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Abstract—Answering queries using views has proven an effec-
tive technique for querying relational and semistructured data.
This paper investigates this issue for graph pattern queris based
on (bounded) simulation, which have been increasingly useih,
e.g., social network analysis. We propose a notion ofpattern
containment to characterize graph pattern matching using graph
pattern views. We show that a graph pattern query can be
answered using a set of views and only if the query is contained
in the views. Based on this characterization we develop effent
algorithms to answer graph pattern queries. In addition, we
identify three problems associated with graph pattern condin-
ment. We show that these problems range from quadratic-time
to NP-complete, and provide efficient algorithms for contanment
checking (approximation when the problem is intractable).Using
real-life data and synthetic data, we experimentally veri§ that
these methods are able to efficiently answer graph pattern cgries
on large social graphs, by using views.

I. INTRODUCTION

Answering queries using views has been extensively stu

ied for relational queries [19], [20], [25], XML [22], [36]37]
and semistructured data [11], [32], [38]. Given a qu@rgind a
setV ={Vq,..
A such thatA is equivalent taQ, and A only refers to views in
V [19]. This yields an effective technique for evaluatiyg if
such a query exists, then given a databafe one can com-
pute the answe® (D) to Q in D by usingA, which uses only
the data in the materialized views(D), without accessingd.
This is particular effective whem is “big” and/or distributed.

., V., } of views, the idea is to find another query
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Fig. 1: Data graph, views and pattern queries

collaborationg.g.,(Bob, Dan) indicates thaDan worked well
with Bob on a project led byBob.

To build a team, a human resource manager issues a pattern
query [23]. The query, expressed@sin Fig. 1 (c), is to find
a group ofPM, DBA andPRG. It requires that (1PBA; and
PRG, worked well under the project managem; (2) each

F£RG (resp.DBA) had been supervised byDBA (resp.PRG),

represented as a collaboration cycle [23]Qg. For pattern
matching based ograph simulation[16], [34], the answer
Qs(G) to Qs in G can be denoted as a set of pafes.S.)

such that for each pattern edgén Qs, S. is a set of edges (a
match set) for in G. For example, pattern edgeM, PRG;)

has a match sef. = {(Bob, Dan), (Walt, Bill)}, in which each
edge matches the node labels and satisfies the connectivity
constraint of the pattern eddeéMm, PRGs).

It is known that it takesO(|Qs|? + |Qs||G| + |G]?) time

Indeed, views have been advocated $oale independence to computeQs(G) [16], [21], where |G| (resp. |Qs|) is the

to query big data independent of the size of the underlyingize of G (resp.Qs). This is a daunting cost whe@ is big.
data [8]. They are also useful in data integration [25], data=or example, to identify the match set of each pattern edge
warehousing, semantic caching [13], and access contrdl [14 (DBA;, PRG;) (for i € [1,2]), each pair of DBA, PRG) in G

rhas to be checked, and moreover, a numbgoiof operations

The need for studying this problem is even more evident fohave to be performed to eliminate invalid matches.

answering graph pattern queriesl(.a.graph pattern match-
ing) [16], [21]. Graph pattern queries have been incredging One can do better by leveraging a setvidws Suppose
used in social network analysis [10], [16], among otherdBin that a set of views) = {V1, V.} is defined, materialized and
Real-life social graphs are typically large, and are oftencached Y(G) = {Vi(G),V2(G)}), as shown in Fig. 1 (b).
distributed. For example, Facebook currently has more thamhen as will be shown later, to compu&(G), (1) we only
1 billion users with 140 billion links [3], and the data is need to visit views inV(G), without accessing the original
geo-distributed to various data centers [18]. One of theomaj big graphG; and (2) Qs(G) can be efficiently computed by
challenges for social network analysis is how to cope with*merging” views in V(G). Indeed, V(G) already contains
the sheer size of real-life social data when evaluating f[grappartial answers taQ, in G: for each query edge in Q,
pattern queries. Graph pattern matching using views pesvid the matches of (e.g.,(DBA;, PRG;)) are contained either in
an effective method to query such data. V1i(G) or V4(G) (e.g.,the matches o3 in Vs). These partial
answers can be used to constr@gtG). As a result, the cost
Example 1: A fraction of a recommendation network is of computingQs(G) is quadratic in|Qs| and |[V(G)|, where
depicted as a grap& in Fig. 1 (a), where each node denotesV(G) is typically much smaller thar. O
a person with name and job title.¢.,project managerAM),
database administratoDEBA), programmer BRG), business This example suggests that we conduct graph pattern
analyst BA) and software testes()); and each edge indicates matching by capitalizing on available views. To do this,esaV



guestions have to be settled. (1) How to decide whether pattern containment can be extended to bounded simulation,

pattern queryQs can be answered by a sgtof views? (2) If  with the same or comparable complexity.

s0, how to efficiently comput&(G) from V(G)? (3) Which ) ) o

views in V should we choose to answéx? (5) Using real-life data (Amazon, YouTube and Citation) and
synthetic data, we experimentally verify the effectivenaad

Contributions. This paper investigates these questions forefficiency of our view-based matching method (Section VII).

answeringgraph pattern queriesusing graph pattern views We find that this method reduces 94% of the time used by

We focus on pattern matching defined in termgudph simu-  prior methods for bounded pattern queries on large datasets

lation [21] andbounded simulatiofiL6], which are particularly  on average [16]. Moreover, our matching algorithm scalels we

useful in detectingsocial communities and positiofi0]. with both the data size and pattern size; and our algorittoms f
(minimal, minimum) pattern containment checking take less

(1) To characterize when graph pattern queries can be afhan 0.5 second on complex (cyclic) patterns. Furthermore,

swered using views based on graph simulation, we proposge find that our optimization methods by identifying minimal

a notion of pattern containmeng¢Section Ill). It extends the (minimum) containment effectively reduce redundant views

traditional notion of query containment [6] to deal wihset  and improve the performance by 46% on average.

of views Given a pattern querQ; and a seV = {Vy,...,V,,}

of view definitions, we show tha®, can be answered using
V if and only if Qs is contained inV.

