing every string with
and s3 = (t1,t2,t3,t11, 12, t17) approximately match eyery filter. Accordingly, we need some inexpensive techeiq
according to the prefix filter, assuming we set the prefix lengf, estimatef¢ and .
to be 3. We consider two main broadly used estimation approaches:
Token Distribution Filter [11]: Suppose there is a parti-gstimation based on some default values and system sstisti
tioning schemep on a string token space that splits all thee [25], [23]), and estimation based on sampling techniques
tokens in the space into partitions (° = (P1, P, ..., Pu))- ([26], [27], [28]). Unlike the case with relational databas
We use the number of tokens of a string in each partitiqystems, in string matching problems statistics about the
as the token distribution of the string. The intuition is th&gjlections of strings and how they interact with filters may
any two approximately matching strings must have similgfot pe available. Furthermore, the performance of a filter
token distributions. Suppose a token space is split o gepends on both the document and dictionary strings. We
partitions (? = {Py, P,,..., P.}) and a strings; has|P;*| may have a fixed dictionary, but various documents to check.
tokens in partitionP, < P. Any string s; approximately accordingly, in this paper, we explore estimation based on
matchess; based on Jaccard similarity onlygj-v has at least sampling techniques [26], specifically, stratified seqiant
(%—MW) tokens and at mo$'51+7)|P’”;fT|S”_|S”T) sampling.
tokens in partition P, in which M°“ = min((|s;] — The basic idea of sequential sampling-based parameter
|P;), |s;]). For example, suppose we have an ordered stripgtimation is as follows. Take estimating the filtering cf%t
token spaceP = [ti1,ta,...,t2] split into four partitions: of a single filter f, for example. We split the data (document
P = [ti,...,t5), Po = [ts,...,t10] ,» P3 = [t11,...,t15] strings) intom disjoint partitions and we divide thex parti-
and P, = [tis,...,t20]. The token distribution of string tions intok disjoint sets (strata). Then we sequentially sample
sq = (t1,t2, t11, ti2, tie, t17) is (P1{2}, P3{2}, P4{2}), which over the strata. At each sampling step, (step), we randomly
sayss, has 2 tokens in partitios”;, 2 tokens inP; and 2 and uniformly select one data partition (observatigh from
tokens inPy. Stringss = (t3,t4, 113, t14, t1s, t10) has the same each ¢, stratum) of thek strata, and use? as the input
token distribution as4, even though many tokens are differento the filter to compute the filtering cogt‘(z}). We repeat
in the two strings. In the example for prefix filter, strings this samplingn steps until the following stopping conditions
andss have the same prefix but different token distributionssatisfy [26]:

A. The Single Filter Optimization Problem Vo >0

We see that different string filters have been designéfd
based on comparing different string information, such asgt k. n _ B
length, prefix or token distribution. The performance of a e-maz(k™" - Y f(al),n-d) >z, (n k- V)
string filter depends on the characteristics of the dictipna i=1 j=1

S“'T‘g_s a_nd documer)t strlngs. Acc_qrdmgly, we define tqﬁheref/,f is a unbiased and strongly consistent estimator of
optimization problem in the filter-verification approachtte 52 — 1 Zk o2 for the estimated filtering costs over the
- =1

ASGI\?\f:erE)rgr?lin;h:gngrc?blirr]rglien ;'tlgenrcgs(i?gﬁ\gi a Collectiorandom observations] is a parameter to control the steps
b 9 f the sampling;Z, refers to®~'((1 + p)/2) where ® is

of documents and a dictionary of strings), and a set of avatl 1e cumulative distribution function for a standardizedmal

able string filters and verification operators, the optiriira . . . L
roblem of usina a sinale filter is to select the ootimal rinrandom variable angdis the confidence level for the estimation
b 9 9 P FrNerror bounded by -m - pq andug = max(|D|/m,d). We get

f!lter and verlflcanon operator §uch that the overall qheglg the estimation off¢ as
time cost of first applying the filter and then the verification

operator is minimized. M e L,
Each filter affects the document strings that need to be fo= Lon ZZf (x7)
checked by a verification operator, thus affecting the \cexifi =1=1

tion cost. Assume we have string filters andn verification with the probabilityp for the error to be withinte - m - ugq.
operators, to search for the optimal filter and verificatioAchieving small errors (smakt) and high confidence (high
operator, we explore a space of m execution plans. p) may require a lot of sampling; in some cases it may be

preferable to do less sampling at the expense of largerserrof this section, we describe the optimization problem iradet
and less confidence. Unless specified otherwise, we useldefand how we solve the problem.

values withe = 0.2 andp = 0.95.
A. Overview of Multiple Filter Optimization

C. Searching for the Optimal Filter The optimization problem presented by our multiple filter

The brute force approach to search for the optimal filtefpproach to the approximate string matching problem can be
and verification operator considers every combination cheastated as follows. Given a dictionary of strings and a set of
string filter and each verification operator, as the verificat 5, fiters F = {f1,f2,..., fn} and a set ofm verification
cost may depend on the strings passing the filter. For eagberatord” = {vy,vs, ..., v, } built on the dictionary strings,
combination of a string filter and a verification operator, wand a similarity functionsir» and a corresponding matching
use the sequential sampling technique to estimate the cggbsholdr, the optimization problem is to build a pipelinelof
of checking all the document strings. Then we output th@ters and a single verification operatorﬁs f27 e fk—l, Uy
string filter and verification operator with lowest estinoati (f; ¢ F and v, € V) to check the document strings with the
cost. Assume we have string filters andm verification |east time cost.
operators, the time complexity of the brute force approachwe note that each filter pipeline should contain one and
is O(n - m - Scost), IN Which s.o is the sampling cost only oneaccuratefilter (or verification operator) and it is only
of estimating the cost of a plan and,.: varies with the meaningful to have it at the end of a pipeline. By having one
parameters, confidence levep in the sampling and the costaccuratefilter in the pipeline, we guarantee that any document
of using the filters. As the major cost in the optimizatiostring passing the pipeline is a dictionary member. Suppese
is the sampling and we may need several samplings in thgved candidate strings, and I¢f and /¢ be the filtering ratio
optimization, we use the number of samplings required Ehd cost of filterf; in the filter pipeline5¢ be the verification
measure the cost of an optimization approach. cost. We represent the total cost function of checkiregrings

