
Time Travel in a Scientific Array Database
Emad Soroush and Magdalena Balazinska

Department of Computer Science & Engineering
University of Washington, Seattle, USA

{soroush,magda}@cs.washington.edu

Abstract—In this paper, we present TimeArr, a new storage
manager for an array database. TimeArr supports the creation of
a sequence of versions of each stored array and their exploration
through two types of time travel operations: selection of a
specific version of a (sub)-array and a more general extraction
of a (sub)-array history, in the form of a series of (sub)-array
versions. TimeArr contributes a combination of array-specific
storage techniques to efficiently support these operations. To
speed-up array exploration, TimeArr further introduces two
additional techniques. The first is the notion of approximate
time travel with two types of operations: approximate version
selection and approximate history. For these operations, users
can tune the degree of approximation tolerable and thus trade-off
accuracy and performance in a principled manner. The second
is to lazily create short connections, called skip links, between
the same (sub)-arrays at different versions with similar data
patterns to speed up the selection of a specific version. We
implement TimeArr within the SciDB array processing engine
and demonstrate its performance through experiments on two
real datasets from the astronomy and earth sciences domains.

I. INTRODUCTION

In many fields of science, multidimensional arrays rather
than flat tables are standard data types because data values are
associated with coordinates in space and time. For example,
images in astronomy are 2D arrays of pixel intensities. Climate
and ocean models use arrays or meshes to describe 3D
regions of the atmosphere and oceans. They simulate the
behavior of these regions over time by numerically solving
the governing equations. Cosmology simulations model the
behavior of clusters of 3D particles to analyze the origin and
evolution of the universe.

At the same time, datasets in science are growing in size.
The next generation of telescopic sky surveys such as the
Large Synoptic Survey Telescope (LSST) [1] will generate 10s
to 100s of petabytes a year of imagery and derived data. The
Earth Microbiome Project [2] expects to produce 2.4 petabases
in their metagenomics effort.

As a result, scientists need powerful tools to help them
manage these massive arrays. Because simulating arrays on
top of relations can be inefficient [3], many specialized array-
processing systems have emerged [4], [5], [6], [7].

An important requirement that scientists have for these
systems is the ability to create, archive, and explore different
versions of their arrays [3]. Hence, a no-overwrite storage
manager with efficient support for querying old versions of an
array is a critical component of an array database management
system (DBMS).

5	
 4	
 3	

7	
 -­‐5	
 8	

6	
 14	
 6	

4	
 4	
 3	

7	
 -­‐5	
 9	

3	
 14	
 5	

2	
 4	
 4	

7	
 -­‐6	
 9	

3	
 16	
 5	

-­‐1	
 0	
 0	

	
 0	
 0	
 	
 1	

-­‐3	
 	
 0	
 -­‐1	

-­‐2	
 	
 0	
 1	

0	
 -­‐1	
 0	

0	
 	
 2	
 0	

V1	
 V2	
 V3	

V3	
 Δ3,2	
 Δ2,1	

5	
 4	
 3	

7	
 -­‐5	
 8	

6	
 14	
 6	

Fig. 1: Illustration of a chain of backward delta versions for a 3x3
array. The most recent version V3 is materialized. Earlier versions
are stored in the form of arrays of cell-value differences.

Such a system must support different types of queries over
the versioned array: It must support standard queries that
retrieve specific array versions, queries that retrieve subarrays
at specific versions, and queries that track the history in the
form of a series of subarrays across multiple versions. At the
same time, we argue that early array exploration can benefit
from faster but approximate queries that can quickly identify
which versions are relevant to a user and the approximate
content of these versions. Finally, all these operations must
be performed as efficiently as possible to enable fast data
exploration and analysis.

In this paper, we present TimeArr, a new storage manager
for array DBMSs that provides a no-overwrite, versioned array
storage model together with both precise and approximate
time-travel queries over these versioned arrays. Our TimeArr
storage manager makes the following contributions:
(1) A backward delta versioning system specialized for
arrays. At the heart of the TimeArr storage manager, is a new
storage model for efficiently representing and querying a ver-
sioned array. First, because scientific datasets can grow to be
large, the storage model compresses the data using a backward
delta encoding method: the most recent version of the array is
fully materialized and earlier versions only contain differences
in cell values between consecutive versions as illustrated in
Figure 1. ∆i,i−1 represents differences in cell values between
version Vi and Vi−1 of an array. The backward delta technique
is known to be an efficient compression method. To illustrate
the efficiency of this method for scientific arrays, we store
61 versions of the Global Forecast System (GFS) dataset [8]
in TimeArr using four methods. The naı̈ve materialization of
all versions takes 65.6MB of space on disk. Storing only
the values of cells that change between consecutive versions
reduces disk-space utilization to 14MB. Storing differences in
cell values between each version Vi and the original version

Vz achieves almost no compression compared to storing only
materialized versions and takes about 62.7MB. Finally, the
backward delta method stores all versions using only 3.5MB,
a 19X improvement over the full materialization. Of course,
this compression comes at the cost of slower version retrieval.
Hence, an important question is how to achieve fast array
query processing with this method. Query processing times
are also the main reason for always materializing the most
recent version of the array, which should be most frequently
accessed by applications.

Unlike most other applications of the backward
deltas method (e.g., in backup storage [9] or temporal
databases [10]), our storage layout is specialized for arrays.
The specialization enables TimeArr to achieve both high
compression ratios and high query performance. The approach
uses three key ideas. First, it applies the notion of array
tiling [6], [11], [12], [13], [14] to efficiently limit the changes
that must be processed when retrieving old versions of a sub-
array. This approach significantly speeds up query processing.
Second, it uses a variety of compressed bitmasks [6] to
encode the regions of an array that change from one version
to the next and to identify which subset of changes need to be
processed to satisfy a user query. This approach both enables
better data compression and speeds-up query processing.
Third, our storage model uses variable-length delta encoding
across tiles, which helps adapt the compression-level to
different magnitudes of changes in different regions of an
array and yields better compression ratios for the array data.
In addition to these three basic methods, to further speed-up
query processing over commonly accessed parts of an array,
TimeArr lazily adds connections, called skip links, between
certain non-consecutive versions of an array. TimeArr’s
skip links are similar to regular backward delta versions
except that they contain differences in cell values between
two non-consecutive versions. TimeArr utilizes skip links
similarly to a skip list data structure [15] with the important
difference that TimeArr creates links based on version content
and not version numbers. Additionally, TimeArr creates skip
links lazily during version retrieval to reduce the overhead of
maintaining this data structure. Finally, it maintains skip links
at the granularity of tiles to increase their efficiency. As a
result, regions of the array that are fetched more often create
more skip links which reduces their version retrieval time.
We present TimeArr’s detailed storage model in Section III.
(2) Approximate and customizable array-exploration
queries. It is well-known that, when first exploring data, users
need a quick query turn-around time and are willing to tolerate
some inaccuracy to achieve faster time-to-result [16], [17],
[18]. To speed-up the exploration of a versioned array, we
leverage this observation and introduce the idea of querying
approximate versions of an array. In our approach, the user
specifies both the degree of approximation tolerable and how
that approximation should be computed. Hence, TimeArr’s
approximate exploration is highly customizable and carefully
controlled by the user. The system efficiently answers approxi-
mate queries over a versioned array by aggressively leveraging

Z
X

 Y

 A1: (4 X 4 x 4)

Fig. 2: The 4x4x4 array A1 is divided into eight 2x2x2 chunks.

tiling and skip links and also by maintaining short summary
statistics that capture the overall changes between different
subarrays at different versions. We present the details of ap-
proximate version querying and customization in Section IV.
(3) Prototype implementation and evaluation with real
datasets. We implement the above techniques as a C++ proto-
type storage manager called TimeArr on a branch of the SciDB
array processing engine [6]. We evaluate TimeArr on a real
dense array containing 61 snapshots from the global forecast
system (GFS) model [8] and a real sparse array containing
9 snapshots from an astronomy universe simulation [19]. For
precise queries, without using skip links, TimeArr outperforms
the current SciDB version-storage technique [6], [20] (which
is also based on backward deltas) by a factor of 1.6X to
6.6X in terms of query processing times and up to 40% in
terms of version creation time. Skip links further improve
query performance by 75%. Furthermore, when a user retrieves
only a small fraction of an array, our approach based on a
combination of bitmasks and virtual tiling can cut query times
by an order of magnitude. For approximate queries, we show
that query times are halved when a user is willing to see data
off by at most one array version.

The goal of TimeArr is to efficiently support queries for ar-
ray regions and versions. We do not study additional indexing
techniques over array contents.

II. TIMEARR OVERVIEW

TimeArr is a new storage manager for array database
systems. While TimeArr could be integrated with various array
systems [5], [6], our design and implementation are based on
the SciDB engine [6]. In this section, we present an overview
of TimeArr’s approach and also TimeArr’s core API.