This work is a first step toward understanding graph pattern
matching using views, from theory to practical methods. We
contend that the method is effective: one may pick and

We also provide an evaluation algorithm for answeringcache previous query results, and efficiently answer patter
graph pattern queries using views (Section Ill). Gignand  queries using these viewsithout accessing the large social
a setV(G) of views on a graphG, the algorithm computes graphs. Better still, incremental methods are already @cepl
Qs(G) Iin O(JQs|IV(G)| + [V(G)|?) time, without accessing to efficiently maintain cached pattern views.d., [15]). The
G at all whenQs is contained inV. It is far less costly than view-based method can be readilgmbinedwith existing dis-
O(|Qs]* +|Qs||G|+|G|?) for evaluatingQs directly onG [16],  tributed, compression and incremental techniques forhgap
[21], sinceG is typically much largerthanV(G) in practice.  and yield a promising approach to querying “big” social data

(2) To decide which views iV to use when answering., we The proofs of the results of this work can be found in [4].

identify three fundamental problems for pattern containme Re|ated Work. There are two view-based approaches for query
(Section 1V). GivenQs and V, (i) the containment problem rocessing: query rewriting and query answering [20], [25]
is to decide whetheQ; is contained inV; (ii) the minimal  Gjven a queryQ and a setV of views, (1) query rewriting
containment problerts to identify a subset of thatminimally s to reformulate@ into an equivalent query)’ in a fixed
containsQs, and (iii) theminimum containment problem 0 |anguagei(e., for all D, Q(D) = Q'(D)), such thaty’ refers

We establish the complexity of these problems. We shovgvaluating an equivalent query of Q, while A refers only to
that the first two problems are in quadratic-time, whereas th Y and its extension¥(D). While the former requires thap’
last one isNP-complete and approximation-hard. These resuiltdS in a fixed language, the latter imposes no constraintion
are not only useful in answering pattern queries using views/Ve study answering graph pattern queries using patternsview
but are also interesting fajuery minimizationindeed, when We next review previous work on these issues for relational
V contains a single view, the containment problem becomegatabases, XML data and general graphs.

the classical query containment problem [6]. ) ) . )
Relational data Query answering using views has been ex-

~ These results are a nice surprise. Note that even for relaensively studied for relational data (see [6], [20], [28} f
tional conjunctive queries, the problem of query containti®  syrveys). It is known that for conjunctive queries, query
NP-complete [6]; for XPath fragments, it BXPTIME-complete  answering and rewriting using views are already intraetabl
or even undecidable [30]. In contrast, the (minimal) camtai [20], [25]. For the containment problem, the homomorphism
ment problem for graph pattern queries is in I®RTIME,  theorem shows that one conjunctive query is contained in
although graph pattern matching via (bounded) simulatiay m another if and only if there exists a homomorphism between
be “recursively defined” (for cyclic patterns). the tableaux representing the queries, and iNfscomplete

- : ) o to determine the existence of such a homomorphism [6].
(3) We develop efficient algorithms for checking (minimal, poreover, the containment problem for conjunctive queises

minimum) pattern containment (Section V). For containmenip_complete, and is undecidable for relational algebra [6].
and minimal containment checking, we provide quadratic-

time algorithms in the sizes afuery Q, andview definitions XML queries There has been a host of work on processing
Y, which aremuch smallerthan graphG in practice. For XML queries using views [29], [30], [33]. In [29], the con-
minimum containment, we provide an efficient approximationtainment of simple XPath queries is shownNeecomplete.
algorithm with performance guarantees. When disjunctionDTDs and variables are taken into account,
the problem ranges from si®-complete tEXPTIME-complete
(4) We show that all these results carry over to boundedo undecidable for various XPath classes [30]. In [7], patte
simulation [16] (Section VI). More specifically, the notion containment and query rewriting of XML are studied under
of pattern containment, the algorithm for answering patter constraints expressed as a structural summary. For trésrpat
queries using views, the three containment problems, amd thqueries (a fragment of XPath), [22], [36] study maximally
(approximation) algorithms for checking (minimal, minimy  contained rewriting instead of equivalent rewriting.



Semistructured data and RDF here has also been work on e  for each node: € V), there exists a node € V' such
view-based query processing for semistructured dateRa that (u,v) € S, referred to as anatchof «; and
which are also modeled as graphs.

o for each pair(u,v) € S, f,(u) € L(v); for each

(1) Semistructure dataViews defined in Lorel are studied pattern edge: = (u,u’) in E,, there exists an edge
in, e.g.,[38], which are quite different from graph patterns (v,v") in E, referred to as anatchof e in S, such
considered here. View-based query rewriting for regulah pa that (u/,v") € S.

gueries RPQ9 is shownPSPACEcomplete in [11], and aBX- . , .

PTIME rewriting algorithm is given in [32]. The containment  WhenQs<s G, it is known that there existsunique max-

problem is shown undecidable fRPQsin the presence of path imummatchsS,, in G for Q, [21]. We derive{(e, S¢) | e € By}

constraints [17] and for extended conjunctREQs[9]. from S,, whereS, is the set of all matches efin S, called

the match seof e. Here S, is nonemptyfor all e € E,.

(2) RDF. An EXPTIME query rewriting algorithm is given

in [24] for SPARQL It is shown in [12] that query containment ~ We define theesultof Qs in G, denoted af);(G), to be

is in EXPTIME for PSPARQL, which supports regular expres- the unique maximum seft(e, S.) | e € E,} if Qs<simG, and

sions. There has also been work on evaluaSiRgrRQLqueries et Qs(G) = () otherwise. We denote the size of quedy by

on RDF based on cached query results [13]. |Qs/, and the size of resulRs(G) by |Qs(G)| (see Table I).
Our work differs from the prior Wo_rk in the following. Example 2: Consider the pattern queiQ, shown in Fig. 1

