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Abstract—Database systems typically execute queries in isola-
tion. Sharing recurring intermediate and final results between
successive query invocations is ignored or only exploited by
caching final query results. The DBA is kept in the loop to
make explicit sharing decisions by identifying and/or defining
materialized views. Thus decisions are made only after a long
time and sharing opportunities may be missed.

Recycling intermediate results has been proposed as a method
to make database query engines profit from opportunities to
reuse fine-grained partial query results, that is fully autonomous
and is able to continuously adapt to changes in the workload.
The technique was recently revisited in the context of MonetDB,
a system that by default materializes all intermediate results.
Materializing intermediate results can consume significant system
resources, therefore most other database systems avoid this where
possible, following a pipelined query architecture instead.

The novelty of this paper is to show how recycling can
successfully be applied in pipelined query executors, by tracking
the benefit of materializing possible intermediate results and then
choosing the ones making best use of a limited intermediate result
cache. We present ways to maximize the potential of recycling by
leveraging subsumption and proactive query rewriting. We have
implemented our approach in the Vectorwise database engine and
have experimentally evaluated its potential using both synthetic
and real-world datasets. Our results show that intermediate result
recycling significantly improves performance.

I. INTRODUCTION

Data analysis and decision support applications typically
generate complex queries that access large volumes of data,
contain heavy aggregations, and have small result sizes. These
queries are often generated from only a few query patterns—
more so when the queries are generated by an interactive
application. Successive queries are often based on the previous
result by refining some of its parameters (e.g., an OLAP roll-
up). This suggests that there is sharing potential that could
be exploited to reduce both the execution time of the entire
workload and individual query response time. Concurrent
query execution may further increase this potential. We refer
collectively to the line of work that exploits this sharing po-
tential by caching results during query evaluation for possible
reuse in future workloads as recycling. Under this definition,
a system supports recycling if: (a) all actions are performed
online while processing incoming queries, (b) all queries are
processed as they arrive (no batching or prior knowledge of the
workload needed), (c) no intervention of the DBA is required,
and (d) the system automatically adapts to workload changes.
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Though recycling has been around for a long time, albeit
under different names (see e.g., [3], [6], [11], [14], [17], [18],
[19]), it remained relatively dormant until it was recently
revisited in the context of MonetDB [10]. There, it was
shown that workloads that exhibit common subexpressions
can benefit from reusing intermediate and final results and
drastically improve the response time and throughput of a
workload. MonetDB [1], however, is a database system that
significantly differs from commercial state-of-the-art database
systems. Its design is based on an operator-at-a-time paradigm:
intermediate results are always materialized as a by-product of
query execution. Therefore, intermediate results are already
available in main memory and the recycler only has to decide
which ones to keep based on the result’s execution cost and
size; both known at the time. This assumption is shared
with most prior work on recycling. This is in stark contrast
to the more widely-used tuple-at-a-time [7], or vector-at-a-
time [2] query execution paradigms; both avoid intermediate
result materialization through pipelined evaluation. These two
extremities of query execution models, complete material-
ization versus no intermediate result materialization at all,
present the potential for a hybrid approach. Namely, informed
intermediate result materialization and reuse in pipelined query
execution. This is exactly what we tackle in this paper. To the
best of our knowledge, this is the first recycling system that
is specifically designed for integration in a pipelined DBMS.

Introducing recycling in pipelined query evaluation presents
many challenges. The materialization of intermediate and final
results is not a free by-product of the execution paradigm. Ma-
terializing a result slows down query execution and consumes
considerably more memory and system resources, thereby
increasing cost. It becomes imperative to carefully choose
which intermediate results to cache, and for how long. Thus,
the system must dynamically perform a cost-benefit analysis
of each potential intermediate result before it is executed and,
hence, before its exact cost and size are known.

Contributions and Outline. We present an architecture for
recycling intermediate and final results that is specifically
tailored to the needs of a pipelined database system and
is implemented in the context of Vectorwise [2], [20]'—a
modern, pipelined database system. We first give a high-level
overview of the recycling process and the changes we need
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to make to the query engine to support recycling in pipelined
query evaluation (Section II). We then present the recycling
process in more detail (Section III). We use state-of-the-
art techniques from prior recycling work, materialized view
selection and multi query optimization, but adapt them to the
needs of a pipelined database system. To compensate the high
cost of materializing an (intermediate) result, we extend the
benefit metric, which is used to compute the benefit of having
a result materialized, to allow for more informed decisions.
We achieve this by (a) incorporating into decision making
information and statistics collected on all previously executed
queries, (b) modeling how materialized results influence the
benefit of each other and of yet to be materialized results,
and (c) aging the influence of a query invocation to allow
the system to adapt to changing workloads. We use a directed
acyclic graph, the recycler graph, as a structural representation
of the past query workload. It is not only used to index
materialized results but also serves as input to the benefit
metric, supplying it with a wide range of parameters from the
full query history. It is dynamically populated and updated at
run-time. In the absence of historical data, we use run-time
sampling to estimate the benefit of a result while the result
is being buffered. Given the basic framework for supporting
recycling, we then look at ways to maximize the recycling
potential of the system (Section IV) by using techniques
familiar to recycling (subsumption) and ones that are new in
the context of recycling (proactive recycling).

In Section V, we experimentally evaluate our approach
using both real-world (SkyServer) and synthetic workloads
(TPC-H throughput runs). Our results show the clear advantage
of result recycling in pipelined query evaluation. After our
experimental analysis, we present the related work in the area
(Section VI) and our concluding remarks (Section VII).

II. RECYCLER ARCHITECTURE

The main component of the recycling architecture is the
recycler, which is composed of two data structures, as shown
in Figure 1: (a) the recycler graph: a directed acyclic graph
(DAG) of relational operators that is used to index already
materialized and cached results and to represent the past work-
load, and (b) the recycler cache: a finite cache of intermediate
results materialized during previous query executions. Given
an incoming query, the recycler: (a) consults the recycler graph
to check if any of the contents of the recycler cache can be
used to answer any part of the query, (b) inserts the query
tree into the recycler graph, (c) consults the recycler graph
and run-time estimates to select intermediate and final results
from the query for materialization, and (d) materializes results
during execution and adds them to the recycler cache.

Note that if a database system can leverage materialized
views during plan enumeration, step (a) above can be skipped.
This is possible if the recycler cache is exposed as a pool of
materialized views to the optimizer (shown as the optional
edge in Figure 1). Vectorwise’s optimizer does not support
materialized views so we could not explore this direction.
Our results show that there is substantial performance to be

gained even without optimizer integration. However, we can
safely posit that such an integration will only improve the
possibilities for reuse of materialised results.

