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Abstract—In this paper, we investigate the secure nearest
neighbor (SNN) problem, in which a client issues an encrypted
query point E(q) to a cloud service provider and asks for an
encrypted data point in E(D) (the encrypted database) that is
closest to the query point, without allowing the server to learn
the plaintexts of the data or the query (and its result). We show
that efficient attacks exist for existing SNN methods [15], [21],
even though they were claimed to be secure in standard security
models (such as indistinguishability under chosen plaintext or
ciphertext attacks). We also establish a relationship between
the SNN problem and the order-preserving encryption (OPE)
problem from the cryptography field [5], [6], and we show
that SNN is at least as hard as OPE. Since it is impossible to
construct secure OPE schemes in standard security models [5],
[6], our results imply that one cannot expect to find the exact
(encrypted) nearest neighbor based on only E(q) and E(D).
Given this hardness result, we design new SNN methods by
asking the server, given only E(q) and E(D), to return a relevant
(encrypted) partition E(G) from E(D) (i.e., G ⊆ D), such that
that E(G) is guaranteed to contain the answer for the SNN query.
Our methods provide customizable tradeoff between efficiency
and communication cost, and they are as secure as the encryption
scheme E used to encrypt the query and the database, where E
can be any well-established encryption schemes.

I. INTRODUCTION

The cloud has gained increasing popularity for its flexibility

and scalability, which motivates cloud service providers to

offer accesses to cloud databases, such as Amazon Relational

Database Service (Amazon RDS), Google Cloud SQL, and

Microsoft SQL Azure. Data owners outsource their databases

to the cloud service providers and rely on their services for

storage, management, and query processing of the databases.

Clearly, this framework offers great flexibility and scalability

to data owners and their clients, and it is especially useful for

users with stringent local resources.

However, the remote placement of the data brings security

concerns. A data owner may prefer to prevent the server (i.e.,

the service provider) from learning the content of his/her data-

base D or the contents of queries to D, while still requiring

the server to provide database functionality for D in the cloud

[11], [13], [16]. For this purpose, the data owner needs to

encrypt D with an encryption scheme E and only publishes

to the server an encrypted version of D, denoted as E(D).
The clients also need to encrypt their queries q and send only

E(q) to the server. The server needs to identify the ciphertext

in E(D) that corresponds to the answer of q on D, using

only E(q) and E(D). We dub a query processing procedure

satisfying these constraints as secure query processing.

Under the settings of secure query processing, there have

been a few techniques that address general range selection

queries and aggregation queries [11], [13], [14], [16], [19].

For more complicated query types, however, there is only a

narrow selection of existing studies. In particular, this has been

the case for the secure nearest neighbor (SNN) problem, where

a client issues an encrypted query point E(q) to a server and

asks for an encrypted data point in E(D) that is closest to the

query point, without allowing the server to learn the plaintext

of the query or the data. This problem is of significant practical

importance, since nearest neighbor (NN) queries are funda-

mental in spatial and multimedia databases, both of which find

extensive applications in the cloud. Unfortunately, as we will

show in this work, existing methods for secure NN queries,

though claimed to be secure [15], [21] in standard security

models (e.g., indistinguishability under chosen plaintext or

ciphertext attacks), are not secure.

This inspires us to examine the hardness of the SNN prob-

lem. Our investigation shows that the SNN problem is at least

as hard as constructing an order-preserving encryption (OPE)

scheme [5], [6]. Given the recent findings that it is impossible

to construct secure OPE schemes in standard security models

[5], our results immediately imply that one cannot expect the

server to find the exact (encrypted) answer for an SNN query

given only E(q) and E(D).
However, this does not mean we are hopeless in answering

secure NN queries in cloud databases. The trick is to relax

what we require the server to achieve. Instead of asking him

to find the encrypted exact nearest neighbor based on only

E(q) and E(D), we can ask the server to find a relevant

(encrypted) partition E(G) from E(D) (i.e., G ⊆ D), such

that G is guaranteed to contain the nearest neighbor of q.

Note that the hardness of the SNN problem does not apply

to this modified problem, as finding E(G) is not the same

as finding the encrypted exact nearest neighbor. Once given

E(G), any trusted entity with the decryption function E−1

can easily identify the answer to a query q, by using E−1 to

decrypt E(G) and then inspecting the data points therein.

Our new methods build on this idea for data in one and

two dimensions, and they allow customizable tradeoff between

communication and computation costs in cloud databases. Our

idea leverages on special partitions over D and the Voronoi

diagram of D. We dub our new method the secure Voronoi

diagram (SVD) method. Since the SVD method does not use

any new encryption schemes, rather, it only relies on any



standard encryption scheme E (e.g., public-key encryption

RSA, symmetric-key encryption AES), the SVD method is

as secure as E for any standard security model in which

E is proven secure (e.g., indistinguishability in either chosen

plaintext or chosen ciphertext attacks).

Finally, we use extensive experiments to demonstrate the

efficiency of our attacks to existing methods, as well as the

efficiency and the scalability of our new method SVD. Our

experiments were conducted over real and large datasets (up

to few millions points in multi-dimensional spaces).

The rest of the paper is organized as follows. Section II

formulates the problem. Sections III-A and III-B show our

construction of two (different) efficient attacks to the SNN

schemes in [21] and [15] respectively. Section IV investigates

the relationship between SNN and OPE, which establish the

hardness of the SNN problem. Section V presents the new,

secure Voronoi diagram (SVD) method. Section VI gives our

experimental results. Section VII surveys the related work, and

Section VIII concludes the paper.

II. PROBLEM FORMULATION

Formally, the SNN problem involves three parties:

1) A data owner who has a database D with d-dimensional

Euclidean objects/points, and would like to outsource D
to a server that cannot be fully trusted.

2) A client (or multiple of them) who wants to access and

pose queries to the database D.

3) A server that is honest but potentially curious in the

tuples in D and/or the queries from the clients. A sever

could be curious either because he is just curious or he

has been compromised to become curious on the behalf

of a third party without his explicit knowledge.

Our objective is to enable the client to perform NN queries

without letting the server learn contents about the query (and

its result) or the tuples in the database. Note that in practice,

a data owner could also be a client. Clearly, in order to

achieve our objective, the database D has to be encrypted

by some encryption scheme E by the data owner. We use

E(D) to denote the encrypted version of the database, and

E−1 to denote the corresponding decryption function (with

the necessary secret). Similarly to the case for the data owner,

clients only send to the server the encrypted versions E(q) of

their queries q (each of which represents a query point).

We aim to ensure that the SNN method is as secure as

the encryption method E used by the data owner. For ease of

exposition, we consider that E is proven secure under chosen-

plaintex-attack, but our method can be straightforwardly ex-

tended for other adversary models (e.g., indistinguishability

under chosen-ciphertext-attack).

The above formulation of the SNN problem is adopted

in previous work [15], [21] and is of considerable practical

importance for various reasons [11], [12], [14]–[16], [19],

[21]. For example, D might contain some sensitive values

that cannot be disclosed to the server, or D represents a

business asset to the data owner and/or the client, or the service

providers wish to provide SNN service as an assurance to

attract more customers.

Without loss of generality, we assume that D is represented

by N tuples {p1, . . . , pN}. Each tuple can be viewed as a d-

dimensional point: for any p ∈ D, p = 〈v1, v2, . . . , vd〉; p can

also be considered as a vector in d-dimensional space.