Mc), where each pattern node carries a search condition (job

title), and each pattern edge indicates collaboratioticglship

between two people. WheQ, is posed on the network of

€ig. 1 (a), the resulQs(G) is shown in the table below:

queries via (bounded) simulation, which are quite différen
from previous settings, from complexity bounds to proaessi
techniques. (2) We show that the containment problem for th
pattern queries is iIRTIME, in contrast to its intractable coun-

terparts fore.g.,XPath, regular path queries as@ARQL (3) | Edge | Matches |

We study a more general form of query containment between (PM, DBA,) {(Bob, Mat), (Walt, Mat)}

a queryQ, and a set ofqueries, to identify an equivalent (PM, PRG,) {(Bob, Dan), (Walt, Bill) }

query for Qs that is not necessarily a pattern query. (4) The Eggﬁ;' Egg;; {(Fred, Pat), (Mat,Pat), (Mary, Bill)}

high complexity of previous methods for query answering (PRG,, DBA,) [(Dan, Fred), (Pat, Mary),

using views hinders their applications in the real world. In (PRG,,DBA,) (Pat, Mat), (Bill, Mat)}

contrast, our algorithms have performance guaranteesiatud y

a practical method for querying real-life social networks. Here (1) bothBob and Walt are matches of pattern node

PM as they satisfy the search conditionrofl; similarly, Fred,

We focus on (bounded) simulation in this work as it is Mat, Mary matchDBA, andDan, Pat, Bill matchPRG; (2) query
widely used in social data analysis [10], [16]. Nonethelessedge(PM, DBA;) has two matches id/; and (3) query edges

the techniques can be extended to revisions of simulation su (DBA;, PRG;) and (DBA,, PRG,) (resp.(PRG1, DBA;) and

as dual and strong simulation [28] (see Section VIII). (PRG2,DBA;)) have the same matches. ]

B. Graph Pattern Matching Using Views

We next formulate the problem of graph pattern matching
ng views. We studywiews V defined as a graph pattern
query, and refer to the query resM{G) in a data graphG

as theview extensiorfor V in G or simply as aview [19].

Il. GRAPHS, PATTERNS AND VIEWS

We first review pattern queries and graph simulation. WeuSi
then state the problem of pattern matching using views.

A. Data Graphs and Graph Pattern Queries

Given a pattern quer®s and asetV = {V;,...,V,}
of view definitions, graph pattern matching using views
to find another queryA such that (1)A is equivalent to

Data graphs A data graphis a directed grapli = (V, E, L),
where (1)V is a finite set of nodes; (2y C V x V, in which

(v,v") denotes an edge from nodeto v’; and (3) L is a : _ i
function such that for each nodein V, L(v) is a set of labels oQ;iyl.sé}e/rls(Cig) ;ie\?vfs(\/@efo)r) ﬂ'nga{%?rggtt;ﬁ}ﬂy(g)f

fro(rjn an aIphabeEk. Intuiti&/ely, L.sPeclifiesztge attributes of a (V1(G),...,V,(G)} in G, without accessingz. If such a
node,e.g.,name, keywords, social roles [23]. query A exists, we say thaRs can be answered using.

Pattern queries[16]. A graph pattern query, denoted Qs, In contrast to query rewriting using views [19] but along
is a directed grapiQs = (V}, E,, f,), where (1)V,, and E,, the same lines as query answering using views [25], bere
are the set ofpattern nodesand the set ofpattern edges is notrequired to be a pattern query. For example, Fig. 1 (b)
respectively; and (2¥, is a function defined of¥,, such that depicts a view definition set = {V,, V,} and their extensions
for each node. € V,, f,(u) is a label inX. We remark that V(G) = {V1(G),V2(G)}. To answer the quer, (Fig. 1 (c)),

f. can be readily extended to specify search conditions ine want to find a queryl that computef(G) by using only
terms of Boolean predicates [16] (see Fig. 7 for examples). V andV(G), where A is not necessarily a graph pattern.

For a setV of view definitions, we define the siZ&’| of
V to be the total size o¥/;’s in V, and the cardinalitgard())
of V to be the number of view definitions .

Graph pattern matching via simulationMe say that a data
graphG = (V, E, L) matchesa queryQ, = (V,,, E,, f,) via

simulation denoted byQ<sm G, if there exists a binary rela-
tion S C V, x V, refereed to as matchin G for Qs, such that The notations of the paper are summarized in Table I.




( symbols T notations

Tnput: A pattern quenys, a set of view definitiony’

Qs = (Vp, Ep, fv) graph pattern query . . .
s R Ve Sl LCE and their extension¥(G), a mapping\.
V= (Vqi,..., Vi) a set of view definitiond/; OUtpUtThe query resulf\/ as QS(G)
V(G) = (V1 (G), ..., Vi, (G))] a set of view extensiony; (G) . e (.
Qs I G (resp,nglBimG) simulation (resp. bounded simulation) 1 fOl’ eaCh edg@ n QS dO Se = Q)’
Qs C V (resp.Q, C V) Qs (resp.Qy,) is contained inV 2. M= {(6, Se) | e c Qs},
M\C/')s (resp.M\C}b) iew match from a viewV to Qs (resp.Qy, 3. for eache c Qs do
ize (total ber of nod d edgeq) ’ — .
Qs (resp.|Qy | and V() e (?ee;pggnbw r of o :zf{inriluo?ﬂ/ e 4. _for each_e € Ae) d_o Se = S.US.; N
total number of edges in e 5. while there is change it$., for an edgee, = (u,u”) in Qs do
[Qs(G)] (resp.|Q,(G) ) for all edgese in Qs (resp.Qp,) 6 f he = (u P de’ = (v S.d
V] total size of view definitions inV . or eache = (U 7“) In QS ande = (U 71)) € Se 0O
card(V) the number of view definitions i) 7. if there ise; = (u’7u1) but r']()e’1 = (v’71;1) in Sel then
8. Se =S\ {e'};
TABLE I: A summary of notations 9. if there isez = (u, u2) but noes = (v,v2) in Se, then
10. Se =S\ {e'};

Remark. (1) We assumew.l.o.g. that graph patterns are 11. if Se =0 then return 0;

connected, since isolated pattern nodes can be easilydthndl12.return M = {(e, Sc) | e € Qs}, which isQs(G);

using the same matching semantic. (2) Our techniques can , - : )

be readily extended to graphs and queries with edge labels. Fig. 2: Algorithm MatchJoin

Indeed, an edge-labeled graph can be transformed to a node- o

labeled graph: for each edgeadd a “dummy” node carrying (/) We prove theOnly If condition in Theorem 1(1) by

the edge label of, along with two unlabeled edges. contradiction. Assume tha}s can be answered using and

Qs Z V. By Qs Z V, there exists at least an edgeof Qs

. that cannot be mapped to any edge in the match sets ¥tom

I1l.  PATTERN CONTAINMENT: A CHARACTERIZATION We show that for such an edge one may always construct
In this section we propose a characterization of grapta data graphG that matche®,, but no match inG can be

pattern matching using viewsg., a sufficient and necessary identified by using onlyV. This contradicts the assumption

condition for deciding whether a pattern query can be anssver that Q, can be answered using by definition (Section 1I-B).

by using a set of viewsWe also provide a quadratic-time

algorithm for answering pattern queries using views.

