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Abstract—We study the novel problem of finding new, promi-
nent situational facts, which are emerging statements about
objects that stand out within certain contexts. Many such facts
are newsworthy—e.g., an athlete’s outstanding performance in a
game, or a viral video’s impressive popularity. Effective and effi-
cient identification of these facts assists journalists in reporting,
one of the main goals of computational journalism. Technically,
we consider an ever-growing table of objects with dimension and
measure attributes. A situational fact is a “contextual” skyline
tuple that stands out against historical tuples in a context, spec-
ified by a conjunctive constraint involving dimension attributes,
when a set of measure attributes are compared. New tuples are
constantly added to the table, reflecting events happening in the
real world. Our goal is to discover constraint-measure pairs that
qualify a new tuple as a contextual skyline tuple, and discover
them quickly before the event becomes yesterday’s news. A brute-
force approach requires exhaustive comparison with every tuple,
under every constraint, and in every measure subspace. We
design algorithms in response to these challenges using three
corresponding ideas—tuple reduction, constraint pruning, and
sharing computation across measure subspaces. We also adopt a
simple prominence measure to rank the discovered facts when
they are numerous. Experiments over two real datasets validate
the effectiveness and efficiency of our techniques.

I. INTRODUCTION

Computational journalism emerged recently as a young in-
terdisciplinary field [6] that brings together experts in journal-
ism, social sciences and computer science, and advances jour-
nalism by innovations in computational techniques. Database
and data mining researchers have also started to push the
frontiers of this field [7], [8], [12]. One of the goals in com-
putational journalism is newsworthy fact discovery. Reporters
always try hard to bring out attention-seizing factual statements
backed by data, which may lead to news stories and investi-
gation. While such statements take many different forms, we
consider a common form exemplified by the following excerpts
from real-world news media:

• “Paul George had 21 points, 11 rebounds and 5 as-
sists to become the first Pacers player with a 20/10/5
(points/rebounds/assists) game against the Bulls since Detlef
Schrempf in December 1992.” (http://espn.go.com/espn/elias?
date=20130205)

• “The social world’s most viral photo ever generated
3.5 million likes, 170,000 comments and 460,000 shares
by Wednesday afternoon.” (http://www.cnbc.com/id/49728455/
President Obama Sets New Social Media Record)

What is common in the above two statements is a promi-
nent fact with regard to a context and several measures. In the
first statement, the context includes the performance of Pacers
players in games against the Bulls since December 1992 and
the measures are points, rebounds, assists. By these measures,
no performance in the context is better than the mentioned

performance of Paul George. For the second statement, the
measures are likes, comments, shares and the context includes
all photos posted to Facebook. The story is that no photo in
the context attracted more attention than the mentioned photo
of President Barack Obama, by the three measures. In general,
facts can be put in many contexts, such as photos posted in
2012, photos posted by political campaigns, and so on.

Similar facts can be stated on data from domains outside of
sports and social media, including stock data, weather data, and
criminal records. For example: 1) “Stock A becomes the first
stock in history with price over $300 and market cap over $400
billion.” 2) “Today’s measures of wind speed and humidity are
x and y, respectively. City B has never encountered such high
wind speed and humidity in March.” 3) “There were 35 DUI
arrests and 20 collisions in city C yesterday, the first time in
2013.” Some of these facts are not only interesting to reporters
but also useful to financial analysts, scientists, and citizens.

In technical terms, a fact considered in this paper is a
contextual skyline object that stands out against other objects
in a context with regard to a set of measures. Consider a table
R whose schema includes a set of measure attributesM and
a set of dimension attributes D. A context is a subset of R,
resulting from a conjunctive constraint defined on a subset
of the dimension attributes D ⊆ D. A measure subspace is
defined by a subset of the measure attributes M ⊆ M. A
tuple t is a contextual skyline tuple if no other tuple in the
context dominates t. A tuple t′ dominates t if t′ is better than
or equal to t on every attribute in M and better than t on
at least one of the attributes. Such is the standard notion of
dominance relation adopted in skyline analysis [5].

We study how to find situational facts pertinent to new
tuples in an ever-growing database, where the tuples capture
real-world events. We propose algorithms that, whenever a new
tuple t enters an append-only table R, discover constraint-
measure pairs that qualify t as a contextual skyline tuple. Each
such pair constitutes a situational fact pertinent to t’s arrival.

Example 1. Consider the mini-world of basketball gamelogs
R in Table I, where D={player, month, season, team, opp team}
andM={points, assists, rebounds}. The existing tuples are t1 to
t6 and the new tuple is t7. If the context is the whole table (i.e.,
no constraint) and the measure subspace M=M, t7 is not a
skyline tuple since it is dominated by t3 and t6. However, with
regard to context σmonth=Feb.(R) (corresponding to constraint
month=Feb.) and the same measure subspace M , t7 is in the
skyline along with t2. In yet another context σteam=Celtics∧

opp team=Nets(R) under measure subspace M={assists, re-
bounds}, t7 is in the skyline along with t3. Tuple t7 is also
a contextual skyline tuple for other constraint-measure pairs,
which we do not further enumerate.



tuple id player day month season team opp team points assists rebounds

t1 Bogues 11 Feb. 1991-92 Hornets Hawks 4 12 5

t2 Seikaly 13 Feb. 1991-92 Heat Hawks 24 5 15

t3 Sherman 7 Dec. 1993-94 Celtics Nets 13 13 5

t4 Wesley 4 Feb. 1994-95 Celtics Nets 2 5 2

t5 Wesley 5 Feb. 1994-95 Celtics Timberwolves 3 5 3

t6 Strickland 3 Jan. 1995-96 Blazers Celtics 27 18 8

t7 Wesley 25 Feb. 1995-96 Celtics Nets 12 13 5

* Attribute opp team is the short form of opposition team.

TABLE I: A Mini-world of Basketball Gamelogs

Discovering situational facts is challenging as timely dis-
covery of such facts is expected. In finding news leads centered
around situational facts, the value of a news piece diminishes
rapidly after the event takes place. Consider NBA games again.
Sports media need to identify and discuss sensational records
quickly as they emerge; any delay makes fans less interested
in the records and risks losing them to rival media. Timely
identification of situational facts is also critical in areas beyond
journalism. To make informed investment decisions, investors
want to know facts related to stock trading as soon as possible.
Facts discovered from weather data can assist scientists in
identifying extreme weather conditions and help government
and the public in coping with the weather.

Simple situational facts on a single measure and a com-
plete table, e.g., the all-time NBA scoring record, can be
conveniently detected by database triggers. However, general
and complex facts involving multiple dimension and measure
attributes are much harder to discover. Exhaustively using trig-
gers leads to an exponential explosion of constraint-measure
pairs to check for each new tuple. In reality, news media
relies on instincts and experiences of domain experts on this
endeavor. The experts, impressed by an event such as the
outstanding performance of a player in a game, hypothesize
a fact and manually craft a database query to check it. This is
how Elias Sports Bureau tackles the task and provides sports
records (such as the aforementioned one by Paul George) to
many sports media [1]. With ever-growing data and limited
human resources, such manual checking is time-consuming
and error-prune. Its low efficiency not only leads to delayed
and missing facts, but also ties up precious human expertise
that could be otherwise devoted to more important journalistic
activities.

The technical focus of this paper is thus on efficient
automatic approach to discovering situational facts, i.e., finding
constraint-measure pairs that qualify a new tuple t as a con-
textual skyline tuple. A straightforward brute-force approach
would compare t with every historical tuple to determine if t is
dominated, repeatedly for every conjunctive constraint satisfied
by t under every possible measure subspace. The obvious
low-efficiency of this approach has three culprits—exhaustive
comparison with every tuple, under every constraint, and over
every measure subspace. We thus design algorithms to counter
these issues by three corresponding ideas, as follows:

1) Tuple reduction Instead of comparing t with every
previous tuple, it is sufficient to only compare with current
skyline tuples. This is based on the simple property that, if
any tuple dominates t, then there must exist a skyline tuple
that also dominates t. For example, in Table I, under constraint
month=Feb. and the full measure space M, the corresponding
context contains t1, t2, t4 and t5, and the contextual skyline
has two tuples—t1 and t2. When the new tuple t7 comes,
with regard to the same constraint-measure pair, it suffices to

compare t7 with t1 and t2, not the remaining tuples.

