
Approximate String Membership Checking: A
Multiple Filter, Optimization-Based Approach

Chong Sun1, Jeffrey Naughton2, Siddharth Barman3

Computer Science Department, University of Wisconsin, Madison
1210 W. Dayton St., Madison, WI 53705 USA

1sunchong@cs.wisc.edu
2naughton@cs.wisc.edu

3sid@cs.wisc.edu

Abstract— We consider the approximate string membership
checking (ASMC) problem of extracting all the strings or
substrings in a document that approximately match some string
in a given dictionary. To solve this problem, the current state-of-
art approach involves first applying an approximate, fast filter,
then applying a more expensive exact verification algorithmto the
strings that pass the filter. Correspondingly, many string filters
have been proposed. We note that different filters are good at
eliminating different strings, depending on the characteristics of
the strings in both the documents and the dictionary. We suspect
that no single filter will dominate all other filters everywhere.
Given an ASMC problem instance and a set of string filters, we
need to select the optimal filter to maximize the performance.
Furthermore, in our experiments we found that in some cases a
sequence of filters dominates any of the filters of the sequence in
isolation, and that the best set of filters and their orderingdepend
upon the specific problem instance encountered. Accordingly, we
propose that the approximate match problem be viewed as an
optimization problem, and evaluate a number of techniques for
solving this optimization problem.

I. I NTRODUCTION

We consider a common and ubiquitous string member-
ship checking problem: given a dictionary of strings, and a
collection of documents, find all occurrences of strings or
substrings in the documents that approximately match some
string in the dictionary. String membership checking is used
in many applications, including collecting customer feedback
on products by scanning thousands of emails, aggregating
evaluations of a movie from many reviews and identifying
mentions of entities to extract information from Web pages.
For example in DBLife [1], the mentions of entities, e.g.,
researchers, publications and conferences, are located inmany
Web pages in the database community, and further structured
information is collected to build the web portal. There has been
a great deal of research on how to efficiently conduct both
exact string membership checking [2], [3] and approximate
string membership checking [4], [5], [6], [7], [8], [9]. In this
paper, we focus on approximate membership checking.

A naive approach to the string membership problem is
to iteratively consider each document string (or substring),
checking with the dictionary for matches. There is a growing
consensus that a better way to do this is to adopt a filter-
verification approach [9], in which some quick approximate
filter is constructed based upon the dictionary strings, andthen

candidate strings in the documents are first passed through
the filter and only the strings that pass the filter are subjected
to a more expensive verification with the actual dictionary
strings. Many filters, including the length filter, counter filter,
position filter [8], prefix filter ([7], [9]), LSH filter [10], token
distribution filter (TDF) [11], ISH filter [6], and others, have
been proposed. These filters use only partial information about
the dictionary strings (e.g., the length filter [8] uses string
lengths while the prefix filter [7] uses prefixes of string tokens.)
Since different filters use different information, different filters
are good at eliminating strings with different properties.We
suspect that no single filter will dominate everywhere, as the
properties of the strings to check affect the effectivenessand
efficiency of the string filters. For example, if each document
string has far fewer tokens than every dictionary string, then
the length filter may be the best filter to use; on the other hand,
the length filter may not be efficient if each string to check has
nearly the same number of tokens as some dictionary string.

If it is indeed the case that no single filter dominates all
other filters for all problem instances, then given an approxi-
mate string membership checking problem instance and a set
of available string filters built over the dictionary strings, we
need to select the optimal filter for this problem instance to
maximize the overall membership checking performance. A
further observation is that since filters take sets of strings as
input and produce sets of strings as output, we can concatenate
filters, so that, for example, a string membership checking
algorithm could involve applying a filterf1 to the document
strings, then a filterf2 to the strings that passf1, then
performing a final, exact check on only the strings that pass
both f1 and f2. We found in our experiments that in many
cases a sequence of the filters dominates any of the filters
in isolation, and that the choice of filters and their ordering
in a pipeline affects performance. Because the choice of
filters and their ordering in a pipeline affects performance,
the multiple filter approach to string membership checking is
an optimization problem. To the best of our knowledge, this
optimization problem has not been studied in the literature;
studying the problem is the goal of this paper.

We describe our extended filter-verification framework with
an optimizer for approximate string membership checking in
Figure I. The extended framework consists of two phases: the

Fig. 1. ASMC Framework with Optimizer

build phase and the query phase. The build phase is offline,
in which we build all the potentially useful string filters and
verification operators based on the dictionary strings. Each
string filter or verification operator is considered as a “tool” in
the “toolkit.” More tools could be incrementally added intothe
toolkit as new filters and verification operators are developed.

The query phase is an online phase, in which we conduct
dictionary membership checking for the incoming document
strings. The optimizer analyzes the characteristics of thedoc-
ument strings, the string filters, and the verification operators.
As a result of this analysis, the optimizer determines which
string filters to use, and how to order those filters. This
optimization problem is similar to the expensive predicate
placement problem in relational database optimization [12],
[13], and the pipelined filter ordering problem in stream data
processing [14], [15]. It is different, however, in that there is a
final, exact verification step, so all of the filters are optional.

We summarize our contributions in this paper as follows.
• We propose that the approximate string membership

checking problem be viewed as an optimization problem.
• We study this optimization problem, and prove that in

general it isNP -hard. We also study special cases of the
problem, and develop several approximation algorithms
for its solution.

• We conduct experiments with both synthetic and real
data to evaluate (a) the premise that no single filter
dominates, that multiple filters can dominate single filters,
and that the order of filters affects performance, and
(b) the efficacy of our proposed algorithms to solve the
optimization problem.

In the rest of the paper, we start with a survey of the related
work in Section II. In Section III, we discuss the basics of
the approximate membership checking problem and the filter-
verification framework. We consider the approximate string
membership checking problem as an optimization problem of
selecting the optimal single filter and building the optimal
filter pipeline using multiple filters separately in SectionIV
and Section V. Finally we conduct a performance study in

Section VI and conclude in Section VII.

II. RELATED WORK

Approximate string matching is a classic problem in com-
puter science and many algorithms have been proposed for
its solution [16]. As an extension to many-many comparisons,
the approximate string join (or string similarity join) assumes
that we have two string collections and identifies all the
approximately matching string pairs, with one string from each
collection. In [8], Gravano et al. exploit the existing facilities
in commercial databases to support approximate string joins
based on tokenizing each string into a set of q-Grams. In [7],a
database primitive query operatorssjoin (set similarity join)
is implemented to handle string joins. To efficiently evaluate
approximate string joins, most recent work adopts the filter-
verification framework [9], in which we first apply a rough,
fast filter, and only do a detailed check for similarity if a
string in one collection passes the filter built on the signatures
of strings in the other collection.

Many signature schemes have been proposed. The counter
filter, length filter and position filter, presented in [8], use the
edit distance similarity. The prefix filter was proposed in [7]
and later extended in [9]. A novel signature scheme PartEnum,
based onpartitioning andenumerationwas presented in [17],
in which by controlling the number of string partitions, we
guarantee that any two approximately matching strings must
be the same in at least one or more partitions. The token
distribution filter in [11] compares the token distributions
of two strings to determine whether they can approximately
match or not. LSH (locality sensitivity hashing) [10], exploits
the property that similar strings have similar hash values,but
it may not return all the approximately matching strings (the
complete result). We do not consider filters that return an
incomplete result in this work.