In most array database engines including SciDB, each
array is partitioned into chunks, which are small subarrays as
illustrated in Figure 2. Array chunking is a well-known method
for alleviating dimension dependency [21]. Each chunk maps
onto a unit of disk IO (either a disk block or larger). TimeArr
assumes a chunked array layout. Furthermore, we assume that
chunks are regular. That is, each chunk covers the same space
in terms of array coordinates. This layout has been shown
to deliver high performance across a wide range of array
operations for both dense and sparse arrays [14]. In SciDB,
array chunks are further stored using a column-based repre-
sentation [6]. TimeArr builds on this column-based, chunked
storage layout.

Array Updates
Create(ArrayType Q, ArrayName A)
Append(ArrayName A, ArrayContent Ci)
Precise Queries
Select(ArrayName A, Predicate p, VersionNb j, VersionNb k)
Approximate Queries
Select(ArrayName A, Predicate p, VersionNb j, VersionNb k, ErrorBound B1, ErrorBound B2, Granularity g, StatisticID s)

TABLE I: TimeArr Versioned Array API.

TimeArr supports the operations shown in Table I. The
Create operation creates an initial, empty array of type Q
and named A. The array type includes the specification of the
array dimensions, the type of each array cell, and how the
array should be both chunked and tiled. This operation only
creates array metadata in the SciDB catalog.

The Append operation appends a new version to array A.
The payload of the append operation, Ci, is a new snapshot
of the array content at the new version i. Version numbers are
incremented automatically.

When an initial array version is created, its data is broken up
into chunks as per the chunking specification in the ArrayType.
Each chunk is stored in a separate file on disk. For example,
the array from Figure 2 is stored in eight separate files, one
per chunk. Subsequent calls to Append add new versions to
the array. The new version of each chunk is added to the
corresponding file where the earlier version of that chunk is
stored. We refer to a file that contains a materialized chunk
together with its series of appended versions as a segment.

To maintain high performance in the face of a growing
number of versions, TimeArr is configured with a maximum
segment size F . If a segment grows beyond threshold F for
some chunk, a new segment is created for that chunk. Each
segment (or file) contains one materialized version of a chunk,
which is the most recent version stored in that segment. All
prior versions in the same segment are compressed using the
backward-delta-based approach described in Section III. Such
periodic materialization is a well-known technique adopted
in many systems including BigTable [22]. The selection of
the threshold value F depends on various parameters such as
chunk size and version content. We do not address the problem
of optimizing the value of F in this paper.

The Select operation returns the content of a subarray of A
that satisfies predicate p at versions v ∈ [Vj , Vk]. We refer to
this operation as array history selection. To retrieve data for
a single version, the last argument can be omitted. To retrieve
the data for the entire array, the predicate p can be omitted. p
is a predicate over array dimensions. For example, in the array
from Figure 2, we could select the first chunk with predicate
x ∈ [1, 2]∧y ∈ [1, 2]∧z ∈ [1, 2]. We further present TimeArr’s
storage model and history selection query implementation in
Section III.

TimeArr also supports an approximate variant of array
history selection to speed-up early array exploration. As shown
in Table I, this variant takes four extra arguments as input.
The first one, B1, is an error bound: if a user requests a single
array version, Vj , B1 serves to specify the maximum tolerable
loss in accuracy. The selection of a specific array version
thus returns the subarray of A at version Vj that satisfies

p. The content returned, c′j(p), satisfies the error condition:
Difference(c′j(p), cj(p)) < B1, where cj(p) is the precise
version of the corresponding subarray. The computation of the
Difference function is configurable as we show in Section IV.
In fact, a user can specify several methods for computing
this difference and use different methods in different queries.
The StatisticID argument to the function specifies which
of these methods to use. If not specified, TimeArr uses the
default StatisticID. TimeArr computes version differences
at two granularities of tiles or chunks. The user specifies
the granularity with the Granularity parameter. We further
discuss the semantics and computation of these differences in
Section IV.

When multiple versions are requested, an extra parameter
B2 must also be specified. The Select operation then returns
the most recent requested version, Vj , within error bound B1

as above. It also returns a sequence of versions V such that
∀ Vu ∈ V , Vu ∈ (Vj , Vk] ∧ Difference(c′u(p), cu(p)) < B1.
Additionally, for each pair, (Vu, Vw) of consecutive returned
versions (i.e., no version in between Vu and Vw is returned),
we have Difference(cu(p), cw(p)) > B2. This operation thus
returns the first selected version using the same method as
above. It then returns subsequent versions such that each
new version’s content remains within distance B1 of the
corresponding precise version. Additionally, the query skips
over similar versions, returning only the next version that
differs by at least B2. The granularity (tile or chunk) is the
same as for B1. We further discuss this approximate history
extraction in Section IV.

III. VERSION STORAGE AND RETRIEVAL

In this section, we present TimeArr’s approach to storing
and retrieving array version data.

A. Version Storage

As indicated earlier, TimeArr stores array versions using
a backward delta approach: When a new version of a given
chunk is appended, TimeArr iterates over both the new version,
call it Vj , and the most recent previous version, call it
Vj−1, of the chunk. It subtracts the cell values in the new
chunk from the corresponding cell values in the older chunk.
These differences in cell values are called delta values. More
formally: dj(j−1)k ← Subtract(c(j−1)k, cjk) where d is the
delta value and cjk is the k’th cell in the array at version j,
assuming that cells are traversed in some order such as the
row-major order. The group of delta values for a chunk forms
a delta chunk. We call the array that wraps all delta chunks the
delta array. Figure 1 illustrates a materialized array version
and two delta arrays.

While the basic idea of storing array versions using back-
ward deltas is not new [20], the details of the version data
structures that TimeArr uses are different from prior work.
In particular, TimeArr’s version storage layout uses four key
ideas: (1) it partitions chunks into tiles to limit the amount of
work when rebuilding an old version of a subset of an array
or when answering an approximate query; (2) it uses bitmasks
to quickly identify the tiles or cells that changed between two
versions; (3) it uses variable-length delta-encoding to capture
changes with as few bytes as possible; it also uses run-length
encoding (RLE) to compress its bitmasks; (4) it lazily creates
skip links to boost the Select query performance over time.
We now present these four key techniques.

Figure 3 shows the internal representation that TimeArr
uses to store one segment on disk. Each segment contains
one materialized version of a chunk and zero or more delta
chunks. The materialized version in the segment could be
stored using either a sparse or dense representation, with or
without compression, etc. [6], [11], [12], [13], [14], [20], [23].
In this paper, we treat the most recent version as a black box.

TimeArr represents each delta chunk with a structure that
we call VersionDelta. To speed-up range-selection and ap-
proximate queries, TimeArr divides a delta chunk into a series
of virtual delta tiles. Each tile is a subarray within the delta
chunk. TimeArr represents virtual delta tiles with a structure
that we call TileDelta. In the rest of the paper, ∆i,i−1

represents the delta values between version Vi and Vi−1 of
either an array, a chunk, or a tile depending on context.

A VersionDelta contains a header that summarizes the
changes in the version and a payload that holds the actual
changed values. The VersionDelta header contains a bitmask
with one bit per tile (VDBitmask in the figure). VDBitmask

identifies the tiles that have been modified in the new version
of the array. Such tiles have their bit set to true in the
VDBitmask. This approach has successfully been applied in
the past to compressing array contents [6]. We apply it here
for compactly storing changes between array versions.

Tiles that contain changes are stored in a set of TileDelta

data structures. A TileDelta contains the details of changes
in one tile. Because TileDeltas have variable sizes, TimeArr
uses a standard slot-based approach to locate them on disk:
for each tile that includes changes, a slot points to the location
of the corresponding TileDelta on disk (TileSlotsMap in the
figure). Prior work studied the tuning of chunk/tile shape, size,
and layout on disk for a given workload and for regular chunk-
ing [24], [25]. In TimeArr, the virtual tile size determines
the finest granularity with which the system can do history
and approximation queries. Hence, smaller tiles enable finer-
grained operations. On the other hand, larger tiles decrease
the metadata overhead and preserve the locality of the data
(logically close delta values in the array are physically stored
together). However, we do not address the problem of tuning
the size of virtual tiles in this paper.

The details of a TileDelta structure are illustrated in Fig-
ure 4. Similar to the VersionDelta structure, each TileDelta

contains a bitmask with one bit per cell (TileBitMask in

VersionDelta_1	
 Header:	

	
 (VDBitmask	
 b,	
 StatsVector,	
 NumTileDeltas,	
 TileSlotsMap,	
 …	
)	

TileDelta_1	
 TileDelta_M	
 2	
 3	
 4	

Materialized	
 Chunk	

.	
 M
-­‐1
	

.	