2) Constraint pruning If t is dominated by t′ in a
particular measure subspace M , then t does not belong to
the contextual skyline of constraint-measure pair (C,M) for
any C satisfied by both t and t′. For example, since t7 is
dominated by t3 in the full measure space M, it is not in
the contextual skylines for (team=Celtics ∧ opp team=Nets,M),
(team=Celtics,M), (opp team=Nets,M) and (no constraint,M).
Furthermore, since t7 is dominated by t6 in M, it does not
belong to the contextual skylines for (season=1995-96,M) and
(no constraint,M). Based on this, we examine the constraints
satisfied by t in a certain order, such that comparisons of t with
skyline tuples associated with already examined constraints are
used to prune remaining constraints from consideration.

3) Sharing computation across measure subspaces
Since repeatedly visiting the constraints satisfied by t for every
measure subspace is wasteful, we pursue sharing computation
across different subspaces. The challenge in such sharing lies
in the anti-monotonicity of dominance relation—a skyline
tuple in space M may or may not be in the skyline of a
superspace or subspace M ′ [9]. Nonetheless, we can first
consider the full space M and prune various constraints
from consideration for smaller subspaces. For instance, after
comparing t7 with t2 inM, the algorithms realize that t7 has
smaller values on points and rebounds. It is dominated by t2 in
three subspaces—{points, rebounds}, {points} and {rebounds}.
When considering these subspaces, we can skip two contexts—
corresponding to constraint month=Feb. and empty constraint,
respectively—as t2 and t7 are in both contexts.

It is crucial to report truly prominent situational facts. A
newly arrived tuple t may be in the contextual skylines for
many constraint-measure pairs. Reporting all of them will
overwhelm users and make important facts harder to spot.
We measure the prominence of a constraint-measure pair by
the cardinality ratio of all tuples to skyline tuples in the
corresponding context. The intuition is that, if t is one of the
very few skyline tuples in a context containing many tuples
under a measure subspace, then the corresponding constraint-
measure pair brings out a prominent fact. We thus rank all
situational facts pertinent to t in descending order of promi-
nence. Reporters and experts can choose to investigate top-k
facts or the facts with prominence values above a threshold.

The contributions of this paper are summarized as follows:

• We study the novel problem of finding situational facts
and formalize it as discovering constraint-measure pairs that
qualify a tuple as a contextual skyline tuple.

• We devise efficient algorithms based on three main ideas—
tuple reduction, constraint pruning and sharing computation
across measure subspaces.

• We use a simple prominence measure for ranking situational
facts and discovering prominent situational facts.



• We conduct extensive experiments on two real datasets
(NBA dataset and weather dataset) to investigate their promi-
nent situational facts and to study the efficiency of various
proposed algorithms and their tradeoffs.

II. RELATED WORK

Pioneers in data journalism have considerable success in
using computer programs to write stories about sports games
and stock earnings (e.g., StatSheet http://statsheet.com/ and
Narrative Science http://www.narrativescience.com/). The stories
follow writing patterns to narrate box scores and play-by-play
data and a company’s earnings data. They focus on capturing
what happened in the game or what the earnings numbers
indicate. They do not find situational facts pertinent to a game
or an earnings report in the context of historical data.

Skyline query is extensively investigated in recent years,
since Börzsönyi et al. [5] brought the concept to the database
field. In [5] and the studies afterwards, it is assumed both the
context of tuples in comparison and the measure space are
given as query conditions. A high-level perspective on what
distincts our work is—while prior studies find answers (i.e.,
skyline points) for a given query (i.e., a context, a measure
space, or their combination), we study the reverse problem
of finding queries (i.e., constraint-measure pairs that qualify a
tuple as a contextual skyline tuple, among all possible pairs)
for a particular answer (i.e., a new tuple).

From a technical perspective, Table II summarizes the
differences among the more relevant previous studies and this
paper, along three aspects—whether they consider all possible
contexts defined on dimension attributes, all measure sub-
spaces, and incremental computation on dynamic data. With
regard to context, Zhang et al. [14] integrate the evaluation of
a constraint with finding skyline tuples in the corresponding
context in a given measure space. With regard to measure, Pei
et al. [9] compute on static data the skycube—skyline points in
all measure subspaces. Xia et al. [13] studied how to update a
compressed skycube (CSC) when data change. The CSC stores
a tuple t in its minimum subspaces—the measure subspaces in
which t is a skyline tuple and of which the subspaces do not
contain t in the skyline. They proposed an algorithm to update
CSC when new tuples come and also an algorithm to use CSC
to find all skyline tuples for a given measure subspace.

We can adapt [13] to find situational facts. While Sec. VI
provides experimental comparisons with the adaptation, here
we analyze its shortcomings. Since [13] does not consider
different contexts, the adaptation entails maintaining a separate
CSC for every possible context. Upon the arrival of a new
tuple t, for every context, the adaptation will update the
corresponding CSC. Since a CSC only stores t in its minimum
subspaces, the adaptation needs to run their query algorithm
to find the skyline tuples for all measure subspaces, in order
to determine if t is one of the skyline tuples. This is clearly
an overkill, caused by that CSC is designed for finding all
skyline tuples. Furthermore, while our algorithms can share
computation across measure subspaces, there does not appear
to be an effective strategy to share the computation of CSC
algorithms across different contexts.

Promotion analysis by ranking [11] finds the contexts in
which an object is ranked high. It ranks objects by a single

all possible contexts measure subspaces incremental

[14] no no no

[9] no yes no

[13] no yes yes

[11] yes no no

[12] no yes no

[2] no no yes

this work yes yes yes

TABLE II: Comparing Related Work on Three Modeling Aspects

id d1 d2 d3 m1 m2

t1 a1 b2 c2 10 15

t2 a1 b1 c1 15 10

t3 a2 b1 c2 17 17

t4 a2 b1 c1 20 20

t5 a1 b1 c1 11 15

TABLE III: Running Example

score attribute, while we define object dominance relation on
multiple measure attributes. It considers one-shot computation
on static data, while we focus on incremental discovery on
dynamic data. Due to these distinctions, the algorithmic ap-
proaches in the two works are also fundamentally different.

Wu et al. [12] studied the one-of-the-τ object problem,
which entails finding the largest k value and the corresponding
k-skyband objects (objects dominated by less than k other
objects) such that there are no more than τ k-skyband objects.
They consider all measure subspaces but not different contexts
formed by constraints. Similar to [11], it focuses on static data.

Alvanaki et al. [2] worked on detecting interesting events
through monitoring changes in ranking, by using materialized
view maintenance techniques. The work focuses on top-k
queries on single ranking attribute rather than skyline queries
defined on multiple measure attributes. Their ranking contexts
have at most three constraints. The work is similar to [4] which
studied how to predict significant events based on historical
data and correspondingly perform lazy maintenance of ranking
views on a database.

III. PROBLEM STATEMENT

This section provides a formal description of our data
model and problem statement. Consider a relational schema
R(D;M), where the dimension space is a set of dimension
attributes D={d1, . . . , dn} on which constraints are speci-
fied, and the measure space is a set of measure attributes
M={m1, . . . ,ms} on which dominance relation for skyline
operation is defined. Any set of dimension attributes D ⊆ D
defines a dimension subspace and any set of measure attributes
M ⊆ M defines a measure subspace. In Table III, R(D;M)
= {t1, t2, t3, t4, t5}, D = {d1, d2, d3},M={m1,m2}. We will
use this table as a running example.

Definition 1 (Constraint). A constraint C on dimension space
D is a conjunctive expression of the form d1=v1∧d2=v2∧
. . .∧ dn=vn (also written as 〈v1, v2, . . . , vn〉 for simplicity),
where vi∈dom(di)∪ {∗} and dom(di) is the value domain of
dimension attribute di. We use C.di to denote the value vi

assigned to di in C. If C.di=∗, we say di is unbound, i.e., no
condition is specified on di. We denote the number of bound
attributes in C as bound(C).

The set of all possible constraints over dimension space D
is denoted CD. Clearly, |CD| =

∏
i(|dom(di)| + 1).

Given a constraint C ∈ CD, σC(R) is the relational algebra
expression that chooses all tuples in R that satisfy C.