Approximate string membership checking ([6], [18], [19],
[20]) is another variation on the approximate string matching
problem, in which we view one string collection as the dictio-
nary and process a second collection of strings (or documents)
to check if each string in the second collection approximately
matches some dictionary string. In [19], efficient exact algo-
rithms are proposed to conduct approximate string checking
based on merging token inverted lists. In [6], the ISH (Inverted
Signature-based Hashtable) structure is presented with the
focus on reducing the filter checking time. In contrast to the
inverted list, the ISH filter stores a list of string signatures,
rather than the string ids, for each string token. In [20], the
authors check whether a document string can approximately
match a dictionary string by merging the inverted lists of
tokens for all the tokens in the document string. They focus on
progressive computation, discussed in [6], to avoid the redun-
dant computation of merging the same set of inverted lists in
checking all the substrings of one document string. Progressive
computation is orthogonal to the filtering techniques and wedo
not consider progressive computation in comparing different
filters in our work. Different filters have been used in an ad hoc
fashion to accelerate the membership checking, e.g., the length

filter is used in [19], [20]. However, none of the previous
work exploits the many existing string filters and uses them
systematically. The work in [21], [22] focuses on using cosine
similarity metrics based on TF/IDF to approximately match
one string against the strings in a large database.

As mentioned previously, we view the approximate mem-
bership checking problem as an optimization problem that
is closely related to some work in query optimization [23],
especially the predicate placement problem [12], [13] studied
in relational database query optimization, and the pipelined
set cover problem (or the filter ordering problem) studied in
stream data processing [14], [15]. The pipelined set cover
problem (or the min-sum set cover problem [24]) has been
proven to beNP -hard. However, our problem differs from
the predicate placement problem and the pipelined set cover
problem in that the final verification step means that all filters
are optional; the problem is not “apply all these filters in the
optimal way,” instead, it is “decide which of these filters to
apply and how to order them so that the entire membership
checking time is minimized.”

III. PRELIMINARIES

In this section, we introduce the approximate string mem-
bership checking problem and describe the filter-verification
approach.

A. Approximate String Membership Checking (ASMC)

Assume we have a string dictionaryR. An input strings′ is
a member of a dictionaryR if and only if there exists a string
sr ∈ R such thatsim(s′, sr) ≥ τ , where sim(s′, sr) is a
string similarity function andτ is a similarity threshold. Many
similarity metrics have been proposed, e.g.,edit similarityand
Jaccard similarity. Formally, we define the approximate string
membership checking (ASMC) problem as in [6]:

Definition 1: Given a string dictionaryR, a string similarity
function sim() and a similarity thresholdτ , find every string
or substrings′ in a string documentS such that∃ sr ∈ R
and sim(s′, sr) ≥ τ , in which case we says′ approximately
matchessr.

B. Filter-verification Framework

A naive approach to the ASMC problem is to iteratively
take each string or substrings′ in an input document and
compute the similarity betweens′ and every dictionary string,
outputting s′ as a dictionary member ifs′ approximately
matches some dictionary string. Generally this approach is
expensive.

The filter-verification approach eliminates many candidate
strings using filters before computing the string similarity
function. As the name suggests, the approach includes two
phases: filtering and verification. The filtering phase itself
consists of two steps: building a filter over the dictionary
strings, and checking the document strings against the filter.
To conduct membership checking for a string documentS
and a dictionaryR, we first build a filterf with R and then
check each string inS with f . We say a strings passes a

filter f if and only if f cannot guarantee that no string inR
matchess. In the verification step, we computesim(s′, sr) for
each strings′ passing the filterf and each stringsr ∈ R. If
sim(s′, sr) ≥ τ , we says′ approximately matchessr ands′ is
a member ofR. With an effective filter, many fewer candidate
strings are checked than would be checked with the naive (no
filter) approach.

C. The String Filters

Most string filters are built based on different string signa-
ture schemes, such as using the string length or the prefix [7]
as the signature. A filterf built over a dictionary of strings
consists of the signatures of all the dictionary strings, and typ-
ically also uses some index structure (e.g., ISH structure [6])
to speed the application of a filter to the strings.

We use two properties to characterize a filter: its filtering
costf c and its filtering ratiof r. Suppose we have a filterf .
Suppose that we have a set ofnin strings as the input tof ,
and that it takes timet to apply the filter to these strings, and
nout strings passf . Then the filter ratio is(1−nout/nin) and
the filtering cost ist/nin. Note that the same filter can have
different f c and f r on different datasets and different filters
can have differentf r andf c on the same dataset.

IV. U SING A SINGLE STRING FILTER

In this section, we consider using a single string filter to
solve the ASMC problem. As mentioned previously, many
string filters have been proposed, and different filters havebeen
designed based on different string information. As a result,
the performance (filtering ratio and filtering cost) of a string
filter depends on the characteristics of both the document
strings and dictionary strings. In the following, we analyze
different properties of three string filters, the length filter,
prefix filter and token distribution filter, to motive our work
on the optimization problem of selecting the optimal filter for
a given ASMC problem instance.

Length Filter [8]: Assume we have two stringssi =
〈tsi1 , tsi2 , . . . , tsiv 〉 and sj = 〈t

sj
1 , t

sj
2 , . . . , t

sj
m〉 (m ≥ v). We

represent each strings as a sequence of tokens (e.g., words,
phrases or q-Grams)〈t1, t2, . . . , tl〉. Assume we use Jaccard
similarity with a matching thresholdτ to check strings. String
si approximately matchessj only if |si∩ sj |/|si∪ sj | ≥ τ , in
which |si∩sj | refers to the number of common tokens insi and
sj , and|si ∪ sj | refers to the total number of tokens insi and
sj . Correspondingly, we getsi matchessj only if τ · |si| ≤
|sj | ≤ |si|/τ . Checking two strings using the length filter
means comparing the string lengths, which is very efficient.
However, the length filter can not differentiate strings with
similar lengths. For example, two stringss1 = 〈t1, t2, . . . , t10〉
ands2 = 〈t11, t12, . . . , t20〉 approximately match based on the
length filter.

Prefix Filter [7]: Suppose stringssi andsj havelc common
tokens. Based on Jaccard similarity,si matchessj only if
lc/(m+v− lc) ≥ τ . Accordingly,si andsj must have at least
lc = (m+ v) · τ/(1 + τ) tokens in common to approximately
match each other. Therefore, presuming we set the string

prefix length to belp, si approximately matchessj only
if there are at least(lc + lp − v) common tokens in the
prefixes ofsi andsj Here, we assume all the tokens in each
string follow a universal ordering, and the string prefix covers
the first lp tokens in the string. Checking two strings using
the prefix filter means measuring the common tokens of the
two strings in the string prefix. Therefore, the prefix filter
can not differentiate two strings which have many common
tokens in the prefix but few common tokens in other parts of
the strings. For example, two stringss1 = 〈t1, t2, . . . , t10〉
and s3 = 〈t1, t2, t3, t11, t12, . . . , t17〉 approximately match
according to the prefix filter, assuming we set the prefix length
to be 3.

Token Distribution Filter [11]: Suppose there is a parti-
tioning schemeφ on a string token space that splits all the
tokens in the space intou partitions (P = 〈P1, P2, . . . , Pu〉).
We use the number of tokens of a string in each partition
as the token distribution of the string. The intuition is that
any two approximately matching strings must have similar
token distributions. Suppose a token space is split intou
partitions (P = {P1, P2, . . . , Pu}) and a stringsi has |P si

x |
tokens in partitionPx ∈ P . Any string sj approximately
matchessi based on Jaccard similarity only ifsj has at least

(
(|si|+|sj|)τ

1+τ −Mout) tokens and at most((1+τ)|P
si
x |+|sj |−|si|τ
1+τ)

tokens in partitionPx in which Mout = min((|si| −
|P si

x |), |sj |). For example, suppose we have an ordered string
token spaceP = [t1, t2, . . . , t20] split into four partitions:
P1 = [t1, . . . , t5], P2 = [t6, . . . , t10] , P3 = [t11, . . . , t15]
and P4 = [t16, . . . , t20]. The token distribution of string
s4 = 〈t1, t2, t11, t12, t16, t17〉 is 〈P1{2}, P3{2}, P4{2}〉, which
sayss4 has 2 tokens in partitionP1, 2 tokens inP3 and 2
tokens inP4. Strings5 = 〈t3, t4, t13, t14, t18, t19〉 has the same
token distribution ass4, even though many tokens are different
in the two strings. In the example for prefix filter, stringss1
ands3 have the same prefix but different token distributions.