VersionDelta_k	
 Header:	

(VDBitmask	
 b,	
 StatsVector,	
 NumTileDeltas,TileSlotsMap,	
 …	
)	

TileDelta_1	
 TileDelta_N	
 2	
 3	
 4	
 .	
 .	

Segment	
 Header:	
 (Num	
 VersionDeltas,	
 Max	
 Version,	
 Min	
 Version)	

Ve
rs
io
nD

el
ta
_1
	

Ve
rs
io
nD

el
ta
_k
	

N
-­‐1
	

SE
G
M
EN

T	

Fig. 3: Representation of a single array chunk with multiple versions.

TileDelta	
 Header	

(TileBitmask	
 tb,	
 	

StatsVector,Type	
 t)	
 	
 De
lta

	
 c
el
l_
1	

2
	
 	

Ti
le
De

lta
_M

	

De
lta

	
 c
el
l_
N
	

3
	
 	

.
	
 	

.
	
 	

N
-­‐1

	
 	

Fig. 4: TileDelta Layout

the figure). The TileBitMask is a bit vector that indicates
which cells in the tile contain any changes. A TileDelta

also contains a payload that holds the actual delta values. A
conceptual view of a TileDelta is shown in Figure 5. The first
delta value in the list corresponds to the first 1 in the bitmask,
the second delta value corresponds to the second 1, and so on.
Because we use regular tiling, where each tile covers the same
number of cells in each direction as other tiles, mapping from
the bitmask bits to the cell coordinates happens efficiently in
near constant time.

Following the TileDelta header, we store the actual cell
updates in the form of backward deltas. Depending on the
magnitude of the changes, we can use a different number of
bytes to store the delta values. TimeArr chooses the number
of bytes to use to store delta values at the granularity of tiles.
The TileDelta header includes some information about which
encoding is used for delta values (Type t in the figure).

To save space, TimeArr uses run-length encoding (RLE) to
compact all bitmasks. For example, bitmask 1100111000 is
RLE encoded as <1,2> <0,2> <1,3> <0,3>. Values of 1
in the bitmask correspond to cells that were updated.

In addition to bitmasks, VersionDelta and TileDelta head-
ers also include summary vectors, called StatsVectors. We
describe the StatsVectors in Section IV, when we discuss
customization and approximation.

B. Skip Links

Initially, the data in a segment corresponds to a fully
materialized version of a chunk and a series of consecutive
delta chunks. If Vr is the materialized version in the segment
then any older version, Vk, of the chunk in the segment is
rebuilt as follows: Vk = Vr+

∑r
i=k+1(∆i,i−1) where the “+”

operator applies all delta values in one version of the chunk
by invoking an Add function for each cell:
c(j−1)k ← Add(cjk, dj(j−1)k)
where c are cell values, d is a delta value, k represents the
k’th cell, and j and j − 1 represent two consecutive versions.

TileDelta	
 V	

1 0 0

0 1 1

1 0 1
-­‐1	
 0	
 0	

	
 0	
 4	
 -­‐8	

2	
 0	
 -­‐1	

-­‐1	
 4	

-­‐8	
 2	

-­‐1	

Bitmask	
 V	

List	
 of	
 delta	
 values	

Fig. 5: Internal structure of a TileDelta V in TimeArr. The bitmask
is represented as a 2D array only for illustration purposes.

The version retrieval time thus grows linearly with the
number of versions in a segment. One can use skip lists [15]
to maintain the retrieval time for any version of a chunk
below log(|V |) where |V | is the number of versions in a
segment. That is, a segment should contain the VersionDelta
for consecutive versions but it should also contain additional
VersionDeltas for each pair of versions 2i versions apart. Extra
VersionDeltas, however, would significantly increase storage
costs. Additionally, as we discussed in Section I, delta chunks
for non-consecutive versions that are far apart do not provide
much compression compared to materializing the actual array
version. Finally, skip lists would significantly increase the time
to append a new version due to the creation of multiple extra
delta chunks.

To avoid these limitations yet benefit from “shortcut links”,
TimeArr uses what we call skip links, inspired by the skip
list technique, to cut the version retrieval costs by skipping
over multiple versions in one step. To maximize the benefits
of these links, TimeArr defines them at the granularity of
tiles. The fundamental differences between a skip list and
TimeArr’s skip links are that (1) skip links replace some of the
consecutive delta tiles, (∆i+1,i), with non-consecutive ones,
∆j,i j>i+1, and (2) skip links are established only between
similar versions; that is, only when ∆j,i is backward delta
encoded more compactly than ∆i+1,i:

sizeof(∆j,i) < α× sizeof(∆i+1,i) (1)

where sizeof returns the size of an object in bytes and α ∈
[0, 1] is a tunable parameter that ensures skip links are created
between similar tiles rather than between arbitrary ones. We
use α = 0.9 in our experiments, which we find to suffice to
filter out spurious skip links. An abstract example of skip links
is shown in Figure 6.

To decide which tile versions to consider for replacement,
TimeArr could enumerate all possible ∆j,i combinations and
verify the condition in Equation 1. This approach, however,
would be computationally expensive because of the large num-
ber of version combinations. Instead, we propose to consider
only the linear sequence of links. That is, given a most recent
version Vr, TimeArr only considers adding skip links of the
form ∆r,i ∀i<r. This approach is significantly less expensive
computationally because it considers fewer options but also
because it can compute these options incrementally. Indeed,
TimeArr reuses the computation spent on a previous candidate
skip link ∆r,i to recursively construct the new candidate

-­‐3	
 -­‐4	
 -­‐9	

0	
 -­‐5	
 -­‐4	

6	
 14	
 6	

-­‐2	
 -­‐1	
 6	

7	
 1	
 0	

-­‐8	
 -­‐7	
 -­‐9	

4	
 5	
 2	

7	
 5	
 1	

3	
 7	
 4	

5	
 4	
 3	

-­‐7	
 4	
 4	

3	
 -­‐8	
 3	

5	
 4	
 3	

7	
 -­‐5	
 8	

6	
 14	
 6	

V5	
 Δ5,4	
 Δ4,3	
 Δ3,2	
 Δ2,1	

	

-­‐3	
 -­‐4	
 -­‐9	

0	
 -­‐5	
 -­‐4	

6	
 14	
 6	

4	
 5	
 2	

7	
 5	
 1	

3	
 7	
 4	

5	
 4	
 3	

-­‐7	
 4	
 4	

3	
 -­‐8	
 3	

5	
 4	
 3	

7	
 -­‐5	
 8	

6	
 14	
 6	

V5	

Δ5,4	
 Δ4,3	
 Δ5,2	
 Δ2,1	

0	
 -­‐1	
 0	

0	
 0	
 0	

1	
 -­‐1	
 0	

Skip Link

Fig. 6: ∆5,2 is a skip link from V5 to V2. sizeof(∆5,2) < α ×
sizeof(∆3,2). So ∆3,2 is replaced with ∆5,2 in the chain of back-
ward deltas. Note that V2 = V5 + ∆5,2 and V1 = V5 + ∆5,2 + ∆2,1.

skip link ∆r,i−1. At the same time, we hypothesise (and
experimentally demonstrate in Section V) that this approach
retains the most useful links, since TimeArr always starts from
Vr when fetching older versions.

An important design decision for TimeArr is when to create
skip links. One approach is to exhaustively consider all linear
skip links every time a new version is appended to a chunk. A
less expensive variant is to compute skip links only every T
new versions appended, where T > 1 . We study the overhead
and gain of different values of T in Section V for version
insertion and retrieval.

A third approach is to identify skip links lazily when
executing selection queries that retrieve old versions of sub-
arrays. The approach works as follows: Consider a segment
with materialized version Vr and the goal is to retrieve version
Vi. To test potential linear skip links, TimeArr reconstructs Vi
as Vi = Vr + ∆r,i and it computes ∆r,i incrementally by
computing each intermediate linear skip link, ∆r,k ∀k i≤k<r,
where Vr is the materialized version in the segment. This
approach thus significantly reduces the overhead of finding
skip links at the expense of not being able to use this
optimization the first time that an old version is retrieved. To
further limit overheads, while retrieving old versions, TimeArr
keeps track of deltas ∆r,i that have already been explored
as potential skip links. For example, if TimeArr issues two
consecutive selection queries to retrieve Vi, only the first one
involves the exploration of possible skip links.