The Recycler Graph is a structural representation of previous
query invocations. Its purpose is: (a) to match the current
query tree with previous query trees to find materialized results
that can be used to answer the current query, and (b) to
find results from the current query that could be beneficial
to materialize in order to answer future queries.

The recycler graph resembles the AND(-OR) DAG that was
presented in the context of materialized view selection [9]
and multi-query optimization [15]. It embodies the unification
of query trees from previously query evaluations; each node
representing a relational algebraic operator and its parameters.
For instance, one such operator might be a selection and its
parameter the selection predicate it evaluates. Identical (exactly
matching) subtrees are merged and stored only once in the
recycler graph, thereby reducing the cost of finding exactly
matching subtrees in the recycler graph, as there is at most
one. It also reduces the memory footprint of the recycler graph.

The recycler graph is populated and navigated dynamically
during query evaluation and has to handle a huge number of
(partially concurrent) query invocations. To meet this demand,
we chose to strip off OR-edges, resulting in an AND DAG where
each query is represented by a single tree: the one that has been
chosen by the optimizer. Only considering optimised query
plans (no OR-edges) leads to a reduced complexity of matching
and recycler graph maintenance (as the OR-edges may result
in exponentially more alternatives to consider). This reduced
complexity comes at the price of missing sharing opportunities
that can only be revealed by comparing alternative query plans.
This was a design choice: doing so allows us to handle more
queries in the recycler graph. This in turn means that we
have a more detailed record of the past workload. Hence,
we can make more informed decisions on which results to
materialize. This is particularly important in pipelined query
processing where materializations are expensive and should
only be performed if there is enough evidence that the result
is frequent. This is in line with previous work on recycling,
which has shown that the execution time of some workloads
can be significantly improved by only considering sharing
possibilities in optimized plans [10]. We will cover methods
for discovering additional sharing opportunities in Section IV.

Each node in the recycler graph is annotated with statistics
(e.g., number of references, execution time) that have been
collected during previous query runs. These statistics are used
to compute the benefit of the result produced by the (partial)
execution plan corresponding to that node and its subtree,
as we will present in more detail in Section III-C. On a
production deployment, the recycler graph has to be truncated
periodically to prevent it from consuming too much main
memory and to keep the matching cost manageable. The graph
can, e.g., be truncated by periodically removing subtrees that
have not been accessed for some time. In our testing, there
was no need for truncation. When comparing subgraphs of
the recycler graph with a query tree, we will refer to both as
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Fig. 1. The high-level architecture of the recycler

trees to make the discussion easier to follow.

The Recycler Cache is a finite in-memory cache of mate-
rialized intermediate and final results from previous queries
that have been deemed beneficial for caching. The content of
the recycler cache is managed by admission and replacement
policies; both policies utilize a benefit metric. The admission
policy selects intermediate results from currently executing
queries for materialization, and adds them to the cache once
they have been produced. If the cache is full, the replacement
policy uses the benefit metric to evict results and make room
for new ones, but only if the latter are deemed more beneficial.

When queries update the database, certain cached results
may become invalid. An approach to handling updates, also
proposed in [10], is to evict all cached results dependent on
modified tables when a transaction commits. A better approach
would build on view maintenance techniques [8] to update
cached intermediates, rather than evict them. Benefit metrics
should again be used to decide whether to evict or update
a cached result. In this work, we focus on materialization
strategies and leave maintenance out of scope.

Changes in Query Evaluation. The recycler interacts with
query evaluation through query rewriting rules in the rewriter,
and store operators during execution. The rewriting rules
are used to match incoming query trees with the recycler
graph and identify (a) materialized results that can be used
to answer the query and (b) results worth materializing. The
store operators are specialized operators that can either
buffer, materialize, or plainly pass along the tuples produced
by their input operators without interrupting the tuple flow.
The rewriting rules work as follows. First, a bottom-up
rewriting rule traverses the optimized query tree and identifies
subtrees that have an exact match in the recycler graph;
subtrees that do not have an exact match are inserted into
the recycler graph. A second top-down rewriting rule checks
if the first rewriting rule has identified sharing opportunities.
If there are matching subtrees whose result is cached, they

Algorithm 1: matchTree(n, G)

input : Query tree rooted at node n, recycler graph G
output: An annotated query tree

1 if n.type = scan then

2 foreach s € leaves(G, n.hashkey, n.signature) do
3 if matchese(n, s, ) then

4 (n.exact, n.mapping,) = (s, (n.cols, s.cols));
5 return;

6 else

7 matchTree(n.child, G);

8 (z, M) = (n.child.exact, n.child.mapping,);

9 foreach p € parents(x, n.hashkey, n.signature) do
10 if matchese(n,p, M) then

11 n.exact = p,

12 n.mapping, = M U (n.cols, p.cols);

13 return;

are substituted in the query tree with an operator that uses the
result from the cache. A final rule injects store operators on
top of subtrees that have already been executed by previous
query invocations (match in the recycler graph) and deemed
beneficial enough for materialization. The final rule also places
store operators on top of designated subtrees that have not
been executed before. This is because the rule does not have
enough information to decide on materializing the results; thus,
the decision has to be postponed until execution.

The query builder then turns the query tree into an exe-
cutable plan of operators and we move on to the run-time
operation of recycling. Once the query starts being executed,
the store operators that have already been selected for
materialization materialize their input. The store operators
that have not been chosen for materialization yet (i.e., the
last case outlined above) buffer their input tuple flow and use
dynamic estimates to decide whether materializing the result
is beneficial or not. If the result is not deemed beneficial, the
store operator cancels buffering and reverts to passing its input
tuples along to its parent. After the query has been executed,
each operator annotates its equivalent node in the recycler
graph with measured run-time parameters. The entire process
is outlined in Figure 1; we will now examine it in more detail.

III. THE RECYCLING PROCESS

A. Matching

Matching is used to identify common subtrees between the
current query tree and the recycler graph. This is necessary for
both managing the recycler graph by ensuring that common
subtrees are shared, but also to answer the current query. The
matching algorithm that we present in this section is similar
to that of AND(-OR) DAGs [9], [15]. Here, however, matching
is performed dynamically during query processing against
every intermediate result from the past query workload. Hence,
efficient and scalable matching/insertion as well as concurrent
modifications of the recycler graph are crucial challenges.