A. The Single Filter Optimization Problem

We see that different string filters have been designed
based on comparing different string information, such as string
length, prefix or token distribution. The performance of a
string filter depends on the characteristics of the dictionary
strings and document strings. Accordingly, we define the
optimization problem in the filter-verification approach tothe
ASMC problem using a single filter as follows.

Given an ASMC problem instance (including a collection
of documents and a dictionary of strings), and a set of avail-
able string filters and verification operators, the optimization
problem of using a single filter is to select the optimal string
filter and verification operator such that the overall checking
time cost of first applying the filter and then the verification
operator is minimized.

Each filter affects the document strings that need to be
checked by a verification operator, thus affecting the verifica-
tion cost. Assume we haven string filters andm verification
operators, to search for the optimal filter and verification
operator, we explore a space ofn ·m execution plans.

B. Cost Estimation

To search for the optimal string filter and verification
operator, we need to calculate the cost of using each possible
plan over all the document strings. Assuming we use a filterf
followed by a verification operatorv in the plan, the time cost
of checkingm document strings ism ·f c+m ·(1−f r) ·vc, in
whichf c is the filtering ratio andf r is the filtering cost, andvc

is the verification cost of checking each string passing the filter
f . The problem is that we do not knowf c andf r, and cannot
afford to compute them exactly by testing every string with
every filter. Accordingly, we need some inexpensive technique
to estimatef c andf r.

We consider two main broadly used estimation approaches:
estimation based on some default values and system statistics
([25], [23]), and estimation based on sampling techniques
([26], [27], [28]). Unlike the case with relational database
systems, in string matching problems statistics about the
collections of strings and how they interact with filters may
not be available. Furthermore, the performance of a filter
depends on both the document and dictionary strings. We
may have a fixed dictionary, but various documents to check.
Accordingly, in this paper, we explore estimation based on
sampling techniques [26], specifically, stratified sequential
sampling.

The basic idea of sequential sampling-based parameter
estimation is as follows. Take estimating the filtering costf c

of a single filterf , for example. We split the data (document
strings) intom disjoint partitions and we divide them parti-
tions intok disjoint sets (strata). Then we sequentially sample
over the strata. At each sampling step (jth step), we randomly
and uniformly select one data partition (observationxj

i) from
each (ith stratum) of thek strata, and usexj

i as the input
to the filter to compute the filtering costf c(xj

i). We repeat
this samplingn steps until the following stopping conditions
satisfy [26]:

Ṽ c
n > 0

and

ǫ ·max(k−1 ·

k
∑

i=1

n
∑

j=1

f c(xj
i), n · d) ≥ zp · (n · k · Ṽ c

n)
1/2

where Ṽ c
n is a unbiased and strongly consistent estimator of

σ̃2 = k−1
∑k

i=1 σ
2 for the estimated filtering costs over the

random observations;d is a parameter to control the steps
of the sampling;Zp refers toΦ−1((1 + p)/2) whereΦ is
the cumulative distribution function for a standardized normal
random variable andp is the confidence level for the estimation
error bounded byǫ ·m ·µd andµd = max(|D|/m, d). We get
the estimation off c as

f̃ c =
m

k · n

k
∑

i=1

n
∑

j=1

f c(xj
i)

with the probabilityp for the error to be within±ǫ ·m · µd.
Achieving small errors (smallǫ) and high confidence (high
p) may require a lot of sampling; in some cases it may be

preferable to do less sampling at the expense of larger errors
and less confidence. Unless specified otherwise, we use default
values withǫ = 0.2 andp = 0.95.

C. Searching for the Optimal Filter

The brute force approach to search for the optimal filter
and verification operator considers every combination of each
string filter and each verification operator, as the verification
cost may depend on the strings passing the filter. For each
combination of a string filter and a verification operator, we
use the sequential sampling technique to estimate the cost
of checking all the document strings. Then we output the
string filter and verification operator with lowest estimation
cost. Assume we haven string filters andm verification
operators, the time complexity of the brute force approach
is O(n · m · scost), in which scost is the sampling cost
of estimating the cost of a plan andscost varies with the
parametersǫ, confidence levelp in the sampling and the cost
of using the filters. As the major cost in the optimization
is the sampling and we may need several samplings in the
optimization, we use the number of samplings required to
measure the cost of an optimization approach.

An additional complication to the optimization problem is
that the cost of applying the verification operator to a string
may vary from string to string. In our work we make the
simplifying approximation that the cost per string is uniform.
In our experiments we found this to be substantially the case
for the data we used; if this is not the case, it will introduce
another source of error into the optimization process. Whether
or not this error is substantial enough to cause optimization
errors is an interesting area for future work. We design the
algorithm of searching for the optimal filter and verification
operator as follows. First, we estimate the cost per string for
each verification operator, and keep the verification operator v
with lowest estimated costvc. Then, we estimate the filtering
ratio f r and filtering costf c of each string filterf . We select
the filter to minimizef c +(1− f r) · vc. The time complexity
of this algorithm isO(n · scost +m · scost).

V. THE MULTIPLE FILTER OPTIMIZATION PROBLEM

As mentioned previously, we adopt the filter-verification
framework to handle the ASMC problem. More importantly,
since different filters are good at eliminating different docu-
ment strings, and filters accept strings as input and produce
strings as output, we can concatenate a sequence of filters ina
pipeline to function as one composite filter. If we regard thefi-
nal verification phase as a final,accuratefilter, we can consider
the problem to be one of finding the most efficient sequence
of filters, ending with anaccuratefilter. Correspondingly, we
extend the filter-verification framework for approximate string
membership checking by adding an optimizer component. The
optimizer selects the optimal sequence of filters, including
a verification operator, based on the properties of the input
strings and available string filters. Then we use the selected
string filters and the verification operator to conduct the
membership checking for the input strings. In the following

of this section, we describe the optimization problem in detail
and how we solve the problem.

A. Overview of Multiple Filter Optimization

The optimization problem presented by our multiple filter
approach to the approximate string matching problem can be
stated as follows. Given a dictionary of strings and a set of
n filters F = {f1, f2, . . . , fn} and a set ofm verification
operatorsV = {v1, v2, . . . , vm} built on the dictionary strings,
and a similarity functionsim and a corresponding matching
thresholdτ , the optimization problem is to build a pipeline ofk
filters and a single verification operator asf̌1, f̌2, . . . , f̌k−1, v̌p
(f̌i ∈ F and v̌p ∈ V) to check the document strings with the
least time cost.

We note that each filter pipeline should contain one and
only oneaccuratefilter (or verification operator) and it is only
meaningful to have it at the end of a pipeline. By having one
accuratefilter in the pipeline, we guarantee that any document
string passing the pipeline is a dictionary member. Supposewe
haved candidate strings, and leťf r

i andf̌ c
i be the filtering ratio

and cost of filterf̌i in the filter pipeline,̌vcp be the verification
cost. We represent the total cost function of checkingd strings
using the filter pipeline as

k−1
∑

i=1

f̌ c
i ·Wi + v̌cp ·Wk

Where

Wi =

{

d, i = 1

d ·
∏i

j=2(1− f̌ r
j−1), i > 1.