Algorithm 1: Find Ct

Input: t ∈ R

Output: Ct: constraints satisfied by t

1 Ct ← ∅;
2 Q← ∅; Q.enqueue(⊤);
3 while not Q.empty() do

4 C ← Q.dequeue();
5 Ct ← Ct ∪ {C};
6 i← n;
7 while i > 0 and C.di = ∗ do

8 C′ ← C;
9 C′.di ← t.di;

10 Q.enqueue(C′);
11 i← i− 1;

12 return Ct;

Algorithm 2: BruteForce

Input: R(M,D): existing tuples; t: the new tuple
Output: St: the contextual skylines for t

1 St ← ∅;
2 foreach M ⊆M do

3 foreach C ∈ Ct do

4 pruned ← false;
5 foreach t′ ∈ R do

6 if t ≺M t′ and t′ ∈ σC(R) then

7 pruned ← true;
8 break;

9 if not pruned then St ← St ∪ {(C, M)};

10 R← R ∪ {t};
11 return St;

Algorithm 3: BaselineSeq

Input: R(M,D): existing tuples; t: the new tuple
Output: St: the contextual skylines for t

1 St ← ∅;
2 foreach M ⊆M do

3 S ← Ct;
4 foreach t′ ∈ R do

5 if t ≺M t′ then S ← S − Ct,t′ ;

6 foreach C ∈ S do

7 St ← St ∪ {(C, M)};

8 R← R ∪ {t};
9 return St;

Example 2. For Table III, an example constraint is C =
〈a1, ∗, c1〉 in which d2 is unbound. σC(R) = {t2, t5}.

Definition 2 (Skyline). Given a measure subspace M and two
tuples t, t′ ∈ R, t dominates t′ with respect to M , denoted
by t ≻M t′ or t′ ≺M t, if t is equal to or better than t′

on all attributes in M and t is better than t′ on at least one
attribute in M . A tuple t is a skyline tuple in subspace M if
it is not dominated by any other tuple in R. The set of all
skyline tuples in R with respect to M is denoted by λM (R),
i.e., λM (R)={t ∈ R|∄t′ ∈ R s.t. t′ ≻M t}.

We use the general term “better than” in Def. 2, which
can mean either “larger than” or “smaller than” for numeric
attributes and either “ordered before” or “ordered after” for
ordinal attributes, depending on applications. Further, the pre-
ferred ordering of values on different attributes are allowed to
be different. For example, in a basketball game, 10 points is
better than 5 points, while 3 fouls is worse than 1 foul. Without
loss of generality, we assume measure attributes are numeric
and a larger value is better than a smaller value.

Definition 3 (Contextual Skyline). Given a relation R(D;M),
the contextual skyline under constraint C∈CD over measure
subspace M⊆M, denoted λM (σC(R)), is the skyline of
σC(R) in M .

Example 3. For Table III, ifM = M, λM (R) = {t4}. In fact,
t4 dominates all other tuples in space M . If the constraint is
C = 〈a1, b1, c1〉, σC(R) = {t2, t5}, λM (σC(R)) = {t2, t5}
for M = M, and λM (σC(R)) = {t2} for M = {m1}.

Problem Statement Given an append-only table R(D;M)
and the last tuple t that was appended onto R, the situational
fact discovery problem is to find each constraint-measure pair
(C,M) such that t is in the contextual skyline. The result,
denoted St, is {(C,M)|C∈CD,M⊆M, t∈λM (σC(R))}. For
simplicity of notation, we call St “the contextual skylines for
t”, even though rigorously speaking it is the set of (C,M)
pairs whose corresponding contextual skylines include t.

IV. SOLUTION OVERVIEW

Discovering situational facts for a new tuple t entails
finding constraint-measure pairs that qualify t as a contextual
skyline tuple. We identify three sources of inefficiency in a
straightforward brute-force method, and we propose corre-
sponding ideas to tackle them. To facilitate the discussion,
we define the concept of tuple-satisfied constraints, which are
all constraints pertinent to t, corresponding to the contexts
containing t.

Definition 4 (Tuple-Satisfied Constraint). Given a tuple t ∈
R(D;M) and a constraint C ∈ CD, if ∀di ∈ D, C.di = ∗
or C.di = t.di, we say t satisfies C. We denote the set of all
such satisfied constraints by Ct

D or simply C
t when D is clear

in context. It follows that given any C ∈ Ct, t ∈ σC(R).

For C∈Ct, C.di can attain two possible values {∗, t.di}.
Hence, Ct has 2n constraints in total for |D|=n. Alg.1 is
a simple routine used in all algorithms for finding all con-
straints of Ct. It generates the constraints from the most
general constraint ⊤=〈∗, ∗, . . . , ∗〉 to the most specific con-
straint 〈t.d1, t.d2, . . . , t.dn〉. ⊤ has no bound attributes, i.e.,
bound(⊤)=0. Alg.1 makes sure a constraint is not generated
twice, for efficiency, by not continuing the while-loop in Line 7
once a specific attribute value is found in C.

A brute-force approach to the contextual skyline discovery
problem would compare a new tuple t with every tuple in R
to determine if t is dominated, repeatedly for every constraint
satisfied by t in every possible measure subspace. It is shown
in Alg.2. The obvious inefficiency of this approach has three
culprits—the exhaustive comparison with every tuple, for every
constraint and in every measure subspace. We devise three
corresponding ideas to counter these causes, as follows:

(1) Tuple reduction For a constraint-measure pair (C,M),
t is in the contextual skyline λM (σC(R)) if t belongs to
σC(R) and is not dominated by any tuple in σC(R). Instead of
comparing t with every tuple, it suffices to only compare with
current skyline tuples. This simple optimization is based on
the following proposition which ways, if any tuple dominates
t, there must exist a skyline tuple that also dominates t.

Proposition 1. Given a new tuple t inserted into R, a con-
straint C ∈ Ct and a measure subspace M , t ∈ λM (σC(R))
if and only if ∄ t′ ∈ λM (σC(R)) such that t′ ≻M t.

To exploit this idea, our algorithms conceptually maintain
the contextual skyline tuples for each context (i.e., measure
subspace and constraint), and compare t only with these tuples
for constraints that t satisfies.

(2) Constraint pruning For constraints satisfied by t, we
need to determine whether t enters the contextual skyline. To
prune constraints from consideration, we note the following
property: if t is dominated by a skyline tuple t′ under measure
subspace M , t is not in the contextual skyline of constraint-
measure pair (C,M) for any C satisfied by both t and t′.

To enable constraint pruning, we organize all constraints in
Ct into a lattice by their subsumption relation. The constraints
satisfied by both t and t′, denoted Ct,t′ , also form a lattice,



which is the intersection of lattices Ct and Ct′ . Below we
formalize the concepts of lattice and lattice intersection.

Definition 5 (Constraint Subsumption). Given C1, C2 ∈ CD,
C1 is subsumed by or equal to C2 (denoted C1 E C2 or
C2 D C1) iff

1) ∀di ∈ D, C2.di = C1.di or C2.di = ∗.

C1 is subsumed by C2 (denoted C1 ⊳ C2 or C2 ⊲ C1) iff
C1 E C2 but C1 6= C2. In other words, the following condition
is also satisfied in addition to the above one—

2) ∃di ∈ D such that C2.di=∗ and C1.di 6=∗, i.e, di is
bound to a value belonging to dom(di) in C1 but is
unbound in C2.

By definition, σC1
(R) ⊆ σC2

(R) if C1 E C2.

Example 4. Consider C1=〈a, b, c〉 and C2=〈a, ∗, c〉. Here
C1.d1=C2.d1, C1.d3=C2.d3, C1.d2=b and C2.d2=∗. By Def-
inition 5, C1 is subsumed by C2, i.e. C1 ⊳ C2.

Definition 6 (Partial Order on Constraints). The subsumption
relation E on CD forms a partial order. The partially ordered
set (poset) (CD, E) has a top element ⊤ = 〈∗, ∗, . . . , ∗〉 that
subsumes every other constraint in CD. ⊤ is the most general
constraint, since it has no bound attributes. Note that (CD, E)
is not a lattice and does not have a single bottom element.
Instead, it has multiple minimal elements. Every minimal
element C satisfies the condition that ∀di, C.di 6= ∗.

If C1 ⊳ C2, we say C1 is a descendant of C2 (C2 is an
ancestor of C1). If C1 ⊳ C2 and bound(C1)−bound(C2) = 1,
then C1 is a child of C2 (C2 is a parent of C1). Given C ∈ CD,
we denote C’s ancestors, descendants, parents and children by
AC , DC , PC and CHC , respectively.

Definition 7 (Lattice of Tuple-Satisfied Constraints). Given
t∈R(D;M), Ct⊆CD by definition. In fact, (C

t,E) is a lattice.
Its top element is ⊤. Its bottom element 〈t.d1, t.d2, . . . , t.dn〉,
denoted ⊥(Ct), is a minimal element in CD.

Given C∈Ct, we denote C’s ancestors, descendants, par-
ents and children within Ct by At

C , D
t
C , P

t
C and CHt

C ,
respectively. |CHt

C |=n−bound(C) where n=|D|, i.e., each
child of C is a constraint by adding conjunct di=t.di into
C for unbound attribute di. It is clear that |P

t
C |=bound(C).