(I We show the If condition of Theorem 1(1) by a
constructive proof: we next present an algorithm to evalQat
Pattern containment We introduce a notion of pattern con- UsingV(G), if Qs V. We verify Theorem 1(2) by showing
tainment, by extending the traditional notion of query con-that the algorithm is irO(|Q|[V(G)| + [V(G)|?) time. O
tainment toa setof views. Consider a pattern quefys
(Vp, Ep, fu) and a sel = {Vq,...,V,} of view definitions,
whereV,; = (V;, E;, f;). We say thatQ is containedin V,
denoted byQ, C V, if there exists a mapping from £, to
powersetP (U, , £i), such that for all data graptG, the
match setS. C | ) Ses for all edgese € E,,.

Algorithm . The algorithm, denoted aglatchJoin, is shown
in Fig. 2. It takes as input (1) a pattern queRy and a set
of view definitionsV = {V; | i € [1,n]}, (2) a mapping\
for Qs C V (we defer the computation of to Section V);
and (3) view extension¥(G) = {Vi;(G) | i € [1,n]}. In

a nutshell, it compute€.(G) by “merging” (joining) views
V; (@) as guided by\. The merge process iteratively identifies
and removes those edges that are not matche&3; otintil a
fixpointis reached an@Qs(G) is correctly computed.

e’eX(e

Example 3: Recall G, V and Q, in Fig. 1. ThenQ; C V.
Indeed, there exists a mappingfrom £, of Qs to sets of
edges inY, which maps edge@®M, DBA, ), (PM, PRG;) of Q,

to their counterparts iWy; both (DBA;, PRG; ), (DBAz, PRG2)

of QS to es, and (PRGl, DBAQ), (PRGQ,DBAl) 10 ey in Vs.
One may verify that for any grapy’ and any edge of Qs,

its matches inG are contained in the union of the match
sets of the edges in(e), e.g.,the match set of pattern edge
(DBA1,PRG;) in G is {(Fred, Pat), (Mat, Pat), (Mary, Bill) },
which is contained in the match set ef of V5, in G.

More specifically, MatchJoin works as follows. It first
initializes M with empty match set$. for each pattern edge
e (lines 1-2).MatchlJoin setsS. as Ue,@(e) S./, where S,
is extracted fromV(G) (lines 3-4), following the definition of
A(e) (Section Il). It then performs a fixpoint computation to
remove all invalid matches from. (lines 5-10). Specifically,
for a pattern edge, = (u,u”) in Qs with changed match
set S, it checks whether each mateh of a pattern edge
Pattern containment and query answering The main result e = (u/,u) still remains to be a match of (lines 7-10), by
of this section is as follows: (1) pattern containment irdtlee the definition of simulation (Section 1I-A). I’ is no longer a
characterizes pattern matching using views; and (2) vihen match, it is removed fron§. (lines 8,10). In the process, #.

Y, for all graphsG, Qs(G) can be efficiently computed by becomes empty for some edgeMatchJoin returnsf) since
using viewsV(G) only, independent ofG|. In Sections IV and  Q, has no match ini. Otherwise, the process (lines 5-11)
V we will show how to decide whethe®, T V by inspecting  proceeds until/=Qs(G) is computed and returned (line 12).
Qs andV only, alsoindependent ofG]|.

Example 4: GivenQs, V, V(G) of Fig. 1, and the mapping

of Example 3 MatchJoin evaluateQ using) andV(G). For
each edge: of Qs, its match setS, is exactIyUe,eMe) Ser,
which yields the sam&.(G) as given in Example 2.

Theorem 1: (1) A pattern queryQs can be answered using
if and only if Qs C V. (2) For any graphG, Qs(G) can be
computed inO(|Qs||V(G)| + [V(G)]?) time ifQs C V. O
Consider another example shown in Fig. 3. One can verify
Proof sketch: Below we outline the proof (see [4] for details). Qs C V by a mapping\ that mapgAl, Bio), (PM, Al) to e, €2



& Fem  Go®

(a) Graph G " (c) Pattern query Qg
V, V,(G) V, V2(G)

DB;->Al
Sey| Al,->Bio,| Se; DBl->A|2
e, e, e,/ —Xe, Al 2 SEZ
Se,|PM,->Al . Se,| 1772

@) ) Pelren] @ Pl
¢ ce.|SE1->DB;
(b) View definitions and extensions ®|SE,->DB,|

Fig. 3: Answering pattern queries using views

in V1, respectively; andDB, Al), (Al, SE), (SE, DB) t0 e3, ey,

es in Va, respectivelyMatchJoin then merges view matches
guided by\. It next removegAly, SE;) from S(a sg), which

is not a valid match for(Al, SE) in Qs. This further leads
to the removal of(SE;, DB3) from S(sg pg), (DB2,Als) from
S(os,an, and yieldsQ(G) shown in the table below.

[ Edge | Maiches || Edge [ Maiches |
(PM,AD) [ (PM,Al) ] (Al,Bio) [ (Al Bio.)
(DB,Al) | (DB, Al) || (ALLSE) | (Al SEs)
(SE,DB) | (SE»,DB,) O

Correctness & Complexity. Denote the match set i/ as
Sy for each edge: in Q. One may verify thatMatchJoin
preserves two invariants: (1) at any time, for each edgeQ,
Sk C Se; and (2)S. = S; whenMatchJoin terminates. Indeed,
S, is initialized WithUe/e,\(e Ser, henceS* C S, due toQs C

V. During thewhile loop (lines 5-10) MatchJoin repeatedly
refinesS, by removing invalid matches only (lines 8,10) until
Se can no longer be refined. Thus, = S when the algorithm
terminates. From these the correctnes$/atchJoin follows.