To build the optimal filter pipeline, we search a space of
(
∑n

k=1 k! ·
(

n
k

)

·m) pipeline plans, in whichn is the number
of the filters andm is the number of verification operators.

B. Cost Estimation

To search for the optimal pipeline, we need to estimate the
time cost of each filter pipeline plan over all the document
strings. As in our approach to estimating the cost of single
filter plans, we use sequential sampling to estimate the filtering
ratio and the filtering cost of each filter in a pipeline.

C. Searching for the Optimal Pipeline

1) Basic Approach:The brute force approach to search for
the optimal pipeline is to estimate the time cost of using every
possible plan for the document strings and output the plan with
the least time cost. The time cost of searching for the optimal
pipeline in a space ofn filters andm verification operators is
O(

∑n
k=1 k! ·

(

n
k

)

·m · scost).
We improve the searching performance by iteratively ex-

ploring the plan space using an improved approach as in
Algorithm 1. We first build filter pipelines without considering
the verification operators and then we select one verification
operator for each pipeline. Finally, we output the pipeline
including one verification operator with the least estimated
cost as the optimal filter pipeline.

Algorithm 1: search for optimal pipeline
input : n filters F , m verification operatorsV and

the document stringsdoc
output: filter pipelineP

setP1={1-filter pipelines};
setk=2;
foreach k < n do

setGk={All k-filter pipelines};
foreach gk ∈ Gk do

gk−1= gk - last filter;
/* remove the last filter */
if gk−1 6∈ Pk−1 then removegk from Gk;
elsec(gk) = estimatecost(gk, doc);
/* estimate the cost of gk by

sampling doc */
end
foreach gk ∈ Gk do

if c(gk)=min{qk | qk ∈ Gk&qk contains the
same set of filters asgk} then

addgk into Pk

end
end

end
setcost = ∞;
foreach pipelineP ′ ∈

⋃n
k=1 Pk do

foreach verification operatorv ∈ V do
c = estimatecost(P ′ + v, doc);
if c < cost then cost = c andP = P ′ + v;

end
end
return P ;

To build the pipeline with the set ofn filters, in the first pass
of Algorithm 1, we estimate the cost of using every 1-filter
pipeline and keep them in a setP1. A subsequent pass, say pass
k, consists of two phases. First, we generate all the candidate
optimal k-filter pipelines with the estimated optimal(k − 1)-
filter pipelines based on the property that the first(k−1)-filter
pipeline in each optimalk-filter pipeline is also optimal. The
correctness is guaranteed by the fact that the filter ordering in
a pipeline with a fixed set of filters does not affect the strings
passing the pipeline. Therefore, the sub-pipeline of the first
(k − 1) filters in each optimalk-filter pipeline must be an
optimal (k−1)-filter pipeline for the set ofk−1 filters. Next,
we estimate the time cost of each candidatek-filter pipeline
and keep the pipeline with the least cost for each different set
of k filters in Pk.

Then, we select verification operators to add to the pipelines.
For each pipeline, we estimate the cost of each pipeline plus
every verification operator. Finally we output the pipelineplan
(including a verification operator) having the least estimated
cost as the optimal filter pipeline plan for then filters andm
verification operators.

To build the filter pipeline, in the first pass, we estimate

the costs of
(

n
1

)

· (n − 1) 2-filter pipelines. In thekth pass,
we estimate the costs of

(

n
k

)

· (n− k) (k + 1)-filter pipelines.
Therefore, the total number of samplings isO(

∑n−1
k=1 (n −

k) ·
(

n
k

)

). To add the verification operators, we estimate the
cost ofO(

∑n
k=1

(

n
k

)

·m) pipelines. The total time cost of the
algorithm isO((

∑n
k=1

(

n
k

)

·m+
∑n−1

k=1 (n− k) ·
(

n
k

)

) · scost).
Even though the improved approach is more efficient in

searching for the optimal filter pipeline than the brute force
approach, it is still an exponential algorithm. Unfortunately,
it is unlikely we can do better with an optimal algorithm,
for as we prove next, that the problem of searching for an
optimal filter pipeline isNP -hard. To prove that this general
optimal plan searching problem isNP -hard, we first consider
a “simpler” version of the searching problem, in which we
assume that any filter spends the same time on checking each
string. We call this assumption as theuniform cost assumption.

Theorem 1:Suppose we have a document of strings andn
candidate filters andm verification operators. If the uniform
cost assumption holds for the filters and verification operators,
it is NP -hard to determine the optimal filter pipeline.

Proof: In the appendix we show that the so called
Filter Coverage problem isNP -hard. Filter Coverage is a
formalization of the problem at hand and hence we get the
desired result.

As we have shown that the “simpler” problem of searching
for the optimal filter pipeline with the uniform cost assumption
in NP -hard, the general searching problem is alsoNP -hard.

2) Approximation Algorithms:To solve the optimization
problem efficiently, we design an approximation algorithm
in Algorithm 2. Algorithm 2 consists of two stages: the
building stage and the refining stage. During the building
stage, Algorithm 2 takes iterations to build the filter pipeline
incrementally based on a greedy selection strategy. In each
iteration, we estimate the filtering ratio and the filtering cost
of each filter or verification operator after applying the filters in
the pipeline. Then we select the filter or verification operation
with the largest ratio of the filtering ratio to the filtering cost to
add into the filter pipeline. We continue to add filters into the
pipeline until a verification operator is selected. In the refining
stage, we start from the last filter in the pipeline and estimate if
we can get better performance by removing the filter from the
pipeline. If we can improve the estimated cost of the pipeline,
then we remove it. We continue the checking and removing
until we can not improve the estimated performance.

During the building stage, in the worst case, we need(n+1)
iterations to construct the filter pipeline by using all the filters
and one verification operator. In iteration 0, we make(n +
m) samplings to estimate the cost of using each filter and
verification operator to check the document strings. During
iteration k, we estimate the cost of using the pipeline with
each of then− k left filters andm verification operators. In
this iteration, we conductn− k+m samplings. Accordingly,
the total number of samplings in the building stage is(n2 +
n)/2+(n+1) ·m. In the refining stage, we can make at most
n−1 sampling estimations. Therefore, the time complexity of
Algorithm 2 isO((n2 + n ·m) · scost).

Algorithm 2: search for optimal pipeline
input : n filters F , m verification operatorV and

document stringsdoc
output: a filter pipelineP

setP=φ;
while P contains no verification operatordo

setcost = −∞;
setop =null
foreach o ∈ (F ∪ V) and o 6∈ P do

c(o), r(o) = estimatecost,ratio(o, doc);
/* estimate the filtering cost c(o)

and ratio r(o) of o after
applying P over doc */

if r(o)/c(o) > cost then
setcost = r(o)/c(o) andop = o;

end
end
if op ∈ V then

for (i = 1; i < P.size; i++) do
P ′ = P− last filter;
c = estimatecost(P + op, doc);
c′ = estimatecost(P

′ + op, doc);
if c′ < c then setP = P ′;
else addop to P and return P ;

end
else

addop to P ;
end

end

When the uniform cost assumption holds for all the filters
and verification operators, we have the following theorem on
the optimality of the filter pipeline generated by the greedy
selection used in Algorithm 2.

Theorem 2:Assume the uniform cost assumption holds
for all the filters and verification operators. Also assume
that after each filter application the number of dictionary
strings in the document is no more than the number of
non-dictionary strings, then using the greedy selection in
Algorithm 2 achieves a 10 approximation for the optimal filter
pipeline problem.

Proof: Under the above assumptions the algorithm given
in the appendix is same as Algorithm 2 and hence we can
apply Theorem 5 (see Appendix). Hence we get the desired
approximation guarantee.

The assumption that the number of dictionary strings in the
document is less than the number of non-dictionary strings is
in fact true in most practical scenarios.