By definition, At
C=AC and Pt

C=PC , while Dt
C⊆DC and

CHt
C⊆CHC .

Example 5. Fig.1 presents lattice Ct5 for t5 in Table III. For
simplicity, we omit values on unbound dimension attributes
(e.g., 〈∗, ∗, c1〉 is represented as c1). Consider C = 〈a1, ∗, c1〉.
At5

C = {⊤, 〈a1, ∗, ∗〉, 〈∗, ∗, c1〉}, P
t5
C = {〈a1, ∗, ∗〉, 〈∗, ∗, c1〉},

CHt5
C = {〈a1, b1, c1〉} and D

t5
C = {〈a1, b1, c1〉}.

Definition 8 (Lattice Intersection). Given t, t′ ∈ R(D;M),
Ct,t′=Ct ∩ Ct′ is the intersection of lattices Ct and Ct′ . Ct,t′

is non-empty and is also a lattice. By Definition 7, the lattices
for all tuples share the same top element ⊤. Hence ⊤ is also
the top element of Ct,t′ . Its bottom ⊥(Ct,t′)=〈v1, v2, . . . , vn〉
where vi=t.di if t.di=t′.di and vi=∗ otherwise. ⊥(Ct,t′)
equals ⊤ when t and t′ do not have common attribute value.

Example 6. Fig.2 shows Ct4 and Ct5 for t4 and t5 in Table III.
The constraints connected by solid lines represent the lattice
intersection Ct4,t5 . Its bottom is ⊥(Ct4,t5) = 〈∗, b1, c1〉. In
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Fig. 1: Lattice Ct5
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Fig. 2: Intersection of Ct4 and Ct5

addition to Ct4,t5 , Ct4 and Ct5 further include the constraints
connected by dashed and dotted lines, respectively.

The algorithms we are going to propose consider the con-
straints in certain lattice order, compare t with skyline tuples
associated with visited constraints, and use t’s dominating
tuples to prune unvisited constraints from consideration—
thereby reducing cost. This idea of lattice-based pruning of
constraints is justified by Propositions 2 and 3 below.

Proposition 2. Given a tuple t, if t /∈ λM (σC(R)), then t /∈
λM (σC′ (R)), for all C ′ ∈ AC .

If t ≺M t′, then t /∈ λM (σ⊥(Ct,t′ )(R)). Hence, according
to Proposition 2, we have the following Proposition 3.

Proposition 3. Given two tuples t and t′, if t ≺M t′, then
t /∈ λM (σC (R)), for all C ∈ Ct,t′ .

(3) Sharing computation across measure subspaces Given
t, we need to consider not only all constraints satisfied by t,
but also all possible measure subspaces. Sharing computation
across measure subspaces is challenging because of anti-
monotonicity of dominance relation—a skyline tuple under
space M may or may not be a skyline tuple in another space
M ′, regardless of whether M ′ is a superspace or subspace of
M [9]. We thus propose algorithms that first traverse the lattice
in the full measure space, during which a frontier of constraints
is formed for each measure subspace. Top-down (respectively,
bottom-up) lattice traversal in a subspace commences from
(respectively, stops at) the corresponding frontier instead of
the root, which in effect prunes some top constraints.

Two Baseline Algorithms We introduce two baseline al-
gorithms BaselineSeq (Alg.3) and BaselineIdx. They are not as
naive as the brute-force Alg.2. Instead, they exploit Proposi-
tion 3 straightforwardly. Upon t’s arrival, for each subspace
M , they identify existing tuples t′ dominating t. BaselineSeq
sequentially compares t with every existing tuple. S is ini-
tialized to be Ct (Line 3). Whenever BaselineSeq encounters
a t′ that dominates t, it removes constraints in Ct,t′ from S
(Line 5). By Proposition 3, t is not in the contextual skylines
for those constraints. After t is compared with all tuples, the
constraints having t in their skylines remain in S. The same
is independently repeated for every M . The pseudo code of
BaselineIdx is similar to Alg.3 and thus omitted. Instead of
comparing t with all tuples, BaselineIdx directly finds tuples
dominating t by a one-sided range query

∧
mi∈M (mi≥t.mi)

using a k-d tree [3] on full measure spaceM.

V. ALGORITHMS

This section starts with algorithms BottomUp (Sec. V-A) and
TopDown (Sec. V-B), which exploit the ideas of tuple reduction
and constraint pruning. We then extend them to enable sharing
of computation across measure subspaces (Sec. V-C).



Based on the tuple-reduction idea (Proposition 1), a new
tuple t should be included into a contextual skyline if and only
if t is not dominated by any current skyline tuple in the context.
Therefore, BottomUp and TopDown store and maintain skyline
tuples for each constraint-measure pair (C,M) and compare
t with only the skyline tuples. For clarity of discussion, we
differentiate between the contextual skyline (λM (σC(R))) and
the space for storing it (µC,M ), since tuples stored in µC,M

do not always equal λM (σC(R)), by our algorithm design.

The algorithms traverse, for each measure subspaceM , the
lattice of tuple-satisfied constraints Ct by certain order. When
a constraint C is visited, the algorithms compare t with the
skyline tuples stored in µC,M . If t is dominated by t′, then t
does not belong to the contextual skyline of constraint-measure
pair (C,M). Further, based on the constraint-pruning idea
(Proposition 3), t does not belong to the contextual skyline of
(C ′,M) for any C ′ satisfied by both t and t′ (i.e., C ′ ∈ Ct,t′ ).
This property allows the algorithms to avoid comparisons with
skyline tuples associated with such constraints.

The algorithms differ by how skyline tuples are stored in
µC,M . BottomUp stores a tuple for every constraint that qualifies
it as a contextual skyline tuple, while TopDown only stores it
for the topmost such constraints. In our ensuing discussion, we
use invariants to formalize what must be stored in µC,M . The
algorithms also differ in the traversing order of the constraints
in Ct. BottomUp visits the constraints bottom-up, while TopDown
makes the traversal top-down. Our discussion focuses on how
the invariants are kept true under the algorithms’ different
traversal orders and execution logics. The algorithms present
space-time tradeoffs. TopDown requires less space than BottomUp
since it avoids storing duplicate skyline tuples as much as
possible. The saving in space comes at the cost of execution
efficiency, due to more complex operations in TopDown.

Pei et al. [9] proposed bottom-up and top-down algorithms
to compute skycube. However, their algorithms are for the
lattice of measure subspaces instead of constraints.

A. Algorithm BottomUp

BottomUp (Alg.4) stores a tuple for every such constraint
that qualifies it as a contextual skyline tuple. Formally, Invari-
ant 1 is guaranteed to hold before and after the arrival of any
tuple.

Invariant 1. ∀C ∈ CD and ∀M ⊆ M, µC,M stores all skyline
tuples λM (σC(R)).

Upon the arrival of a new tuple t, for each measure
subspace M , BottomUp traverses the constraints in Ct in a
bottom-up, breadth-first manner. The traversal starts from
Line 4 of Alg.4, where the bottom of Ct is inserted into a
queue Q. As long as Q is not empty, BottomUp visits the
next constraint C from the head of Q and compares t with
current skyline tuples in µC,M (Line 8). Various actions are
taken, depending on comparison outcome. 1) If t is dominated
by any t′, the comparison with remaining tuples in µC,M is
skipped (Line 12). The tuple t is disqualified from not only
C but also all constraints in Ct,t′ , by Proposition 3. Because
BottomUp stores a tuple in all constraints that qualify it as a
contextual skyline tuple, and because it traverses Ct bottom-
up, the dominating tuple t′ must be encountered at the bottom
of Ct,t′ . BottomUp thus skips the comparisons with all tuples

Algorithm 4: BottomUp

Input: R(M,D): existing tuples; t: the new tuple
Output: St: the contextual skylines for t

1 St ← ∅;
2 foreach M ⊆M do

3 foreach C ∈ Ct do C.pruned ← false
4 Q← ∅; Q.enqueue(⊥(Ct));
5 while not Q.empty() do
6 C ← Q.dequeue();
7 dominated ← false;
8 foreach t′ ∈ µC,M do
9 if t ≺M t′ then
10 dominated ← true;
11 foreach C′ ∈ At

C
do

12 C′.pruned ← true; break;

13 else if t′ ≺M t then µC,M .delete(t′)

14 if not dominated then

15 St ← St ∪ {(C, M)};
16 µC,M .insert(t);
17 foreach C′ ∈ Pt

C
do

18 if (not Q.contains(C′)) and (not C′.pruned)
then Q.enqueue(C′)

19 R← R ∪ {t};
20 return St;
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(b) After t5

Fig. 3: Execution of BottomUp in Measure Subspace {m1, m2}

stored for C’s ancestors (Line 12). 2) If t dominates t′, t′ is
removed from µC,M (Line 13). 3) If t is not dominated by
any tuple in µC,M , it is inserted into µC,M (Line 16) and
(C,M) corresponds to a contextual skyline for t (Line 15).
Further, each parent constraint of C that is not already pruned
is inserted into Q, for continuation of bottom-up traversal
(Line 17).