Algorithm 1 describes the tile-based skip link creation
procedure. In the algorithm, after ∆i+1,i is replaced with skip
link ∆j,i for tile t (Line 9), TimeArr puts a lock on all the
deltas ∆k+1,k i < k < j at tile t. Delta versions that are
locked are not eligible to be replaced with any other skip links
(which is one reason why spurious links should be avoided
by tuning the α parameter). Locks are at the granularity of
tiles and are not revertible. This constraint is reflected in
Algorithm 1 at Line 8 and line 10. The reason TimeArr locks
the deltas is to avoid overlapping skip links as illustrated in
Figure 7(a). If skip links overlap, TimeArr can reach a dead-
end if it does not apply the correct combination of skip links
during version retrieval. Locking certain tiles prevents this
complication and simplifies the version retrieval algorithm.

C. Query Processing

To support a selection query that retrieves a specific version
of an array chunk, TimeArr first selects the set of files –with
one file per array chunk– that contain the desired version.

Algorithm 1 Skip Links Creation Procedure for One Tile
1: Input: Materialized Version Vr , Delta versions ∆i+1,i, Target Version Index k.
2: Output: Vk .
3: i← r − 1
4: ∆r,x ← φ
5: while i ≥ k do
6: ∆r,x ← ∆r,x + ∆i+1,i

7: if ∆r,x ≤ (α×∆i+1,i) then
8: if ∆i+1,i is not locked then
9: Replace ∆i+1,i with ∆r,x

10: Lock all the ∆n+1,n i < n < r
11: end if
12: end if
13: i = i− 1
14: end while
15: Vk ← Vr + ∆r,x

Δ 1
0,
9	

	
 V 1
0	

	
 Δ 9
,8
	

	
 Δ 8
,7
	

	
 Δ 7
,6
	

	

Δ 1

0,
5	

	
 Δ 5
,4
	

	
 Δ 4
,3
	

	
 Δ 2
,1
	

	
 Δ 8
,2
	

	

L10,5

L8,2

(a) Invalid State: V1 and V2 are
accessible only if TimeArr applies
L8,2 and not L10,5.

Δ 1
0,
9	

	
 V 1
0	

	
 Δ 9
,8
	

	
 Δ 8
,7
	

	
 Δ 7
,6
	

	
 Δ 9
,5
	

	
 Δ 5
,4
	

	

Δ 1

0,
3	

	
 Δ 2
,1
	

	

Δ 1
0,
2	

	

L10,3

L9,5

L10,2

(b) Valid State: All versions are acces-
sible through any combination of links.

Fig. 7: Valid v.s. Invalid states of skip links. TimeArr must avoid
overlapping skip links. The lock mechanism prevents Invalid state
(a) by prohibiting L10,5.

Within each file, TimeArr starts from the most recent mate-
rialized chunk version and applies all the changes backwards
until it rebuilds the version of interest.

If the selection query includes a range predicate, TimeArr
leverages its virtual tiles to identify and process only changes
that fall within the region of interest.

Each delta tile ∆j,j−1 keeps track of a constant number of
skip links ∆j,i j−1>i that TimeArr can leverage at version Vj
to skip directly to an older version Vi. Each ∆j,j−1 stores
the number of versions that ∆j,i skips as Lji = (j − i − 1)
as shown in Figure 7. In our experiments keeping track of a
small number of Lji’s, L = 3, sufficed to hold all skip links
for α < 0.9. Right before applying ∆j,j−1, TimeArr checks
for potential skip links to leverage. TimeArr selects a link
that skips the most versions while still landing before or at
the desired version. For example in Figure 7(b), in order to
retrieve version V1, TimeArr chooses L10,2 = 7 at V10 and
skips 7 delta tiles until it reaches ∆10,2 which means V1 =
V10 + ∆10,2 + ∆2,1. These choices are performed separately
for each tile.

IV. APPROXIMATE QUERIES

In this section, we present TimeArr’s approach to efficiently
supporting approximate queries.

A. Distance between Versions

We recall from Section II that, when a user requests the
approximate content c′j(p) of the subarray satisfying predicate
p at version number j, the user specifies the maximum
tolerable error in the form of an error bound B1. The system
guarantees that the data returned will satisfy the condition
Difference(c′j(p), cj(p)) < B1. The difference between two
subarrays can be computed at the granularity of tiles or chunks
as requested by the user. The semantics are as follows:

Listing 1 Distance Function at the Granularity of Tiles
// A1 and A2 are two versions of the same tile
double Distance (Subarray A1, Subarray A2)
Instantiate Statistics object s.
s.initialize()
Iterate over all pairs of matching cells (c1,c2)
where c1 in A1 and c2 in A2 in lock step:

delta = s.subtract(c1,c2)
s.process(delta)

return s.finalize()

Listing 2 Distributive Distance Function at the Granularity of
Chunks
// A1 and A2 are two versions of the same chunk
double Distance (Subarray A1, Subarray A2)
Instantiate Statistics object s.
s.initialize()
Iterate over all pairs of matching tiles t1 and t2 where
t1 in A1 and t2 in A2 in lock step:

delta = Distance(t1,t2)
s.merge(delta)

return s.finalize()

Difference(c′j(p), cj(p)) < B1 iff (2)

∀tiles or chunks c′jk ∈ c′j Distance(c′jk, cjk) < B1

where cj(p) is the exact content of the subarray at version
j and cjk(p) is the exact content of tile or chunk k in
that subarray. The computation includes tiles or chunks that
partially overlap the subarray cj(p).

Similarly, the Difference between subarrays is equal to B1

if the Distance between all pairs of tiles or chunks is equal
to B1. If the Difference is neither less than B1 nor equal to
B1, then it is considered to be greater than B1.

Distance functions in TimeArr are implemented in a
manner analogous to aggregation functions in OLAP data
cubes [26] or parallel aggregations [27]. The distance between
two tiles is computed by aggregating the delta values of their
cells as shown in Listing 1: the Distance function takes two
versions of the same tile as input (A1 and A2). It iterates over
the two versions and computes the delta value for each pair of
cells. The subtract method used here is the same as the one
introduced in Section III. It then accumulates these differences
using a standard aggregation method.

If the difference computation is at the granularity of chunks,
to avoid tedious re-computations, TimeArr requires that the
Distance function be distributive as defined by Gray et
al. [26]: max(), count(), and sum() are all distributive. That is,
to compute the Distance of two chunks, TimeArr aggregates
the Distance of the underlying tiles as shown in Listing 2.

The user can redefine the subtract and aggregate operations
involved in these distance computations as we describe shortly.

TimeArr also requires the Distance function to be a metric
and thus to satisfy the triangle inequality:

Distance(A1, A3) ≤ Distance(A1, A2) +Distance(A2, A3) (3)

where Ai is a subarray. An example of a metric is a
Distance function that computes the maximum delta value
for all cells in the array.

At the core of these Distance functions is the Statistics

object, which defines how the delta values are computed

Listing 3 Statistics Interface
interface Statistics
CellValue add (CellValue, CellValue)
CellValue subtract(CellValue, CellValue)

void initialize()
process(CellValue c)
merge(Statistics s2)
double finalize()

and aggregated. To implement a new Distance function, a
user only needs to provide a new class that implements the
Statistics interface as shown in Listing 3.

The add and subtract methods operate on delta values as
described in Section III. CellValue can be any numeric atomic
type including integer and real.

TimeArr allows users to provide multiple classes that
implement the Statistics interface. TimeArr also provides a
default Distance function using a default Statistics class
that computes a value difference for subtract and a value
sum for add. It also maintains the absolute maximum delta
value across versions as the aggregate distance returned by
finalize.

Next, we present how TimeArr uses these Distance func-
tions to answer approximate queries.

B. Approximate Version Selection

Given a segment with a fully materialized chunk version Vr
and VersionDeltas for earlier versions Vr−1 down to Vz (the
original version in the segment), the goal is to return some
desired version Vj within an error bound B1.

In the absence of approximation, TimeArr will start with
Vr and it will apply delta chunks in sequence (using skip-
links when possible) until it gets back to version Vj . With
approximation specified at the granularity of tiles, for each
tile separately, we want to stop the delta application process as
soon as we reach a version V ′j that satisfies the error condition:
Distance(cj′k, cjk) < B1, where cjk is the content of tile
k at version j and cj′k is the content of that same tile at
version j′. If the approximation is specified at the granularity
of chunks, TimeArr returns a set of tiles in the approximate
chunk cj′k that all have the same version j

′
and it checks the

error condition at the granularity of the whole chunk.
The key question is how to efficiently verify these error

conditions? It is impractical to compute the Distance func-
tion between all versions of each tile in a chunk. Instead,
TimeArr computes only two distances for each version Vu:
Distance(cuk, cu−1,k) and Distance(cuk, czk). We call the
former distance the LocDiffuk or Local Difference at version
u and tile index k because it is a difference between consec-
utive versions . We call the latter distance the CumDiffuk or
Cumulative Difference at version u and tile index k because
it is the distance to the oldest version in the chunk.