An additional complication to the optimization problem is;sing the filter pipeline as
that the cost of applying the verification operator to a gtrin
may vary from string to string. In our work we make the
simplifying approximation that the cost per string is umifo
In our experiments we found this to be substantially the case
for the data we used; if this is not the case, it will introducé/here
another source of error into the optimization process. Wiret W, — {d =1

k—1
SJE Wit Wi
=1

or not this error is substantial enough to cause optiminatio d-H;.:Q(l — f;ﬁ_l), i>1.

errors is an interesting area for future work. We design the _)) o

algorithm of searching for the optimal filter and verificatio TS build the optimal filter pipeline, we search a space of
operator as follows. First, we estimate the cost per strarg f(>_x—1 #' - (%) - m) pipeline plans, in whictn is the number
each verification operator, and keep the verification operat of the filters andn is the number of verification operators.
with lowest estimated cost’. Then, we estimate the fiIteringB Cost Estimation

ratio f~ and filtering costf¢ of each string filterf. We select

the filter to minimizef© + (1 — f7) - v°. The time complexity ~ To search for the optimal pipeline, we need to estimate the

of this algorithm isO(n - scost + M * Scost)- time cost of each filter pipeline plan over all the document
strings. As in our approach to estimating the cost of single
V. THE MULTIPLE FILTER OPTIMIZATION PROBLEM filter plans, we use sequential sampling to estimate theifitie

As mentioned previously, we adopt the filter-verificatiofiatio and the filtering cost of each filter in a pipeline.
framework to handle the ASMC problem. More importantly,)) .
since different filters are good at eliminating differentcde C. Searching for the Optimal Pipeline
ment strings, and filters accept strings as input and producel) Basic Approach:The brute force approach to search for
strings as output, we can concatenate a sequence of filtars the optimal pipeline is to estimate the time cost of usinggve
pipeline to function as one composite filter. If we regardfthe possible plan for the document strings and output the plém wi
nal verification phase as a finalccuratefilter, we can consider the least time cost. The time cost of searching for the optima
the problem to be one of finding the most efficient sequenp#eline in a space of filters andm verification operators is
of filters, ending with araccuratefilter. Correspondingly, we O(3",_; k! (}) - m - Scost)-
extend the filter-verification framework for approximatersy We improve the searching performance by iteratively ex-
membership checking by adding an optimizer component. Thkoring the plan space using an improved approach as in
optimizer selects the optimal sequence of filters, inclgdinrAlgorithm 1. We first build filter pipelines without consideg
a verification operator, based on the properties of the inphie verification operators and then we select one verificatio
strings and available string filters. Then we use the selecteperator for each pipeline. Finally, we output the pipeline
string filters and the verification operator to conduct thecluding one verification operator with the least estirdate
membership checking for the input strings. In the followingost as the optimal filter pipeline.

Algorithm 1: search for optimal pipeline

input : n filters F', m verification operator¥ and
the document stringgoc
output: filter pipeline P

set P, ={1-filter pipelines;

setk=2;

foreach k < n do

set G ={All k-filter pipelines};

foreach g, € Gy, do

gk—1= g - last filter;

/* renove the last filter */

if gr_1 & Pr—1 then removeg; from Gy;

elsec(gi) = estimatecost(gx, doc);

/* estimate the cost of g; by
sampl i ng doc */

end

foreach g, € G do

if c(gx)=min{qx | gx € Gr&q; contains the

same set of filters ag.} then

| addgy into P

the costs of(7) - (n — 1) 2-filter pipelines. In thek,, pass,
we estimate the costs df) - (n — k) (k -+ 1)-filter pipelines.
Therefore, the total number of samplingsGE(ZZ;ll(n -

k) - (})). To add the verification operators, we estimate the
cost of O(3_1_; (}) - m) pipelines. The total time cost of the

algorithm isO((Xp_; (1) -m+ 021 (n—k) - (1) - Scost)-
Even though the improved approach is more efficient in
searching for the optimal filter pipeline than the brute érc
approach, it is still an exponential algorithm. Unfortusigt
it is unlikely we can do better with an optimal algorithm,
for as we prove next, that the problem of searching for an
optimal filter pipeline isN P-hard. To prove that this general
optimal plan searching problem 1§ P-hard, we first consider
a “simpler” version of the searching problem, in which we
assume that any filter spends the same time on checking each
string. We call this assumption as theiform cost assumption
Theorem 1:Suppose we have a document of strings and
candidate filters anen verification operators. If the uniform
cost assumption holds for the filters and verification opesat
it is N P-hard to determine the optimal filter pipeline.

end Proof: In the appendix we show that the so called
end Filter Coverage problem isVP-hard. Filter Coverage is a
end formalization of the problem at hand and hence we get the

desired result.]