Proof of Invariant 1 Invariant 1 is satisfied by BottomUp
throughout its execution over all tuples. Due to space lim-
itations, we leave the proof to the extended version of the
paper [10]. �

Example 7. We use Fig.3 to explain the execution of BottomUp
on Table III, for measure subspace M={m1,m2}. Assume the
tuples are inserted into the table in the order of t1, t2, t3,
t4 and t5. Fig.3a shows the lattice Ct5 before the arrival of
t5. Beside each constraint C, the figure shows µC,M . Upon
the arrival of t5, BottomUp starts the traversal of C

t5 from its
bottom ⊥(Ct5)=〈a1, b1, c1〉. There is one skyline tuple stored
in µ⊥(Ct5 ),M—t2. In subspace M , t5 is incomparable to t2.
Hence, t5 is inserted into it. The traversal continues with
the parents of ⊥(Ct5). Among its three parents, 〈a1, b1, ∗〉
and 〈a1, ∗, c1〉 undergo the same insertion of t5. However,
the contextual skyline for 〈∗, b1, c1〉 does not change, since
t5 is dominated by t4 in M . All constraints in Ct4,t5 (i.e.,
〈∗, b1, c1〉 and all its ancestors) are pruned from consideration



Algorithm 5: TopDown

Input: R(M,D): existing tuples; t: the new tuple
Output: St: the contextual skylines for t

1 St ← ∅;
2 foreach M ⊆M do

3 foreach C ∈ Ct do
4 C.pruned ← false;
5 C.inAnces ← false;

6 Q← ∅; Q.enqueue(⊤);
7 while not Q.empty() do
8 C ← Q.dequeue();
9 foreach t′ ∈ µC,M do
10 if t ≺M t′ then
11 Dominated(t′, C);
12 else if t′ ≺M t then
13 Dominates(t′, C, M);

14 if not C.pruned then

15 St ← St ∪ {(C, M)};
16 if not C.inAnces then
17 µC,M .insert(t);

18 EnqueueChindren(C);

19 R← R ∪ {t};
20 return St;

Procedure: Dominates (t′, C, M)
1 µC,M .delete(t′);

2 foreach C′ ∈ CHt′

C − C
t do

3 stored ← false;

4 foreach C′′ ∈ At′

C′ − C
t do

5 if t′ ∈ µC′′,M then

6 stored ← true;
7 break;

8 if not stored then
9 µC′,M .insert(t′);

Procedure: Dominated (t′, C)
1 C.pruned ← true;

2 foreach C′ ∈ Ct,t′ do
3 C′.pruned ← true;

Procedure: EnqueueChildren (C)
1 foreach C′ ∈ CHt

C do
2 if not C.pruned then
3 C′.inAnces ← true;

4 if not Q.contains(C′) then
5 Q.enqueue(C′);

by Property 3. The traversal continues at 〈a1, ∗, ∗〉, for which
t1 is removed from the contextual skyline as it is dominated
by t5 in subspace M and t5 is inserted into it. After that, the
algorithm stops since there is no more unpruned constraints.
The content of µC,M for constraints in C

t5 after the arrival of
t5 is shown in Fig.3b.

B. Algorithm TopDown

BottomUp stores t for every constraint-measure pair that
qualifies t as a contextual skyline tuple. If t is stored in µC,M ,
then t is also stored in µC′,M for all C

′∈Dt
C , i.e., descendants

of C pertinent to t. For this reason, BottomUp repeatedly
compares a new tuple with a previous tuple multiple times.
Such repetitive storage of tuples and comparisons increase
both space complexity and time complexity. On the contrary,
TopDown (Alg.5) stores a tuple in µC,M only if C is a maximal
skyline constraint of the tuple, defined as follows.

Definition 9 (Skyline Constraint). Given t ∈ R(D;M) and
M ⊆ M, the skyline constraints of t in M , denoted SCt

M , are
the constraints whose contextual skylines include t. Formally,
SCt

M = {C|C ∈ Ct, t ∈ λM (σC(R))}. Correspondingly, other
constraints in Ct are non-skyline constraints.

Definition 10 (Maximal Skyline Constraints). With regard to
t and M , a skyline constraint is a maximal skyline constraint
if it is not subsumed by any other skyline constraint of t. The
set of t’s maximal skyline constraints is denoted MSCt

M . In
other words, it includes those skyline constraints for which no
parents (and hence ancestors) are skyline constraints. Formally,
MSCt

M = {C|C ∈ SCt
M , and ∄C ′ ∈ AC s.t. C

′ ∈ SCt
M}.

Example 8. Fig.3b shows, in measure subspace {m1,m2}, t5
is in the contextual skylines of 4 constraints, i.e., SCt5

{m1,m2}
=

{〈a1,∗, ∗〉,〈a1,b1,∗〉,〈a1,∗,c1〉,〈a1,b1,c1〉}. Its maximal skyline
constraints are {〈a1,∗,∗〉}, i.e.,MSCt5

{m1,m2}
={〈a1,∗,∗〉}.

Formally, Invariant 2 is guaranteed by TopDown before and
after the arrival of any tuple.
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(b) After t5

Fig. 4: Execution of TopDown in Measure Subspace {m1, m2}

Invariant 2. ∀C ∈ CD and ∀M ⊆ M, µC,M stores a tuple t
if and only if C ∈ MSCt

M .

Different from BottomUp, TopDown stores a tuple in its
maximal skyline constraints MSCt

M instead of all skyline
constraints SCt

M . Due to this difference, TopDown traverses C
t

in a top-down (instead of bottom-up) breadth-first manner. The
traversal starts from Line 6 of Alg.5, where the top element
⊤ is inserted into a queue Q. As long as Q is not empty,
the algorithm visits the next constraint C from the head of Q
and compares t with current skyline tuples in µC,M (Line 9).
Various actions are taken, depending on the comparison result:

1) If t is dominated by t′, t is disqualified from not only
C but also all constraints in Ct,t′ , by Proposition 3. The
pruning is done by calling Dominated in Line 11 which sets
C ′.pruned to true for every pruned constraint C ′. Since C is
a maximal skyline constraint for t′, the pruned constraints are
all descendants of C in Ct,t′ . Note that TopDown cannot skip
the comparisons with the remaining tuples stored in µC,M . The
reason is that there might be t′′ in µC,M such that i) t′′ also
dominates t and ii) t′′ and t share some dimension attribute
values that are not shared by t′, i.e., Ct,t′′−Ct,t′ 6=∅. Since t′′

is only stored in its maximal skyline constraints, skipping the
comparison with t′′ may incorrectly establish t as a contextual
skyline tuple for those constraints in Ct,t′′−Ct,t′ .

2) If t dominates a current tuple t′, t′ is removed from
µC,M by calling Dominates (Line 13). An extra work is to
update the maximal skyline constraints of t′ and store t′ in
descendants of C if necessary (Lines 2-9 of Dominates). If C
has a child C ′ satisfied by t′ but not t, C ′ is a skyline constraint
of t′. Further, C ′ is a maximal skyline constraint of t′, if no
ancestor of C ′ is already a maximal skyline constraint of t′.

3) If t is not dominated by any tuple in µC,M and C was
not pruned before when its ancestors were visited, (C,M)
corresponds to a contextual skyline for t (Line 15). If t was
not already stored in C’s ancestors (indicated by C.inAnces),
then C is a maximal skyline constraint and thus t is inserted
into µC,M (Line 17).

Furthermore, subroutine EnqueueChildren is called for con-
tinuation of top-down traversal (Line 18). It inserts each child
constraint C ′ of C into Q. If t is stored in µC,M or any of its
ancestors, C ′.inAnces is set to true and t will not be stored
again in µ(C ′,M) when the traversal reaches C ′.