For the complexity, it take®)(|Qs|) time to initialize M
(lines 1-2), andO(|Qs||V|) time to initialize S, (lines 3-4).

r(u) = max{(1 + r(u)) | (s(u),s(u’)) € Escc} otherwise.
Here Escc is the edge set of th&scc of Qs. The rankr(e)
of an edgee = (v/,u) in Qs is set to ber(u).

Bottom-up strategyWe reviseMatchJoin by processing edges
e In Q, following an ascending order of their ranks (lines 5-
11). One may verify that this “bottom-up” strategy guaraste
the following for the number of visits.

Lemma 2: For all edgese = (v/, ), whereu’ and u do not
reach any non-singleto®CC in Qs, MatchJoin visits its match
setS. at most once, using the bottom-up strategy. |

In particular, whenQ is a DAG pattern {.e., acyclic),
MatchJoin visits each match set at most once, and the total
visits are bounded by the number of the edgeQ4JnAs will be
verified in Section VII, the optimization strategy improves
performance by at least6% over (possibly cyclic) patterns,
and is even more effective over denser data graphs.

IV. PATTERN CONTAINMENT PROBLEMS

We have seen that given a pattern qu@cyand a sed’ of
views, we can efficiently answeés by using the views when
Qs C V. In the next two sections, we study how to determine
whetherQs C V. Our main conclusion is that there are efficient
algorithms for these, with their costs as a functiorj@f| and
|V|, which are typically small in practice, and a@relependent
of data graphs and materialized views.

In this section we study three problems in connection with
pattern containment, and establish their complexity. la th
next section, we will develop effective algorithms for ckieg
Qs C V and computing mapping from Qs to V.

Pattern containment problem. The pattern containment
problemis to determine, given a pattern que®y and a sed

MatchJoin then removes invalid matches by using a dynam-f view definitions, whetheQs; T V. The need for studying
ically maintained index, which maps pattern edges to theithis problem is evident: Theorem 1 tells us tf@ can be

possible matches (see [4] for details). Tkile loop (lines 5-
11) is bounded byO(|V(G)[?) time. Putting these together,
MatchlJoin is in O(|Qs||V(G)| + [V(G)|?) time.

The analysis above completes the proof of Theorem 1.

Remark. (1) It takes O(|Qs]? + |Qs||G| + |G]?) time to
evaluateQs(G) directly onG [16]. In contrast,MatchJoin is
in O(|Qs||[V(G)] + [V(G)|?) time, without accessingG. As
will be seen in Section VIILV(G) is much smaller thar@,
and MatchJoin is more efficient than the algorithm of [16].
Indeed, forYoutubegraph in our experiments, only to 6
views are used to answé€l;, and the overall size oP(G) is
no more tham% of the size of thevoutubegraph.

Optimization. MatchJoin may visit eachS. multiple times.

answered by using views of if and only if Qs C V.

The result below tells us tha®; C V can be efficiently
decided, in quadratic-time ifQs| and[V|. We will prove the
result in Section V, by providing such an algorithm.

Theorem 3: Given a pattern quen®s and a set) of view
definitions, it is inO(card(V)|Qs|? + |V|* + |Qs||V]) time to
decide whetheQ, C V and if so, to compute a mapping
from Qs to V, where|V| is the size of view definitions. O

A special case of pattern containment is the classjoaly
containmentproblem [6]. Given two pattern queri€d;; and
Qs2, the latter is to decide wheth@x; C Qss, i.€.,whether for
all graphsG, Qs;(G) is contained inQs,(G). Indeed, whery
contains only a single view definitioRs,, pattern containment

To reduce unnecessary visits, below we introduce an optibbecomes query containment. From this and Theorem 3 the

mization strategy forMatchJoin. The strategy evaluateQ,
by usingranks in Qs as follows. Given a patter,, the
strongly connected component graBbcc of Qs is obtained
by collapsing each strongly connected compong@C of
Qs into a single nodes(u). The rankr(u) of each node
u in Qs is computed as follows: (@) (u) = 0 if s(u)
is a leaf in Gscc, wherew is in the SCC s(u); and (b)

result below immediately follows.

Corollary 4: The query containment problem for graph pattern
queries is in quadratic time. ]

Like for relational queries (see.g.,[6]), the query con-
tainment analysis is important in minimizing and optimizin



pattern queries. Corollary 4 shows that the analysis can be We defer the proof of Theorem 6(2) to Section V, where
efficiently conducted for graph patterns, as opposed torthe i an approximation algorithm is provided.
tractability of its counterpart for relational conjunatiqueries.

V. DETERMINING PATTERN CONTAINMENT

Minimal containment problem. As shown in Section lll, the We next prove Theorems 3, 5 and 6(2) by providing

complexity of pattern matching using views is dominated byeffective (approximation) algorithms for checking patteon-
|[V(G)|. This suggests that we reduce the number of viewsainment, minimal containment and minimum containment, in

used for answerind)s. Indeed, the less views are used, theSections V-A, V-B and V-C, respectively.

smaller|V(G)| is. This gives rise tdhe minimal containment .

problem Given Q, and V, it is to find a minimal subsey” ~ A. Pattern Containment

of V that containQs. That is, (1)Qs C V', and (2) for any We start with a proof of Theorem &g., whetherQ, C V

proper subseV” of V', Qs Z V". can be decided ii©(card(V)|Qs|* + [V|* + |Qs||V]) time. To

do this, we first propose sufficient and necessacpndition to
haracterize pattern containment. We then develop a giiadra
ime algorithm based on the characterization.