Exactly matching nodes are identified through a notion of
bisimilarity. Two nodes v and w exactly match if: (i) v and w
represent the same type of operation (e.g., both are selections);
(i) the parameters of the two nodes are equal (e.g., they
evaluate the same selection predicate); (iii) they have the same
number of children v¢ and w® and Vv; € ¢ there is an



exactly matching w; € w®. The matching procedure shown
in Algorithm 1 is used during a bottom-up pass through the
query tree, performed by the rewriter. It is used to find matches
for the query or any of its subtrees in the recycler graph. To
avoid cluttering the description, we only show the algorithm
for unary nodes and for exact matching. Generalizing to nodes
with multiple children is straightforward; we treat subsumption
and non-exact matching in Section IV-A.

Each node of the query tree has a reference to its corre-
sponding node in the recycler graph (n.exact) and a name
mapping (n.mapping). Both are assigned during the match-
ing process. Furthermore, every node in the query tree and
the recycler graph has a hash-key (n.hash) and a signature
(n.signature) to speed up matching, both derived from operator
characteristics. The hash-key is derived from characteristics
that should exactly match (e.g., the operator type) and is used
in small hash-indexes attached to each node of the recycler
graph to quickly identify interesting matching candidates (par-
ent nodes). There is also a global hash table for efficiently
matching table scans (recycler graph leaf nodes). An integer
mask (n.signature), in which each column switches on one
bit, is subsequently used to quickly eliminate candidates that
do not provide all needed columns.

For each leaf node in the query tree (i.e., a table scan
operator—lines 1 to 5), the rule requests a list of candidate
leaf nodes from the recycler graph using the hash/signature
mechanism. The hash-key of a leaf node uses the table name
and the type of the node’s parent (e.g., selection). For each
column in the scan, one bit is set to 1 in the mask (determined
by a hash function on column name). The leaf node is matched
with each candidate s through a call to matches.(), which
compares the type and parameters of the operations and returns
true if nodes n and s match exactly; the third parameter is a
list of mappings, which, for leaves, is empty. Since exactly
matching nodes are unified in the recycler graph, there can be
at most one exactly matching candidate. Once it is found, the
remaining candidates do not need to be checked (line 5). If an
exact match is found the rule creates an initial name mapping
between the column names used by the query leaf node and the
ones used by the exactly matching candidate. This mapping
is required because the query could assign different column
identifiers than the ones used in the recycler graph. The query
leaf node is annotated with a reference to the candidate and
the name mapping between these nodes.

For non-leaf query nodes (lines 8 to 13), a node n can only
have an exact match in the recycler graph if all its children
have an exact match. Thus, candidates for matching are all
parents of the node in the recycler graph that has successfully
been matched with the child of n. Since common subtrees
are shared in the recycler graph, each node can have several
parents that are stored in a hash index at the node. As with
leaves, we probe the hash index of candidate matches based on
the node’s hash-key and prune the resulting candidates using
the node’s signature (lines 8). To test whether the node n from
the query tree and a candidate p are exact matches, we call
matches.() with the name mapping that was created when

matching the child of n as third parameter. During matching,
matches. () updates the name mapping when new names are
assigned, or columns are no longer used. If an exact match
is found, the remaining parents do not have to be checked
(line 13) and node n is annotated with a reference to the
candidate and its name mappings (lines 11 and 12).

B. Building the Graph

Nodes with no exact match are inserted into the recycler
graph. The insertion process copies the node and its parameters
and initializes the state of that node. The recycler graph uses
unique names for column and dataflow identifiers that are
assigned by the query (e.g., the name of an output column
of an aggregation). We avoid duplicate name assignments in
the recycler graph by appending a query-specific identifier. A
mapping is maintained to keep track of the different names
used in the query tree and the recycler graph. It is created or
extended whenever nodes are added to the recycler graph. If
the inserted node is a leaf node, a reference is added to the
hash table in the recycler that is used to find all candidate
leaf nodes during matching. If a non-leaf node is copied to
the recycler graph, it is either added as a parent of the node
that has been inserted by its child or, if the child had an exact
match, it is added as a parent of the exact match. In the latter
case, the exact match of the child will have more than one
parent; it can even have many, and thus we insert the node,
its hash-key and its signature into the small parent hash-tables
attached to each node. If the node assigns new names, the
mapping that has been created while matching or inserting
the child is updated. Inserting query trees at the granularity of
a node rather than the entire query tree enables the recycler
to detect intra-query sharing possibilities.

To support concurrently executed queries and simultaneous
updates to the recycler graph, we employ optimistic con-
currency control [12] at a node granularity. Queries proceed
with matching as if they were being executed in isolation.
Before they attempt to add a node to the recycler graph,
the operation is checked for conflicts through backwards
validation. The transaction checks if there have been any
conflicting modifications to the recycler graph since it started
matching the node that it is about to add to the recycler graph.
If there are conflicts, insertion is aborted and matching of that
node is restarted. Otherwise, the node is added to the recycler
graph and the rewriting rule continues matching the next node
in the query tree. Note that queries inserting the same subtree
into the recycler graph can therefore overtake each other while
successively inserting the nodes of the subtree. This is possible
because the mapping used for matching and the one used for
insertion are interchangeable.

An example of the matching and recycler graph building
processes is shown in Figure 2. We have a simplified illustra-
tion of the recycler graph on the left and an incoming query
tree on the right. Matching for this query proceeds as follows:
(1) First a match is found in the recycler graph for the scan
on relation R. The scan node in the query tree is annotated
with a reference to the matching node in the recycler graph
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and a name mapping is created between the names used in
the query tree and the recycler graph. (2) Next, the selection
o from the query tree is matched with the parents o3, o3 of the
scan in the recycler graph that matched with the scan in the
query tree. Selection o3 matches and the node in the query
tree (o) is annotated with a reference to o3. The mapping
is not updated because the selection did not assign any new
column names. (3) Then, the projection 7 from the query tree
is matched with the parents 71, w2 of the node in the recycler
graph that matched with 7’s child (o3). This time, there is no
matching projection in the recycler graph. (4) The insertion
process creates a copy of 7w (m3) and adds it as parent of the
node in the recycler graph that has matched with 7’s child.
Node 7 is then annotated with a reference to the new node.
As 7 assigns new column names, these names are renamed in
the recycler graph by appending the (unique) query identifier
(_4) and the existing mapping is extended with all new names.