Remarks. One may consider an alternative formulation of the

SNN problem by regarding the data owner and the client as

the same party, since they share the same key and are assumed

to trust each other. We explicitly differentiate the data owner

from the client, so as to be consistent with previous work

[15], [21] and to simplify our discussion on the loopholes of

the existing methods (see Section III).

Unless otherwise specified, all proofs in this paper can be

found in Appendix ?? from our online technical report [22].

III. INSECURITY OF EXISTING METHODS

A. Solution by Wong et al. [21]

Basic idea. The data owner encrypts each tuple in the database

before sending it to the server using a customized encryption

scheme ET . The client sends an encrypted query using a

related but slightly different customized encryption scheme

EQ to the server. Wong et al. [21] showed that the customized

encryption schemes ET and EQ preserve the dot product

between the query vector q and any tuple vector p from the

database D, i.e., q · p = EQ(q) ·ET (p). Furthermore, for any

two points p1 and p2 from D, p1 · p2 6= ET (p1) ·ET (p2), i.e,

the dot product between two tuples in D cannot be obtained

directly from their ciphertext.

Given an encrypted query point E(q), the server (i) inspects

the dot product between E(q) and the ciphertext ET (p) of

each tuple p ∈ D, and (ii) returns to the client the ciphertext

that corresponds to the answer of the SNN query (see [21]

for the detailed algorithm). After that, the client decrypts the

ciphertext to get the query result. Note that, in order for the

client to encrypt and decrypt, the data owner needs to share

the secret key with the client.

Customized encryption schemes. The data owner and the

client share the following secret information: (i) an integer

d′ ≥ d, (ii) two d′ × d′ matrices M1 and M2 that are random

but invertible, (iii) a random bit vector A with d′ bits b1, b2,

. . ., bd′ , and (iv) some additional information that is irrelevant

to our discussion.

Let p = 〈v1, v2, . . . , vd〉 be any tuple in the database. The

encryption scheme ET works as follows. The data owner first

converts p into a d′-dimensional tuple p′ = [v′1, ..., v
′
d′ ]T , such

that (i) v′i = vi for any i <= d, (ii) vd+1 = − 1

2

∑d

j=1
v2j ,

and (iii) v′d+2
, ..., v′d′ are random numbers generated by

some specific rules (omitting such details does not affect

our analysis here). Next, p′ is transformed into two tuples

p′a = [x1, . . . , xd′ ]T and p′b = [y1, . . . , yd′ ]T based on A, such

that for any i ∈ [1, d′],

1) if bi = 1 (the ith bit from A), then xi and yi are two

random numbers satisfying xi + yi = v′i;

2) otherwise, xi = yi = v′i.



At last, the data owner computes p∗a = MT
1 · p′a and p∗b =

MT
2 · p′b, and sends p∗a and p∗b to the server as the encrypted

version of p.

Meanwhile, the scheme EQ for encrypting query points is

as follows. Given q = 〈v1, v2, . . . , vd〉 and a random number

r > 0, the client first converts q into a d′-dimensional tuple

q′ = [v′1, ..., v
′
d′ ]T that satisfies two conditions. First, v′i = rvi

for any i <= d, and v′d+1
= r. Second, v′i’s for i ∈ [d +

2, d′] are random values generated according to some specific

rules, such that the scalar product over the artificial attributes

(between d+ 1 and d′) from any q′ and p′ is always 0.

Then q′ is transformed into two tuples q′a = [x1, . . . , xd′ ]T

and q′b = [y1, . . . , yd′ ]T , such that ∀i ∈ [1, d′],
1) if bi = 0 (the ith bit from A), then xi and yi are two

random numbers such that xi + yi = v′i;
2) otherwise, xi = yi = v′i.

The encrypted version of q is the pair: q∗a = M−1
1 · q′a and

q∗b = M−1
2 · p′b.

Security guarantee. Wong et al. show that the above encryp-

tion schemes preserve the dot product between any query point

q and any point p in the database, i.e., q · p = ET (q) ·EQ(p)
(this forms the basis for their SNN method [21]). Furthermore,

Wong et al. claim that this protocol can guard against any

attacks based on the knowledge of a number of (plaintext,

ciphertext) pairs [21], and their argument is as follows: if

the boolean vector A is known to the adversary, then he/she

would be able to use the known (plaintext, ciphertext) pairs

to construct linear equations about M1 and M2, and then

solve the equations to obtain M1 and M2. However, since

A is secret, it would be hard for the adversary to derive the

correct linear equations to use, since the formulation of the

equations depends on A. A brute-force approach would require

the adversary to examine all possible bit vector A, which

leads to 2|A| linear equation systems that cannot be solved

in reasonable time when |A| is large.

We observe that the above reasoning is not rigorous, since

it assumes that the adversary only attempts his/her attacks by

solving M1 and M2. We will demonstrate an attack that does

not require any knowledge about M1 and M2.

Our attack using chosen-plaintext attack. Assume that the

server obtains d query points and their encryption (by asking

the oracle in the chosen plaintext attack model). For each q of

those query points, the server would have two encrypted points

q∗a and q∗b generated by EQ. Wong et al.’s encryption schemes

ensure that the dot product between q and any database point

p can be calculated based on the following equation:
p · q = p∗a · q

∗
a + p∗b · q

∗
b , (1)

Notice that the above equation contains only d variables

unknown to the server, i.e., the d coordinates of the data point

p. Since the server has the plaintext-ciphertext pair of d query

points, he can construct d linear equations like (1) to derive

the coordinates of p.

B. Solution by Hu et al. [15]

Hu et al. [15] consider the SNN problem under a setting

that is different but similar to ours. They assume that each

client (i) has the ciphertexts of all data points in D and the

encryption function E used to encrypt D, but (ii) does not have

the decryption function E−1. On the other hand, the server has

E−1 and some auxiliary information about each data point

(which is irrelevant to our discussion), but does not have the

plaintext or ciphertext of any data point. The objective of Hu

et al.’s method is to enable the client to identify the encrypted

answer for any SNN query (with the help from the server),

after which the client can retrieve the auxiliary information

associated with the answer from the server (the plaintext of

the answer remains secret to the client). Hu et al. claimed

that their solution not only prevents the server and client to

learn the plaintext of any data point, but also prevents the data

owner and the server from learning the queries posed by the

clients. However, we will show that Hu et al.’s solution does

not fulfill their security claims.

The encryption scheme. The construction in [15] relies on

an encryption scheme that gives what they called the privacy

homomorphism (PH). PH is an encryption transformations

which map some operations on cleartext to operations on

ciphertext. Formally, they are encryptions Ek : P → X
that allow a set of operations F on encrypted data without

knowledge of the decryption function (here, P is the domain of

plaintext and X is the domain of ciphertext). In particular, they

used the ASM-PH encryption scheme from [9], which supports

modular addition, subtraction, and multiplication. In what

follows, we use E to denote an ASM-PH encryption function,

and E−1 to denote the corresponding decryption function

(with the necessary secret keys). The PH encryption E in [9]

is shown to be secure against known-plaintext attacks, and it

can perform addition, subtraction, and multiplication directly

on the ciphertexts, e.g., E(a + b) = E(a) + E(b). Note that

in PH the operation on E(a) and E(b) is not necessarily the

same as that in plaintexts to preserve an operation, but maybe

some function f on E(a) and E(b) that is efficient to compute

and gives the same output as the operation of interest over the

corresponding plaintexts, i.e., E(a+ b) = f(E(a), E(b)). But

for simplicity, in the remainder of this paper, we just use the

same operation over the ciphertexts to denote such an f .