Proof of Invariant 2 We can prove that Invariant 2 is satisfied
by TopDown throughout its execution over all tuples. The proof
can be found in the extended version of the paper [10]. �

Example 9. We use Fig.4 to explain the execution of TopDown
on Table III for M={m1,m2}. Again, assume the tuples are



Algorithm 6: STopDown

Input: R(M,D): existing tuples; t: the new tuple
Output: St: the contextual skylines for t

1 St ← STopDownRoot();
2 foreach M ⊂M do

3 St ← St∪ STopDownNode(M);

4 R← R ∪ {t};
5 return St;

Procedure: STopDownRoot ()

1 St ← ∅;
2 foreach C ∈ Ct do
3 C.pruned ← false;
4 C.inAnces ← false;
5 foreach M ⊂M do
6 pruned [C][M ]← false;

7 Q← ∅; Q.enqueue(⊤);

8 while not Q.empty() do
9 C ← Q.dequeue();
10 foreach t′ ∈ µC,M do
11 if t ≺M t′ then Dominated(t′, C)
12 else if t′ ≺M t then Dominates(t′,C,M)
13 foreach M ⊂M do

14 if t ≺M t′ (Proposition 4) then

15 foreach C′ ∈ Ct,t′ do
16 pruned [C′][M ]← true;

17 if not C.pruned then

18 St ← St ∪ {(C,M)};
19 if not C.inAnces then
20 µC,M.insert(t);

21 EnqueueChildren(C);

22 return St;

Procedure: STopDownNode (M)

1 St ← ∅;
2 foreach C ∈ Ct do
3 C.pruned ← pruned [C][M ];
4 C.inAnces ← false;

5 Q← ∅; Q.enqueue(⊤);
6 while not Q.empty() do
7 C ← Q.dequeue();
8 if not C.pruned then

9 St ← St ∪ {(C, M)};
10 foreach t′ ∈ µC,M do

11 if t′ ≺M t then Dominates(t′, C, M)

12 if not C.inAnces then
13 µC,M .insert(t);

14 EnqueueChildren(C);

15 return St;

inserted into the table in the order of t1, t2, t3, t4 and t5. Fig.4a
shows µC,M beside each constraint C in C

t5 before the arrival
of t5. A tuple is only stored in its maximal skyline constraints.
The figure also shows constraints outside of Ct5 where various
tuples are also stored. The maximal skyline constraints for t2
and t4 are 〈a1, ∗, ∗〉 and ⊤, respectively. The maximal skyline
constraints for t1 include 〈a1, ∗, ∗〉 and 〈∗, b2, ∗〉. For t3, the
only maximal skyline constraint is 〈∗, ∗, c2〉.

Upon the arrival of t5, TopDown starts to traverse C
t5 from

⊤. Only t4 is stored in µ⊤,M . In M , t5 is dominated by
t4, thus µ⊤,M does not change and t5 does not belong to
the contextual skylines of the constraints in Ct4,t5—〈∗, b1, c1〉,
〈∗, ∗, c1〉, 〈∗, b1, ∗〉 and ⊤. The traversal continues with the
children of ⊤. Among its three children, 〈∗, b1, ∗〉 and 〈∗, ∗, c1〉
do not store any tuple, and t1 and t2 are stored at 〈a1, ∗, ∗〉.
They do not dominate t5 in M . Since t5 was not stored in
any of its ancestors, 〈a1, ∗, ∗〉 is a maximal skyline constraint
of t5. Hence, t5 is inserted into it and will not be stored at
its descendants 〈a1, b1, ∗〉, 〈a1, ∗, c1〉 and 〈a1, b1, c1〉. Since
t5 dominates t1, t1 is deleted from 〈a1, ∗, ∗〉. To update the
maximal skyline constraints of t1, TopDown considers the two
children of 〈a1, ∗, ∗〉—〈a1, b2, ∗〉 and 〈a1, ∗, c2〉. 〈a1, b2, ∗〉 is
not a new maximal skyline constraint, since t1 is already
stored at its ancestor 〈∗, b2, ∗〉. 〈a1, ∗, c2〉 becomes a new
maximal skyline constraint since it is not subsumed by any
existing maximal skyline constraint of t1. Thus t1 is stored at
〈a1, ∗, c2〉. TopDown continues to the end and finds no tuple at
any remaining constraint in Ct5 . Fig.4b depicts the content of
µC,M for relevant constraints after t5’s arrival.

C. Sharing across Measure Subspaces

Given a new tuple, both TopDown and BottomUp compute
its contextual skylines in each measure subspace separately,
without sharing computation across different subspaces. As
mentioned in Sec. IV, the challenge in such sharing lies in
the anti-monotonicity of dominance relation—with regard to
the same context of tuples, a skyline tuple in space M may or
may not be a skyline tuple in another space M ′, regardless of
whether M ′ is a superspace or subspace of M [9]. To share
computation across different subspaces, we devise algorithms
STopDown and SBottomUp. They discover the contextual skylines
in all subspaces by leveraging initial comparisons in the full

measure spaceM. In this section, we first introduce STopDown
and then briefly explain SBottomUp, which is based on similar
principles.

With regard to two tuples t and t′, the measure space M
can be partitioned into three disjoint setsM>,M< andM=

such that 1) ∀m∈M>, t.m>t′.m; 2) ∀m∈M<, t.m<t′.m;
and 3) ∀m∈M=, t.m=t′.m. Then, t is dominated by t′ in a
subspace M if and only if M contains at least one attribute in
M< and no attribute inM>, as stated by Proposition 4.

Proposition 4. In a measure subspace M ⊆ M, t ≺M t′ if
and only if M ∩M< 6= ∅ and M ∩M> = ∅.

The gist of STopDown (Alg.6) is to compare a new tuple t
with current tuples t′ in full spaceM and, using Proposition 4,
identify all subspaces M in which t′ dominates t. It starts
by finding the skyline constraints in M using STopDownRoot,
which is similar to TopDown except Lines 13-16. While travers-
ing a constraint C, t is compared with the tuples in µC,M

(Line 10 of STopDownRoot). By Proposition 4, all subspaces
M where t′ dominates t are identified. In each such M ,
constraints in Ct,t′ are pruned (Lines 13-16)—indicated by
setting values in a two-dimensional matrix pruned . After fin-
ishing STopDownRoot, for each M , the constraints C satisfying
pruned [C][M ] = false are the skyline constraints of t in M .
STopDown then continues to traverse these skyline constraints
in M by calling STopDownNode(M), for two purposes—one
is to store t at its maximal skyline constraints (Line 13 of
STopDownNode), the other is to remove tuples dominated by t
and update their maximal skyline constraints (Line 11).

Example 10. We explain STopDown’s execution on Table III.
In full spaceM={m1,m2}, STopDown and TopDown work the
same. Hence, Fig.4 shows µC,M beside each C in Ct5 before
and after t5 arrives. Comparisons with tuples inM also help to
prune constraints in subspaces. Consider ⊤ in Fig.4a, where t4
is stored. The new tuple t5 is compared with t4. The outcome
is M>=∅, M<={m1,m2} and M==∅, since t5 is smaller
than t4 on both m1 and m2. By Proposition 4, t5 is dominated
by t4 in subspaces {m1} and {m2}. Hence, all constraints
in Ct4,t5 (including 〈∗, b1, c1〉, 〈∗, b1, ∗〉, 〈∗, ∗, c1〉 and ⊤) are
pruned in {m1} and {m2} simultaneously, by Lines 13-16 of
STopDownRoot. As STopDownRoot proceeds, t5 is also compared
with t1 and t2. With regard to the comparison with t1, since
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(a) Before Visiting Ct5 in {m1}
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(b) After Visiting Ct5 in {m1}

Fig. 5: Execution of STopDown in Measure Subspace {m1} (No
Comparison Required and No Change Made)
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(b) After Visiting Ct5 in {m2}

Fig. 6: Execution of STopDown in Measure Subspace {m2}

M<=∅, t5 is not dominated by t1 in any space. With regard to
t2,M

>={m2},M
<={m1} andM

==∅. Thus t5 is dominated
by t2 in {m1}. Hence, all the constraints in Ct2,t5 , which is
identical to Ct5 , are pruned in {m1}.