As we have shown that the “simpler” problem of searching
for the optimal filter pipeline with the uniform cost assuiopt
in N P-hard, the general searching problem is al&-hard.

2) Approximation Algorithms:To solve the optimization
problem efficiently, we design an approximation algorithm

setcost = oo;
foreach pipeline P’ € | J,_, P do
foreach verification operatorv € V' do
¢ = estimatecost (P’ + v, doc);
if ¢ < cost then cost = candP = P’ + v,

end
end in Algorithm 2. Algorithm 2 consists of two stages: the
return P building stage and the refining stage. During the building

stage, Algorithm 2 takes iterations to build the filter pipel
incrementally based on a greedy selection strategy. In each
iteration, we estimate the filtering ratio and the filterirgstc
To build the pipeline with the set of filters, in the first pass of each filter or verification operator after applying theefitt in
of Algorithm 1, we estimate the cost of using every 1-filtefhe pipeline. Then we select the filter or verification opierat
pipeline and keep them in a sBf. A subsequent pass, say pasgith the largest ratio of the filtering ratio to the filteringst to
k, consists of two phases. First, we generate all the caredidatid into the filter pipeline. We continue to add filters inte th
optimal k-filter pipelines with the estimated optimét — 1)- pipeline until a verification operator is selected. In théniag
filter pipelines based on the property that the fifst-1)-filter stage, we start from the last filter in the pipeline and ed#rifa
pipeline in each optimak-filter pipeline is also optimal. The we can get better performance by removing the filter from the
correctness is guaranteed by the fact that the filter orgenin pipeline. If we can improve the estimated cost of the pipelin
a pipeline with a fixed set of filters does not affect the s8inghen we remove it. We continue the checking and removing
passing the pipeline. Therefore, the sub-pipeline of th& fifyntil we can not improve the estimated performance.
(k — 1) filters in each optimak-filter pipeline must be an During the building stage, in the worst case, we need1)
optimal (k — 1)-filter pipeline for the set ok — 1 filters. Next, jterations to construct the filter pipeline by using all tHeefs
we estimate the time cost of each candidedfiter pipeline and one verification operator. In iteration 0, we madke+
and keep the pipeline with the least cost for each differett s5,) samplings to estimate the cost of using each filter and
of k filters in P. verification operator to check the document strings. During
Then, we select verification operators to add to the pipslingteration k, we estimate the cost of using the pipeline with
For each pipeline, we estimate the cost of each pipeline pleisch of then — k left filters andm verification operators. In
every verification operator. Finally we output the pipelpian this iteration, we conduot — & +m samplings. Accordingly,
(including a verification operator) having the least estada the total number of samplings in the building stageis +
cost as the optimal filter pipeline plan for thefilters andm n)/2+ (n+1)-m. In the refining stage, we can make at most
verification operators. n—1 sampling estimations. Therefore, the time complexity of
To build the filter pipeline, in the first pass, we estimat@lgorithm 2 is O((n? +n - m) - scost)-

Algorithm 2: search for optimal pipeline

Algorithm 3: search for optimal pipeline

input : n filters F', m verification operatoi/ and
document stringgoc
output: a filter pipeline P

set P=¢;

while P contains no verification operataito

setcost = —o0;

setop =null

foreacho € (FUV) ando ¢ P do

c(0),r(0) = estimatecost ratio(0, doc);

I+ estimate the filtering cost c(o)
and ratio r(o) of o after
applying P over doc * |

if r(0)/c(o) > cost then

| setcost =r(0)/c(0) andop = o;

end

end

if op € V then

for (i=1;1i< P.size; i+ +) do
P’ = P— last filter;

input : n filters F', m verification operatoi/ and
document stringgoc
output: a filter pipeline P

Set P=¢;
Set L=¢;
foreacho € (FUV) do
if o € F then
c(0),r(0) = estimatecost ratio(0, doc);
else ¢(o0) = estimatecost (0, doc);
addo to L;
end
sort L based on the decreasing order6g¢d) Where

_ [r(0)/elo).
o= {1/c<o>,

oeF
oeV.
while L # null do

selecto € L with the larges®(o);
if o € F then removeo from L ;

.] addo to P ;
€= estimatecost(P +op, doc); else addo to P andreturn P;
¢ = estimatecost(P' + op, doc); end
if ¢ < cthen setP = P’;
else addop to P andreturn P;
end
else have filters with high filtering ratio and low filtering cost in
| addop to P; the front. To be specific, in Algorithm 3, we first estimate
end the filtering ratio and filtering cost of each flter indeperttien
end Then we incrementally add string filters and verification op-

erators into the pipeline according to the decreasing cofler
0, whered is the ratio of the filtering ratio to the filtering

When the uniform cost assumption holds for all the filter€0St Of a filter and is the ratio of 1 to the filtering cost of
and verification operators, we have the following theorem ¢hVerification operator. We stop when we add one verification
the optimality of the filter pipeline generated by the greeddPerator into the pipeline. _ _
selection used in Algorithm 2. In Algorithm 3, we needn+m) samplings to estimate the

Theorem 2:Assume the uniform cost assumption holgEltering ratio and filtering cost of each filter and verificati
for all the filters and verification operators. Also assum@Perator. The cost of ordering the filters (arld)Ve“f'Cat'On
that after each filter application the number of dictionaryPerators based on the samplingi(n+m)log"). Then
strings in the document is no more than the number ¥f€ select at mostn + 1) filters and verification operators to
non-dictionary strings, then using the greedy selection Ryild the pipeline. Therefore the(tc+)ta; cost of the algoritts
Algorithm 2 achieves a 10 approximation for the optimal filteO((n +m) - scost + (n +m) - log)
pipeline problem. Suppose the uniform cost assumption holds for all the filters