We note the approximate algorithm to solve the optimization
problem still takes a quadratic number of sampling estima-
tions, which could be expensive for an optimization step of
the string membership checking problem. Correspondingly,we
present another approximate algorithm in Algorithm 3.

The motivation of Algorithm 3 is that a good pipeline should

Algorithm 3: search for optimal pipeline
input : n filters F , m verification operatorV and

document stringsdoc
output: a filter pipelineP

SetP=φ;
SetL=φ;
foreach o ∈ (F ∪ V) do

if o ∈ F then
c(o), r(o) = estimatecost,ratio(o, doc);
else c(o) = estimatecost(o, doc);
addo to L;

end
sortL based on the decreasing order ofθ(o) Where

θ(o) =

{

r(o)/c(o), o ∈ F

1/c(o), o ∈ V.

while L 6= null do
selecto ∈ L with the largestθ(o);
if o ∈ F then removeo from L ;
addo to P ;
else addo to P and return P ;

end

have filters with high filtering ratio and low filtering cost in
the front. To be specific, in Algorithm 3, we first estimate
the filtering ratio and filtering cost of each flter independently.
Then we incrementally add string filters and verification op-
erators into the pipeline according to the decreasing orderof
θ, where θ is the ratio of the filtering ratio to the filtering
cost of a filter andθ is the ratio of 1 to the filtering cost of
a verification operator. We stop when we add one verification
operator into the pipeline.

In Algorithm 3, we need(n+m) samplings to estimate the
filtering ratio and filtering cost of each filter and verification
operator. The cost of ordering the filters and verification
operators based on the sampling isO((n+m)log(n+m)). Then
we select at most(n+ 1) filters and verification operators to
build the pipeline. Therefore the total cost of the algorithm is
O((n+m) · scost + (n+m) · log(n+m)).

Suppose the uniform cost assumption holds for all the filters
and the string data distribution before applying a filterf is the
same as that after apply the filterf . In other words, any filter
in a pipeline would not affect the filtering ratio and the filtering
cost of any other filter appearing later in the pipeline. We say
the filters are independent of each other. In this case, we can
accurately estimate the filtering ratio and the filtering cost of
each filter independently, and we can incrementally add filters
into the pipeline and we stop when we meet a verification
operator.

We have Theorem 3 to show that Algorithm 3 find the
optimal filter pipeline when the filters are independent and the
uniform cost assumption holds for the verification operators.

Theorem 3:Assume we have a setF of n independent fil-

ters and a setV of m verification operators. The optimal time
cost of checking a set of document strings via a filter pipeline
built of the filters and verification operators is achieved by
putting the filters in decreasing order ofθ(o), where

θ(o) =

{

f r(o)/f c(o), o ∈ F

1/f c(o), o ∈ V.
Proof: Observe that interchanging the order of multiple

filters can be decomposed into interchanging the filter order
pairwise. Without loss of generality, assume we have the
optimal filter pipelineP built using the n filters and m
verification operators. Assume that filteroi appears right
before filteroj in P . If f r(oi)/f

c(oi) < f r(oj)/f
c(oj), then

we can interchange the order ofoi and oj and decrease the
time cost of using the filter pipelineP . This contradicts that
P is the optimal filter pipeline. Therefore, all the filters in the
optimal filter pipeline must be ordered in the decreasing ratio
of the filtering ratio to the filtering cost. Similarly, we canshow
that in the optimal filter pipeline any filteroi appearing before
a verification operatoroj , we must havef r(oi)/f

c(oi) >
1/f c(oj); otherwise,f r(oi)/f

c(oi) ≤ 1/f c(oj).

As we have proven, on the problem, Algorithm 2 is an
approximation algorithm with a provable bound, and for other
conditions, Algorithm 3 is optimal. When the conditions do
not hold, both of these algorithms become heuristics, and we
evaluate their performance in the next section.

VI. PERFORMANCESTUDY

In this section we conducted experiments to explore the
optimization approach to the approximate string membership
problem. We first explore the performance of various filters
and filter pipelines (to provide evidence of the need for an
optimization-based approach), and then explore the perfor-
mance of our estimation and optimization algorithms. We do
this both with synthetic and “real” data sets.

A. Experiment Setup

We ran all the experiments on a 2.4 GHZ Intel Duo Core PC
with 3GB memory. All the strings filters and the membership
checking were implemented in Java. We use the time cost
to measure the ASMC performance. The cost of ASMC may
consist of three components: optimization cost (only if we use
an optimization based approach), filtering cost (only if string
filters are used) and verification cost.

1) Data Sets:To investigate the performance of the various
filters and pipelines of filters, we used both both synthetic and
real data sets in the experiments.

Synthetic Data: We designed a data generator consisting of
a dictionary generator and a document generator, which can be
customized using two types of parameters: shared parameters,
which specify correlations between the generated dictionary
and documents; and exclusive parameters, which specify the
individual properties of the dictionary generator and document
generator.

Exclusive parameters Shared parameters
Token Space Coverage Overall Token Space

Token Distribution Token Space Overlap
Number of Strings Overlap Strings

Average (Max, Min) Length

Token Space Coverage refers to the set of tokens that a
dictionary or document generator can use from the Overall
Token Space, the universal token space used in the data
generator. The Token Distribution refers to the token frequency
distribution in the document and dictionary strings. Token
Space Overlap refers to the overlap ratio of the dictionary
and document token spaces. We refer to the dictionary strings
appearing in the documents as Overlap Strings.

We set default values for the synthetic data generator pa-
rameters as follows. For the dictionary generator: Token Space
Coverage (10K); Token Distribution (normal); Number of
Strings (1M); Average, Min and Max Length (10, 5, 15). This
configuration generates a dictionary of 1M strings composed
of 10K distinct tokens and the frequencies of all the tokens
in the dictionary follow a standardnormal distribution. The
average, minimum and maximum lengths of the dictionary
strings are 10, 5 and 15. Similarly, we specify the default
values for the document generator as: Token Space Coverage
(10K); Token Distribution (normal); Number of Strings (10K);
Average, Min and Max Length (20, 15, 25). Furthermore, we
set the Overall Token Space to contain 10K tokens, the Token
Space Overlap to be 0.5 and the number of Overlap Strings
to be 50 by default.

Real Data: We used a snapshot of the crawled DBLife [1]
data (web pages) as the documents and a list of paper titles
extracted from the DBLP Bibliography [29] as the dictionary.
The DBLife data consists of 10K web pages and the total
data size is approximately 48MB. Many web pages, e.g.,
researchers’ homepages, contain some publication mentions,
which include paper titles. The dictionary consists of 200K
paper titles with a total size 11.9MB, and it contains about
86K distinct tokens.

2) Filters and Filter Pipeline:We implemented four indi-
vidual string filters and one verification operator, and eachis
assigned a ID for ease of notation as listed below. We also
implemented code to “glue” them together into pipelines of
filters.

Length Filter (1) : We implemented the length filter accord-
ing to [8]. With the length filter, a string extracted from the
documents needs to be verified only if the length of the string
is in a range determined by the dictionary strings.

Compressed Inverted List Filter (2): We built inverted
lists for the dictionary string tokens and we used a fixedn-bit
array for each token to store the hash values of the string ids,
rather than using the id list. By adjusting the bit array size
n, we can trade filtering cost for accuracy. That is, a largern
leads to a higher cost and higher accuracy, while a smallern
leads to a lower cost and less accuracy.

TDF Filter (3) : We implemented the token distribution filter
in [11]. We set the default token partitioning numberb to be
|D|/100, where |D| is the number of tokens in the Overall

Token Space. We adjustn according to the memory usage, so
that theTDF consumes a similar amount of memory to other
filters in the experiments.