The good news is that the minimal containment proble
does not make our lives harder. We will prove the next resul
in Section V by developing a quadratic-time algorithm.

o~ L ) ) Sufficient and necessary conditionTo characterize pattern
Theorem 5: GivenQs and V), itis in O(card(V)|Qs|* +[VI°+  containment, we introduce a notion gew matches
|Qs||V|) time to find a minimal subseét’ of V containingQs

and a mapping\ from Qs to V' if Qs C V. o Consider a pattern quefy, and a seV of view definitions.
For eachV € V, let V(Qs) = {(ev,Se,) | ev € V}, by

Minimum containment problem. One may also want to find treatingQ, as adata graph Obviously, if V<, Qs, then S,

a minimumsubset)’ of V that containsQs. The minimum is the nonempty maich set ef, for each edge of V (see
containmeniproblem, denoted b}IMCP, is to find a subset Se(;\t/l[or: Il- Al)) Wﬁ define th%!ewfmatcl:lrfrom \</to Qs, denoted

V' of ¥ such that (1)Qs C V', and (2) for any subsey” of y My*, to be the union o orail ey In

V, if Qs C V", thencard(V') < card(V"). The result below shows that view matches yield a charac-

As will be seen shortly (Examples 6 and 7) and verifiedterlzatlon of pattern containment.

by our experimental studyIMCP analysis often finds smaller

V' than that found by minimal containment checking. Proposition 7: For view definitions) and patternQs with

edge setf,, Q; C V if and only if B, = (Jyc\, M. O
MMCP is, however, nontrivial: its decision problem is
NP-complete and it isAPX-hard. HereAPX is the class of Proof sketch: We outline the proof below (see [4] for details).
problems that allowPTIME algorithms with approximation (1) Assume E,, UVeV M\(}s_ We construct a mapping
ratio bounded by a constant (see [35] faPX). Nonetheless, from E,, to the edges of the views i, as a “reversed” view
we show thatMMCP is approximable withinO(log |E,|) in  match relation. The mappink ensures that for any data graph
low polynomial time, whergE,| is the number of edges of @G, if ¢, in G is a match ofe in Q (e, € S.), there must
Q.. That is, there exists an efficient algorithm that identifies exist an edge; € A(e) such thate, € S... Thus,Qs C V.
subse®’ of V with performance guaranteegheneveQs C V
such thatQ, = V' and |card(V')| < log(|E,|)|card(Vopt)|,  (2) Assume by contradictio®s T V but E), # Uy M,
whereVop is @ minimum subset of that contains. Then by E, # UVEV [QS there exists an edgein E, but

not in UVEv M Slncer C Y, if an edgee, in G matches
Theorem 6: The minimum containment problem is (- e in Qs, thene, is in S., of V(G) for someV € V. These
complete (its decision problem) amPX-hard, but (2) it is  together lead to the contradiction, since if such eapxists,
approximable withinO(log |E,|) in O(card(V)|Qs|? + [V[* +  we can expand mappini(e) by includinge; of V; thuse is
|Qs| V| + (1Qs| - card(V))3/2) time. O “covered” by M. Therefore, ifQs C V, E,={Jycy, MyF. O

Proof sketch: (I) The decision problem oMMCP is to  Algorithm . Following Proposition 7, we present an algorithm,
decide whether there exists a subgét of V such that denoted asontain (not shown) to check whethed, C V.
Qs C V' andcard(V') < k, wherek is an integer bound. It Given a pattern quer@s and a sefV of view definitions, it
is in NP since there exists aNP algorithm that first guesses returns a boolean valums that istrue if and only if Qs £ V.
V' and then checks wheth&; C V' andcard()’) < k in  The algorithm first initializes an empty edge $eto record
PTIME. The lower bound is verified by reduction from the view matches from) to Q. It then checks the COﬂdIthﬂ of
NP-completeset coverproblem (cf. [31]). Given a seX, a  Proposition 7 as follows. (1) Compute view matM\, for
collection/ of its subsets and an integét, the latter is to eachV in V), by invoking the simulation evaluation algorithm
decide whether there is B-element subset dff that covers in [16]. (2) ExtendE with M\(}S by union, sincdw\sQs is asubset
X. We show that there exists a set cover of diziéand only  of E,. After all view matches are mergedhntain then checks
if there exists a-element subsey’ of V that containQs. whetherE = E,. It returnstrue if so, andfalse otherwise.

(I The APX-hardness oMMCP is verified by approxima- Example 5: Recall the pattern quer®, and viewsy =
tion preserving reduction [35] from the minimum set cover{V, V,} givenin Fig. 1. As remarked earligd; C V. Indeed,
problem, which isAPX-hard (cf. [35]; see [4] for details)O one can verify that J, 1.2] M * = F,.
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Qs Vi V2 V3
Fig. 4: Containment for pattern queries
[V | My, [V | My; |
Vl {(Ca D)} V2 {(BvE)}
V3 {(AvB)v(AC)} Vi {(B,D),(C, D)}
Vs {(B. D), (B, E)} Ve | {(A,B).(A,C),(C, D)}
vz [ {(A, B), (A, C), (B, D)}

Consider another pattern ques and a set of view
definitionsV = {V; | i € [1,7]} given in Fig. 4. The view
matchesl\/[Qs of V, for i € [1,7] are shown in the table above.

Given Qs andV contain returnstrue smceUV cv MQs is the
set of edges 0f,. One can verify thaQ, C V. ]

Correctness & Complexity. The correctness of algo-
rithm contain follows from Proposition 7. For eac‘bi eV, it
takesO(|Qs||V|+ Qs[>+ |V|?) time to computeli* [16], and
O(1) time for set union. Théor loop (lines 2-3) hasard(v)
iterations, and it take®(card(V)|Qs|* + |V|? + |Qs|[V]) time
in total, since botkard(V) - |V| and|V| are bounded byV|.

From these and Proposition 7, Theorem 3 follows.

Remarks. (1) Algorithm contain can be easily adapted to

return a mapping\ that specifies pattern containment (Sec-

tion Ill), to serve as input for algorithnMatchJoin. This

can be done by following the construction given in the proof
of Proposition 7. (2) In contrast to regular path queries and-vev”

relational queries, pattern containment checking i®ThVE.

B. Minimal Containment Problem

We now prove Theorem 5 by presenting an algorithm thate|imination is processed i@ (card(V)

glven Qs and V, finds a minimal subsel’ of V containing
Qs in O(card(V)|Qs|* + [VI2 + |Qs|[V]) time if Qs C V.

Algorithm . The algorithm, denoted asinimal, is shown in
Fig. 5. Given a queryQs and a setV of view definitions,
it returns either a nonempty subsgt of V that minimally
containsQs, or () to indicate thatQs Z V.

The algorithm initializes (1) an empty s®t for selected
views, (2) an empty sei for view matches of)’, and (3) an

Input: A pattern queryQs, and a set of view definition¥.

Output: A subset)’ of V that minimally containgQs.