Proof: Under the above assumptions the algorithm givednd the string data distribution before applying a filfeis the
in the appendix is same as Algorithm 2 and hence we c&Ame as that after apply the filtgr In other words, any filter
apply Theorem 5 (see Appendix). Hence we get the desiré® pipeline would not affect the filtering ratio and the fiitey
approximation guarantee. m cost of any other filter appearing later in the pipeline. We sa

The assumption that the number of dictionary strings in trge filters are independent of each other. In this case, we can
document is less than the number of non-dictionary strisgsaccurately estimate the filtering ratio and the filteringtaufs
in fact true in most practical scenarios. each filter independently, and we can incrementally adddilte

We note the approximate algorithm to solve the optimizatidito the pipeline and we stop when we meet a verification
problem still takes a quadratic number of sampling estim@perator.
tions, which could be expensive for an optimization step of We have Theorem 3 to show that Algorithm 3 find the
the string membership checking problem. Correspondimgdy, optimal filter pipeline when the filters are independent drel t
present another approximate algorithm in Algorithm 3. uniform cost assumption holds for the verification opertor

The motivation of Algorithm 3 is that a good pipeline should Theorem 3:Assume we have a sét of n independent fil-

ters and a se¥’ of m verification operators. The optimal time Exclusive parameters Shared parameters

cost of checking a set of document strings via a filter pigelin Token Space Coverage | Overall Token Space
built of the filters and verification operators is achieved by Token Distribution Token Space Overlap
putting the filters in decreasing order @fo), where Number of Strings Overlap Strings
Average (Max, Min) Length
(0) = fr)/f(0), o€ F Token Space Coverage refers to the set of tokens that a
1/f%(o), oeV. dictionary or document generator can use from the Overall

Proof: Observe that interchanging the order of multipldfoken Space, the universal token space used in the data
filters can be decomposed into interchanging the filter ordgenerator. The Token Distribution refers to the token fezoy
pairwise. Without loss of generality, assume we have thiistribution in the document and dictionary strings. Token
optimal filter pipeline P built using then filters and m Space Overlap refers to the overlap ratio of the dictionary
verification operators. Assume that filter appears right and document token spaces. We refer to the dictionary string
before filtero; in P. If f7(0;)/f(0:) < f"(0;)/f¢(0;), then appearing in the documents as Overlap Strings.
we can interchange the order of and o; and decrease the We set default values for the synthetic data generator pa-
time cost of using the filter pipelin€. This contradicts that rameters as follows. For the dictionary generator: Tokeac8p
P is the optimal filter pipeline. Therefore, all the filters imet Coverage (10K); Token Distributionnérma); Number of
optimal filter pipeline must be ordered in the decreasin@ ratStrings (1M); Average, Min and Max Length (10, 5, 15). This
of the filtering ratio to the filtering cost. Similarly, we cahow configuration generates a dictionary of 1M strings composed
that in the optimal filter pipeline any filter; appearing before of 10K distinct tokens and the frequencies of all the tokens
a verification operatow;, we must havef”(o;)/f°(0o;) > in the dictionary follow a standardormal distribution. The
1/f%(o;); otherwise,f"(0;)/f°(0;) < 1/f(05). B average, minimum and maximum lengths of the dictionary

strings are 10, 5 and 15. Similarly, we specify the default
As we have proven, on the problem, Algorithm 2 is amalues for the document generator as: Token Space Coverage
approximation algorithm with a provable bound, and for oth€10K); Token Distribution iormal); Number of Strings (10K);
conditions, Algorithm 3 is optimal. When the conditions dd\verage, Min and Max Length (20, 15, 25). Furthermore, we
not hold, both of these algorithms become heuristics, and wet the Overall Token Space to contain 10K tokens, the Token

evaluate their performance in the next section. Space Overlap to be 0.5 and the number of Overlap Strings
to be 50 by default.
VI. PERFORMANCESTUDY Real Data We used a snapshot of the crawled DBLife [1]

In this section we conducted experiments to explore tr‘?e?ta (web pages) as the documents and a list of paper titles
extracted from the DBLP Bibliography [29] as the dictionary

optimization approach o the approximate string membprsh]Lhe DBLife data consists of 10K web pages and the total
problem. We first explore the performance of various filterg

and filter pipelines (to provide evidence of the need for anata slz€ 'S, approximately 48MB' Many W(.ab pages, €.g.,
L researchers’ homepages, contain some publication mention
optimization-based approach), and then explore the perfor

mance of our estimation and optimization algorithms. We d"éhiCh include paper titles. The dictionary consists of 200K
this both with synthetic and “real” data sets ' paper titles with a total size 11.9MB, and it contains about