For each new version Vu appended to a chunk, TimeArr
computes CumDiffuk and LocDiffuk at the granularity of
tiles and stores the results in the TileDelta StatsVector for
version Vu−1 (since version Vu will be materialized). Figure 8
illustrates the CumDiff and LocDiff computation for a small

5	
 4	
 3	

7	
 -­‐5	
 8	

6	
 14	
 6	

-­‐1	
 0	
 0	

	
 0	
 10	
 -­‐8	

-­‐3	
 -­‐8	
 -­‐1	

0	
 1	
 -­‐2	

0	
 -­‐4	
 	
 1	

-­‐3	
 -­‐6	
 -­‐4	

V3	
 Δ3,2	
 Δ2,1	

14	
 	
 CD
3	

LD
3	

10	
 6	
 CD
2	

LD
2	

6	

Fig. 8: A 3x3 array with 3 versions. V3 is materialized and V2 and
V1 are backward delta encoded. CumDiff (CD) and LocDiff (LD) are
calculated for the two ∆3,2 and ∆2,1. Highlighted cells are the ones
to contribute to the CD and LD calculations, which use the default
distance (maximum absolute difference between any two cells). The
VersionDelta for ∆3,2 contains CumDiff3 and LocDiff3. Similarly,
the VersionDelta for ∆2,1 contains CumDiff2 and LocDiff2.

array. Finally, TimeArr merges these CumDiff and LocDiff

values for all tiles in a chunk and stores the chunk-level
CumDiff and LocDiff in the VersionDelta StatsVector.

Hence, the StatsVector is a vector of pairs
(CumDiff,LocDiff), with one pair for the system’s default
Statistics object and extra pairs for all the user-defined
Statistics objects. In the API in Table I, the arguments that
refer to statistics are indexes into the StatsVector.

To verify that the error condition is satisfied, TimeArr
leverages the fact that Distance is a metric and veri-
fies two conditions. First, since CumDiffj′k is defined as
Distance(cj′k,czk), and the distance function is a metric, we
have:

Distance(c
j
′
k
, cjk) ≤ CumDiffj′k + CumDiffjk (4)

Therefore:

IF CumDiffj′k + CumDiffjk ≤ B1 ⇒ Distance(c
j
′
k
, cjk) ≤ B1 (5)

Second, TimeArr performs a similar check using LocDiffs:

IF

jX
u=j′

LocDiffuk ≤ B1 ⇒ Distance(c
j
′
k
, cjk) ≤ B1 (6)

If either condition holds, cj′k is an approximate version of
c
′

jk that satisfies the error threshold B1, which avoids further
processing of tile k until version Vj .

Algorithm 2 shows how TimeArr utilizes CumDiff and
LocDiff in Equation 5 and 6 to answer approximate selection
queries of the form: “Select version Vj of array A with
predicate p and ErrorBound B1”. For simplicity, the algo-
rithm is only described for the error computation at the tile
granularity, but it follows a similar description for the chunk
granularity. For each tile, Algorithm 2 finds the version Vj′

that satisfies either of the inequalities in Equation 5 or 6.
Then it reconstructs and updates C

′

j as the approximate version
content. It repeats the process for all the tiles separately.

Algorithm 2 uses two bitmasks ChunkRangeBitmask and
TileRangeBitmask that keep track of the chunks and tiles that
require to be processed further toward version j. Whenever
the CumDiff or the LocDiff of a given tile satisfies the
inequality in Equation 5 or 6, respectively, the corresponding
bit value in TileRangeBitMask is set to 0, which avoids further
triggers of the ApplyDelta() function for the same tile. The
ApplyDelta(cjk,C

′
j) executes the Add() function on all the

corresponding pairs of cells in cjk and C
′

j .

Algorithm 2 Approximate Selection Queries
1: Input: ArrayName A, Predicate p, End VersionNumber j, ErrorBound B1.
2: Output: C

′
j , approximate content of A at Vj .

3: C
′
j ← Vr, i← r //current VersionNumber i, materialized VersionNumber r.

4: ChunkRangeBitmask bit set for chunks with cells that satisfy p.
5: TileRangeBitMask bit set for tiles with cells that satisfy p.
6: while i ≥ j do
7: for all Chunks C in A do
8: c← chunk index C
9: if ChunkRangeBitMask.getBit(c) == false then

10: continue.
11: end if
12: for all Tiles T in c do
13: t← tile index T
14: if TileRangeBitMask.getBit(t) == false then
15: continue.
16: end if
17: if CumDiffit+CumDiffjt ≤ B1 or

Pi
u=j LocDiffut ≤ B1 then

18: TileRangeBitMask.unsetBit(t).
19: end if
20: ApplyDelta(C

′
j ,T)

21: end for
22: if TileRangeBitMask IS ALL ZERO then
23: ChunkRangeBitMask.unsetBit(c).
24: end if
25: end for
26: if ChunkRangeBitMask IS ALL ZERO then
27: break.
28: end if
29: i = i− 1
30: end while

We include CumDiffu together with LocDiffu for the ap-
proximate version selection computation because it signifi-
cantly improves the bound. However, one challenge with this
approach lies in the efficient computation of the CumDiffu

values. CumDiffu corresponds to Distance(Vu, Vz) where Vu
is the most recent version and Vz is the original version in the
segment. In order to calculate CumDiffu, we need to compute
Distance(Vu, Vz) at the granularity of tiles and chunks, which
means that we need to have a helper VersionDelta that keeps
track of delta values corresponding to ∆u,z . We name this
auxiliary VersionDelta aux. At version Vu insertion time,
in addition to the regular computation of ∆u,u−1, TimeArr
applies (∆u,z + ∆u,u−1) to update delta values in the aux
VersionDelta. Unlike CumDiffu, LocDiffu values are easy to
compute during version insertion since they aggregate delta
values between consecutive array versions.

C. Approximate History Selection

LocDiff also serves to skip over similar versions during
approximate history selection. These are versions for which
Difference(Vu+1, Vu) ≤ B2, which is directly captured by
the LocDiff values.

Algorithm 3 shows the details of how TimeArr extracts
approximate history at the granularity of tiles (algorithm for
chunk granularity is very similar). The algorithm proceeds in
two phases. In the first phase, TimeArr extracts the header
information using the statisticsID s specified by the user.
From the header information, TimeArr extracts all the LocDiff

values at the granularity of either tiles of chunks as requested
by the user. The algorithm then runs a standard SciDB query to
identify all versions Vu that differ by more than B2 from their
successor Vu+1. The query issued on line 6 in Algorithm 3
captures the maximum variation between adjacent versions and
it checks if the difference is high enough to satisfy the lower-

Algorithm 3 Approximate History Queries
1: Input: ArrayName A, Predicate p, Start VersionNumber k, End VersionNumber j,

ErrorBound B1, ErrorBound B2, StatisticID s.
2: Output: A sequence of contents C containing all matching version contents C

′
j .

3: PHASE ONE: Header Information Extraction.
4: Extract header info using StatisticID s for the tiles that match p from Vk to Vj .
5: Store result in array Ahead. // Schema: Ahead{CumDiff , LocDiff }[v][t]

// Extract all versions that meet the B2 bound (v is VersionNumber, t is TileIndex):
6: res = SELECT v FROM Ahead WHERE EXISTS (SELECT t FROM Ahead

WHERE Ahead[v][t].LocDiff ≥ B2)
7: PHASE TWO: Bulk Approximate Version Selection.
8: for all i in res do
9: C

′
i ←Select(Ap, p, i,B1,s)

10: C.add(C
′
i)

11: end for

bound constraint B2. TimeArr outputs the version numbers of
these versions into a variable named res. Recall that TimeArr
checks B2 at the same granularity as B1.

The second phase retrieves the actual version contents using
the version numbers and a bulk approximate selection query
that scans all past versions and returns the desired ones with
the required degree of precision B1.

V. EVALUATION

In this section, we evaluate TimeArr’s performance on
two real datasets and two synthetic datasets. All experi-
ments are performed on dual quad-core 2.66GHz Intel/AMD
OpteronPentium-based machines with 16GB of RAM running
RHEL5. We use the following datasets.

Astronomy Universe Simulation dataset (Astro). The first
dataset comprises 9 snapshots from an astronomy simulation
named cosmo50 [19]. Each snapshot is 1.6 GBs in size and
represents the universe as a set of particles in a 3D space.
To represent the data as an array with integer dimensions, we
create a (500×500×500) array and project the array content.
Following SciDB’s column-based array representation, we
perform all experiments on the array containing the data for
the mass attribute of the particles. We divide this array into 8
chunks, each containing one eighth of the logical size of the
array and each having 1000 virtual tiles.