1. setV' :=0;S:=0; E:=0; mapM := 0;

2. for each view definitionV; € V do

3. computeM";

if M\ E # 0 then
v’ V' U{Vi}; S:=SU{MP}; E:= EUMP;
for each e € My* do M(e) := M(e) U{V.};

if E= E, then break
8. if E# E, then return 0;

9. for each MQS €S do

No g s

10, if there is noe € MQS such thatM(e) \ {V;} = 0 then
11. V=V A\{V;}; updateM
12.return V';

Fig. 5: Algorithm minimal

Example 6: ConsideiQs andV given in Fig. 4. AfterMQs (i e
[1,4]) are computed, algorithminimal finds thatE aIready
equalsk),, and breaks the loop, wheid is initialized to be
{((A,B)  {Vs}), (4,C) : {Va}), (B, D) : {Va}), ((C, D) :
{V1,V4}),((B, E) : {V2})}. As the removal ofV; does not
make anyM(e) empty,minimal removesV; and returng”’ =
{V2,Vs,V,} as a minimal subset of. O

Correctness & Complexity. To see the correctnessmfnimal,
observe the following: (1Rs C V' if V' # (); indeed,)’ is
returnedonly if the union of the view matches ifi equals
E,, i.e., Qs C V' by Proposition 7; and (2R, IZ V" for any
V" C V'. To see this, note that by the strategynahimal for
reducing redundant views W’ (lines 9-11), forany V" c V',
MSS is not equal toFE,, the edge set of);. Hence
V.

It takes minimal O(card(V)|Qs|* + |V|? + |Qd||V]) time
to find all the view matches o¥’ (line 3). Its nested loop
for M (line 6) takesO(card(V) - |Qs|) time. The redundant
-|Qs]) time (lines 9-11).
Thusminimal is in O(card(V)|Qs|? + [V|? + |Qs|[V]) time.

again by Proposition Qg Z

From the algorithm and its analyses Theorem 5 follows.

Again algorithmminimal can be readily extended to return a
mapping\ that specifies containment @f; in V'.

C. Minimum Containment Problem

We next prove Theorem 6 (2)e., MMCP is approximable
within O(log | E,|) in O(card(V)|Qs|*+ V2 +|Qs| V|4 (1Qs] -

card(V))3/2) time. We give such an algorithm fdviMCP,
following the greedy strategy of the approximation of [35]
for the set cover problem. The algorithm of [35] achieves an
approximation ratiaD(logn), for ann-element set.

empty setkE for edges in view matches. It also maintains an
indexM that maps each edgein Qs to a set of views (line 1).
Similar to contain, minimal first computesM = for all V; €
V (lines 2-7). However, instead of simply merglng the view

matches as Irtontaln it extendsS with a new view match
MQs only if M contains a new edge not iy and update$
accordlngly (Ilnes 4-7). Théor loop stops as soon d&s= E,
(line 7), asQs is already contained in’. If E # E, after
the loop, it returng) (line 8), sinceQs is not contained iy
(Proposition 7). The algorithm then eliminates redundas
V; € V' (lines 9-11), by checking whether the removal\of
causesl\/l( ) = () for somee € MQs (line 10). If no suche
exists, it remove¥; fromV’ (line 11) After all view matches
are checkedmummal returns)’ (line 12).

Algorithm . The algorithm is denoted asinimum (not
shown). Given a patterQ, and a sefy of view definitions,
minimum identifies a subsey’ of V such that (1)Qs = V'
if Qs C V and (2)card(V’) < log(|E,|) - card(VopT), Where
VopT1 IS @ minimum subset o¥’ that containsQs. In other
words, minimum approximatesMMCP with approximation
ratio O(log | E,|). Note that|E,| is typically small.

Algorithm minimum iteratively finds the “top” view whose
view match can cover most edges@ that are not covered.



To do this, we define a metrie(V) for a view V, where

MG\ Ed
V) = v\ =
M) =g,

in G, with its length bounded by: if f.(u,u’) = k. When
fe(u,u’") = %, there is no constraint on the path length.

Intuitively, Q, extends pattern queries by mapping an edge

Here E. is the set of edges i, that have been covered (u,u’) in E, to a nonempty path from to +" in data graph

by selected view matches, andV’) indicates the amount of
uncoverecedges thaM\sQs covers. We seledt with the largest
« in each iteration, and maintaim accordingly.

Similar to minimal, algorithmminimum computes the view
matchJV[\c}is for eachV; € V, and collects them in a sét It
then does the following. (1) It selects viewy with the largest
a, and removed/* from S. (2) It mergesE, with M3 if MG
contains some edges that are notEi) and extendd’’ with
V;. During the loop, ifE. equalsE,, the set)’ is returned.
Otherwise,minimum returns@, indicating thatQs IZ V.

Example 7: Given Q; and V = {Vi,...,V;} of Fig. 4,
minimum selects views based on theirvalues. More specifi-
cally, in the loop it first choosegg, since its view mathM\?g

= {(4,B),(4,C),(C,D)} makesa(Vgs) = 0.6, the largest
one. ThenV is followed by Vs, asa(Vs) = 0.4 is the largest
one in that iteration. AfteN5; andVg are selected, algorithm
minimum finds thatE. = E,, and thusY’ = {Vs,Vg} is
returned as a minimum subset that contays O

Correctness & Complexity. Observe thaiinimum finds a
nonempty)’ such thatQs C V' if and only if Qs C V
(Proposition 7). The approximation ratio @finimum can

G, such that can reachy’ within f,(u,u’) hops.

It is known that WhennggmG, there exists aunique
maximummatch S, in G for Q, [16]. Along the same lines
as Section I, we define the query res@t(G) to be the
maximumset {(e, S.) | e € E,} derived fromS,, where S,
is a set of node pairs far = (u, u’) such that (1 (resp.v’)
is a match ofu (resp.u’), and (2) thedistanced from v to v’
satisfies the bound specified fia(e), i.e.,d < k = f.(e).

