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Abstract— Approximate results based on samples often provide
the only way in which advanced analytical applications on very
massive data sets (a.k.a. ‘big data’) can satisfy their time and
resource constraints. Unfortunately, methods and tools for the
computation of accurate early results are currently not supported
in big data systems (e.g., Hadoop). Therefore, we propose a
nonparametric accuracy estimation method and system to speed-
up big data analytics. Our framework is called EARL (Early
Accurate Result Library) and it works by predicting the learning
curve and choosing the appropriate sample size for achieving the
desired error bound specified by the user. The error estimates
are based on a technique called bootstrapping that has been
widely used and validated by statisticians, and can be applied
to arbitrary functions and data distributions. Therefore, this
demo will elucidate (a) the functionality of EARL and its
intuitive GUI interface whereby first-time users can appreciate
the accuracy obtainable from increasing sample sizes by simply
viewing the learning curve displayed by EARL, (b) the usability
of EARL, whereby conference participants can interact with the
system to quickly estimate the sample sizes needed to obtain the
desired accuracies or response times, and then compare them
against the accuracies and response times obtained in the actual
computations. I. INTRODUCTION

In today’s fast-paced business environment, obtaining re-
sults quickly represents a key desideratum for ‘Big Data
Analytics’ [8]. Well developed theory and extensive experi-
ments from statistics show that in analyzing large data sets,
performing careful sampling on the data and computing early
results from such samples provide a fast and effective way
to obtain approximate results within the prescribed level of
accuracy for most applications. However, while the need for
approximation techniques grows with the size of the data
sets, general methods and techniques for handling complex
tasks are still lacking in both MapReduce systems and parallel
databases that claim ‘big data’ as their forte.

Our Early Accurate Result Library framework (EARL) [9]
has been designed and developed to provide this much needed
functionality thus bridging the gap between the mushrooming
data-sizes and the response time requirements. To achieve this,
we explore and apply powerful methods and models developed
in statistics to estimate results and the accuracy obtained from
sampled data [16], [4]. We propose a method and a system
that optimize the work-flow computation on massive data-sets
to achieve the desired accuracy while minimizing the time and
the resources required. In this demonstration we will present

the EARL prototype1 and its intuitive GUI interface which
helps the user through the successive phases of ‘big data’
analytics. This prototype represents also the starting point
for a formal study of the tool usability we are planning to
conduct. The early approximation techniques presented are
also important for fault-tolerance, where only a portion of
the data is available and the error estimation is required to
determine if node recovery is necessary.

As shown in the paper [9], in order for sampling to be
effective at reducing latency two challenges must be addressed
in error estimation: efficiency and scalability. To address these
challengers, EARL relies on the bootstrapping technique de-
scribed in [16] which works for arbitrary analytical functions.
This technique relies on resampling methods, where a number
of samples are drawn from s. The function of interest is
then computed on each sample resulting in the sampling
distribution used for assigning measure of accuracy to sample
estimates. When computing an analytical function in EARL, a
uniform sample, s, of stored data is taken; then, based on the
confidence of error prediction, this is enlarged as necessary to
construct the learning curve from which the required sample
size can be determined.

Improving on this general framework, EARL addresses the
efficiency challenge via delta maintenance techniques and the
scalability challenge via Hadoop integration. Delta mainte-
nance techniques reuse the results across samples of different
sizes, while the integration with the popular MapReduce
framework allows for exploiting the inherent parallelism of
bootstrapping. Furthermore EARL’s simple API allows for
easy specification of mining algorithms that take full advantage
of our framework.