However, assuming a fully secure ASM-PH scheme E, we

can still launch an efficient attack on Hu et al.’s solution.

Basic idea of Hu et al.’s solution. The data owner builds a

multidimensional index I over his database D. Each node b in

I has a set of entries, where each entry e has a key value v and

a pointer p (to a child node of b). Note that v can represent

any object. For example, in the case of a d-dimensional R-

tree, v is an minimum bounding rectangle (MBR) and can

be represented as (~ℓ, ~u), where ~ℓ = {ℓ1, . . . , ℓd} and ~u =
{u1, . . . , ud}, such that [ℓi, ui] is the extent of the MBR in the

ith dimension. After I is generated, the data owner constructs a

shadow index E(I), which is identical to I except that the key

values (and only the key values) in all entries from all nodes

are encrypted by an ASM-PH encryption function E. E(I) is

published to all clients, and only the decryption function E−1

of E is sent to the server.



During query processing, Hu et al.’s solution requires the

client to encrypt the query q and traverse the shadow index

E(I) locally with the help of the server. In particular, for

each node b in E(I) visited by the client and for each entry

e = (E(v), p) in b, the client computes E(mindist(q, v)) =
mindist(E(q), E(v)) using the properties of the ASM-PH

encryption E, where mindist(·) is the minimum distance

between a query point q and an MBR v. Hu et al. showed

that in the ith dimension (suppose that q = (q1, . . . , qd)):

E(2 ·mindist(qi, [ℓi, ui])) = sign(ui − qi)(E(ui)− E(qi))+

sign(ℓi − qi)(E(ℓi)− E(qi))− (E(ui)− E(ℓi)), and (2)

mindist(E(q), E(v)) =
d

∑

i=1

E2(2 ·mindist(qi, [ℓi, ui])), (3)

where sign(a− b) returns −1 if a < b and 1 otherwise.

Note that in (2), only sign(ui − qi) and sign(ℓi − qi) are

not known/computable by the client locally. To figure out their

values, the client computes E(ui)− E(qi) = E(ui − qi) and

E(ℓi) − E(qi) = E(ℓi − qi) locally and sends them to the

server. The server, with the decryption function E−1, can

easily tell the values for sign(ui − qi) and sign(ℓi − qi) and

send them back to the client, given E(ui−qi) and E(ℓi−qi).
Now, knowing the values of sign(ui − qi) and sign(ℓi − qi),
the client proceeds to compute E(2 · mindist(qi, [ℓi, ui]))
by (2) and then derive mindist(E(q), E(v)) by (3). Finally,

the client sends mindist(E(q), E(v)), which is equivalent to

E(mindist(q, v)), to the server for decryption to figure out

the actual distance between q and the MBR represented by v.

The client repeats this process for each entry e = (E(v), p)
from an index node u, and chooses the proper children nodes

to browse in the next level, following the standard NN search

algorithm in an R-tree.

To prevent the server from knowing the exact value of ui−qi
and ℓi − qi, before sending E(ui − qi) and E(ℓi − qi) to

the server, the client subjects them to a scrambling process.

Similarly, to prevent the client from knowing the exact value

of mindist(q, v). The server subjects the decrypted value of

mindist(E(q), E(v)) to a recoding process.

The details of the scrambling and recoding procedures are

not important to our discussion here. The bottom line is, in

Hu et al.’s scheme, sign(ui − qi) and sign(ℓi − qi) must be

computed by server and sent to client for each dimension i ∈
[1, d], so that client can compute some distances locally to

decide the next node(s) to visit. We construct our attack using

this simple knowledge.

Our attack using chosen-plaintext attack. As said above, for

any d-dimensional query point q and any encrypted value E(v)
where v = {~ℓ, ~u}, the server returns the values of sign(ui−qi)
and sign(ℓi − qi) (−1 or 1) to the client (for all i ∈ [1, d]).
With this knowledge, however, the client can actually recover

the value v using a chosen plaintext attack. This means that the

client can recover any point p in D, since p’s ciphertext E(p)
is stored in the leaf-level entries of the shadow index E(I) at

the client side. As a result, Hu et al.’s approach cannot conceal

the database D from the client (which contradicts their security

claims). Our attack works as follows.

Suppose that v = [~ℓ, ~u]. Given E(v), the client can perform

a binary search along the ith dimension to recover the value

ℓi (or ui) in the ith dimension (i ∈ [1, d]). Specifically, if the

ith dimension has a domain [a, b], then the client can starts

with a random ciphertext E(x1) for a random x1 ∈ [a, b]
(he can obtain any such pair (E(x), x) through an oracle

from a chosen-plaintext attack), and then sends E(x1) and

E(ℓi) to the server and asks for the value of sign(x1, ℓi). If

sign(x1, ℓi) = −1, then the client asks for another ciphertext

E(x2) by choosing a random x2 ∈ (x1, b]; if sign(x1, ℓi) = 1,

the client asks for another ciphertext E(x2) by choosing a

random x2 ∈ [a, x1); otherwise, if E(x1) = E(ℓi), the client

terminates and outputs ℓi = x1.

Clearly, the client only needs to repeat this procedure for

log(b − a) steps in the worse case to recover the value ℓi.
Note that this works even for non-discrete domains, as any real

valued coordinate still has a fixed level of precision. Hence,

with no more than 2d log n steps (where n is the maximum

domain size, or bits of precision, for any dimension), the client

can fully recover the value v.

This attack shows that in Hu et al.’s method, the client can

recover the plaintext for any point in D and any entry in the

index I . Using similar techniques, we can also construct an

attack where the data owner can recover any query q given

only the encrypted version of E(q). In summary, Hu et al.’s

method [15] is not secure even if the E used is fully secure.

IV. HARDNESS OF THE SNN PROBLEM

Given the observations that none of the existing SNN

methods guarantees security in a standard security model, one

may wonder if the SNN problem is indeed hard. By being

hard, we mean that it is at least as hard as some other well-

understood cryptography problems that are known having no

efficient secure schemes in well-established security models.

To answer this question, we will show in this section that

the SNN problem is at least as hard as the order-preserving

encryption (OPE) problem [5], [6].

An order-preserving encryption E : P → X is an encryption

that takes a plaintext in a domain P and outputs a ciphertext in

a domain X , such that for any p1, p2 ∈ P , one can determine

if p1 > p2 or p1 < p2 given only c1 = E(p1) and c2 =
E(p2). (Note that deciding whether p1 = p2 can be reduced

to checking whether both p1 > p2 and p1 < p2 are false.) In

other words, one can understand an OPE encryption scheme

as a set of functions {E , E−1, op}, such that:

op(c1,c2) = 1 iff p1<p2, op(c1,c2) = −1 iff p1>p2, (4)

where op(·) is a polynomial operation that does not involve

(or have any knowledge of) the decryption function E−1.