86K distinct tokens.
2) Filters and Filter Pipeline: We implemented four indi-
vidual string filters and one verification operator, and eigch
We ran all the experiments on a 2.4 GHZ Intel Duo Core P4ssigned a ID for ease of notation as listed below. We also
with 3GB memory. All the strings filters and the membershipnp|emented code to “glue” them together into pipelines of
checking were implemented in Java. We use the time cqers.
to measure the ASMC performance. The cost of ASMC may |ength Filter (1): We implemented the length filter accord-
consist of three components: optimization cost (only if 8e uing to [8]. With the length filter, a string extracted from the
an optimization based approach), filtering cost (only ifngfr documents needs to be verified only if the length of the string
filters are used) and verification cost. is in a range determined by the dictionary strings.
1) Data Sets:To investigate the performance of the various Compressed Inverted List Filter (2). We built inverted
filters and pipelines of filters, we used both both synthatit alists for the dictionary string tokens and we used a fixelit
real data sets in the experiments. array for each token to store the hash values of the string ids
Synthetic Data We designed a data generator consisting eather than using the id list. By adjusting the bit array size
a dictionary generator and a document generator, which ean) we can trade filtering cost for accuracy. That is, a larger
customized using two types of parameters: shared parasnetkeyads to a higher cost and higher accuracy, while a smaller
which specify correlations between the generated dictiondeads to a lower cost and less accuracy.
and documents; and exclusive parameters, which specify th& DF Filter (3) : We implemented the token distribution filter
individual properties of the dictionary generator and doent in [11]. We set the default token partitioning numideto be
generator. |D|/100, where|D| is the number of tokens in the Overall

A. Experiment Setup

Token Space. We adjustaccording to the memory usage, sde no single filter which is also superior to others in all
that theTDF consumes a similar amount of memory to othescenarios. Our optimization approach can find the optimal
filters in the experiments. filter for various problem instances we have studied on both

ISH Filter (4): We implemented the ISH filter [6] using synthetic and real data sets. More importantly, the optton
prefix signatures. Similar to the inverted lists, ISH stoees overhead is relatively small.
list of string signatures for each token rather than strofgy i 2) Using Multiple Filters: In Figure 3 we move to consider
We usek (number of tokens in string prefix) and (bit-array the case where we use multiple filters in a pipeline (rather
size for each token) to control the performance and memadhan a single filter plus a verification operator.) We wish to
usage. We experimented with different values#andn and explore (a) whether a pipeline of filters can indeed perform
picked k=3 andn=1024 since those numbers worked well ibetter than a single filter, and (b) whether the order of §lter
our experiments. in a pipeline affects performance, and (c) whether the best

Inverted List Filter (v) : This is the only verification opera- order for a set of filters is constant across different pnoble
tor we considered. We implemented the DivideSkip algorithinstances, and finally (d) how well our various optimization
[19] to merge the inverted lists of tokens for candidatengsi algorithms perform in this environment.

Filter Pipeline: We cascade different filters to form a filter In Figure 3(a),we explore different pipelines on different
pipeline used in the multiple filter approach, e.g., a pipeli document sizes. We see that on these data sets, adding filters
plan “3,4,v" refers to applying the TDF filter and the ISH filte improves performance, and that using all of the filters is the
in order before the verification operator. fastest. Figure 3(b) considers different orders of filtdts.
shows that the performance is indeed sensitive to order.

These two points suggest that some optimization-based

1) Using a Single String Filter: First we explore the approach might be effective. Hence, in Figure 3(c) and 3(d),
performance of the individual filters, to ascertain whetber we evaluate the performance of the optimization approach in
not they indeed show different performance. The results aearching for the optimal filter pipeline. The basic apphoac
shown in Figure 2(a). That graph has a lot of information ofAlgorithm 1) to our optimization problem is guaranteed to
it. The three groups of bars correspond to varying numbersfofd the optimal filter pipeline, when the sampling based-esti
document strings. Each group contains a bar for each of tmation is accurate. However, it requires an exponentialbarm
filters (plus the verification operator; recall that thestefd of sampling estimations. For example, even with 4 filters, we
are only approximate, so they cannot be used without beinged to make more than 30 estimations and each estimation
followed by the verification operator.) For comparison, wenay take 1%-2% of the overall cost. Making 30 estimations
also include the performance of only the verification opmratmay take longer than just running a reasonable plan. Thexefo
indicated by “v". Finally, the bar labeled “opt” correspandwe did not consider the basic approach in our performance
to our optimization procedure described in Section IV-AeThstudy. We only evaluated the performance of the two approx-
results demonstrate that selecting the correct filter ionmgmt, imation algorithms (Algorithm 2 and Algorithm 3) to solve
and that our optimization approach was effective, finding ththe optimization problem, which are separately represente
optimal filter with only about 20% overhead. as “OptimizationAl” and “OptimizationA2” in Figure 3(c)

Figure 2(b) shows the same information for varying thend 3(d). For comparison, we also show the best performance
token space overlap. The point made by Figure 2(b) is thaitthe pipelines with 1, 2, or 4 filters before verification and
the relative performance of the filters changes with diffiérethe worst performance of the 4-filter pipeline. In Figure)3(c
data sets; the relative effectivess of the filters is diffiérewe vary the number of document strings from 10K to 100K.
between Figure 2(a) and Figure 2(b), and also differentén thVe find that both two approximation algorithms can find the
different groups in Figure 2(b). Also note that our optintiaa optimal filter pipeline. However, the optimization overbeat
method is close to the optimal in all cases. This lends creglerfOptimization Al” is large, i.e., more than 30% of the overall
to our belief that no one filter dominates everywhere, arabst. Due to the large overhead, “Optimizatidh” only
that our optimization-based approach is an effective way &zhieves similar performance to using the best 2-filterlipe
choose filters. Figure 2(c) makes the same point by varyifgill its performance is much better than that of the worst 4-
the dictionary token frequency, the average number of eafilker pipeline. The approach “Optimizatiofd2” not only finds
dictionary token. the optimal filter pipeline, but also only add a small amount

In addition to the synthetic data sets, we also evaluateél optimization cost, i.e., about 10% of the overall cost. We
the ASMC performance using single filters on real data segst similar results when we vary the token space overlap from
with the crawled web pages in DBLife as the documents af@d2 to 0.8 in Figure 3(d). Both approximation algorithms in
the paper titles extracted from the DBLP Bibliography as thtte optimization approach can find the optimal filter pipelin
dictionary in Figure 2(d) and 2(e). The results in Figure)2(dor each problem instance, and “Optimizatié2” requires
and 2(e) over our real data set confirm the conclusions we djtite cost in searching for the optimal filter pipeline than
over the synthetic data sets. “OptimizationA1".