The conference participants will experience EARL’s ease
of use first hand. The user interacts with the EARL system
via a three step process: (i) configuration, (ii) required sample
size estimation and (iii) computation of the actual results. In
(i) the user uses EARL’s API to specify her own algorithm,
or choose one from the existing library. The dataset and the
execution mode (distributed or local) is also chosen during the
configuration stage. In (ii) the learning curve is first derived
from a small dataset and then used to predict the sample size

1EARL will be released for experimental and non-commercial use at [1].
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Fig. 1. An example of EARL estimating the classification error for the Adult training dataset using SVM. (left) The user begins by starting with a small
sample and analyzing the learning curve then, (right) the user picks the sample size for the desired error bound and computes the result. In the case of SVM,
the resulting model is saved in a binary file, which can be then loaded in R and used on testing data.

needed to achieve the desired accuracy. Estimations made by
extrapolating the learning curve allow users to estimate errors
and results for sizes of data that make the actual computation
impractical under realistic time and resource constraints. Fi-
nally, in (iii) the algorithm is executed (on Hadoop or in local
mode) over the determined sample size. Steps (ii) and (iii) are
shown in Figure 1. For more details on the above steps refer
to our full paper in [9].

EARL presents many exciting opportunities. While the
recent move to a DSMS might require that the old data mining
algorithms be replaced by new ones specifically designed for
data streams, our recent results suggest that this is not often the
case. In fact, recent results on early approximate answers from
massive data sets [9] show that accurate mining results can
be obtained with samples as low as 1%, whereby satisfactory
response times are often achievable on massive data streams
by using the same algorithms as those used on stored data.

Organization Section II briefly describes the demonstration
we are proposing. Section III provides an overview of our
system. Section IV presents related work and Section V draws
our conclusion.

II. DEMONSTRATION DESCRIPTION

To demonstrate the functionalities of the EARL workbench,
we apply it to a well known supervised learning algorithm
SVM [7], which is known for its accurate classification but
expensive running time. We then proceed with the MIC [15]
algorithm, which has been recently proposed for detecting
associations in large data. The actual demonstration is or-
ganized in two phases: (i) a brief introduction to the main
system functionalities, in which the presenter shows a simple
case of our scalable error estimation framework highlighting

the core components of the system, and (ii) a “hands-on”
phase in which the public is invited to directly interact with
the system and test its capabilities by visually inspecting
the results produced by the mining algorithms derived from
samples of the data.

In the presentation of the system functionalities we will
show how the system interface, shown in Figure 1 guides the
user through the the two-step analytics process: (i) Learning
curve prediction and (ii) Point-error estimation. In (i) for the
particular mining task and the given sample of the training
data, the user analyzes the predicted learning curve and picks
the point on the curve that is satisfactory to her error threshold.
In (ii), once the desired sample size has been determined
from the learning curve, the user uses the point-prediction
to compute the result, at the same time displaying the final
accuracy.

In the second part of the demo, the conference participant
will experience EARL “hands-on” by adjusting its various con-
figuration parameters. Using EARL’s configuration, the user is
able to select the target mining algorithm, and the training data.
The “hands-on” session will consist of experimenting with
EARL using two very different mining algorithms: (i) SVM
and (ii) MIC. In (i) the participant will be able to choose from
a variety of training datasets ranging from our private twitter
hashtag dataset to the well-known UCI-Machine Learning
repositories [2] to train the SVM model to predict various
features of the datasets on sample of the data given the desired
error threshold. After training the model, the demo participant
will load the computed model into R and visually inspect it
using the testing data. In (ii) we will use the MIC algorithm
to compute an approximate hashtag association score between
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all tags in our Twitter dataset which contains over 2 Million
hashtags. For the MIC demo, we will precompute a set of
MIC scores M using EARL for various sample sizes and
various error bounds. We will provide to the demo participant
a web interface where she can search for a hashtag and see
the strongly correlated hashtags along with the error bound
hierarchy for the various M .

Therefore, our demonstration will present a major step
forward in solving a very important problem in data-mining:
How to deliver accurate early results for a variety of mining
algorithms without making any assumptions about the under-
lying data distribution. By quickly providing the error bound
to the user, the workflow becomes interactive giving the user
more control over the exploration of her data.