The concept of an OPE scheme was first proposed in the

database community [1]. The solution, however, did not come

with a rigorous analysis of its security guarantee. It was until

the efforts from the cryptography community [5], [6] that we

understand the hardness of constructing a truly secure OPE

scheme. Specifically, Boldyreva et al. [6] have shown that it

is impossible to construct a secure OPE in standard security



models (such as indistinguishability against chosen-plaintext

attack, a.k.a. IND-CPA). Interested readers are referred to [5],

[6] for details. The critical message from [5], [6] is as follows:

Theorem 1: [from [5], [6]] A truly secure OPE does not

exist in standard security models, such as IND-CPA. It also

does not exist even in much relaxed security models, such as

the indistinguishability under ordered chosen-plaintext attack

security model (a.k.a. IND-OCPA).

We can establish the hardness of the SNN problem using

this negative result. We will show that given E(q), designing

an SNN method to find q’s (encrypted) exact nearest neighbor

from an encrypted database E(D) is as hard as designing a

secure OPE in standard security models. For convenience, let

nn(q,D) denote the nearest neighbor of q in D.

The reduction. Suppose that we have a d-dimensional data-

base D that contains N points p1, . . . , pN , and an encryption

scheme E that is secure under a standard security model M .

We use E−1 to denote the decryption function of E, and

E(D) to denote the set {E(p1), . . . , E(pN)}. Assume that we

can construct a truly secure SNN method that is able to find

exactly E(nn(q,D)) efficiently given E(q) and the encrypted

database E(D) alone. We denote this polynomial method as

B and formally define it as:

B(E(q), E(D)) → E(nn(q,D)),B does not use E−1. (5)

If such a method B(·) exists, we can construct an OPE E(·) in

the same security model M . Our construction is as follows.

Suppose that the message space for the OPE E(·) is the same

as the encryption scheme E above, which is represented by N
values {m1, . . . ,mN}, and without loss of generality, m1 <
m2 < · · · < mN−1 < mN . Our first step in constructing E(·)
is to map these values to a set of one dimensional points D =
{p1, . . . , pN , pN+1} using a special random hash function h,

such that for any i ∈ [1, N + 1], pi is a random value subject

to the following constraints:

1) pi ∈ Z
+ for i ∈ [1, N + 1];

2) h(mi) = pi for i ∈ [1, N ];
3) pi < pj for any i, j ∈ [1, N + 1] iff i < j;

4) pi+1 − pi < pi − pi−1 for any i ∈ [2, N ].

Lemma 1: For any message space {m1, . . . ,mN}, the
above hash function h(·) guarantees that:

nn(h(mi), D) = h(mi+1) for any i ∈ [1, N − 1], and

nn(h(mN ), D) = pN+1,nn(pN+1, D) = pN = h(mN ). (6)

Lemma 1 indicates that, for any two consecutive values mi

and mi+1 in the message space of E(·), the hash value of

mi+1 is the NN of the hash value of mi. In addition, for the

maximum element mN in the message space of E(·), the NN

of its hash value is the maximum element in the output space

of h(·). Figure 1 shows an example of the hash function h(·).We are now ready to present our OPE. For any mi from

a message space {m1, . . . ,mN}, we define an encryption

scheme E :

E(mi) = E(h(mi)) = E(pi), E−1(c) = h−1(E−1(c)), (7)

p1

m1 m2 m3 m4

Z
+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
Fig. 1: The hash function h(·).

where h−1(h(mi)) = mi. The secret in E contains both the

secret of E and the random mapping h, which easily allows

us to construct its decryption function E−1 as above. We have

the following lemma about E .

Lemma 2: For any i ∈ [1, N−1] and any ciphertext E(mi),
we have B

(

E(mi), E(D)
)

= E(mi+1), B
(

E(mN ), E(D)
)

=
E(pN+1), and B

(

E(pN+1), E(D)
)

= E(pN) = E(mN ).

By Lemma 2, if there exists a secure SNN method B(·) based

on the encryption scheme E(·), then we can incorporate B(·)
with E(·) (i.e., an encryption scheme that combines E(·) and

the hash function h(·)) to construct a secure approach for

searching successors. In particular, given the ciphertext E(mi)
of any non-maximum element mi in the message space of

E(·), we can invoke B(·) to compute the ciphertext of mi+1,

where mi+1 is the smallest element in the message space that

is larger than mi.

Algorithm 1: op(c = E(mi), z = E(mj))

i =traverse(c); /* see Algorithm 2 */1

j =traverse(z); /* see Algorithm 2 */2

if i < j then return 1; else return −1;3

Algorithm 2: traverse(c)

set γ = 0;1

let t = B(c, E(D)); t′ = c2

while B(t, E(D)) 6= t′ do3

let t′ = t and t = B(t, E(D));4

γ = γ + 1;5

return N − γ; /* B(·), E(D) are global inputs */6

Next, we will show that E(·) is an OPE, by proving that

there exists an operator op(·) that satisfies the Equation 4.

Algorithm 1 presents the details of our formulation of op(·).
Note that the algorithm only uses E(D) and B without any

knowledge about the secret of E (which includes both the

secret of E and the random mapping h). Algorithm 1 also

uses Algorithm 2 as its building block. Given a ciphertext

c = E(mi), Algorithm 2 outputs the index value i for the

plaintext mi. Hence, op(·) in Algorithm 1 simply compares

the two index values of the two input ciphertexts.

Specifically, the idea in Algorithm 2 is as follows. By

Lemma 2, B(c, E(D)) = B(E(mi), E(D)) outputs E(mi+1)
(for i ∈ [1, N − 1]). Now, we can repeatedly apply B(·) γ
times on its result until we hit E(mN ) = E(pN); clearly,

i = N−γ. The only challenge left is: how can we check if we

have reached E(mN) = E(pN)? To explain how we address

this, observe that, by Lemma 2, we have B
(

E(mN ), E(D)
)

=



E(pN+1) and B
(

E(pN+1), E(D)
)

= E(pN) = E(mN ),
i.e., once we hit E(mN ) for the first time, subsequent calls

to B(·) on its result will bounce between E(pN+1) and

E(mN ). Furthermore, among all possible ciphertexts E(m1) =
E(p1), . . . , E(mN ) = E(pN), E(pN+1), this mini-loop only

happens between E(mN ) and E(pN+1) (when we repeatedly

apply B(·) to its own output).

Thus, if we record the current value of t as t′ be-

fore we set t = B(t, E(D)) in line 4 in Algorithm 2

(same idea in line 2), then when t becomes E(mN ), line

4 would first set t′ = t = E(mN ), and then set t =
B(t, E(D)) = B(E(mN), E(D)) = E(pN+1). After that,

B(t = E(pN+1), E(D)) outputs E(mN) = t′ again, in which

case t and t′ would satisfy B(t, E(D)) = t′; this is precisely

the condition that terminates the loop in line 3.

Finally, for c = E(mi), it is easy to verify that this

termination condition is first met when we have iterated t
through E(mi+1), . . ., and E(mN ) exactly once (by the mini-

loop observation above). Thus, the running time of Algorithm

2 is at most O(NZ) where Z is the running time of the SNN

method B(·). This indicates that the cost of the Algorithm 1

for op is also O(NZ).

Theorem 2: Let {m1, . . . ,mN} be any message space and

mi < mj if i < j. Let E(mi) = E(h(mi)) and E−1 be

as defined in (7), using the hash function h and the secure

encryption scheme E from the SNN method B(·). Define op(·)
as shown in Algorithm 1. Then (E , E−1, op) is an OPE scheme

that is secure in any security model M in which E is secure.