After the traversal in M, STopDown continues with each
measure subspace. In {m1}, all constraints of C

t5 are pruned.
Hence, t5 has no skyline constraint and nothing further needs
to be done. Fig.5 depicts µC,{m1} for all C in Ct5 before
and after the arrival of t5. For {m2}, Fig.6a depicts µC,{m2}

for all C in Ct5 before the arrival of t5. Based on the
analysis above, the skyline constraints of t5 in {m2} include
〈a1, ∗, ∗〉, 〈a1, b1, ∗〉, 〈a1, ∗, c1〉 and 〈a1, b1, c1〉. Since non-
skyline constraints are pruned, t5 is not compared with the
tuples stored at those constraints. Instead, t5 is compared with
t1 stored at 〈a1, ∗, ∗〉. Since they do not dominate each other
in {m2}, 〈a1, ∗, ∗〉 is a maximal skyline constraint of t5 and t5
is stored at it together with t1. The content of µC,{m2} in C

t5

after encountering t5 is in Fig.6b. Note that TopDown would
have compared t5 with other tuples seven times, including
comparisons with t1, t2 and t5 in {m1,m2}, with t2 and t4
in {m1}, and with t1 and t4 in {m2}. In contrast, STopDown
needs four comparisons, including the same three comparisons
in {m1,m2} and another comparison with t1 in {m2}.

Invariant 2 is also guaranteed by STopDown all the time.
We omit the proof which is largely the same as the proof for
TopDown. We note the essential difference between STopDown
and TopDown is the skipping of non-skyline constraints in
measure subspaces. Since the new tuple is dominated under
these constraints, it does not and should not make any change
to µC,M for any such constraint-measure pair.

BottomUp is extended to SBottomUp, similar to how STop-
Down extends TopDown. While in STopDown lattice traversal
in a measure subspace commences from the topmost skyline
constraints instead of the root of a lattice, lattice traversal
in SBottomUp stops at them. Invariant 1 is also warranted by
SBottomUp. Its proof is similar to that for BottomUp. Due to
space limitations, we do not further discuss SBottomUp.

VI. EXPERIMENTS

The algorithms were implemented in Java. The experiments
were conducted on a computer with 2.0 GHz Quad Core 2 Duo
Xeon CPU running Ubontu 8.10. The limit on the heap size
of Java Virtual Machine (JVM) was set to 16 GB.

A. Experiment Setup

Datasets We used two real datasets, which exhibit similar
trends. We mainly discuss the results on the NBA dataset.

NBA Dataset We collected 317,371 tuples of NBA box
scores from 1991-2004 regular seasons. We considered 8
dimension attributes: player, position, college, state, season, month,
team and opp team. College denotes from where a player gradu-
ated, if applicable. State records the player’s state of birth. For
measure attributes, 7 performance statistics were considered:
points, rebounds, assists, blocks, steals, fouls and turnovers. Smaller
values are preferred on turnovers and fouls, while larger values
are preferred on all other attributes.

Weather Dataset (http://data.gov.uk/metoffice-data-archive) It
has more than 7.8 million daily weather forecast records
collected from 5,365 locations in six countries and regions of
UK from Dec. 2011 to Nov. 2012. Each record has 7 dimension
attributes: location, country, month, time step, wind direction [day],
wind direction [night] and visibility range and 7 measure attributes:
wind speed [day], wind speed [night], temperature [day], temperature
[night], humidity [day], humidity [night] and wind gust. We assumed
larger values dominate smaller values on all attributes.

Methods Compared We investigated the performance of
7 algorithms—the baseline algorithms BaselineSeq and Base-
lineIdx from Sec. IV, C-CSC which is the CSC adaptation
described in Sec. II, and the algorithms BottomUp, TopDown,
SBottomUp and STopDown from Sec. V. We compared these
algorithms on both execution time and memory consumption.

Parameters We ran our experiments under combinations
of five parameters, which are number of dimension attributes
(d), number of measure attributes (m), number of tuples
(n), maximum number of bound dimension attributes (d̂) and
maximum number of measure attributes allowed in measure
subspaces (m̂). In the extended version of the paper [10], we
list the dimension (measure) spaces considered for different
values of d (m), which are subsets of the aforementioned
dimension (measure) attributes in the datasets.

In particular dimension/measure spaces (corresponding to
d/m values), experiments were done for varying d̂ and m̂
values. A constraint with more bound dimension attributes rep-
resents a more specific context. Similarly, a measure subspace
with more measure attributes is more specific. Considering
all possible constraint-measure pairs may thus produce many
over-specific and uninteresting facts. The parameters d̂ and m̂
are for avoiding trivial facts. For instance, if d=5, m=4, d̂=2
and m̂=3, we consider all constraints with at most 2 (out of 5)
bound dimension attributes and all measure subspaces with at
most 3 (out of 4) measure attributes. In all experiments in this
section, we set d̂ = 4 and m̂ = m. That means a constraint
is allowed to have up to 4 bound attributes and a measure
subspace can be any subspace of the whole spaceM including
M itself. In Sec. VII, we further study how prominence of
facts varies by d̂ and m̂ values.
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Fig. 7: Execution Time of BaselineSeq, BaselineIdx, C-CSC, BottomUp and TopDown on the NBA Dataset
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Fig. 8: Execution Time of C-CSC, BottomUp, TopDown, SBottomUp, STopDown on NBA dataset
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Fig. 9: Execution Time on the Weather
Dataset, Varying n, d=5, m=7

 0

 2

 4

 6

 8

 10

 12

 14

 0  100000  200000  300000

M
e
m

o
ry

 (
G

B
)

Tuple ID

C-CSC
BottomUp
TopDown

SBottomUp
STopDown

(a) Size of Consumed Memory

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0  100000  200000  300000

N
u
m

b
e
r 

o
f 
S

k
y
lin

e
 T

u
p
le

s
 S

to
re

d

Tuple ID

C-CSC
BottomUp,SBottomUp
TopDown,STopDown

(b) Num of Skyline Tuples Stored

Fig. 10: Memory Consumption by C-CSC, BottomUp, TopDown,
SBottomUp, STopDown on the NBA Dataset, Varying n, d=5, m=7
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Fig. 11: Work Done by BottomUp, TopDown, SBottomUp and STop-
Down on the NBA Dataset, Varying n, d=5, m=7
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Fig. 12: Execution Time of FSBottomUp and FSTopDown on the NBA Dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

 5000  10000  15000

E
x
e

c
u

ti
o

n
 T

im
e

 P
e

r 
T

u
p

le
 (

m
s
e

c
s
)

Tuple ID

FSBottomUp
FSTopDown

Fig. 13: Execution Time of FSBot-
tomUp and FSTopDown on the Weather
Dataset, Varying n, d=5, m=7

B. Results of Memory-Based Implementation

Fig.7 compares the per-tuple execution times (by millisec-
onds, in logarithmic scale) of BaselineSeq, BaselineIdx, C-CSC,
BottomUp and TopDown on the NBA dataset. Fig.7a shows how
the per-tuple execution times increase as the algorithms process
tuples sequentially by their timestamps. The values of d and
m are d=5 and m=7. Fig.7b shows the times under varying d,
given n=50,000 and m=7. Fig.7c is for varying m, n=50,000
and d=5. The figures demonstrate that BottomUp and TopDown
outperformed the baselines by orders of magnitude and C-CSC
by one order of magnitude. Furthermore, Fig.7b and Fig.7c
show that the execution time of all these algorithms increased
exponentially by both d and m, which is not surprising
since the space of possible constraint-measure pairs grows
exponentially by dimensionality.

Fig.8 uses the same configurations in Fig.7 to compare C-
CSC, BottomUp, TopDown, SBottomUp and STopDown. We make

the following observations on the results. First, C-CSC was out-
performed by one order of magnitude. The per-tuple execution
times of all algorithms exhibited moderate growth with respect
to n and superlinear growth with respect to d and m, matching
the observations from Fig.7.

Second, in Fig.8a, the bottom-up algorithms exhausted
available JVM heap and were terminated due to memory
overflow before all tuples were consumed. On the contrary,
the top-down algorithms finished all tuples. This difference
was more clear on the larger weather dataset (Fig.9), on which
the bottom-up algorithms caused memory overflow shortly
after 0.2 million tuples were encountered, while the top-down
algorithms were still running normally after 0.9 million tuples.
As the difference was already clear after 0.9 million tuples, we
terminated the executions of top-down algorithms at that point.
The difference in the sizes of consumed memory by these two
categories of algorithms is shown in Fig.10a. The difference



in memory consumption is due to that TopDown/STopDown
only store a skyline tuple at its maximal skyline constraints,
while BottomUp/SBottomUp store it at all skyline constraints.
This observation is verified by Fig.10b, which shows how
the number of stored skyline tuples increases by n. We see
that BottomUp/SBottomUp stored several times more tuples than
TopDown/STopDown. Note that TopDown and STopDown use the
same skyline tuple materialization scheme. Correspondingly
BottomUp and SBottomUp store tuples in the same way.

Fig.9 also shows that, for the weather dataset, C-CSC could
not proceed shorty after 0.2 million tuples were processed. This
was also due to memory overflow caused by C-CSC, since it
needs to store skyline tuples in their “minimum subspaces”.
C-CSC did not exhaust memory when it processed the NBA
dataset (Fig.8a), since there were less skyline tuples in the
smaller dataset.