III. OVERVIEW OF EARL

This section briefly summarizes the theoretical background
of EARL presented in [9]. The key concept in EARL is the one
of efficient and scalable bootstrapping which is used for error
estimation. By efficient we mean that our approach uses delta
maintenance techniques to avoid recomputing results when
enlarging the sample size. By scalable we mean that EARL
provides a way to run the error estimation computation over
Hadoop utilizing the inherent parallelizability of bootstrap-
ping. Furthermore EARL provides a simple API which the
developer can use to specify her own mining algorithm and
let EARL take care of the mechanics of providing the error
estimates.
A. Estimating Accuracy

In EARL, error estimation of an arbitrary function is done
via resampling. By re-computing a function of interest many
times, a result distribution is derived from which both the
approximate answer and the corresponding error are retrieved.
EARL uses a clever delta maintenance strategy that dramati-
cally decreases the overhead of computation. As a measure-
ment of error EARL uses a coefficient of variation (cv) which
is a ratio between the standard deviation and the mean. Our
approach is independent of the error measure and is applicable
to other errors (e.g., bias, variance).

A crucial step in statistical analysis is to use the given data
to estimate the accuracy measure, such as the bias, of a given
statistic. In a traditional approach, the accuracy measure is
computed via an empirical analog of the explicit theoretical
formula derived from a postulated model [16]. Using variance
as an illustration let X1, ..., Xn denote the data set of n
independent and identically distributed (i.i.d) data-items and
let fn(X1, ..., Xn) be the function of interest we want to
compute. The variance of fn is then:

var(fn) =
∫ [

fn(x)−
∫
fn(y)d

n∏
i=1

F (yi)

]2

d
n∏
i=1

F (xi)

(1)
where x = (x1, ..., xn) and y = (y1, ..., yn). Given a simple
fn we can obtain an equation of var(fn) as a function of
some unknown quantities and then substitute the estimates
of the unknown quantities to estimate the var(fn). In the
case of the sample mean, where fn = X̄n = n−1

∑n
i=1Xi,

var(X̄n) = n−1var(X1). We can therefore estimate var(X̄n)
by estimating var(X1) which is usually estimated by the sam-
ple variance (n− 1)−1

∑n
i=1

(
Xi − X̄n

)2
. Unfortunately, the

use of Equation 1 to estimate the variance is computationally
feasible only for simple functions, such as the mean. Next we
discuss a resampling method used to estimate the variance of
arbitrary functions.

The bootstrap resampling approach [17] provides an accu-
racy estimation for general functions. This approach does not
require a theoretical formula to produce the error estimate of a
function. In fact the bootstrap technique allows for estimation
of the sampling distribution of almost any statistic using
only very simple methods [5]. The estimate of the variance
can then be determined from the sampling distribution. The
bootstrap technique, however, requires repeated computation
of the function of interest on different resamples. The estimate
of the variance of the result, σ, produced by this repeated
computation is σ2(F ) = EF (θ̂ − EF (θ̂))2, where θ is
the parameter of interest. The challenge lies in making the
bootstrap scalable and efficient.
B. Delta Maintenance when Bootstrapping

The most computationally intensive part of EARL, aside
from the user’s job j, is the re-execution of j on an in-
creasingly larger sample sizes. One important observation is
that this intensive computation can reuse its results from the
previous iterations. By utilizing this incremental processing,
performing large-scale computations can be dramatically im-
proved. Our full paper [9] takes a more detailed look at the
processing of two consecutive bootstrap iterations and also
discusses the optimization of the bootstrapping (resampling)
procedure so that when recomputing f on a new resample s′

we can perform delta maintenance using a previous resample
s.
C. The Learning Curve

One of the exciting parts of our work is extrapolating the
learning curve, which captures the relationship between the
size of the sample and the result accuracy. The study of
learning curves is important to us because learning curves can
be used to estimate how large n must be before the error
drops below a user specified level τ . Thus, we are interested
in the asymptotic complexity as n becomes large. Vapnik-
Chervonenkis (VC) theory [19] states that a random sample of
size n leads to a generalization error O( dn ) of a function class
F where d is a measure of the complexity of F . VC theory
presents universal bounds that are distribution independent. In
our case, through empirical support, we are able to provide
a much tighter empirical estimates of the accuracy error than
those given by the VC theory.