ISH Filter (4) : We implemented the ISH filter [6] using
prefix signatures. Similar to the inverted lists, ISH storesa
list of string signatures for each token rather than string ids.
We usek (number of tokens in string prefix) andn (bit-array
size for each token) to control the performance and memory
usage. We experimented with different values fork andn and
pickedk=3 andn=1024 since those numbers worked well in
our experiments.

Inverted List Filter (v) : This is the only verification opera-
tor we considered. We implemented the DivideSkip algorithm
[19] to merge the inverted lists of tokens for candidate strings.

Filter Pipeline: We cascade different filters to form a filter
pipeline used in the multiple filter approach, e.g., a pipeline
plan “3,4,v” refers to applying the TDF filter and the ISH filter
in order before the verification operator.

B. Experimental Results

1) Using a Single String Filter: First we explore the
performance of the individual filters, to ascertain whetheror
not they indeed show different performance. The results are
shown in Figure 2(a). That graph has a lot of information on
it. The three groups of bars correspond to varying numbers of
document strings. Each group contains a bar for each of the
filters (plus the verification operator; recall that these filters
are only approximate, so they cannot be used without being
followed by the verification operator.) For comparison, we
also include the performance of only the verification operator
indicated by “v”. Finally, the bar labeled “opt” corresponds
to our optimization procedure described in Section IV-A. The
results demonstrate that selecting the correct filter is important,
and that our optimization approach was effective, finding the
optimal filter with only about 20% overhead.

Figure 2(b) shows the same information for varying the
token space overlap. The point made by Figure 2(b) is that
the relative performance of the filters changes with different
data sets; the relative effectivess of the filters is different
between Figure 2(a) and Figure 2(b), and also different in the
different groups in Figure 2(b). Also note that our optimization
method is close to the optimal in all cases. This lends credence
to our belief that no one filter dominates everywhere, and
that our optimization-based approach is an effective way to
choose filters. Figure 2(c) makes the same point by varying
the dictionary token frequency, the average number of each
dictionary token.

In addition to the synthetic data sets, we also evaluated
the ASMC performance using single filters on real data sets
with the crawled web pages in DBLife as the documents and
the paper titles extracted from the DBLP Bibliography as the
dictionary in Figure 2(d) and 2(e). The results in Figure 2(d)
and 2(e) over our real data set confirm the conclusions we got
over the synthetic data sets.

To summarize, using different string filters in the ASMC
problem may result in different performance. There might

be no single filter which is also superior to others in all
scenarios. Our optimization approach can find the optimal
filter for various problem instances we have studied on both
synthetic and real data sets. More importantly, the optimization
overhead is relatively small.

2) Using Multiple Filters: In Figure 3 we move to consider
the case where we use multiple filters in a pipeline (rather
than a single filter plus a verification operator.) We wish to
explore (a) whether a pipeline of filters can indeed perform
better than a single filter, and (b) whether the order of filters
in a pipeline affects performance, and (c) whether the best
order for a set of filters is constant across different problem
instances, and finally (d) how well our various optimization
algorithms perform in this environment.

In Figure 3(a),we explore different pipelines on different
document sizes. We see that on these data sets, adding filters
improves performance, and that using all of the filters is the
fastest. Figure 3(b) considers different orders of filters.It
shows that the performance is indeed sensitive to order.

These two points suggest that some optimization-based
approach might be effective. Hence, in Figure 3(c) and 3(d),
we evaluate the performance of the optimization approach in
searching for the optimal filter pipeline. The basic approach
(Algorithm 1) to our optimization problem is guaranteed to
find the optimal filter pipeline, when the sampling based esti-
mation is accurate. However, it requires an exponential number
of sampling estimations. For example, even with 4 filters, we
need to make more than 30 estimations and each estimation
may take 1%-2% of the overall cost. Making 30 estimations
may take longer than just running a reasonable plan. Therefore,
we did not consider the basic approach in our performance
study. We only evaluated the performance of the two approx-
imation algorithms (Algorithm 2 and Algorithm 3) to solve
the optimization problem, which are separately represented
as “OptimizationA1” and “OptimizationA2” in Figure 3(c)
and 3(d). For comparison, we also show the best performance
of the pipelines with 1, 2, or 4 filters before verification and
the worst performance of the 4-filter pipeline. In Figure 3(c),
we vary the number of document strings from 10K to 100K.
We find that both two approximation algorithms can find the
optimal filter pipeline. However, the optimization overhead of
“Optimization A1” is large, i.e., more than 30% of the overall
cost. Due to the large overhead, “OptimizationA1” only
achieves similar performance to using the best 2-filter pipeline.
Still its performance is much better than that of the worst 4-
filter pipeline. The approach “OptimizationA2” not only finds
the optimal filter pipeline, but also only add a small amount
of optimization cost, i.e., about 10% of the overall cost. We
get similar results when we vary the token space overlap from
0.2 to 0.8 in Figure 3(d). Both approximation algorithms in
the optimization approach can find the optimal filter pipeline
for each problem instance, and “OptimizationA2” requires
little cost in searching for the optimal filter pipeline than
“Optimization A1”.

Besides the synthetic data sets, we evaluated the effective-
ness of the optimization approach on real data sets with the

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
��
��

��
��
��
��
��

�
�
�

�
�
�

�
�
�
���
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��
�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�� �
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
���
�
�

�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
���
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�

�
�
�

��
��
��
��

����

����

 0

 200

 400

 600

 800

 1,000

 1,200

1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op

T
im

e
(s

)

Number of Document Strings
10K 50K 100K

Verify
Filter
Optimization

(a) Varying Document Size

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

������
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
��
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
����
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
����
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�
�
�
�

��

 0

 50

 100

 150

 200

 250

 300

1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op

T
im

e
(s

)

Token Space Overlap
0.2 0.5 0.8

Verify
Filter
Optimization

(b) Varying Token Space Overlap

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

������
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
��
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
����
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�

��

�
�
�
�

�
�
�
�

 0

 50

 100

 150

 200

 250

1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op

T
im

e
(s

)

Dictionary String Token Frequency
500 1,000 2,000

Verify
Filter
Optimization

(c) Varying Dictionary Token Frequency

�
�
�
�
��
��
��

��
��
��
�
�
�
�
�����
�
�
��
�
�
�

�
�
�
�
�����
�
�
�
�����
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
�
�
�
�
�� �
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
���
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�
�
�
�

�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
��
��

��
��
��
�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
��
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
�
�
�
�
��

��
��
��
��

����

����

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op

T
im

e
(s

)

Number of Documents
1K 5K 10K

Verify
Filter
Optimization

(d) Varying Document Size

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
���
��
��
��

��
��
��
��
��
��
��
���
�
�
�

�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
�� �
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��
�
�
�

��
��
��
��
�
�
�
�
��
��
��
��
�
�
�

�
�
�

�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
���
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
�
�
�

�
�
�

�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
��
��
��
��
�
�
�
�

��
��
��
��

����

��
��
��
��

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op 1,
v

2,
v

3,
v

4,
v v op

T
im

e
(s

)
Number of Dictionary Strings

50K 100K 200K

Verify
Filter
Optimization

(e) Varying Dictionary Size

Fig. 2. ASMC Performance Using Single Filters

crawled web pages in DBLife as the documents and the paper
titles extracted from the DBLP Bibliography as the dictionary.
In Figure 3(e), we show the best performance of using 1,
2 and 4 filters before the verification and also the worst
performance of using 4 filters to compare with performance
we achieved by the optimization approach using the two
approximation algorithms. We vary the number of documents
from 1K to 10K, while keeping the dictionary size at 100K.
We get similar results on real data sets as in Figure 3(c). The
two approximation algorithms indeed find the optimal filter
pipeline for each case. “OptimizationA2” achieves the second
best performance over all the approaches. The overhead of the
optimization is relatively small compared with the overalltime
cost.