Global Forecast System Model dataset (GFS). We also
experiment with the “GFS” dataset from the National Oceanic
and Atmospheric Administration (NOAA) [8]. We use data
from a 180 hour weather forecast simulation sampled every 3
hours, for a total of 61 grids, each about 1MB in size. Each
grid is a (720× 360) two dimensional array (one array in one
chunk) and we consider 100 virtual tiles for this single chunk.

Gaussian Distribution (Synthetic dataset 1). The synthetic
dataset comprises a single, dense two-dimensional array chunk
with 1000×1000 cells. The chunk is divided into one hundred
100 × 100 tiles unless mentioned otherwise. We create syn-
thetic versions by randomly updating the array. The probability
that a cell will be updated follows a normal distribution
centered at coordinate [500][500]. For a normal distribution,
99.8% of all values fall within 3 standard deviations of the
mean. Hence we pick sigma to be 1

6 of the dimension length.
Each update consists of the addition of a marginal value
(<127) . Each snapshot is 8 MB in size.

Uniform Distribution (Synthetic dataset 2). The synthetic
dataset follows the same description as the Gaussian Distribu-

0	

1	

2	

3	

4	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	
 71	
 76	
 81	
 86	
 91	
 96	

Ve
rs
io
n	

Cr
ea
5o

n	

Ti
m
e	

(S
ec
on

ds
)	

	

Version	
 Number	
 	

Synthe5c	
 Dataset	
 1:	
 Time	
 to	
 Create	
 Version	

I/O	
 %me	
 Whole	
 %me	

I/O	
 %me	
 Approx	
 Whole	
 %me	
 Approx	
 	

Fig. 9: Time to create 100 versions of a two-dimensional array with
normally distributed updates. A new segment is initialized at version
65 in the non-approximate setting and version 62 when approxima-
tions are enabled. Each new version adds a constant overhead. I/O
overhead is insignificant.

0.38	

0.49	

1.02	

1.37	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

60	
 55	
 50	
 45	
 40	
 35	
 30	
 25	
 20	
 15	
 10	
 5	
 0	

Ve
rs
io
n	

Fe
tc
h	

Ti
m
e	

(S
ec
on

ds
)	

Version	
 Number	

GFS	
 Dataset:	
 Time	
 to	
 Fetch	
 Version	

approx1(2β)	
 approx2(β)	
 approx3(β/2)	
 no-­‐approx	

Fig. 10: Time to fetch each version in the GFS dataset. β, 2β, and β
2

refer to the error bounds, where β is the average maximum change
observed in two adjacent versions. I/O times are insignificant and not
shown. For the GFS dataset the maximum segment size is 12 MBs.
The segments reaches its full size at version number 38 and 36 in
the non-approximate and approximate settings respectively.

tion except the probability that a cell will be updated follows
a uniform distribution.
A. Basic Version Creation and Retrieval Performance

We first evaluate the performance when appending new
versions to an array. Figure 9 shows the time to create
100 new versions for the first synthetic dataset. Each new
version adds a constant overhead (1.5 seconds) in the non-
approximate setting. The overhead is constant primarily be-
cause the total number of updates is approximately the same
for each version. As we show later, the version creation time
grows almost linearly with the number of updated cells per
version. The overhead of creating a new version is higher with
approximation enabled. The extra overhead comes primarily
from updating the aux VersionDelta in addition to the main
VersionDelta, doubling processing times. The I/O times in
both cases are insignificant. The CPU cost of computing delta
values dominates the runtime. In this experiment, we arbitrar-
ily set the segment size to 48 MBs. When a new segment
is created the version creation time with approximation is
close to the non-approximate setting primarily because the aux
VersionDelta starts-off empty and is thus quick to update. We
observe the same trend with the real datasets, not shown due
to space constraints, but available in our technical report [28].

Next, we study the query processing time to fetch each
version either precisely or approximately in synthetic and real
datasets. For the experiments with approximation, we consider
an error bound β equal to the average maximum change
observed between any two adjacent versions. With such an

error bound, the user may see values that are in aggregate off
by at most one array version. As Figure 10 shows, the cost
of retrieving a version precisely decreases linearly with the
version number. With high approximation (error bound β), for
the GFS dataset, query times decrease by factors between 25%
and 300%. Similarly, we observed that retrieving any version
in the synthetic dataset (not shown in the figure) takes half the
time or less compared with retrieving the exact version. Even
with a small approximation (error bound β/2), performance
gains are above 35%. We observed similar trends for the Astro

dataset (not shown).
Overall, TimeArr’s approach to approximate query pro-

cessing thus adds overhead during version insertion. This
overhead, however, is paid only once. At the same time,
approximation enables the system to cut query times signif-
icantly when users can tolerate approximate results. These
savings are repetitive. Interestingly, the performance gains of
approximation increase as we query older versions while the
version creation overhead remains constant.

We also studied the effect of the number of updates on the
version creation time. We calculated the total time to create
50 versions from the synthetic dataset 2 with different
numbers of updates ranging from one thousand to one million
updates per version. As expected version creation time grows
almost linearly with the number of updates per version. Going
from one thousand to one million updates always added 7
to 8 seconds to the total version creation time. We did a
similar experiment keeping the number of updates constant,
but increasing the updated values. We observed no significant
increase in the version creation time (although the size of the
version in terms of bytes changed rapidly). We do not show
graphs of those experiments due to space constraints.

We also evaluated the benefit of using virtual tiles and
variable-length delta encoding on the storage space at version
creation time and we observed up to 70% space savings
compare to the case with no-tile settings and no variable-length
delta encoding. The space savings, however, do not come for
free. The finest tile settings in the experiment had up to 25%
version creation time overhead compare to the no-tile settings.

We now evaluate the benefits of using virtual tiles to speed-
up historical queries over subsets of a chunk (i.e., range
selection queries over array coordinates). Figure 11 shows the
performance of the following query: Return the original

version of the rectangular subarray [C1;C2], where C1

and C2 are the upper-left and lower-right corners of a region.
In Figure 11(a), we use a single chunk with 100 virtual tiles
and Synthetic dataset 1. The rectangular regions have the same
center as the chunk and range from one tile to the whole
chunk. The performance gains that we achieve using virtual
tiles depend on the granularity of the tiles and the size of the
fetched region. In the tile setting in this experiment, we fetch a
single tile 50 times faster than the setting with no virtual tiles
used. Even with the window sizes that retrieve as much as 25%
of the chunk, TimeArr runs significantly faster than the setting
without virtual tiles. Figure 11(b) shows the performance of
the range selection query on the astronomy dataset. Similar

(a)

0	

0.5	

1	

1.5	

2	

2.5	

0	

0.0
02
5	

0.0
1	

0.0
22
5	

0.0
4	

0.0
62
5	

0.0
9	

0.1
22
5	

0.1
6	

0.2
5	

0.3
02
5	

0.3
6	

0.4
22
5	

0.4
9	

0.5
62
5	

0.6
4	

0.7
22
5	

0.8
1	

0.9
02
5	
 1	
 O

rig
in
al
	
 V
er
si
on

	
 F
et
ch
	
 T
im

e	

(S
ec
on

ds
)	

PorCon	
 of	
 Chunk	
 Queried	

SyntheCc	
 Dataset	
 1:	
 Fetch	
 Original	
 Version	
 on	
 Different	
 Regions	
 	

virtual	
 Cle	
 no	
 virtual	
 Cle	

(b)

0	

5	

10	

15	

20	

25	

30	

35	

0.0
00
00
1	

0.0
01
	

0.0
08
	

0.0
27
	

0.0
64
	

0.1
25
	

0.2
16
	

0.3
43
	

0.5
12
	

0.7
29
	
 1	
 O

rig
in
al
	
 V
er
si
on

	
 F
et
ch
	
 T
im

e	

(S
ec
on

ds
)	

PorCon	
 of	
 Chunk	
 Queried	

Astronomy	
 Universe	
 Simulaton	
 :	
 Fetch	
 Original	
 Version	

on	
 Different	
 Regions	
 	

virtual	
 Cle	
 no	
 virtual	
 Cle	

Fig. 11: Time to fetch the original version where the region window
changes from one tile to the whole chunk. (a) Synthetic dataset with
20 versions. (b) Astronomy dataset with 9 versions.

to what we observed in the synthetic dataset, the benefits of
using virtual tiles to speed-up historical queries over subsets
of an array are significant. The trend is the same for the GFS
dataset as well.