The learning curve follows a power-law [10] and thus we
estimate the parameters of a learning curve by subsampling
and extrapolating. Our method parametrizes the learning curve
as an inverse function of the power law: σ(n) = a+m−α. The
unknown parameters of this expression, a ∈ R, b, α ≥ 0, are
estimated using nonlinear least squares, which estimates the
parameters via minimization. The estimation of the parameters
is done by evaluating σ(ni) for various i exactly.
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D. Sampling over HDFS
In order to provide a uniformly random subset of the

original data-set, EARL requires sampling. While sampling
over memory-resident, and even disk resident, data had been
studied extensively, sampling over a distributed file system,
such as HDFS, has not been addressed [11]. Therefore EARL
provides two sampling techniques: (1) pre-map sampling and
(2) post-map sampling. The two sampling techniques allow
for sampling before or after sending the input to the Mapper
denoted as the pre-map and post-map sampling respectively.
Pre-map sampling significantly reduces the load times, how-
ever the sample produced may be an inaccurate representation
of the total < k, v > pairs present in the input. Post-map
sampling first reads the data and then outputs a uniformly
random sample of desired size. Post-map sampling also avoids
the problem of inaccurate < k, v > counts. More details on
these sampling approaches can be found in [9].

IV. STATE OF THE ART
To achieve scalability, EARL uses Hadoop for error estima-

tion. Hadoop, and more generally the MapReduce framework,
was originally designed as a batch-oriented system, however
it is often used in an interactive setting where a user waits
for her job to complete before proceeding with the next step
in the data-analysis workflow. With the introduction of high-
level languages such as Pig [12], Sawzall [14] and Hive
[18], this trend had accelerated. Due to its batch oriented
computation mode, traditional Hadoop provides poor support
for interactive analysis. To overcome this limitation, Hadoop
Online Prototype (HOP) [3] introduces a pipelined Hadoop
variation in which a user is able to refine results interactively.
In HOP however, the user is left with the responsibility
of devising and implementing the accuracy estimation and
improvement protocols.

Sampling techniques for Hadoop were studied previously in
[6] where authors introduce an approach of providing Hadoop
job with an incrementally larger sample size. The authors
propose an Input Provider which provides the JobClient with
the subset of the input splits. The assumption that each of
the splits represents a random sample of the data, however, is
not well justified. Furthermore the authors do not provide any
functionality for error estimation.

Authors in [13] present a method of early returns for
Hadoop jobs over big data. The authors, however, only focus
on providing the early answer when the user error criteria
is met. In our work we are focused on providing the error
based on a given sample size. The information about the
required sample size can then be used for future workflows.
Furthermore EARL provides the learning curve which can
often predict the required sample size for a given error bound
without having to carry out the actual computation.

V. CONCLUSION

A key part of big data analytics is the need to collect,
maintain and analyze enormous amounts of data efficiently.
To address these needs, frameworks based on MapReduce
are used for processing large data-sets using a cluster of

machines. Current systems, however, are not able to provide
accurate estimate of incremental results and are mostly suited
for batch processing. This demo presents EARL which is a
simple framework for estimating results and errors for mining
algorithms. A surprising finding was that it is seldom necessary
to use the whole dataset, and in most cases it is sufficient to use
1% of data to achieve similar results compared to the execution
over the entire dataset. We made various optimizations to
the resampling methods which makes the framework more
attractive. The learning curve proved effective in planning the
mining task by determining with confidence the point after
which no noticeable improvement in error is seen. We are now
working on extending the presented approximation approach
to other classification algorithms and other data mining tasks,
which suggests a future direction of our research.
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