C. Benefit-Based Result Selection
Recycling systems traditionally rely on some kind of benefit
metric to decide which results to materialize [17], [16], [10].
In pipelined query evaluation, the choice of what result to ma-
terialize is particularly important because materializing a result
comes with a high cost. Materializing a result is beneficial only
if materializing and then reusing it will improve the execution
time of the entire workload. This depends on the initial
materialization cost, the number of times a materialized result
will be reused while cached, and the execution time saved with
each reuse. In pipelined query evaluation, the recycler has to
decide whether to materialize a result before computing it and
at that time, none of these factors are known. Instead, the
recycler uses reference statistics and run-time measurements
that have been collected during previous computations of a
result and are stored in the recycler tree; or dynamic run-time
estimates in the absence of such information. The recycler
uses a benefit metric to assess each result; it is used to select
(a) results from the current query for materialization, and
(b) cached results for eviction from the cache. The benefit
B(R) of result R is defined as:
B(R) = cost.(R) -hg 0
size(R)
where (a) cost(R) is the true cost to compute R: it is defined
as the optimal CPU time required to compute R using base

tables and/or other results in the recycler cache; (b) hp is the
importance of a result: it uses previous references (previous
occurrences of the same partial plan) as an estimate of the
likelihood of future references [10], [14], [16]; and (c¢) size(R)
is the memory footprint of R in the recycler cache.

The size(R) of a result R is the space it occupies in the
recycler cache. When a result is materialized, its actual size
is stored in its corresponding node of the recycler graph. If
the result has not been materialized before, the size needs to
be estimated; we use the measured cardinality and the tuple
width of the result to do so. For variable-width columns, we
sample incoming tuples at run-time to estimate the width.

In what follows we assume that, when computing the benefit
of a result, the result has already been computed by a previous
query invocation and the recycler graph contains information
about previous executions that can be utilized to compute the
benefit of the result. We will deal with speculatively material-
izing results that have not been seen before in Section III-D. A
node m is subsequently called a direct materialized descendant
(DMD) of another node v, if: (i) m is a descendant of v; (ii) the
result of m is materialized; and (iii) there is no node that is
an ancestor of m and a descendant of v whose result is also
materialized. A potential DMD is a node that would have been
a DMD had its result been materialized.

True Cost and Base Cost. The frue cost is defined as the
optimal CPU time required to compute a result using base
tables and/or other materialized results in the recycler cache.
Although it is used to compute the benefit of a result, it is
not stored explicitly in the recycler graph. Instead, the base
cost is stored at the nodes of the recycler graph and the true
cost is computed from the base cost as needed. Recomputation
is cheap and avoids having to navigate upwards the recycler
graph when results are added or evicted, hence, scaling better
with increasing recycler cache size. The base cost is the cost
to compute the result from base tables only. It is measured
during the execution of each operator while producing the
result and its final value is stored at the corresponding node in
the recycler graph. In contrast to the base cost, the true cost
also includes the interaction with other materialized results.
If a node has one or more DMDs, they are used to compute
the result instead of reproducing the result from base tables.
This decreases the true cost of the result and therefore also its
benefit. The true cost cost(R) is computed from the base cost
bcost(R) as follows:
>

cost(R) = bcost(R) —
JjEDMDs(R)

The value of bcost(R) stored in the recycler graph is updated
with the current measurement each time the result is recom-
puted to reflect the most up-to-date system load.

A recycler graph where every node is annotated with its
total number of references, its base cost, and its result size
is shown in Figure 3. If, for example, the results of o7 and
o9 are materialized in the cache, the true cost to produce the
result of 7y, mo or X is reduced by the base cost of o; and
o9 because the recycler would use their results.

bcost(R;) (2)
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Fig. 3. Example annotations in a recycler graph

Importance Factor. The importance factor hr of a result R
is defined as the maximum number of queries in the recycler
graph that would have been answered using R, assuming that
all materialized results that are currently in the cache had been
materialized the first time they were computed. Intuitively, it is
a metric of the frequency of use of the cached result. For each
potential result R, hg is stored in its corresponding node of
the recycler graph, regardless of whether the result is actually
materialized or not. In what follows, and for conciseness, let
denote a node in the recycler graph and n.R denote that node’s
result; thus h,, g is the importance factor of node n. The value
of hy,. g is set to zero when n is first inserted into the recycler
graph. When a query () has finished the matching/insertion
process for all of its nodes, the h, r value for all nodes x
in the recycler graph whose result could have been used to
answer () are incremented by one. The result of a node z in
the recycler graph G could be used to answer @ if: (a) G and
the query tree Ty share a common subtree S that has not been
inserted by @, and (b) if there is no ancestor of = in .S whose
result is already materialized; if there was such an ancestor,
the result of the ancestor would be used to answer () instead.
This means that, just like the total cost, the h, r value of a
node n is affected by other materialized results in the cache:
the result of a node is only used to answer a query if none of
its ancestors in the query tree are materialized.

When adding the result of a node v to the recycler cache,
all its descendants are no longer used by queries that can use
the newly added result. Therefore, the value hy r of each
descendant d has to be reduced by the number of queries
in the recycler graph that would have used d.R before, but
no longer are. The value hy ,, of descendants d whose result
would not have been used to answer these queries before (as
they are below a DMD of v) should not be modified. For all
other descendants d (DMDs and potential DMDs) of v, we do:

har=har—hur 3)

When a new result is added to the recycler cache, updateHR of
Algorithm 2 is called on the child of the corresponding node n
in the recycler graph to update all Ay values of nodes that are
affected by the new result; updateHR is invoked recursively
and stops when it finds a materialized result.