To summarize, using different string filters in the ASMC Besides the synthetic data sets, we evaluated the effective
problem may result in different performance. There mightess of the optimization approach on real data sets with the

B. Experimental Results

1,200 L L B N L B N 300 250 T T T 17T T T T 1T L B R A |
= i =
L,000f -+] 250 Yoty
S o] 5 [
800 N . 200+
@ @ . @ 150+ NS E
00 NS L ABOL e g o S
£ £ £ S
= = = £ 100¢ NN NN R
BOO oo IR 100F- oo -
= 3 Z
200+ veeee e - S 50} 50F- e SZ -]
Z
0 >>>>>9 > >> >>>>9 0 0 >>Q >>>>9
ANeS O ddms © i~ © i< S Ade< T 0 ddms ©
10K 50K 100K 0.2 0.5 0.8 500 1,000 2,000
Number of Document Strings Token Space Overlap Dictionary String Token Frequency
(a) Varying Document Size (b) Varying Token Space Overlap (c) Varying Dictionary Token Frequency
6,000 7,00 L R B B A B
6,000+ oo T e o
5,0007 - [~] S
ol & Optimization e Za000L & Optimization | 3.
Py L e
£ 3000 EBo00- .
[=
2,000 e N U 2,000 g -
1,000+ ee e NS S 1,000F g oo 8
o S = 0
>>>>>0 >>>>>a >2>>>>9
ANy © Hdaim o < ©
100K 200
1K Number ostDocuments 10K Number of Dictionary Strings
(d) Varying Document Size (e) Varying Dictionary Size

Fig. 2. ASMC Performance Using Single Filters

crawled web pages in DBLife as the documents and the papapitalize on different aspects of the strings, differeler$
titles extracted from the DBLP Bibliography as the dictiona are effective for different instances of the string membigrs

In Figure 3(e), we show the best performance of using firoblem.

2 and 4 filters before the verification and also the worst The multi-filter framework we advocate in this paper ex-
performance of using 4 filters to compare with performanggoits this observation to arrive at what in some sense atsoun
we achieved by the optimization approach using the twe a “toolkit” approach: when faced with an instance of the
approximation algorithms. We vary the number of documenésing membership problem, one looks into one’s “tookit” of
from 1K to 10K, while keeping the dictionary size at 100Kfilters and tries to assemble a pipeline of these filters that
We get similar results on real data sets as in Figure 3(c). TWll work well on the specific problem at hand. Of course,
two approximation algorithms indeed find the optimal filteehoosing the appropriate filters and assembling them in the
pipeline for each case. “Optimizatioh2” achieves the second proper order is in general a non-trivial probledv P-hard);
best performance over all the approaches. The overheaé of i do so automatically is an optimization problem that reegi
optimization is relatively small compared with the ovetatie some mechanism for estimating the cost and effectiveness of
cost. possibly many different potential filtering pipelines.

To summarize, our experiments show that not only the set|n this paper we have explored and evaluated this new multi-
of filters but also the Ordering of the filters in the plpe||r$e iﬁ|ter, optimization_based approach_ Considering differes-
critical to the ASMC performance. The two approximatiofimation cost in the optimization approach, we designed two
algorithms we proposed to solve the optimization probledifferent approximation algorithms to solve the optimiaat
work well in many problem instances we have studied gftoblem. We have found through experiments with synthetic
both the synthetic and real data sets. In particular, in OHhd real data sets that our optimization approach over a
experiments Algorithm 3 found the optimal pipeline withtoolkit” of filters performs better overall than any of the

acceptable overhead. filters individually or even any statically chosen combioat
of filters. We regard this as promising evidence that the imult
VIl. CONCLUSION filter, optimization-based approach has merit.

The filter-verify approach to the ASMC problem relies upon A great deal of room for future work remains. Certainly the
a powerful but simple observation: it is often possible tafin set of filters we considered do not exhaust the space of all
relatively simple characterization of a set of stririgghat can possible filters; characterizing what constitutes a “caatedl
be used to efficiently determine that a candidate stsingnnot set of filters for the toolkit and possibly devising new fiter
possibly be an approximate match for any strindinA wide to achieve this completeness is an interesting and chatigng
variety of such characterizations are possible; each leads task. Also, while our optimization techniques were effexin
different filter. Furthermore, since different charactations our experiments, it is possible that more dynamic appraache

1,400 T T T T T T T T T T 800 T T T 17T T T T T 700
1,200 4 T00p - S : : -
1,000 | 800k - 600f---------- A
< oo {2 igg S o 1 500F
= 600 = 300L L ey
400(- ISH b 200F - -4 E 1000] TR ~ S 7
200+ 8 100F oo 4"
0 N 22z 0 200
>>>2> = >> >332 > 3
RS S <Y 100F e
Mmoo nmm M
N NN N NS ANM LN
— — — e o 0 00K
10K 50K - 100K 10K 50K 100K ;
Number of Document Strings Number of Document Strings Number of Document Strings
(a) Varying Document Size (b) Varying Document Size (c) Varying Document Size
300 4,00 ‘
=y 3,500~ est 1-fifter R N
3000 st | Ny
SN so. |5 Bt tfer -
2,500 = Bumlzatlon:A% o T
1 82,000 1
1 F1500- .
1,000F .
BOOF-----eeeomeeeees .
0 0.2 05 08 0 e

Token Space Overlap

(d) Varying Token Space Overlap

Number of Documents
(e) Varying Document Size

Fig. 3. ASMC Performance Using Multiple Filters

that “route” candidate strings through networks of filteraym [17] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact siilarity joins,”

in VLDB, 2006.

outperform single pipelines of filters in interesting caseﬁs]

Investigating such approaches is also an interesting tibrec

for exploration.