Finally, by Theorems 1 and 2, our conclusion is:

Theorem 3: It is impossible to construct a secure SNN

method B(·) satisfying (5) in standard security models, such

as IND-CPA. It is not even possible to construct such an B(·)
in much relaxed security models such as IND-OCPA.

V. PARTITION BASED SNN METHOD

As shown in Theorem 3, given only an encrypted NN query

E(q) and an encrypted database E(D), there is no SNN

method that can pinpoint the NN of q in D. To circumvent this

impossibility result, a natural idea is to devise an SNN method

that does not exactly retrieve the NN of q. For example, the

server may answer an SNN query by returning the encrypted

database E(D) as a whole to the client, after which the

client can decrypt E(D) and compute the answer to the query

locally. This naive approach is clearly secure (as secure as E),

but it is highly inefficient as it requires transferring E(D) to

the client. To improve, we propose to partition D into small

groups and store the encrypted version of each group on the

server, such that any SNN query can be answered by returning

one encrypted group instead of the whole encrypted database.

Specifically, our partitioning of D is based on the Voronoi

diagram of D, as explained in the following.

A. Secure Voronoi Diagram

Given a multi-dimensional point database D with |D| = N ,

a Voronoi diagram of D is a decomposition of the space Ω

in which the points in D are defined. The diagram consists

of n disjoint Voronoi cells, each of which is associated with a

point in D (referred to as the owner of the cell). If a point p
is the owner of a cell c, then c equals the union of all points

in Ω that are closer to p than to any other points in D. Thus,

if a query point q falls in c, then its nearest neighbor in D is

p. For example, Figure 2 illustrates the Voronoi diagram of a

database with 16 two-dimensional points.

The Voronoi diagram of points in D can induce a partition

of D for SNN. Specifically, we can impose a square grid on the

Voronoi diagram, and then construct an overlapping partition

of D, such that each element of the partition (i) corresponds to

a grid cell B and (ii) consists of the owners of all Voronoi cells

that overlap with B. For example, in Figure 2, the partition

element (i) G1 corresponds to the grid cell B1, and (ii) G1

consists of ten points (i.e., p1, p2, p3, p4, p5, p6, p7, p8, and

p10), since B1 overlaps with the Voronoi cells owned by those

ten points. Observe that, if a query point falls in a grid cell

Bi, then its nearest neighbor must be a point in the partition

element Gi associated with Bi.

Given the aforementioned partition of D, the data owner

pads each partition element to the same size, and then encrypts

them separately (with the same key) and gives each element

a random identifier. (The padding procedure ensures that the

encrypted partition elements cannot be distinguished by their

sizes). After that, the data owner sends all encrypted partition

elements and their associated identifiers to the server, and

informs the client about the description of the square grid

and the identifier of each partition element. Whenever the

client has an SNN query q, she first identifies the grid cell

B that contains q, and then retrieves the identifier i of the

partition element that corresponds to B. Then, the client asks

the server to return the encrypted partition element whose

identifier equals i (notice that this partition element must

contain the nearest neighbor of q). Upon receiving the partition

element, the client decrypts it and computes the answer to q
locally. Intuitively, this SNN method is secure, as it allows

the server to learn nothing but the identifier of the returned

encrypted partition, which is randomly generated. We provide

the formal security proof in Section V-C.

The above partition scheme, albeit simple and secure, incurs

significant space overhead (for the server) and communication

cost (for the client). To understand this, recall that each

partition element needs to be padded to the same size before

encryption. Let smax be the number of points in the largest

partition element. Then, after padding, the size of each parti-

tion element is smax. Assume that the size of the encryption

of a message is (roughly) linearly dependent (or in a stair-case

fashion) on the size of the message, which is the case for most

encryption functions, the server requires O(k · smax) space

to store all encrypted partition elements (where k denotes

the total number of partition elements), and the client pays

O(smax) communication cost for each SNN query. Ideally, we

would prefer a partition scheme that ensures smax = N/k, in

which case both the server’s space overhead and the client’s

communication cost are minimized. This, however, would
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Fig. 4: Partition Scheme for One-dimensional Data.

require that each partition element contains equal number of

points, which is rather unlikely under the square grid partition

scheme. Specifically, as real datasets are often skewed, some

cell in a square grid may intersect a significantly larger number

of Voronoi cells than other grid cells. This leads to a large

smax, which results in significant space and communication

overheads. To remedy this deficiency, we propose improved

schemes that adaptively partition the data space to minimize

smax, as will be discussed in Section V-B.

Remark: The partition scheme of imposing a square grid over

the Voronoi diagram was also used by Ghinita et al. [10] in the

context of private information retrieval (PIR). We will discuss

the difference between SNN and PIR in Section VII. We dub

this scheme the SG (Square Grid) partition.

B. Improved Partition Schemes

In what follows, we present partition schemes that aim

to minimize smax, i.e., the number of points in the largest

partition element. We focus on the case when D is one- or

two-dimensional, as (i) SNN queries are particularly important

for one- or two-dimensional spatial data, and (ii) constructing

Voronoi diagrams is computationally challenging on data with

dimensionality over 2 (as each Voronoi cell would become a

complex polytope).

1) One Dimension: In one dimension, there is an optimal

partition scheme that generates disjoint and equal-size partition

elements. To explain this, observe that the Voronoi cells of any

one-dimensional dataset are one-dimensional intervals, such

that (i) any two intervals are disjoint, and (ii) the union of all

intervals equals the data space. For example, Figure 4 shows

the Voronoi cells (vc1, . . . , vc4) of a one-dimensional dataset

that contains four points p1, p2, p3, p4.

Assume that we aim to generate a partition of D with k
elements. Then, it suffices to divide the data space into k
disjoint intervals, such that each interval contains N/k Voronoi

cells of D (where N is the number points in D). The owners

of the Voronoi cells in each interval can be taken as partition

element, which leads to an optimal partition scheme where

smax = N/k. For instance, if we are to generate a partition

with two elements on the dataset in Figure 4, then we can put

p1, p2 into a partition element, and p3, p4 into the other.

2) Two Dimensional Data: The case for two-dimensional

data is much more complicated than the one-dimensional case,

which renders it difficult to compute an optimal solution

efficiently. This motivates us to derive two partition schemes

based on heuristics, as will be explained in the following.

The MinSG scheme. This partition scheme adopts a greedy

approach to generate a grid where the sizes of cells vary in

a manner that adapts to the distribution of points in D. We

start with a grid that contains only one cell Ω that cover the

entire data space. Then, we iteratively cut the grid cells into

smaller ones using either horizontal (or vertical) lines through

[−∞,+∞] along the x-axis (or the y-axis). The process is

conducted until the desired number of grid cells is met. After

that, we generate the partition by identifying the owners of

the Voronoi cells that intersect with each grid cell (as with the

case of a square grid in the SG method).

The effectiveness of the above algorithm relies on how

we choose the horizontal (or vertical) line to cut the grid

cells. As we aim to minimize smax, we propose to choose

a line cutting through the grid cell Bmax that determines

smax, i.e., the grid cell that intersects the largest number of

Voronoi cells. The intuition is that, when Bmax is split into two

smaller cells Bα and Bβ , each of the two cells may intersect a

smaller number of Voronoi cells, which leads to a decrease of

smax. To maximize the decrease of smax, we should minimize

max {|sα|, |sβ |}, where |sα| (|sβ |) denotes the number of

Voronoi cells that intersects Bα (Bβ). Choosing a line that

minimizes max {|sα|, |sβ |}, however, is challenging given that

there exists an infinite number of lines that cut through Bmax.