Algorithm 2: updateHR(m, h,, )

input: Child m of node n in the recycler graph whose result has
been added to the cache; h,, g value

1 hin. R = hm.R — hn.R;
2 if m is materialized then return;
3 foreach ¢ € m.children do updateHR(c, by, R);

When evicting the result of a node ¢ from the cache, all
queries from the recycler graph that would have been answered
using that result (e.R) are no longer able to use it. Instead,
these queries would have been answered using the result of
the node’s DMDs; let d be such a DMD or a potential DMD.
The value of each hy g, therefore, has to be increased by the
number of queries in the recycler graph which would not have
used the result before, but can use it now. For all DMDs and
potential DMDs d of the evicted node €, hy g is modified:

har+her )

The number of references shown in Figure 3 are the
nodes’ hg values without any result materialized. After o4 is
materialized, h,, has to be reduced by h,, because all queries
that contain o4 would use the materialized result instead of
recomputing its subtree: hy, = hgy - hy, =5 - 5 = 0. After
s is materialized, h,, has to be reduced by h,, because it is
no longer used by queries that contain 75: hy, = ho, - hn, =
5 - 2 = 3. It is, however, still used by queries that contain 73
or m4. The value of h,, is unaffected as its result would not
have been used by any query that has to compute 75: these
queries would have used the result of o4 instead.

har =

Aging. The decreasing predictive power of old node re-uses
is modeled by aging the h, r of all nodes, for every query:

B = hi} 5)

where h! , denotes the value of hn, r at time t and o < 1
models the weight of aging (i.e., how quickly we want queries
to age). To prevent having to update every node in the recycler
graph at each query invocation, all aging is performed at once
whenever a node is referenced (i.e., lazy aging). Aging enables
the benefit metric to adapt to changing workloads.

D. Speculation

In the previous section, we described the benefit metrics for
results whose (partial) query plans have already occured in the
workload. However, it can also be beneficial to speculatively
materialize results that have not been executed before. In
particular, computationally expensive results with a small
result size are good candidates for speculative materialization.
In this scenario, for a node n, the importance factor h,, r of its
result is zero and we have not recorded the computational cost
and the size of n.R. Therefore, the computation of B(n.R) has
to be postponed until execution. Recall from Section II that the
recycler employs this mechanism by injecting store operators
after designated operators in the query tree that have not been
executed before. These store operators are inserted after all
operators that are expected to be computationally expensive
and are likely to have a small result size (e.g., the final result
of a query, or the result of an aggregation). When executing the
query, each of these store operators monitors and temporarily



buffers the tuple flow and estimates cost(n.R) and size(n.R)
for its corresponding input operator n in the recycler graph.
It does so by extrapolating run-time measurements using the
current progress of the operator which produces the result. We
use a variant of progress meters [13] to obtain the progress
of each operator in the execution plan. The progress of an
operator that has processed n tuples out of a total of m tuples
is n/m. Scans and blocking operators know of their current
progress because they know the total number of tuples that
need to be processed. All other operators in the execution
pipeline have the same progress as the closest scan or blocking
left-deep descendant. The recycler uses cost and size estimates
and a small constant for h,, r (e.g., 0.001) into Equation 1 to
decide which result to materialize. If materializing the result
is not deemed beneficial, the store operator stops buffering;
if it is, it fully materializes the result.

E. Cache Policies

Managing the recycler cache is essentially a knapsack
problem (maximum benefit with a cache size restriction),
which we address along the lines of the basic greedy algorithm
by Danzig [4]. The results in the recycler cache are classified
in a limited number of groups according to the logarithm of
their size; results in the same group are arranged in increasing
benefit order. Whenever the benefit of a result changes (by
other results being added or evicted, or the result being
reused), its benefit is recomputed and, if necessary, the result
is moved to a different position in the group.

Admission Policy. While there is still enough space in the
recycler cache, we materialize the result with the highest
benefit of every subtree that has been seen before in the
workload; and/or every result that was chosen by speculation.
It is added to the appropriate group size-wise and to the
appropriate position within that group in terms of benefit.

Replacement Policy. If the recycler cache is full, a new result
will be materialized and added to the cache if there is a set of
cached results that (@) has a lower average benefit, and, (b) if
evicted, creates enough space to materialize the new result.
The replacement policy only checks in the appropriate group
for this set of results. It scans the results in increasing benefit
order keeping track of the sum of sizes and the average benefit
until either (a) the average benefit exceeds that of the result,
so we decide not to materialize the result after all; or (b) the
results in this set together are large enough, such that they can
be replaced by the new result once fully materialized.

IV. MAXIMIZING RECYCLING POTENTIAL

We now explore ways of maximizing the potential for
recycling by (a) extending exact matching to also account for
partial matching by leveraging subsumption, and (b) proac-
tively executing queries and caching their results.

A. Subsumption

Even if a node from the query tree has not been exactly
matched with a node in the recycler graph, its result can
sometimes be derived from the recycler cache. This happens if
there is a result in the recycler cache that subsumes [15], [10]

Fig. 4. Subsumption edges in the recycler graph

the result of that node. A node n subsumes a node m if the
result m.R can be derived from the result n.R. We consider
two kinds of subsumption. Column subsumption requires that
the columns of m.R are a subset of the columns of n.R
and, hence, m.R can be derived from n.R by projecting out
columns. For example, if n.R is the result of the aggregation
(F) query n.R =a5c Faun(siry)min(siry) (S) over some input
S and m.R =ug Faun(siry) (S) then m.R can be derived by
using the columns of n.R and projecting on sum(slry). Tuple
subsumption requires additional relational operations to derive
m.R from n.R. For instance, if 7. R =, dno Fsun(siry) (S) and
m.R =uc Feun(siry)(S), then m.R can be derived from n.R
by m.R =g Feun(siry)(n-R), i.e., by applying m’s operation
with n.R as the input. A subsumption variant we leave to
future work is dimension subsumption. For example, if n.R
is the result of the aggregation n.R =puion Fsun(siry)(S)
M. R =region Fsun(siry) () and region is higher in a dimension
hierarchy than nation, then m.R can be derived from n.R by
M. R =region Fsun(siry) (- 1R). This requires the database system
to be aware of dimension hierarchies.

The requirements for our subsumption system were: (a) the
complexity of finding an exact match should remain unaffected
by the subsumption implementation and extra effort should
only be spent on searching for subsuming results if there is
no exact match in the recycler graph, and (b) subsumption
references of each node (i.e., how often the result would
have been used by subsuming queries) should be accessible
through the graph. Based on these requirements, we add
subsumption to the recycler graph as specialized OR-edges,
called subsumption edges. They are specialized in the sense
that matching considers subsumption edges only after all
regular edges have been checked and no exact match has
been found. Additionally, transitive subsumption relationships
are not explicitly annotated in the recycler graph structure but
result from the structure itself. A part of a recycler graph with
subsumption edges is shown in Figure 4, where C denotes
subsumption. Though o4 subsumes o1, o2 and o3, the recycler
only creates a subsumption edge to o3 because o3 subsumes
o1 and os. All subsumption relationships of a node can be
found by following subsumption edges.