(1]
(2]
(3]
(4

(5]
(6]
(7]
(8]

El
[20]
[11]
[12]
[13]
[14]
[15]

[16]

REFERENCES

DBLife,

"http://dblife.cs.w sc.edu/".

A. V. Aho and M. J. Corasick, “Efficient string matchingnaid to
bibliographic search,” irCommun. ACM1975.

B. H. Bloom, “Space/time trade-offs in hash coding withowable
errors,” Commun. ACM1970.

A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lavatein,
and M. Rodeh, “Text indexing and dictionary matching witrearor,”
in J. Algorithms 2000.

A. N. Arslan and O. Egecioglu, “Dictionary look-up witlhismall edit
distance,” inCOCOON 2002.

K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “Arfiefent filter
for approximate membership checking,” $iGMOD, 2008.

S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive opéor for
similarity joins in data cleaning,” inCDE, 2006.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. KoudasyiBthukrishnan,
and D. Srivastava, “Approximate string joins in a databagmdst) for
free,” in VLDB, 2001.

C. Xiao, W. Wang, and X. Lin, “Ed-join: an efficient algthim for
similarity joins with edit distance constraints,” PVLDB, 2008.

A. Gionis, P. Indyk, and R. Motwani, “Similarity searcm high
dimensions via hashing,” iWLDB, 1999.

C. Sun and J. Naughton, “The token distribution filter &pproximate
string membership checking,” iwebDB 2011.

J. M. Hellerstein, “Practical predicate placementj’ $IGMOD Rec.
1994.

J. M. Hellerstein and M. Stonebraker, “Predicate ntigra optimizing
queries with expensive predicates,” iGMOD Rec.1993.

S. Babu, R. Motwani, K. Munagala, |. Nishizawa, and J.d@vh,
“Adaptive ordering of pipelined stream filters,” BIGMOD, 2004.

K. Munagala, S. Babu, R. Motwani, and J. Widom, “The Ripl Set
Cover Problem,” inlCDT, 2005.

G. Navarro, “A guided tour to approximate string matah? in ACM
Computing Survey2001.

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]

[29]

A. Chandel, P. C. Nagesh, and S. Sarawagi, “Efficienttb&p-k search
for dictionary-based entity recognition,” #CDE, 2006.

C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering gdrithms for
approximate string searches,” iIBDE, 2008.

G. Li, D. Deng, and J. Feng, “Faerie: efficient filterintg@ithms for
approximate dictionary-based entity extraction,”"SitGMOD, 2011.

N. K. Amit, A. Marathe, and D. Srivastava, “Flexible isty matching
against large databases in practice,"VibDB, 2004.

M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. @stava, “Fast
indexes and algorithms for set similarity selection qugtién ICDE,
2008.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.rlep and
T. G. Price, “Access path selection in a relational datalmaaeagement
system,” inSIGMOD 1979.

U. Feige, L. Lovasz, and P. Tetali, “Approximating rsom set cover,”
2003.

V. Poosala, P. J. Haas, Y. E. loannidis, and E. J. SheKitaproved
histograms for selectivity estimation of range predicates SIGMOD
Rec, 1996.

P. J. Haas and A. N. Swami, “Sequential sampling procesitor query
size estimation,” iNSIGMOD, 1992.

W.-C. Hou, G. Ozsoyoglu, and B. K. Taneja, “Statistiestimators for
relational algebra expressions,” RODS 1988.

R. J. Lipton, J. F. Naughton, and D. A. Schneider, “Hecattselectivity
estimation through adaptive sampling,” $iGMOD Reg.1990.

DBLP,

"http://ww. informatik.uni-trier.de/ |ey/db".

APPENDIX

For a formal treatment, we abstract the optimization prob-
lem under the uniform cost assumption as minimum cost filter
coverage problem which is described as follows. In the filter
coverage problem we are given a gétalong with a subset
D c U, which we call the dictionary. We also have a set of
filters 7 and verifiersV. Each f € F has an associated set
Sy Cc U\ D and a processing cost (per unit elementg R..
Also each verifierv € V has an associated processing cost
¢, € Ry and the set associated withis all of U \ D. For

ease of notation, at places, we will denote the set and the cib& dictionaryD is disjoint from the sets associated with the
associated withf asS(f) andc(f) respectively. Write thdil- given filters and verifiers and hence will be “processed” by al
tering costof applying a set ok filters, F' = {f;};, in orderoc of them. We essentially apply a set cover like greedy algorit
asc(F,o) := Zle (foiy) (U = Ué-;llS(fg(j)))]. Also the till the number of uncovered elements not in the dictionarati
filtering cost of applyingF’ in ordero and verifierv, denoted leastn, after that we pick a verifier with minimum processing
asc(F,o,v), is defined to be(F, o) + ¢, x |U —UF St |, coste,. In particular, say at step we haveM; uncovered
The goal of the minimum cost filter coverage problem iglements which are not in the dictionary (initially, = m),
to select a subset of fitersy c F, and an orderings if M; > n we pick the filter (or verifier) which minimizes
over F along with a verifierv € V such that the filtering the cost ratioc;/m; wherem; is the number of uncovered
costc(F,o,v) is minimized. Overall an instance of the filterelements in the set associated with the filter ands the
coverage problem is specified €8, D, F,V). Next we show Processing cost of the filter. On the other hand\ff < n
that the problem is in fac P-Hard. we select a verifiep with the smallest, value. We have the
Theorem 4:The Filter Coverage problem & P-Hard. following theorem stating the approximation factor ackeidv