To remedy this problem, we have a key observation as follows.

Lemma 3: max {|sα|, |sβ |} is minimized only if the cutting

line passes through (i) a vertex of a Voronoi cell or (ii) the

intersection point between the boundary of Bmax and a face

of a Voronoi cell.

Let [xl, xu] and [yl, yu] be the projections of Bmax onto the

x- and y-axes, respectively. Let V1 be a set that contains any

vertex of any Voronoi cell with its x-coordinate in [xl, xu]
or its y-coordinate in [yl, yu]. Let V2 be a set that contains

any intersection point between the boundary of Bmax and a

face of any Voronoi cell. By Lemma 3, we can identify the

cutting line that minimizes max {|sα|, |sβ |}, by (i) inspecting

all horizontal or vertical lines that pass through the points in

V1 ∪ V2 and (ii) choosing the line that leads to the smallest

max {|sα|, |sβ |}.

As mentioned, the above splitting procedure is applied



iteratively based on the grid cell that intersects the largest

number of Voronoi cells, until the number of grid cells reaches

a pre-defined threshold k. Since each cutting line that we use

would span the whole x- or y-axis, it may split more than

one grid cells, and hence, when the algorithm terminates, the

total number of grid cells may be more than k. Whenever this

happens, we would iteratively merge some neighboring cells

without affecting the size of the largest partition, until only k
cells are left. We omit such technical details for brevity.

We refer to the aforementioned partition scheme as the

MINSG (Minimum Space Grid) method. For example, Figure

3(b) shows the results of applying MINSG over the same

dataset in Figure 3(a).

It can be verified that the number of iterations performed by

MINSG is no more than k− 1 (since each iteration increases

the total number of grid cells by at least one). Furthermore, the

number of cutting lines that MINSG needs to inspect in each

iteration is O(N), since (i) the total number of vertices in a

Voronoi diagram is 2N − 5 (for N ≥ 3), i.e., |V1| = 2N − 5,

(see Theorem 7.3, [8]); and (ii) each Voronoi cell, being a

convex polygon, can intersect the boundary of a grid cell at

no more than 8 points, i.e., |V2| ≤ 8N . For each candidate

cutting line ℓ, we need to identify the Voronoi cells intersecting

ℓ and to incrementally update the number of Voronoi cells

that overlap with each grid cell, which incurs O(N) cost in

the worst case. Therefore, the time complexity of MINSG is

O(kN2). In practice, however, the running time of MINSG

is often not quadratic to N , since the sizes of V1 and V2 are

often much smaller than N .

The MinMax scheme. The MINSG method tries to minimize

the maximum element size in the partition, by iteratively

splitting the largest partition element. Nevertheless, the split is

induced by a horizontal or vertical line that spans the whole

x- or y-axis, which often incurs unnecessary split of other

partition elements. For example, consider the grid partition

in Figure 3(b), where the grid cell B1 intersects the largest

number of Voronoi cells. If we are to split B1 with an vertical

line ℓ, then the cell B2 would be split into two smaller cells

by ℓ as well, even though the split of B2 does not decrease

the maximum element size in the induced partition.

To address this problem, we propose to improve MINSG by

splitting, in each iteration, nothing but the grid cell that induces

that largest partition element. Specifically, in an iteration where

the large partition element is induced by grid cell Bmax, we

would split Bmax using a horizontal (vertical) line segment

ℓ′ whose projection on the x-axis (y-axis) equals Bmax’s

projection on the same axis. Furthermore, the line segment

is selected among those that pass through (i) a vertex of a

Voronoi cell or (ii) the intersection point between a face of a

Voronoi cell and the boundary of Bmax – the correctness of

this approach can be shown by a result similar to Lemma 3.

The rest of the algorithm is the same as in MINSG. We refer

to this improved method as the MINMAX (Minimum Max

partition) method. Figure 3(c) shows the results of applying

MINMAX on the same dataset in Figure 3(a).

Observe that each iteration of MINMAX increases the num-

ber of grid cells by one. Thus, the total number of iterations

performed by MINMAX is (k − 1). Each iteration inspects

O(N) cutting line segments, and examines O(N) Voronoi

cells for each line segment. Therefore, the time complexity of

MINMAX is O(kN2), as with the case of MINSG. But, for

similar reasons, its running time in practice is much better.

Remark. No matter which partition scheme is used, the data

owner does not send the k partition elements to the client,

which have a total size of N points. Instead, he only needs to

send the description of the grid constructed, and the associated

(randomly generated) identifier for each grid cell, which only

has a size of O(k) for all three methods, SG, MINSG, and

MINMAX.

C. Security Analysis

No matter which partition scheme is used, the SVD method

only releases the encryptions of all partition elements to the

server, using an encryption scheme E that is proven secure in

a standard security model M , and their associated (randomly

generated) identifiers. Furthermore, during query processing,

the client sends only the identifier for the partition element

whose corresponding grid cell contains the query point q, to

the server. Thus, the server learns nothing but an id number

(randomly generated by the data owner for each partition

element) in answering a query. Formally:

Theorem 4: If E is a secure encryption scheme in a stan-

dard security model M , e.g., indistinguishability under chosen

plaintext attack (IND-CPA), then the SVD method is as secure

as E in the same model M with respect to a single query.

Further improvement of security. The above analysis con-

siders a powerful adversary that is able to obtain a large

number of plaintext-ciphertext pairs (in either chosen plaintext

attack model or chosen ciphertext attack model), but implicitly

assumes that the adversary has no knowledge of how the

user’s queries are distributed. When this assumption does not

hold, the adversary may infer information by exploiting the

correlation between different encrypted queries from the user.

For example, assume that the adversary knows in advance that

most of the queries from the user would have a query point in a

region R. Then, the adversary can keep track of the encrypted

partition element retrieved by each user query over a long

period, after which the adversary can link R to the partition

element that is retrieved most frequently.

To guard against such attacks, we can extend our solution by

adopting private information retrieval (PIR) techniques [10].

In particular, for any SNN query q, the user can first identify

the encrypted partition element that contains the answer to q;

and then, the user can invoke a PIR protocol to retrieve the

encrypted partition element from the server, without allowing

the server to learn which partition element is returned. But

notice that existing PIR techniques either incur considerable

overhead in query processing [10] or require specialized secure

hardware that is expensive [17], i.e., the improved security

guarantee would come at a cost.
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Fig. 5: The attack on solution by Wong et al. [21]
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Fig. 6: The attack on solution

by Hu et al. [15], varying |D|.

Return a partition element vs. return nn(q,D). One may

wonder if the SVN method “leaks” too much information

to the client about the database D, by returning a partition

element (i.e., a number of points) for each query. We argue

that this should not be a concern at all: if one allows the client

to learn the nearest neighbor of a query point of her choice

(by any SNN methods), the client can efficiently reconstruct

the entire database D anyway, i.e., there is no way of hiding

the database D from the client if one wants to support client’s

nearest neighbor queries. We show why this is the case in

Appendix ?? in our online technical report [22].