Third, in terms of execution time, TopDown/STopDown were
outperformed by BottomUp/SBottomUp. The reason is, if a new
tuple t dominates a previous tuple t′ in constraint C and mea-
sure subspaceM , TopDown/STopDown must updateMSCt′

M . On
the contrary, BottomUp/SBottomUp do not carry this overhead;
they only need to delete t′ from µC,M . Thus, there is a space-
time tradeoff between the top-down and bottom-up strategies.

Finally, SBottomUp/STopDown are faster than BottomUp /
TopDown, which is the benefit of sharing computation across
measure subspaces. Figs.8b and 8c show that this benefit
became more prominent with the increase of both d and m.
Fig.11 further presents the amount of work done by these
algorithms, in terms of compared tuples (Fig.11a) and traversed
constraints (Fig.11b). There are substantial differences between
TopDown and STopDown, but the differences between BottomUp
and SBottomUp are insignificant. The reason is as follows. STop-
Down avoids visiting pruned non-skyline constraints, which
TopDown cannot avoid. Although SBottomUp avoids such non-
skyline constraints too, BottomUp also avoids most of them. The
difference between BottomUp and SBottomUp is that BottomUp
still visits the boundary non-skyline constraints that are parents
of skyline constraints and then skips their ancestors, while
SBottomUp skips all non-skyline constraints. Such a difference
on boundary non-skyline constraints is not significant.

C. Results of File-Based Implementation

The memory-based implementations of all algorithms store
skyline tuples for all combinations of constraints and measure
subspaces. As a dataset grows, sooner or later, all algorithms
will lead to memory overflow. To address this, we investi-
gated file-based implementations of STopDown and SBottomUp,
denoted FSTopDown and FSBottomUp, respectively. We did not
include C-CSC in this experiment since Figs.7-10 clearly show
TopDown/STopDown is one order of magnitude faster than C-CSC
and consumes about the same amount of memory.

In the file-based implementations, each non-empty µC,M

is stored as a binary file. Since the size of µC,M for any
particular constraint-measure pair (C,M) is small, all tuples
in the corresponding file are read into a memory buffer when
the pair is visited. Insertion and deletion on µC,M are then
performed on the buffer. When an algorithm finishes process
the pair, the file is overwritten by the buffer’s content.

Fig.12 uses the same configurations in Figs.7 and 8 to
compare the per-tuple execution times of FSBottomUp and

FSTopDown on the NBA dataset. Fig.13 further compares them
on the weather dataset. The figures show that FSTopDown
outperformed FSBottomUp by multiple times. Even for only
n=5,000, their performance gap was already clear in Figs.12b
and 12c. The reason is as follows. In file-based implemen-
tation, while traversing a pair (C,M), a file-read operation
occurs if µC,M is non-empty. Since FSTopDown stores signifi-
cantly fewer tuples than FSBottomUp (cf. Fig.10), FSTopDown is
more likely to encounter empty µC,M and thus triggers fewer
file-read operations. Further, a file-write operation occurs if the
algorithms must update µC,M . Again, since FSTopDown stores
fewer tuples, it requires fewer file-write operations. Hence,
although SBottomUp outperformed STopDown on in-memory
execution time, FSTopDown triumphed FSBottomUp because I/O-
cost dominates in-memory computation.

VII. CASE STUDY
A tuple may be in the contextual skylines of many

constraint-measure pairs. For instance, t7 in Example 1 belongs
to 196 contextual skylines (of course partly because the table
is tiny and most contexts contain only t7). Reporting all such
facts overwhelms users and makes important facts harder to
spot. It is crucial to report truly prominent facts, which should
be rare. We measure the prominence of a fact (i.e., a constraint-
measure pair (C,M)) by |σC(R)|

|λM (σC(R))| , the cardinality ratio
of all tuples to skyline tuples in the context. Consider two
pairs in Example 1:(C1:month=Feb,M1:{points,assists,rebounds})
and (C2:team=Celtics∧opp team=Nets,M2:{assists,rebounds}). The
context of C1 contains 5 tuples, among which t2 and t7 are in
the skyline in M1. Hence, the prominence of (C1,M1) is 5/2.
Similarly the prominence of (C2,M2) is 3/2. Hence (C1,M1)
is more prominent, because larger ratios indicate rarer events.

For a newly arrived tuple t, we rank all situational facts St

pertinent to t in descending order of their prominence. A fact
is prominent if its prominence value is the highest among St

and is not below a given threshold τ . (There can be multiple
prominent facts pertinent to the arrival of t, due to ties in their
prominence values.) Consider t7 in Example 1. From the 196
facts in St7 , the highest prominence value is 3. If τ≤3, those
facts in St7 attaining value 3 are the prominent facts pertinent
to t7. Among many such facts, examples are (player=Wesley,
{rebounds}) and (month=Feb.∧team=Celtics,{points}). Note that,
based on the definition of the prominence measure and the
threshold τ , a context must have at least τ tuples in order to
contribute a prominent fact.

We studied the prominence of situational facts from the
NBA dataset, under the parameter setting d=5,m=7, d̂=3, m̂=3
and τ=500. In other words, each prominent fact on a new tuple
t is about a contextual skyline that contains t and at most
0.2% of the tuples in the context. Below we show some of the
discovered prominent facts. They do not necessarily stand in
the real world, since our dataset does not include the complete
NBA records from all seasons.

• Lamar Odom had 30 points, 19 rebounds and 11 assists
on March 6, 2004. No one before had a better or equal
performance in NBA history.
• Allen Iverson had 38 points and 16 assists on April 14,
2004 to become the first player with a 38/16 (points/assists)
game in the 2004-2005 season.
• Damon Stoudamire scored 54 points on January 14, 2005.
It is the highest score in history made by any Trail Blazers.
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Figs.14 and 15 help us further understand the prominent
facts from this experiment at the macro-level. Fig.14 shows
the number of prominent facts for each 1000 tuples, given
threshold τ=103. For instance, there are 11 prominent facts
in total from the 100,000th tuple to the 101,000th tuple. We
observed that the values in Fig.14 mostly oscillate between 5
and 25. Consider the number of tuples and the huge number
of constraint-measure pairs, these prominent facts are truly
selective. One might expect a downward trend in Fig.14. It
did not occur due to the constant formulation of new contexts.
Each year, a new NBA regular season commences and some
new players start to play. Such new values of dimension
attributes season and player, coupled with combinations of other
dimension attributes, form new contexts. Once a context is
populated with enough tuples (at least τ ), a newly arrived tuple
belonging to the context may trigger a prominent fact.

Fig.15a shows the distribution of prominent facts by the
number of bound dimension attributes in constraint for varying
τ in [102, 104]. Fig.15b shows the distribution by the dimen-
sionality of measure subspace. We observed fewer prominent
facts with 0 and 3 bound attributes (out of d=5 dimension
attributes) than those with 1 and 2 bound attributes, and fewer
prominent facts in measure subspaces with 1 and 3 attributes
than those with 2 attributes. The reasons are: 1) With regard
to dimension attributes, if there are no bound attributes in the
constraint, the context includes the whole table. Naturally it is
more challenging to establish a prominent fact for the whole
table. If the constraint has more bound attributes, the corre-
sponding context becomes more specific and contains fewer
tuples, which may not be enough to contribute a prominent fact
(recall that having one prominent fact entails a context size of
no less than τ ). Therefore, there are fewer prominent streaks
with 3 bound attributes. 2) With regard to measure attributes,
on a single measure, a tuple must have the highest value in
order to top other tuples, which does not often happen. There
are thus fewer prominent facts in single-attribute subspaces. In
a subspace with 3 attributes, there are also fewer prominent
facts, because the contextual skyline contains more tuples,
leading to a smaller prominence value that may not beat the
threshold τ .

VIII. CONCLUSION

We studied the novel problem of discovering prominent
situational facts, which is formalized as finding the constraint-
measure pairs that qualify a new tuple as a contextual sky-
line tuple. We presented algorithms for efficient discovery
of prominent facts. We used a simple prominence measure
to rank discovered facts. Extensive experiments over two
real datasets validated the effectiveness and efficiency of the

techniques. This is our first step towards general fact finding
for computational journalism. Going forward, we plan to
explore several directions, including generalizing the solution
for allowing deletion and update of data, narrating facts in
natural-language text and reporting facts of other forms (e.g.,
facts about multiple tuples in a dataset and aggregates over
tuples).
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