Proof: We will reduce the Pipelined Set Cover problerrl?y_l_t::e algorgh_lr_?]. b loorith hi .
[15] to Filter Coverage. An instance of the Pipelined Set&ov eorem 5. 1N€ above algoriihm achieves an approxima-

problem consists of a set of elemerdf$ and collection of tion E‘Ctolf_ oleotfo;the F|Itt)er tioverallgtg problem.t d by th
subsets ot/’, A’ = {51,..., 5} }. For all: € [k] a processing roof: Let (F,0,v) be the solution generated by the

cost ¢, is associated with sef.. In the decision version 2/90MNM. Say|F’| =k and without loss of generality assume

of the problem the objective is to determine whether thepéat the filters are selected by the algorithm in order that

exists an orderings, over the sets such that the pipelineéi fl,tErOUQh dtp f’i”t]I\\I/ﬁte that ghi set being egr%cesssd at
cost is no more thafd’. Here the pipelined cost is define ekpz as cardinalityM; + n and hence we get(F, o) =

koo r =1l ar - : i1 ¢i(M; +n), wherec; is the processing cost of filtef;.
o be_zi_zl Cr (i) v UJ:lSﬂ(j) ./G|\//en an instance of Moreover whenever we select a filter we hale > n and
_the Pipelined Set Cover problgl(rU ,A’) we construct an hencec(F, o) < QZleciMi- Now consider the Pipelined Set
instance, (U, D, F,V), of the Filter Coverage problem aScover [15] instancgU \ D, A’), where A’ is the collection

follows. SetU = U’ and D = ¢ and the set of filters is ¢ gets associated with filters and verifiers. Say the optimal
constructed fromd’, in particular for each sef; we construct pipelined cost of this instance 8"
.

afilter f; by settingS(f;) = Si andc(f;) = ¢j. We construct * ‘Note that an optimal solution(F*, o*,v*), of the Filter

a single versifien) with ¢, = T'+ 1, by definition we have coyerage problem can be transformed into a solution for the

S(v) = U\D = U. In the decision version we enquire whethepipelined Cover problem. We simply exteat by augmenting

there exists a solutiof¥F, o, v) with filtering cost no more than geis of filters and verifiers frorF U V) \ (F* + v*) in any

T. _ o order. Alsos(v*) = U \ D, hence the processing cost of the
Next we show that a solutior{}’, o, v), of filtering cost” augmented sets is zero. We note that the pipelined cost of

exists iff there is an ordering of pipelined costI'. In the (F* o* v*)is no more than the filtering cost ¢f*, o*, v*).

forward direction, say there exits a solutioh, o,v) of cost The filtering cost includes processing all bf whereas the

no more than". Note that we must havel;c»S(f) = U. pipelined cost includes processing orily\ D. Write 0% =

Otherwise,|U — UserS(f)| > 1 and the processing cost ofc(F* o* v*), we haveO* > ;.

the verifier by itself would be at least + 1, contradicting The relevant observation is that, the initial set of filters

the fact that the overall filtering cost is no more tHanThis selected by the algorithm, would be the same if the greedy

gives us a pipelined solution, follows: initially setw to be approximation algorithm for the Pipelined Set Cover [15swa

the sets corresponding to the filters ihordered as inr and applied to the instancéU \ D, A’). The processing cost of

Fhen augment it with the remaining sets of fllters.}-n\ F, U\D underF is Zle c; M;, since this is part of the greedy

in any order. We havel;crS(f) = U and the filtering cost 4-approximate solution for the Pipelined Set Cover problem

is no more thanl". The sets aftet/sc»5(f) have to cover we have} " ¢, M; < 40y, therefored=7_, ¢;M; < 405
no element hence there processing cost iis zero, overall ¢ gtated before(F, o) < 2Zk

his implies that the pibeli) h i1 ciM; and hence(F, o) <
this implies that the _plpglned cost @f Is no more thari. 807. Finally we account for the cost incurred by the verifier.
To prove the other direction, given with cost no more than Say it is applied aftek filters, at that time we havaly,,; < n.

T then we considet.F, 7, v). In particularUse» = U, hence ence its processing cost,(Mj,11+n), is no more thaftc,n.
the verifier processes no element. Slnc_e th_e plpel_lned_ sosbg, selection we have, < c,.. The dictionaryD is processed
no more tharl” we havec(#,m) < T, which in turn implies o e yerifiery* in the optimal solution, hence’ > c,-n.
that the filtering cost of 7, =, v) is no more tharl” hence we 5 arail we get that, (M1 +n) < 20%. Since the filtering

have the desired claim. cost of the solution generated by the algorithm is equal to

Next we present a greedy approximation algorithm for thg i) plus the processing cost of the verifier we get that the

Filter Coverage problem and show that it achieves an apprygorithm achieves a cost no more thah O% implying an
imation factor of10. Given an instance of the Filter Coveragpproximation factor ofl0. n

Problem(U, D, F,V), say|D| = n and|U\ D| = m. Note that