VI. EXPERIMENT

Our implementations were achieved in C++. We used the

Qhull library to find the Voronoi diagram for a dataset D,

and the latest Crypto++ library for any standard encryption

schemes. All experiments were performed on a Linux machine

with an Intel Xeon 3.07GHz CPU and 12GB memory.

Datasets. When investigating our attacks to existing schemes

in different dimensions, we generate random points following

either a random cluster or a uniform distribution. Based on

the construction of our attacks, the distribution of the points

does not affect the efficiency of our attacks.

For SVD methods, we focus on 2-dimensions with two real

datasets, which are points of interest in California (CA) and

Texas (TX) from the OpenStreetMap project. In each dataset,

we randomly select 2 million points to create the largest

dataset Dmax and form smaller datasets based on Dmax. We

also make sure that smaller datasets are always subsets of

larger datasets, in order to isolate the impact of |D|.

Setup. In the investigation of our attacks, since the distribution

of the data does not introduce a noticeable difference, our

default distribution is uniform. In the scheme from Wong et

al. [21], we set the default values of d and d′ as d = 30 and

d′ = 60. In the scheme from Hu et al. [15], we only report

the results from d = 2 for brevity.

In the study of the SVD method, the default values are:

|D| = 106 and k = 625 (number of partition elements). The

default dataset is CA. By default, we used the AES encryption

scheme with a key size of 256 bits and a block size of 256 bits.

The trends from other secure encryption schemes are similar.

Any secure public-key or symmetric-key encryption scheme

can be used to construct a SVD method.

In all experiments, unless otherwise specified, when we

vary the value of one parameter in concern, we keep all other

parameters at their default values.

A. Attacks to existing methods

We first studied the efficiency of our attack on the SNN

method by Wong et al. [21], and the results are given by Figure

5. As shown in Section III-A, our attack only needs d query

points and their encryption to form a linear system of d linear

equations with d unknowns to solve one data point p ∈ D.

Thus, the cost of our attack should be linear to both |D|
and d, which is reflected in Figures 5(a) and 5(b). Our attack

is extremely efficient. For example, Figure 5(a) shows that it

takes less than 23 minutes to recover a database with 2 million

points in 30 dimensions and also with 30 artificial dimensions.

Lastly, the artificial dimensions d′ introduced in the solution

of Wong et al. [21] is not significant to our attack, as seen

in Figure 5(c). When d′ goes from 30 up to 80, the overhead

introduced to the overall time to attack is less than 40 seconds

when the total time to attack is 600 some seconds.

Next, focusing on d = 2 and a domain size of 109 in both

dimensions, Figure 6 shows that our attack to the solution

by Hu et al. [15] is extremely efficient when we vary |D|.
For a database with 2 million points, each with 1 billion

possible values in either dimension, our attack takes less than

20 seconds to recover all 2 million points! Our attack is linear

to both d and |D|, since its cost to recover one point in D is

only O(d logn) where n is the maximum domain size in any

one dimension according to our analysis in Section III-B.

Finally, both attacks can be easily made parallel, as they

recover each point in D independently.

B. Evaluation of the SVD method

We next evaluate the efficiency of the new SVD method,

when we instantiate it with three different partitioning schemes

introduced in Section V. To differentiate them, we simply refer

to the resulting SVD methods by the names of the partitioning

methods used.

Preprocessing cost. For the data owner, there are two major

steps: partition and encryption. Both are mainly affected by

the number of grid cells k (which is also the number of

partition elements) and the size of the database. Figure 7(a)

shows that the partition costs in both MINSG and MINMAX

increase linearly with k, however, the cost of MINSG increases

much faster than that in MINMAX, which increases very

slowly (almost unnoticeable). This is due to the optimization

in MINMAX (compared to the cutting lines in MINSG) to

limit any cutting line to be strictly within the cell to split.
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Fig. 7: Running time of the partition phase.
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Fig. 8: Partition size in different methods.

The partition cost of SG is constant regardless k, since it

calculates the unit length of each cell constantly once k is

given. MINMAX is extremely efficient; its partition cost is

almost as good as the partition cost of SG. It produces 1,225

partitions for 1 million points in just 20 seconds.

Next, Figure 7(b) shows the partition cost when we vary the

size of the database from 0.2 million to 2 million. The partition

cost in SG clearly should be linear to N = |D| once it has

figured out the unit length of each cell, which is observed in

Figure 7(b). Interestingly enough, even though our analysis

in Section V-B indicates that the worst case complexity for

both MINSG and MINMAX is O(kN2). In practice, both their

costs are in fact only linear to N . This is because that the bad

case in our analysis, where a cutting line intersects with all

O(N) Voronoi cells, is almost impossible in practice. Instead,

for both MINSG and MINMAX, in any step a cutting line

typically only intersects with a constant number of Voronoi

cells. This means that both their costs should be only O(kN)
(for a maximum of k possible steps). Also, clearly a cutting

line in MINSG expects to intersect with more Voronoi cells

than that in MINMAX in any step. Hence, we also see a higher

cost in MINSG than the cost of MINMAX, and a faster pace

of increase in cost when |D| increases. Figure 7(b) indicates

that MINMAX is almost as efficient and scalable as SG. When

|D| changes from 0.2 to 2 million points, the partition cost of

MINMAX only increases from 5 seconds to 40 seconds.

We then examine the sizes of the partition elements from

different methods before applying the random padding op-

eration. Due to the random padding operation to “inflate”

every partition element with random bytes to the size smax

of the maximum partition element, two values are critical:

smax, which decides the storage cost at the server and the

communication cost of every query, and the variance of the

sizes of partition elements, which decides the overhead of the

total “inflation”. Figure 8 plots the average size of partition

elements along with smax and smin (the size of the minimum
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Fig. 9: Total running time of the preprocessing step.

partition element), as the error bar, w.r.t. k and |D|.

All methods produce partitions that have a similar average

size. However, SG always has the largest values in both smax

and the variance, due to its complete ignorance of the data

distribution. MINSG does significantly reduce the value of

smax, which is expected since its design is to greedily split the

partition element with the maximum size. However, following

our analysis in Section V-B, due to the long extent of its cutting

lines (always from [−∞,+∞]), its splitting method will

potentially lead to partitions of very small size, as observed in

Figure 8. The design of MINMAX makes further improvement

to MINSG, so it further reduces smax considerably. It also

eliminates very small partition elements by limiting a cutting

line to be only within the extent for the cell to split (the cell

for the current maximum partition element). Hence, MINMAX

always produces a balanced partition. As a result, its smax is

very close to the average size of all partition elements and the

variance is also small, as seen in Figure 8.

Finally, not surprisingly, for all partition methods, the values

for both the average size and the smax reduce when more

grid cells are used (Figure 8(a)), and increase when D grows

(Figure 8(b)). Nevertheless, MINMAX always produces highly

balanced partitions with the smallest (much smaller than that

from the other two methods) smax values.

Figure 9 reports the total running time for the preprocessing

step, which includes the costs of both the partition and the en-

cryption (as well as the Voronoi diagram construction and the

random padding operation, whose costs are small compared to

partition and encryption costs). For reference, we also include

the preprocessing cost from the naive method Send-D (see the

first paragraph in Section V), whose preprocessing cost is to

encrypt D in its entirety as one message.