B. Proactive Strategies

Proactive recycling strategies choose to execute a more
expensive query to compute an intermediate result, which can
then be used to compute the desired result. Such a policy only
makes sense if the larger intermediate result has recycling
potential. Similar techniques (e.g., cube caching) have been
extensively studied in view materialization [5]. We extend
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them and adapt them for recycling intermediate query results.

Top-N Caching. The motivating example for the introduction
of proactive strategies are top-N queries; or even window-
ing queries like LIMIT N SKIP X, typically in combination
with ORDER BY. The SQL standard supports various syntac-
tical incarnations, and such queries are sometimes used to
page through results. Vectorwise natively supports such top-N
queries through the topN operator. It does not sort its input to
produce the top-N results; rather, it maintains a heap of size
N to maintain the top N results (for input of size M) at just
O(M log N) complexity. The proactive limit strategy exploits
the fact that L = topN(Q, 10,000) for any query @ is practi-
cally as cheap as L' = topN(Q, N) for any N € (1,10,000] as
long as the heap fits the CPU cache. Thus, one can proactively
execute L instead of L', materialize its result L.R, and then
employ subsumption to recycle L.R by rewriting L’ to use
L.R. Hence, by proactively generating a larger result we create
opportunities for subsumption recycling.

Cube Caching with Selections. The benefit metric of Equa-
tion 1 grows as results become expensive and small. Typical
examples of queries exhibiting such behavior involve aggrega-
tions, which reduce a large (thus expensive) input to a small
result. In this strategy we target queries involving aggregation
in conjunction with selection. Algebraically, these queries are
expressed as Q@ =, Fo(P((0p)(R))) where 7 is the set
of GROUP BY columns; « are the aggregates (e.g., sum, avg,
etc.); P is an arbitrary plan containing some selection with a
predicate p(c) over a column ¢; and R is the selection input,
which may be an entire query itself. Assume now that the
recycler observes a workload with similar queries that only
differ slightly in the selection predicate p(c). However, due to
this difference, the result of the aggregation cannot be reused.

A proactive strategy can rewrite () above into a query
Q' =y Far(0p(e)(yueFar (P(R)))) where « is extended with
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Proactive Strategies: cube caching with selections (left), with binning (right)

¢, the selection is pulled above the aggregation, and the
result is computed by using the original groupings v and a
reaggregation o’ of o’ using standard aggregate calculation
decomposition rules (e.g., if o contains avg(z), then o/
must contain count(z) and sum(z), efc.). Doing that, we
now have the subquery ,u.Fo (P(R)) without the limiting
selection condition, which will be cached in the recycler
thus taking away most query evaluation cost and presenting
opportunities for further reuse. An example of cube caching
with selections is shown on the left of Figure 5. This strategy,
though frequently applicable, is not always a good idea. Recall
that the target is to cache small but expensive results. A
heuristic to enforce this (other than estimating the result size)
is to apply the proactive rule only if the number of distinct
values of the column(s) ¢ added to the GROUP BY list v is
smaller than a threshold. The reason is that the result size of
the aggregation . Fo (P(R)) will increase by a factor equal
to the number of unique values in c.

As the proactive strategy creates a more expensive plan in
the hope of increasing reuse potential, its recycling benefit
must steer the decision whether or not to apply it. The
first step is to match and insert the proactive plan in the
recycler graph, but not execute it. We can handle the presence
of both the original query and the proactive variant in the
recycler graph through bidirectional subsumption edges or
through OR-edges. To obtain cardinality and cost information
without executing the plan, the recycler must invoke the query
optimizer. If a recycled result for the aggregate was found
during matching, or a non-speculative store decision was
made for it, we execute the proactive plan. Else, the original
plan is executed. Each time this strategy is triggered and
matches the proactive query variant in the graph, the common
parts of the proactive plan obtain a higher benefit score. At
some point a store decision may be made, causing valuable



re-use of the aggregate result.

Cube Caching with Binning. We noted that the previous
strategy is more sensible if the cardinality of the column(s)
of the selection predicate is small. This requirement may be
too restrictive, particularly for numeric columns. Hence, cube
caching would often be impossible despite its great potential.
Cube caching with binning tries to solve this problem. We
need to take two steps: (a) reduce the cardinality of the se-
lection columns through binning, and (b) extend the recycler’s
subsumption primitives to account for binning.

Binning reduces the number of distinct values in a column
by combining them in bins based on some commonality. For
numerical columns it is possible to cheaply compute a bin
number from the column domain. For instance, in a numerical
column such as price, with values in [0,10000], using “&u
will bin the column into 101 bins. Another example is date
columns where the optimizer can bin on year or year-month,
thus reducing the number of unique values of the column.
If we restrict ourselves to range predicates, we can divide
the bins into two classes: contained and non-contained by
the bins. Hence, an aggregation result can be rewritten as
the re-aggregation of the union of contained relevant binned
results, combined with the full recomputation only for the
non-contained areas. Given a query Q =, Fo(P(0,(c)(R)))
and a decomposition of p(c) into the union of two selections:
pi(¢;) in terms of binnable ¢; (binned ¢ columns with a low
number of unique values) and p,.(c) in terms of the original
columns ¢, we can rewrite it as Q) =, For(Q; U Q,) with
Qi = Far(P(0pen(R)) and Qp =, For (P00 (R))).
The previous cube caching technique will now trigger on @
since it satisfies the requirement of few unique values.

For example, consider a column of type date, named ship-
date, and a selection predicate shipdate < 1998-03-01. When
binning on year(shipdate), the predicate can be decomposed
as year(shipdate) < 1998 and (shipdate > 1998-01-01
A shipdate < 1998-03-01), so the entire query can be
rewritten as the union of its two constituents (see also the
right part of Figure 5). The benefit is that (); will be rewritten
by the previously described “cube caching with selections”
strategy, extending its grouping (returnflag, linestatus) with
the selection attribute year(shipdate). This aggregate will re-
occur in similar queries that also trigger this rule. It typically
produces a small result, yet takes most of the execution effort,
and thus stands a high chance of being cached by the recycler.

Cube caching with binning is closely related to dimension
subsumption. The multiple grouping dimensions and their
multiple dimension levels (e.g., year, month, day) form a
lattice of proactive recycling candidates [5]. Dimension sub-
sumption requires pre-knowledge by the DBMS of hierarchical
dimensions. Since Vectorwise does not support this yet, we
did not experiment with dimension subsumption.