To summarize, our experiments show that not only the set
of filters but also the ordering of the filters in the pipeline is
critical to the ASMC performance. The two approximation
algorithms we proposed to solve the optimization problem
work well in many problem instances we have studied on
both the synthetic and real data sets. In particular, in our
experiments Algorithm 3 found the optimal pipeline with
acceptable overhead.

VII. C ONCLUSION

The filter-verify approach to the ASMC problem relies upon
a powerful but simple observation: it is often possible to find a
relatively simple characterization of a set of stringsD that can
be used to efficiently determine that a candidate strings cannot
possibly be an approximate match for any string inD. A wide
variety of such characterizations are possible; each leadsto a
different filter. Furthermore, since different characterizations

capitalize on different aspects of the strings, different filters
are effective for different instances of the string membership
problem.

The multi-filter framework we advocate in this paper ex-
ploits this observation to arrive at what in some sense amounts
to a “toolkit” approach: when faced with an instance of the
string membership problem, one looks into one’s “tookit” of
filters and tries to assemble a pipeline of these filters that
will work well on the specific problem at hand. Of course,
choosing the appropriate filters and assembling them in the
proper order is in general a non-trivial problem (NP -hard);
to do so automatically is an optimization problem that requires
some mechanism for estimating the cost and effectiveness of
possibly many different potential filtering pipelines.

In this paper we have explored and evaluated this new multi-
filter, optimization-based approach. Considering different es-
timation cost in the optimization approach, we designed two
different approximation algorithms to solve the optimization
problem. We have found through experiments with synthetic
and real data sets that our optimization approach over a
“toolkit” of filters performs better overall than any of the
filters individually or even any statically chosen combination
of filters. We regard this as promising evidence that the multi-
filter, optimization-based approach has merit.

A great deal of room for future work remains. Certainly the
set of filters we considered do not exhaust the space of all
possible filters; characterizing what constitutes a “complete”
set of filters for the toolkit and possibly devising new filters
to achieve this completeness is an interesting and challenging
task. Also, while our optimization techniques were effective in
our experiments, it is possible that more dynamic approaches

�
�
�
�

�
�
�
�

���
�
�
�
���������

�
�
��
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
���
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
��
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

v
4,

v
3,

4,
v

2,
3,

4,
v

1,
2,

3,
4,

v v
4,

v
3,

4,
v

2,
3,

4,
v

1,
2,

3,
4,

v v
4,

v
3,

4,
v

2,
3,

4,
v

1,
2,

3,
4,

v

T
im

e
(s

)

Number of Document Strings
10K 50K 100K

Verify
Filter

(a) Varying Document Size

��
��
��
����
��
��

��
��
��

��
��
��
��
���
�
�
�
�
�
�

�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

��
��
��

��
��
��
��

 0

 100

 200

 300

 400

 500

 600

 700

 800

3,
4,

v
4,

3,
v

1,
2,

3,
4,

v
3,

4,
1,

2,
v

1,
2,

4,
3,

v
4,

3,
1,

2,
v

3,
4,

v
4,

3,
v

1,
2,

3,
4,

v
3,

4,
1,

2,
v

1,
2,

4,
3,

v
4,

3,
1,

2,
v

3,
4,

v
4,

3,
v

1,
2,

3,
4,

v
3,

4,
1,

2,
v

1,
2,

4,
3,

v
4,

3,
1,

2,
v

T
im

e
(s

)

Number of Document Strings
10K 50K 100K

Verify
Filter

(b) Varying Document Size

��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�

��

��

�
�
�
�

��
��

 0

 100

 200

 300

 400

 500

 600

 700

10K 50K 100K

 T
im

e
(s

)

Number of Document Strings

Best 1−filter
Best 2−filter
Best 4−filter
Worst 4−filter
Optimization_A1
Optimization_A2

(c) Varying Document Size

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

�� ��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���� ��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

����

 0

 50

 100

 150

 200

 250

 300

0.2 0.5 0.8

 T
im

e
(s

)

Token Space Overlap

Best 1−filter
Best 2−filter
Best 4−filter
Worst 4−filter
Optimization_A1
Optimization_A2

(d) Varying Token Space Overlap

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���� ��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�� �
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

����

����
��
��
��
��

����

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

1K 5K 10K

 T
im

e
(s

)

Number of Documents

Best 1−filter
Best 2−filter
Best 4−filter
Worst 4−filter
Optimization_A1
Optimization_A2

(e) Varying Document Size

Fig. 3. ASMC Performance Using Multiple Filters

that “route” candidate strings through networks of filters may
outperform single pipelines of filters in interesting cases.
Investigating such approaches is also an interesting direction
for exploration.

REFERENCES

[1] DBLife,
"http://dblife.cs.wisc.edu/".

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” inCommun. ACM, 1975.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, 1970.

[4] A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein,
and M. Rodeh, “Text indexing and dictionary matching with one error,”
in J. Algorithms, 2000.

[5] A. N. Arslan and O. Egecioglu, “Dictionary look-up within small edit
distance,” inCOCOON, 2002.

[6] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An efficient filter
for approximate membership checking,” inSIGMOD, 2008.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” inICDE, 2006.

[8] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.Muthukrishnan,
and D. Srivastava, “Approximate string joins in a database (almost) for
free,” in VLDB, 2001.

[9] C. Xiao, W. Wang, and X. Lin, “Ed-join: an efficient algorithm for
similarity joins with edit distance constraints,” inPVLDB, 2008.

[10] A. Gionis, P. Indyk, and R. Motwani, “Similarity searchin high
dimensions via hashing,” inVLDB, 1999.

[11] C. Sun and J. Naughton, “The token distribution filter for approximate
string membership checking,” inWebDB, 2011.

[12] J. M. Hellerstein, “Practical predicate placement,” in SIGMOD Rec.,
1994.

[13] J. M. Hellerstein and M. Stonebraker, “Predicate migration: optimizing
queries with expensive predicates,” inSIGMOD Rec., 1993.

[14] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom,
“Adaptive ordering of pipelined stream filters,” inSIGMOD, 2004.

[15] K. Munagala, S. Babu, R. Motwani, and J. Widom, “The Pipelined Set
Cover Problem,” inICDT, 2005.

[16] G. Navarro, “A guided tour to approximate string matching,” in ACM
Computing Surveys, 2001.

[17] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in VLDB, 2006.

[18] A. Chandel, P. C. Nagesh, and S. Sarawagi, “Efficient batch top-k search
for dictionary-based entity recognition,” inICDE, 2006.

[19] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms for
approximate string searches,” inICDE, 2008.

[20] G. Li, D. Deng, and J. Feng, “Faerie: efficient filtering algorithms for
approximate dictionary-based entity extraction,” inSIGMOD, 2011.

[21] N. K. Amit, A. Marathe, and D. Srivastava, “Flexible string matching
against large databases in practice,” inVLDB, 2004.

[22] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava, “Fast
indexes and algorithms for set similarity selection queries,” in ICDE,
2008.

[23] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational databasemanagement
system,” inSIGMOD, 1979.

[24] U. Feige, L. Lovász, and P. Tetali, “Approximating min-sum set cover,”
2003.

[25] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, “Improved
histograms for selectivity estimation of range predicates,” in SIGMOD
Rec., 1996.

[26] P. J. Haas and A. N. Swami, “Sequential sampling procedures for query
size estimation,” inSIGMOD, 1992.

[27] W.-C. Hou, G. Ozsoyoglu, and B. K. Taneja, “Statisticalestimators for
relational algebra expressions,” inPODS, 1988.