What is interesting to observe is that, even though SG

is fastest in producing its partitions, it becomes the slowest

method overall. This is explained by the fact that partitions

produced by SG suffer from the largest variance and the largest

smax value. After the random padding operation, all partitions

share the same size as the maximum partition element. Hence,

the value of smax decides the total encryption cost when there

are equal number of partition; and the variance in partition size

decides the overhead introduced to the encryption step by the

“inflation” of random bytes. Given the results in Figure 8, it

is not surprising to see that SG becomes the slowest method,

and MINMAX becomes the fastest method (especially when

MINMAX also enjoys a partition cost that is almost as good

as the partition cost in SG, see Figure 7).
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Fig. 10: Total size of all encrypted partition elements.

Thus, it is natural to see a linear increase w.r.t. k and |D|
in the total running time in producing all encrypted partition

elements for all SVD methods. However, as shown in Figure 9,

MINMAX is at least one order of magnitude faster than SG,

and about 3-6 times faster than MINSG. In fact, MINMAX

only takes less than 90 seconds to produce all encrypted

partition elements with k = 625 over a database with 2 million

points as shown in Figure 9(b). Of course, Send-D is fastest,

but MINMAX’s overhead compared to Send-D is small.

We also examined the total size of all encrypted partition

elements. It affects both the communication cost from the data

owner to the server and the storage cost at the server. After the

random padding operation, each partition element has a size

of smax; hence, this value is simply kemax, assuming emax is

the size of the ciphertext for a message of size smax encrypted

under the secure encryption scheme E used.

Figure 10 shows the total size of all encrypted partition

elements for all methods. We can view Send-D as a method

with only one partition element to encrypt, which is D itself.

For reference, we also include the size of D. Clearly, the total

size only increases linearly with |D| in all methods; it also

increases linearly with k in all SVD methods. Among the

three SVD methods, MINMAX is the clear winner, which

again is due to the smallest smax value it achieves (see Figure

8). All methods introduce a owner-server communication and

server storage overheads compared to using the database D
itself. However, MINMAX’s overhead is almost as small as

that from the naive method Send-D which has the smallest

such overheads one can hope for.

Finally, the client’s storage cost is dependent only on the

size of the description for all grid cells as shown in Section

V-C, which is O(k) for all three SVD methods, regardless

the size of the database and the sizes of partition elements!

Since typical k values are very small compared to the database

size (having few hundred grid cells is good enough for a few

million points), this cost is almost negligible.

Lastly, we do not observe any significant difference from the

TX datasets. Hence, we omit all results from TX for brevity.

Query processing cost. Recall that for a query q, the client

locally figures out the identifier for the grid cell that contains q,

using the description of all grid cells she has; then she simply

requests the server to return the corresponding, encrypted

partition element. But due the random padding operation, each

encrypted partition element has the same size, emax, which is

the size of the encryption for a message of size smax (the size

of the maximum partition element) under the secure encryption
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Fig. 11: Query communication cost.
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Fig. 12: Query time for different methods.

scheme E used to construct the SVD method.

That said, the server-client communication cost is always

emax for any query in a SVD method. In contrast, this cost for

Send-D is the size of the encryption for the entire database. As

a result, the server-client communication cost from all SVD

methods are much better than that in Send-D, especially for

the best SVD method MINMAX, as shown in Figure 11. In

fact, MINMAX’s query communication cost is 2-3 orders of

magnitude smaller than the cost of Send-D in most cases!

Next, we examine the query processing cost at the client

side. For a SVD method, this consists of two parts: 1) figure

out the identifier for the grid cell that contains a query point q,

which can be done efficiently using a multi-dimensional index

over the description of all grid cells; 2) decrypt the encrypted

partition element returned from the server, and find the nearest

neighbor of q among points in this partition element. For

the native method send-D, its query cost is to decrypt the

encrypted database, and then find NN of q from D.

For each experiment, we generate 100 random queries and

report the average in Figure 12. Figure 12(a) shows that the

query costs of all SVD methods reduce when k increases, due

to smaller number of points in the partition element returned.

However, MINMAX enjoys the best improvement when k
increases. This is because we report the average query cost

and it produces the most balanced partition elements. All SVD

methods outperform the naive method Send-D in all k values.

In fact, MINMAX is faster by 2-3 orders of magnitude than

Send-D, and by 1-2 orders of magnitude than SG. When |D|
increases, the query time of all methods increases linearly with

|D| as shown in Figure 12(b). Nevertheless, MINMAX still has

the best performance, which is 3 orders of magnitude faster

than Send-D, and 2 orders of magnitude faster than SG. When

D has 2 million points, with 625 partitions MINMAX’s query

time at client is as little as 10−2 second.

VII. RELATED WORK

Our study falls into the general category of secure query

processing as discussed in Section I. Existing work have



examined the problems of answering basic SQL queries [11],

executing aggregate queries [13], [16], and performing range

queries [14], [19], over an encrypted database. As shown by

existing studies [14], [15], [19], [21], special treatments are

often required for more complex query types, to meet the secu-

rity requirements and/or achieve better efficiency. In particular,

research effort [15], [21] has been made to address the SNN

problem; the solutions thus proposed, however, are insecure

and can be attacked efficiently, as we have demonstrated.

Secure query processing (including the SNN problem) is re-

lated to but different from another well known problem called

private information retrieval (PIR) [3], [10], [20]. In PIR, the

objective is to prevent the server from knowing anything about

which records have been retrieved/accessed by a user query,

while the server is allowed to know all of the tuples in the

database. In particular, using PIR for answering NN queries

has been studied in [10], [17], but the solutions thus proposed

only protect the privacy of user queries, without preventing the

server from knowing the content of the database. For similar

reasons, our problem is also different from privacy issues in

location-based services [2], [4], [7].

Our reduction from OPE to SNN (which shows the hardness

of the SNN problem) leverages on the concept of order-

preserving-encryption, which was first proposed in [1]. How-

ever, the OPE schemes proposed in [1] did not come with

any formal analysis on their security guarantees. It was until

recently that the formal security analysis on the general

concept of OPE schemes has surfaced from the cryptography

community [5], [6]. In particular, it is proven that it is impos-

sible to construct secure OPE schemes in standard security

models (see Section IV and [5], [6] for details).

Our partitioning schemes share some similar motivation

from the design of indexing methods based on Voronoi di-

agram, e.g., [18]. However, our methods must adhere to the

specific partitioning policy derived based on the particular

security and efficiency constraints to the SNN problem, which

makes our study here different from existing work. Lastly,

as discussed in Section V-A, the basic method SG was used

in a different context for answering spatial queries using

PIR techniques. However, as shown by our study, we have

proposed new partitioning schemes, MINSG and MINMAX

that significantly outperform SG in terms of both the size of

the maximum partition element and how balance the sizes of

different partition elements are.

VIII. CONCLUSION

This work revisits the secure nearest neighbor problem. We

show the insecurity of existing solutions, and the hardness

of the SNN problem. We then design a new partition-based

secure Voronoi diagram (SVD) method. The SVD method

is as secure as the encryption function it uses, and any

standard secure encryption schemes can be employed by the

SVD method. Extensive experiments clearly demonstrate the

efficiency and the scalability of the SVD method. Future work

include extending our investigation to higher dimensions, k

nearest neighbors, nearest neighbors in non-euclidean space

(e.g., on road networks), and other similarity search queries.
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