V. EVALUATION

We now demonstrate the advantages of our recycling tech-
niques. We have used two workloads; the SDSS SkyServer to
see the impact of recycling on real-world applications; and
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TPC-H throughput runs to show the benefits in a controlled
environment. We used a system with two quad-core Intel
Xeon 2.80GHz processors with 48GB RAM and 16 disk
RAID-0 SSD storage. Where not stated differently, we split
our main memory budget into 14GB for query processing,
10GB for the buffer pool and 18GB for the recycler cache.
A bufferpool of 10GB was sufficient for keeping the working
set in main memory at all times. To exclude 1/0 effects, all
results are warm runs, where the working set was already in
the bufferpool.

Skyserver is a 18TB scientific database with 98 tables, 51
views and 144 persistent functions. We used a 100GB subset
of the SkyServer Data Release 7 (DR7), the one used in
the MonetDB recycling work [10]. We also used the same
query workload as in [10] to allow a direct comparison. The
workload consists of 100 queries that were randomly picked
from a real-life query log and has a high recycling potential
as it benefits from reusing intermediate and final results [10].
The most frequent query pattern in the workload is:
SELECT p.objID, p.run, p.rerun, p.camol,

p.field, p.obj, p.type, ...
FROM fGetNearbyObjEq(195,2.5,0.5) n, PhotoPrimary p
WHERE n.objID = p.objID LIMIT 10;

The workload queries are either identical to the one above,
or share the computation of fGetNearbyObjEq(195, 2.5, 0.5).
The recycler materializes the results of the function call and
the final results of these queries. As these results consist of
a few tuples, the recycler cache only needs a few hundred
KB to fit them all. This contrasts [10] where a cache size of
1.5GB was required to keep all results. This is because the
MonetDB recycler does not use a recycler graph; rather, it
matches directly on cached results. Hence, it needs to keep all
intermediates that lead to a result.

The comparison to the naive approach (i.e., no recycling) of
the two systems is shown in Figure 6. To simulate the effect
of updates invalidating cached results, we split the batch of
100 queries into shorter batches of 25 and 50 queries and ran
them with flushing all cached results in between. For each run,
we either gave a total of 1GB to the recycler cache, or kept
the cache size unlimited. For both approaches the workload
benefits greatly from recycling. In the comparison, MonetDB
benefits the most with an unlimited recycler cache size. This
is due to (a) their approach not having to explicitly instruct
result materialization because of the execution paradigm of
MonetDB (operator-at-a-time), and (b) their matching tech-
nique being more light-weight. In the limited recycler cache



scenario, our approach shows a greater improvement. Our
technique benefits from being able to selectively decide which
result to materialize instead of having to keep all intermediates
in the result’s subtree. Both systems react similarly, when
having their recycler cache flushed. Even with a refresh every
25 queries, recycling is still quite beneficial.
TPC-H. We tested the impact of recycling on the TPC-H
throughput test with 4 to 256 query streams, as generated
by the standard QGEN tool. Each stream consisted of the
22 TPC-H query patterns in different orders and with differ-
ent randomly assigned parameters, according to the bench-
mark specification. All experiments were run against a 30GB
database (scale factor SF = 30). The sharing potential of this
workload is due to each query pattern only having a limited
number of valid values for each parameter (i.e., each selection
predicate). With several streams being executed, it is likely that
some of the queries in each stream have the same parameters
assigned. If two or more queries of the same pattern have
some parameter values in common, then intermediate results
might be shared between them; if they have all parameter
values in common, the final result can be shared. Furthermore,
some query patterns have fixed subtrees that can be shared
between queries of the same pattern. Finally, the potential for
sharing grows as more streams are executed. Vectorwise was
set up to execute 12 queries in parallel; the system queues
any further concurrent queries. If multiple active queries share
computation, the recycler stalls all but one until it has either
finished materializing the result, or decides not to materialize.
We evaluate the recycler in three modes of execution. The
history mode (HIST) only uses measurements from previous
query invocations to decide whether to materialize a result. It
is based on the assumption that results that occurred more
than once in the past are likely to occur again. Thus, it
only materializes results that have been seen before. All
materialization decisions can be made in the rewriting phase
and, hence, there is no need for buffering partial results in
the execution phase. Since results are only considered for
materialization the second time they are computed, a result has
to appear at least three times in a workload for the recycler
to benefit from reusing it. Thus, the history mode always
misses one reuse possibility (the second time the result is
computed) and performs badly for results that only occur
twice in the workload. The speculation mode (SPEC) improves
this by also speculatively materializing small results in the
hope that they will occur again. If a result is indeed frequent
and is materialized the first time it is executed, the recycler
can already benefit from reusing it the second time it occurs.
Speculation relies on dynamic estimates and therefore requires
buffering the result until a decision can be made. The last
mode is the proactive mode (PA). Since proactive rules are
not implemented in the recycler, we simulate their benefit
by manually altering query plans according to the rules of
Section IV-B; this affects TPC-H queries Q1, @16, and 19.
Queries 16 and Q19 use cube caching with selections, while
query @1 uses cube caching with binning.
Throughput Scaling. We use 4, 16, 64 and 256 streams to
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evaluate recycling in all three modes of execution. The average
execution time per stream is shown in Figure 7. The execution
time per stream is measured from the time its first query is
issued to the time the result of its last query is received.
For 4 streams we saw a 10% improvement over naive. For
16 and 64 streams there was an improvement of 24% and
55%, respectively; but the greatest improvement was 79%
for 256 streams. Speculation gave better results than history;
proactive combined with speculation scored the best results
from 64 streams upwards. For 4 and 16 streams speculation
performed slightly better than proactive, because there were
not enough reuse possibilities in the workload to amortize
the extra execution cost of the proactive query plans. With
an increasing number of streams and hence a greater sharing
potential, we saw improvement for the history mode. This is
because at 256 streams almost every beneficial result in the
workload occurs 4 or more times.

Per-Query Breakdown. We break down the results for 256
streams into single query patterns in Figure 8. The x-axis
is the average execution time for each TPC-H query pattern
Q1 to @22. Unlike Figure 7, the displayed times do not
include the time the query is waiting to start processing. The
recycler effect is visible from top (naive) to bottom (proactive).
The y-axis is the relative execution time in relation to naive.
In history mode, all queries but )9 benefit from recycling.
The pattern for query Q9 has one parameter with nearly 100
different values. The results suggest that any of these values
appeared at most two times in the workload: history could not
benefit from it, but speculation could. Queries @8, Q10, @13,
@18 and 19 showed the greatest improvement in history
mode. Speculation improves the execution time of all query
patterns, but by a smaller percentage than that achieved by
history. For proactive, only queries Q1, Q16 and Q19 differ
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from the execution times in speculation mode because they
were the only ones that could benefit from the technique. All
three queries benefit strongly from proactive query plans.