[28] R. J. Lipton, J. F. Naughton, and D. A. Schneider, “Practical selectivity
estimation through adaptive sampling,” inSIGMOD Rec., 1990.

[29] DBLP,
"http://www.informatik.uni-trier.de/ ley/db".

APPENDIX

For a formal treatment, we abstract the optimization prob-
lem under the uniform cost assumption as minimum cost filter
coverage problem which is described as follows. In the filter
coverage problem we are given a setU along with a subset
D ⊂ U , which we call the dictionary. We also have a set of
filters F and verifiersV . Eachf ∈ F has an associated set
Sf ⊂ U \D and a processing cost (per unit element)cf ∈ R+.
Also each verifierv ∈ V has an associated processing cost
cv ∈ R+ and the set associated withv is all of U \ D. For

ease of notation, at places, we will denote the set and the cost
associated withf asS(f) andc(f) respectively. Write thefil-
tering costof applying a set ofk filters,F = {fi}i, in orderσ
as c(F, σ) :=

∑k
i=1 c(fσ(i))

∣

∣

(

U − ∪i−1
j=1S(fσ(j))

)∣

∣. Also the
filtering cost of applyingF in orderσ and verifierv, denoted
asc(F, σ, v), is defined to bec(F, σ) + cv ×

∣

∣U − ∪k
i=1Sfi

∣

∣.
The goal of the minimum cost filter coverage problem is

to select a subset of filters,F ⊂ F , and an orderingσ
over F along with a verifierv ∈ V such that the filtering
cost c(F, σ, v) is minimized. Overall an instance of the filter
coverage problem is specified as(U,D,F ,V). Next we show
that the problem is in factNP -Hard.

Theorem 4:The Filter Coverage problem isNP -Hard.
Proof: We will reduce the Pipelined Set Cover problem

[15] to Filter Coverage. An instance of the Pipelined Set Cover
problem consists of a set of elementsU ′ and collection of
subsets ofU ′, A′ = {S′

1, . . . , S
′
k}. For all i ∈ [k] a processing

cost c′i is associated with setS′
i. In the decision version

of the problem the objective is to determine whether there
exists an ordering,π, over the sets such that the pipelined
cost is no more thanT . Here the pipelined cost is defined
to be

∑k
i=1 c

′
π(i)

∣

∣

∣
U ′ − ∪i−1

j=1S
′
π(j)

∣

∣

∣
. Given an instance of

the Pipelined Set Cover problem(U ′, A′) we construct an
instance,(U,D,F ,V), of the Filter Coverage problem as
follows. SetU = U ′ and D = φ and the set of filters is
constructed fromA′, in particular for each setS′

i we construct
a filter fi by settingS(fi) = Si andc(fi) = c′i. We construct
a single versifierv with cv = T + 1, by definition we have
S(v) = U\D = U . In the decision version we enquire whether
there exists a solution(F, σ, v) with filtering cost no more than
T .

Next we show that a solution,(F, σ, v), of filtering costT
exists iff there is an orderingπ of pipelined costT . In the
forward direction, say there exits a solution(F, σ, v) of cost
no more thanT . Note that we must have∪f∈FS(f) = U .
Otherwise,|U − ∪f∈FS(f)| ≥ 1 and the processing cost of
the verifier by itself would be at leastT + 1, contradicting
the fact that the overall filtering cost is no more thanT . This
gives us a pipelined solution,π, follows: initially setπ to be
the sets corresponding to the filters inF ordered as inσ and
then augment it with the remaining sets of filters inF \ F ,
in any order. We have∪f∈FS(f) = U and the filtering cost
is no more thanT . The sets after∪f∈FS(f) have to cover
no element hence there processing cost inπ is zero, overall
this implies that the pipelined cost ofπ is no more thanT .
To prove the other direction, givenπ with cost no more than
T then we consider(F , π, v). In particular,∪f∈F = U , hence
the verifier processes no element. Since the pipelined cost is
no more thanT we havec(F , π) ≤ T , which in turn implies
that the filtering cost of(F , π, v) is no more thanT hence we
have the desired claim.

Next we present a greedy approximation algorithm for the
Filter Coverage problem and show that it achieves an approx-
imation factor of10. Given an instance of the Filter Coverage
Problem(U,D,F ,V), say|D| = n and|U\D| = m. Note that

the dictionaryD is disjoint from the sets associated with the
given filters and verifiers and hence will be “processed” by all
of them. We essentially apply a set cover like greedy algorithm
till the number of uncovered elements not in the dictionary is at
leastn, after that we pick a verifier with minimum processing
cost cv. In particular, say at stepi we haveMi uncovered
elements which are not in the dictionary (initiallyM0 = m),
if Mi ≥ n we pick the filter (or verifier) which minimizes
the cost ratiocj/mj wheremj is the number of uncovered
elements in the set associated with the filter andcj is the
processing cost of the filter. On the other hand ifMi ≤ n
we select a verifierv with the smallestcv value. We have the
following theorem stating the approximation factor achieved
by the algorithm.

Theorem 5:The above algorithm achieves an approxima-
tion factor of10 for the Filter Coverage problem.

Proof: Let (F, σ, v) be the solution generated by the
algorithm. Say|F | = k and without loss of generality assume
that the filters are selected by the algorithm in order that
is f1 through to fk. Note that the set being processed at
step i has cardinalityMi + n and hence we getc(F, σ) =
∑k

i=1 ci(Mi + n), whereci is the processing cost of filterfi.
Moreover whenever we select a filter we haveMi ≥ n and
hencec(F, σ) ≤ 2

∑k
i=1 ciMi. Now consider the Pipelined Set

Cover [15] instance(U \ D,A′), whereA′ is the collection
of sets associated with filters and verifiers. Say the optimal
pipelined cost of this instance isO∗

p.
Note that an optimal solution,(F ∗, σ∗, v∗), of the Filter

Coverage problem can be transformed into a solution for the
Pipelined Cover problem. We simply extendσ∗ by augmenting
sets of filters and verifiers from(F ∪ V) \ (F ∗ + v∗) in any
order. Alsos(v∗) = U \D, hence the processing cost of the
augmented sets is zero. We note that the pipelined cost of
(F ∗, σ∗, v∗) is no more than the filtering cost of(F ∗, σ∗, v∗).
The filtering cost includes processing all ofU whereas the
pipelined cost includes processing onlyU \ D. Write O∗

f =
c(F ∗, σ∗, v∗), we haveO∗

f ≥ O∗
p.

The relevant observation is thatF , the initial set of filters
selected by the algorithm, would be the same if the greedy4-
approximation algorithm for the Pipelined Set Cover [15] was
applied to the instance(U \ D,A′). The processing cost of
U \D underF is

∑k
i=1 ciMi, since this is part of the greedy

4-approximate solution for the Pipelined Set Cover problem
we have

∑k
i=1 ciMi ≤ 4O∗

p, therefore
∑k

i=1 ciMi ≤ 4O∗
f .

As stated beforec(F, σ) ≤ 2
∑k

i=1 ciMi and hencec(F, σ) ≤
8O∗

f . Finally we account for the cost incurred by the verifier.
Say it is applied afterk filters, at that time we haveMk+1 ≤ n.
Hence its processing cost,cv(Mk+1+n), is no more than2cvn.
By selection we havecv ≤ cv∗ . The dictionaryD is processed
by the verifierv∗ in the optimal solution, henceO∗

f ≥ cv∗n.
Overall we get thatcv(Mk+1 + n) ≤ 2O∗

f . Since the filtering
cost of the solution generated by the algorithm is equal to
c(F, σ) plus the processing cost of the verifier we get that the
algorithm achieves a cost no more than10 O∗

f implying an
approximation factor of10.