B. Version Retrieval with Links Support

The advantage of the skip link technique is highlighted on
datasets such as the Global Forecast System Model (GFS)
where similar data patterns are repeated at different versions.
Figure 12 shows the time to fetch 60 versions of the GFS
dataset. The segment size is chosen such that all the versions
reside in one segment. In this experiment, TimeArr period-
ically computes skip links after each T versions appended.
As illustrated in Figure 12 the performance gain to fetch
the oldest version with skip links is 42% for T = 20 and
75% for T = 1 compared to the no-link case. However, the
skip link computation incurs overhead at version insertion
time. Table II summarizes the overhead for different values
of T . Although exhaustive computation of skip links (T = 1)
improves the performance in Figure 12, it incurs significant
overhead when inserting new versions. Finding the optimal
interval T is left for future work. Instead, TimeArr uses
lazy computation of skip links whose performance is shown
in Figure 13. The query workloads, Q-NORM and Q-UNIFORM

are as follows: TimeArr appends 61 versions from the GFS
dataset in total and between each append operation, we issue
5 original-version retrieval queries (305 queries in total). Each
original-version retrieval query only fetches a few tiles from
the array. The tiles to be fetched are selected randomly based
on either normal distribution (Q-NORM) or uniform distribution
(Q-UNIFORM). Figure 13(a) shows the advantage of the lazy
link computation with the Q-NORM workload. Q-NORM simulates
a workload with a hot spot region; i.e., a number of tiles are
fetched many times while other tiles are fetched only once.
Figure 13(a) shows that lazy computation of skips links is
better than the skip-link computation at version insertion time

2.17	

1.52	

1.24	

1.01	

0	

0.5	

1	

1.5	

2	

60	
 55	
 50	
 45	
 40	
 35	
 30	
 25	
 20	
 15	
 10	
 5	
 0	

Ve
rs
io
n	

Fe
tc
h	

Ti
m
e	

(S
ec
on

ds
)	

Version	
 Number	

GFS	
 Dataset:	
 Time	
 to	
 Fetch	
 Versions	

SKIP	
 LINK	
 (T=1)	
 SKIP	
 LINK	
 (T=20)	
 NO-­‐LINK	
 APPROX	

Fig. 12: Time to fetch each version in a single-chunk array with 60
versions. The result with skip link is competitive with approximate
result with β error bound.

NoLink (Lazy) Link (T=20) Link (T=5) Link (T=1)
Add Versions (sec) 13.16 12.00 13.48 14.56
Create Links (sec) 0 3.68 11.11 47.13

TABLE II: GFS dataset: Skip links overhead at version insertion time.
TimeArr computes skip links each T consecutive versions appended.

with interval T = 5. However, this is not true when TimeArr
runs the Q-UNIFORM workload (Figure 13(b)), because the skip-
link computation overhead for a specific tile at version fetch
time is not paid off later. In the Q-UNIFORM workload, many
tiles are only fetched once. In Figure 13, lazy computation
of skip links during version retrieval incurs approximately 2
seconds of overhead in total (not shown in the figure). The
algorithm to decide when to compute skip links lazily during
version retrieval, when to compute them after certain intervals
at version insertion time, and possibly the combination of these
two approaches are left for future work.

C. Comparison with SciDB

The current SciDB version storage also uses backwards
deltas [20]. Unlike TimeArr, however, it represents each
VersionDelta using two chunks, one with a sparse and the
other with a dense representation. Each cell-value in the
VersionDelta is either in the sparse or dense chunk.

We compare TimeArr to SciDB’s current storage manager
using the synthetic dataset 2. There is thus a total of 106

cells in a single-chunk array. We create four synthetic streams
of versions: mass updates, medium updates, rare updates,
and very rare updates that correspond to 106,105,104, and
103 updates between each array version respectively. The
approximation feature is turned off in all the experiments.
Table III shows the results. TimeArr outperforms SciDB in all
four cases. It achieves 40% version creation time savings for
medium and mass updates. Table III also shows that version
creation time variation in SciDB is much larger than TimeArr
in the case of medium and mass updates. In TimeArr the
overhead of adding a new version is constant while this is
not the case in SciDB.

Figure 14 shows the query processing performance of both
approaches when fetching the whole chunk at a specific,
precise version. The chunk has 100 tiles. TimeArr achieves a
1.6X to 6.6X performance gain in terms of query processing
compared with SciDB for mass and medium updates. For
rare updates, improvement is marginal (it is not shown in

0	

5	

10	

15	

20	

1	
 51	
 101	
 151	
 201	
 251	
 301	

To
ta
l	
 T
im

e	

(S
ec
on

ds
)	

Number	
 of	
 Queries	

Cumula=ve	
 Cost	
 of	
 Running	
 Q-­‐NORM	

SKIP	
 LINK	
 LAZY	
 SKIP	
 LINK	
 (T=5)	

(a)

0	

5	

10	

15	

20	

25	

1	
 51	
 101	
 151	
 201	
 251	
 301	
 To
ta
l	
 T
im

e	

(S
ec
on

ds
)	

Number	
 of	
 Queries	

Cumula=ve	
 Cost	
 of	
 Running	
 Q-­‐UNIFORM	

	
 SKIP	
 LINK	
 LAZY	
 SKIP	
 LINK	
 (T=5)	

(b)

Fig. 13: Cumulative query runtime of workloads Q-NORM and
Q-UNIFORM. Skip links are computed either lazily at version retrieval
or at version insertion time after each T = 5 versions appended.

updates mass medium rare very rare
TimeArr (sec) AVG 1.16 0.60 0.50 0.48
TimeArr (sec) STD 0.08 0.01 0.04 0.05

SciDB(sec) AVG 1.80 1.01 0.67 0.55
SciDB(sec) STD 0.83 0.45 0.85 0.60

TABLE III: Average time to create one version after appending
50 versions on a two-dimensional array with uniformly distributed
updates. TimeArr outperforms SciDB in all four cases.

the figure). TimeArr’s performance gains compared to SciDB
come from the fact that SciDB stores delta values in one
dense and one sparse chunk for compactness. When fetching
a version, SciDB first needs to combine delta values from
both representations, which incurs significant overhead. Also,
TimeArr uses bitmask techniques to locate changes efficiently,
while SciDB needs to iterate over the whole dense delta
chunk. Overall, our design decision to have a single storage
representation for delta chunks is a key factor for TimeArr’s
query time performance.

We also studied the advantage of using virtual tiles in
TimeArr compared to the current implementation of SciDB.
We did a similar experiment as the one in Figure 11. We
observed two orders of magnitude improvement in TimeArr
for regions covering only a few tiles (Figure is not shown due
to space constraint. The trend is similar to Figure 11).

D. Approximate History Query

We now demonstrate the benefits of approximate history
query using the GFS dataset. We execute the following ex-
ample query: Select(AGFS,true,V1,V61,54,260) where Ain
is the input array. This query asks for all 61 versions of the
dataset such that each version is approximately returned with
the error bound B1 = 54 and only versions that differ by
at least error bound B2 = 260 are returned. 260 is approxi-
mately half of the maximum change observed in two adjacent
versions. Figure 15 shows the result of this query. TimeArr
quickly identifies that only 9 versions differ by more than the
specified threshold and it only requests to approximately fetch
these 9 versions. In contrast, with exact history TimeArr has
to fetch all the versions. The approximate query runs in less
than 7.5 seconds and the equivalent precise query takes 37
seconds to complete, which is a 5X performance difference.

VI. RELATED WORK

Delta encoding is a popular technique in video and image
compression. Video compression codecs like MPEG-1 [29]

6.00	

1.48	

9.88	

0	

2	

4	

6	

8	

10	

12	

49	
 47	
 45	
 43	
 41	
 39	
 37	
 35	
 33	
 31	
 29	
 27	
 25	
 23	
 21	
 19	
 17	
 15	
 13	
 11	
 9	
 7	
 5	
 3	
 1	

Ve
rs
io
n	

Fe
tc
h	

Ti
m
e	

(S
ec
on

ds
)	

Version	
 number	

SyntheAc	
 Dataset	
 2:	
 Fetch	
 50	
 versions	
 (Timearr	
 vs.	
 SciDB)	

mass	
 updates(Timearr)	
 medium	
 updates(Timearr)	

rare	
 updates(Timearr)	
 very	
 rare	
 updates	
 (Timearr)	

mass	
 &	
 medium	
 updates	
 (SciDB)	

Fig. 14: Time to fetch each version from 1 to 50 on a two-dimensional
array with uniformly distributed updates. TimeArr is about 1.6X to
6.6X better than SciDB for mass and medium updates. “Rare updates”
and “very rare updates” lines overlap for both systems. Only TimeArr
is shown.

260	

0	

100	

200	

300	

400	

500	

600	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	

Ag
gr
eg
ga
te
d	

	
 L
oc
al
	
 D
iff
er
en

ce
	
 	

Version	
 Number	

GFS	
 Dataset:	
 Approximate	
 History	
 Query	

Exact	
 History	
 Approximate	
 History	

Fig. 15: Approximate history query returns only 9 versions out of
61 with a maximum degree of changes from the previous version
greater than 260, while in exact history , TimeArr has to go over all
the versions. The performance gain is almost 5X.

apply several delta encoding techniques both within and be-
tween frames. Similar to TimeArr, they regularly materialize
versions (frames) in a chain of delta frames, They also divide
the frames into smaller chunks and compare each chunk to
every possible region in a specified radius around its origin.
Hence, their version insertion is expensive. Previous work [20]
showed that although video compression techniques efficiently
compress arrays, the version import time is too expensive and
consequently not appropriate for versioning in array systems.