Detailed Trace. To better understand what happens in each
concurrent stream, we reduced the number of streams to 8
(fitting the 8 available cores) and the number of queries per
stream to 6 (Q1, @8, @13, Q18, Q19 and Q21). For queries
@1 and @19, the proactive versions were used. A detailed
trace of the execution of this workload is shown in Figure 9.
For each query of every stream (server thread), we show the
timeframe in which it has been evaluated. Grey means that
the query materialized a result, whereas light grey means
that the query reused a materialized result. Dark grey is
used when the query both reused a result and materialized
another one. Speculation was turned on, so every query either
materializes or reuses its final result. In what follows, S,
refers to stream n. S3 executes the first instance of Q1. It
speculatively materializes the intermediate result created by
the proactive rule (see Section IV-B) and the final result of the
query. Sg computes the same intermediate result concurrently
and therefore stalls until the result is produced by Ss3. That
result is used to evaluate the query and the final result is
materialized. All other streams reuse the intermediate result
and materialize their final results. ()8 is initially executed by
stream S3. This stream only materializes the final result of the
query. When the query is executed for the second time by S5,
the recycler materializes an intermediate result (~ 270MB)
that is shared by all instances of Q8. Sy, S5, Sg, S7 and
Sg reuse that result and materialize their respective final
results. S;, S5 and Sg each materialize another intermediate
result (~ 400MB) that is shared by some instances of ()8
and has occurred in the workload for the second time. S;
reuses one of these results (now occurring for the third time).
Q13 is executed by S;, S2, Sg and Sg without reusing any
materialized results. All streams speculatively materialize their
respective final results. The other streams then reuse these
final results. Note that Sy has to wait for Sy to produce
its final result before it can reuse it. S; executes the first
instance of query (218 and materializes the final result. S5 then
materializes a large (~ 1GB) intermediate result that is shared
by all instances of (J18, and its final result. So and Sg reuse
the intermediate result and materialize their respective final

results. All other streams reuse the final results that have been
materialized previously. This requires S7 and S5 to wait for
Se and Sy, respectively. The first stream to execute Q19 is Ss.
It speculatively materializes the intermediate result created by
the proactive rule (see Section IV-B) and the final result of the
query. All other instances of the query reuse the intermediate
result. Sg has to stall until the intermediate result has been
produced. S4 executes the first instance of (Q21. It materializes
three large intermediate results (two of them up to ~ 2GB
each) and the final result. The results are already materialized
the first time they are executed, because the recycler knows
from concurrent query invocations that the results are frequent.
All three intermediate results are shared by all instances of
query (21, but we see that Sy, S5 and S7 have to wait until
these results are produced.

Matching Cost. Finally, we tested how well our algorithms
scale with the size of the recycler graph. We measured the
cost of matching a query tree with the recycler graph and
updating the latter with non-exact matching nodes for the TPC-
H workload. The cost of matching depends on the number of
recycler graph nodes the query has to be matched with. This
in turn depends on the number of leaf node candidates as well
as the number of parents of each matching node that have to
be checked and, hence, on the size of the recycler graph. We
measured the matching and insertion costs for a 256-stream
run of a total of 5632 query invocations. The result is shown
in Figure 10 for all 5632 query invocations (left) as well as for
each individual query (right). The cost grows with the size of
the recycler graph, but moderately. Note that even the highest
matching cost is orders of magnitude lower than the evaluation
cost of the query without recycling; the highest matching cost
is 2ms where queries typically run in 0.3s-11.3s.

VI. RELATED WORK

Recycling aims to reuse results computed as part of query
evaluation to improve the execution time of a partially un-
known workload. Multi-query optimization and materialized
views have similar goals and use structures similar to the re-
cycler graph. In multi-query optimization (MQO) [15], queries
are submitted in batches. All queries in a batch are optimized
together in order to find a globally optimal plan for the
entire batch. Identifying sharing possibilities within a batch
and exploiting them by reusing their results is part of this
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Fig. 10. Matching cost for 256-stream throughput run: all 5632 queries (left) and per query type (right)

optimization process. The MQO optimizer knows the exact
number of reuses of a result in the query batch. Reusing
materialized results between different batches is not com-
mon. MQO differs from recycling by requiring that queries
are submitted and optimized in batches and only exploits
sharing possibilities within a single query batch. Materialized
views [9], traditionally, are specified by the DBA using a
typical workload (e.g., from the past), a space restriction and
specialized tools to assist the selection process. They differ
from recycling as they are static and cannot adapt to changes
in the workload unless the DBA intervenes again.

Studies on how to (automatically) identify and take advan-
tage of common sub-expressions within subsequent queries
had already been conducted in the 1980s by Finkelstein [6]
and Sellis [17]. Later work presented several architectures for
recycling [3], [10], [11], [14], [16], [18], [19]. They differ
from our techniques in one or more of the following aspects:
(a) they assume that the results are materialized as a by-
product of the execution paradigm, (b) they initially admit
every result to the recycler cache, (c) they only consider
caching final query results or data cubes, (d) they are limited
to a small number of previous/concurrent queries to base
the materialization decision on, and/or (e) they only manage
reference statistics for already materialized results, which may
lead to starvation (a new result is likely to be evicted because
it has no reference information attached to it).

VII. CONCLUSIONS

We presented a recycling architecture for pipelined query
evaluation that automatically identifies and exploits re-
occurring query patterns by selectively materializing interme-
diate results, and reuses these to accelerate subsequent queries.
It continuously adjusts to a workload without need for DBA
intervention. To counter the cost accompanied by material-
izing results in pipelined query evaluation, we introduced a
specialized benefit metric to decide which intermediate results
to materialize. This benefit metric is fueled by (a) a structure
called the recycler graph that tracks references and execution
statistics from previous query executions, and (b) runtime
estimates for unknown parameters. We also presented sub-
sumption and proactive recycling as techniques to increase the

recycling potential of a workload. We evaluated our recycling
system using the same real-world workload (SkyServer) as
in [10] and the standard TPC-H benchmark. Our results show
substantial benefit of recycling in pipelined query evaluation.
Acknowledgments We would like to thank Milena Ivanova
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MonetDB and Vectorwise teams for their support.
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