Most array engines being built today, such as Ras-
DaMan [5], are not designed as no-overwrite storage sys-
tems and consequently cannot naturally support versioning.
NetCDF [30], [31] and HDF5 [32] are common data models
that provide a portable and efficient mechanism to store and
access multidimensional data which are extensively used by
scientists, but they also do not support versioning explicitly.

MOLAP [33] systems store data in multidimensional ar-
rays [33], [34]. They focus on aggregation queries and exploit
data structures to efficiently compute rollups. The MOLAP
system in [35] supports versions to represent changes to the
data sources that should be propagated to the data warehouse
periodically. But the versioning system is designed to benefit
the concurrency control mechanism in order to minimize
contention between query and maintenance transactions.

There is a long line of research on temporal databases [10],
[36], [37], [38]. Temporal databases have two notions of time:
“valid time” and “transaction time”. Many databases provide
time-travel support along the transaction time dimension [9],

[10], [39], [40]. However, none of these databases is special-
ized for time travel over array data nor approximate time-
travel. In particular, Postgres [39] uses R-trees for version
management. This technique is complementary to the approach
that we propose in this paper. Immortal DB [10] adds trans-
action time database support into a database engine. For this,
Immortal DB stores versions data as a linked list, while we
store versions as delta values. Our versioning system also
heavily applies array-oriented techniques including bitmasks,
virtual tiles, and skip links. Finally, TimeArr supports a new
type of “approximate queries” in the context of scientific array
database engines.

Version Control Systems are an old topic in computer
science. Versioning techniques such as forward and backward
delta encoding and the use of multi-version B-trees have been
implemented in various legacy systems. Git [41] is one of
the conventional version-control systems and is believed to be
faster and more disk efficient than other similar version-control
systems. Our system borrows some ideas such as backward
delta encoding from other version control systems such as
Git, but we also use sophisticated array-oriented optimization
techniques to efficiently encode the delta versions and to
support approximate queries.

Lastly, the state of the art for versioning in array sys-
tems [20] uses a materialization matrix to efficiently find the
best versions to materialize. We are similar to this recent prior
work [20] in the sense that we also use backward delta versions
and store and fetch consecutive deltas together. The ability of
our system to add skip links at the granularity of tiles, to
approximately answer queries, and our use of virtual tiles to
support versioning at fine granularity are the main advantage
of our system compared to this prior work [20].

VII. CONCLUSION

TimeArr is a new storage manager for an array database.
Its key contribution is to efficiently store and retrieve versions
of an entire array or some sub-array. TimeArr also introduces
the idea of approximate exploration of an array’s history. To
achieve high performance, TimeArr relies on several tech-
niques including virtual tiles, bitmask compression of changes,
variable-length delta representations, and skip links. TimeArr
enables users to customize their exploration by specifying both
the maximum degree of approximation tolerable and how it
should be computed. Experiments with a prototype implemen-
tation on two real datasets demonstrate the performance of
TimeArr’s approach.

VIII. ACKNOWLEDGEMENTS

This work is partially supported by NSF grant IIS-1110370
and the Intel Science and Technology Center for Big Data.

REFERENCES

[1] Large Synoptic Survey Telescope. http://www.lsst.org/.
[2] Earth microbiome project. http://earthmicrobiome.org/.
[3] Stonebraker et. al. Requirements for science data bases and SciDB. In

Fourth CIDR Conf. (perspectives), 2009.
[4] Ballegooij et. al. Distribution rules for array database queries. In 16th.

DEXA Conf., pages 55–64, 2005.
[5] Baumann et. al. The multidimensional database system RasDaMan. In

SIGMOD, pages 575–577, 1998.

[6] Rogers et. al. Overview of SciDB: Large scale array storage, processing
and analysis. In Proc. of the SIGMOD Conf., 2010.

[7] Zhang et. al. RIOT: I/O-efficient numerical computing without SQL. In
Proc. of the Fourth CIDR Conf., 2009.

[8] National Oceanic and Atmospheric Administration. http://nomads.ncdc.
noaa.gov/.

[9] Oracle Flashback Technology. (2005). http://www.oracle.com/
technology/deploy/availability/htdocs/Flashback Overview.htm.

[10] Lomet, D. et. al. Transaction time support inside a database engine. In
Proc. of the 22nd ICDE Conf., 2006.

[11] Chang et. al. Titan: A high-performance remote sensing database. In
ICDE, pages 375–384, 1997.

[12] DeWitt et. al. Client-server paradise. In Proc. of the 20th VLDB Conf.,
pages 558–569, 1994.

[13] Marathe et. al. Query processing techniques for arrays. The VLDB
Journal, 11(1):68–91, 2002.

[14] Soroush, E. et. al. Arraystore: A storage manager for complex parallel
array processing. In Proc. of the SIGMOD Conf., 2011.

[15] Munro, J.I. et. al. Deterministic skip lists. In SODA ’92, 1992.
[16] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris

Jermaine. Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases, 4(1-3):1–294, 2012.

[17] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online
aggregation. In Proc. of the SIGMOD Conf., 1997.

[18] Vijayshankar Raman and Joseph M. Hellerstein. Partial results for online
query processing. In Proc. of the SIGMOD Conf., June 2002.

[19] Loebman et. al. Analyzing massive astrophysical datasets: Can
Pig/Hadoop or a relational DBMS help? In IASDS’09, 2009.

[20] Seering, A. et. al. Efficient versioning for scientific array databases. In
Proc. of the 28th ICDE Conf., 2012.

[21] Shimada et. al. A storage scheme for multidimensional data alleviating
dimension dependency. In ICDIM, pages 662–668, 2008.

[22] Chang, F. et. al. Bigtable: a distributed storage system for structured
data. In Proc. of the 7th OSDI Symp., 2006.

[23] Chang et. al. T2: a customizable parallel database for multi-dimensional
data. SIGMOD Record, pages 58–66, 1998.

[24] Otoo et. al. Optimal chunking of large multidimensional arrays for data
warehousing. In Proc. of the 10th DOLAP Conf., pages 25–32, 2007.

[25] Sarawagi et. al. Efficient organization of large multidimensional arrays.
In Proc. of the 10th ICDE Conf., pages 328–336, 1994.

[26] Gray, J. et. al. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov., pages
29–53, 1997.

[27] Yu et. al. Distributed aggregation for data-parallel computing: interfaces
and implementations. In Proc. of the 22st SOSP, 2009.

[28] Soroush, E. et. al. Time travel in a scientific array database. Technical
Report UW-CSE-12-11-03, Department of Computer Science, Univer-
sity of Washington, 2012.

[29] International Standards Organization (ISO), Coding of Moving Pictures
and Audio. http://mpeg.chiariglione.org/standards/mpeg-1/mpeg-1.htm.

[30] The NetCDF Users’ Guide. http://www.unidata.ucar.edu/packages/
netcdf/guidec/.

[31] Rew et. al. Data management: Netcdf: an interface for scientific data
access. IEEE Comput. Graph. Appl., 10(4):76–82, 1990.

[32] Introduction to HDF5. http://www.hdfgroup.org/HDF5/doc/H5.intro.
html.

[33] P. M. Fernandez. Red brick warehouse: a read-mostly rdbms for open
smp platforms. Proc. of the SIGMOD Conf., pages 492–, 1994.

[34] Pedersen et. al. Multidimensional database technology. IEEE Computer,
34(12):40–46, 2001.

[35] H.G. Kang and C.W Chung. Exploiting versions for on-line data
warehouse maintenance in molap servers. In Proc. of the 28th VLDB
Conf., pages 742–753, 2002.

[36] Ozsoyoglu, G. et. al. Temporal and real-time databases: A survey. IEEE
TKDE, pages 513–532, 1995.

[37] Jensen, C.S. et. al. Temporal data management. IEEE TKDE, pages
36–44, 1999.

[38] R. Snodgrass and I. Ahn. A taxonomy of time databases. In Proc. of
the SIGMOD Conf., pages 236–246, 1985.

[39] M. Stonebraker. The design of the postgres storage system. In Proc. of
the 13th VLDB Conf., pages 289–300, 1987.

[40] L. Hobbs and K. England. Rdb: A Comprehensive Guide. Digital Press,
1995.

[41] S. Chacon. the Git SCM community. http://book.git-scm.com/, 2010.