Example 8:ConsideQ, = (Vj, Ep, fu, f.), a bounded pattern
in which (1) V,,, E, and f, are the same as iQ; of Fig 3;
and (2) f.(Al,Bio) = 2, and f.(e) = 1 for all the other edges
e. The resultQ,(G) in graphG of Fig. 3 (a) is:

[ Edge | Matches
(PM, AD[ (PM,, Al,), (PM,, Al,)
(DB,AD[ (DB, Al,), (DB5, Al,)

(SE,DB)[(SE,, DB,), (SE;, DB;)

|| Edge | Matches |
(Al, Bio)[(Al,, Bio,), (Al, Bio,)
(Al SE)|(Al,, SE,), (Al,, SE»)

Note that the pattern eddel, Bio) has a matcijAl;, Bio, ),
which denotes a patf(Aly, SE1), (SE1, Bioy)) of length2. O

Observe that pattern queries (Section Il) are a special case

of bounded patterns whefi(e) = 1 for all edgese. While

be verified by an approximation-preserving reduction frombounded patterns are more expressive, they do not inca extr

MMCP to theset cover probleni31], by treating each}\/[\%s in
S as a subset db,. Algorithm minimum extends the algorithm
of [35] (with approximation ratidog(n) for n-element set) to
query containment, and preserves approximation tagiar,,|.

For the complexityminimum computes view matches in

O(card(V)|Qs)? + [V]? + |Qs|[V]) time (lines 1-3). Thewhile
loop is executed)((|Qs| - card(V))!/2) times. Each iteration
takesO(|Qs| - card(V)) time to find a view with the largest.
Thus,minimum is in O(card(V)|Qs|? + V|2 +|Qs| V| + (| Qs| -
card(V))3/2) time, where|Qs| andcard(V) are often smaller
than|V|. This completes the proof of Theorem 6 (2).

VI. BOUNDED PATTERN MATCHING USING VIEWS

In this section, we show that the results of the previou

sections carry over tbounded pattermjueries, which extend

patterns with distance constraints on pattern edges, avel ha

been verified effective in social network analysis [16].

Bounded pattern queries [16]. A bounded pattern query,

denoted ady, is a directed graptiV,, E,, f,, f.), where
(1) V,, B, and f,, are the same as in a pattedg (Section II),
and (2) f. is a function defined o, such that for all(u, u)
in E,, fe(u,u’) is either a positive integet or a symbol.

A data graphG = (V,E, L) matchesQ, via bounded
simulation denoted byQ,<B G (Table 1), if there exists a
binary relationS C V, x V such that (1) for each nodeec V/,,
there exists anatchv € V' such that(u,v) € S, and (2) for

complexity when it comes to query answering using views

(Section VI-A) and their containment analysis (SectionBjl-

A. Answering Bounded Pattern Queries

Given a bounded pattern quefy, and a setV of view
definitions (expressed as bounded pattern queries), tigono
of answering queries using views is to compQigG) by only
referring to) and their extension¥®(G).

Pattern containment fd®y, is defined in the same way as
for pattern queries. That i), is contained inV, denoted as
Qb C V, if there existsa mapping\ that maps each € E,
to a setA(e) of edges inV, such that for any data graph

G, the match setS, C Ue/ex(e) S for all edgese of Q.

Along the same lines as Theorem 1, one can readily verify
Yhat pattern containment also characterizes whether talind

pattern queries can be answered using views.

Theorem 8: A bounded pattern quer@, can be answered
using viewsy if and only if Q, is contained in). |

Better still, answering bounded pattern queries using siew
is no harder than its counterpart for pattern queries.

Theorem 9: Answering bounded pattern que@, on graph
G using views) is in O(|Qp|[V(G)| + [V(G)|?) time. O

To prove Theorem 9, we outline an algorithm for comput-
ing Q(G) by usingy andV(G) whenQ, C V. To cope with

each pair(u,v) € S, f,(u) € L(v), and for each pattern edge edge-to-path mappings, it uses an auxiliary indé¥) such

e = (u,v') in E,, there exists a nonemppath from v to v’

that for each matcliv,v’) in V(G) of some edge irv, I(V)



includes a paif(v,v'),d), whered is the distance from to
v" in G. Note that the size of (V) is bounded byV(G)].

Algorithm. The algorithm, denoted byBMatchJoin (not
shown), takes as inpuy, V, V(G), I(V) and a mapping
A from the edges ofQ, to edge sets inY. Similar to
algorithmMatchJoin (Fig. 2), it evaluatef), by (1) “merging”
views inV(G) to M according to), and (2) removing invalid
matches. It differs fromMatchJoin in the following: for an
edgee, = (u,u”) of Q, with changedsS, , it reduces match set
S. of a “parent” edge: = (v/,u) in Qp by gettingthe distance
d (by queryingZ(V) in O(1) time) from v’ to v; (resp.v to
v2), checking whethel(v’,v1) € S, (resp. (v,v3) € S.,)
for pattern edge:; = (u/,u1) (resp.ex = (u,u2)) such that
distanced is no greater tharf. (v, u1) (resp. fe(u,us2)), and
removing (v’,v) from S, if no (v, v1) (resp.(v,v2)) exists.
The removal of(v’,v) may introduce more invalid matches
in M, which are removed repeatedly IBMatchJoin until a
fixpoint is reached. Thei/ is returned as the answer.

The correctness dBMatchJoin follows from Theorem 8.
One can verify thatBMatchJoin takes O(|Qu|[V(G)| +
[V(G)[?) time, the same as the complexity fatchJoin.

Remarks. (1) EvaluatingQ, directly in a graph takes cubic-
time O(|Qy||G|?) [16]. In contrast, it take®(|Qp||V(G)| +
[V(G)|?) time using views, an®(G) is much smallethanG
in practice. (2) The optimization strategy in Section llhdae
naturally incorporated int@MatchJoin (see details in [4]).

B. Bounded Pattern Containment

© ® ® ® ® 50O O
: 3 3 3 1/ \2 3/ \a 1 3 |« z
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Fig. 6: Containment for bounded pattern queries

shown that the view matclM\‘,ib from V; to Qp is 0, since
the distance fronC' to D in Q, is greater thar2. O

Similar to Proposition 7, the result below givesafficient
and necessargondition forQ, containment checking.

Proposition 11: For view definitions) and bounded pattern
queryQy, Qp C V if and only if £, = Jycy, M. 0

Bounded pattern containment To prove Theorem 10 (1), we
give an algorithm for checking bounded pattern containment
following Proposition 11, denoted bBcontain (not shown).
Bcontain is the same asontain (Section Ill) except that it
computes view matches differently. More specifically, it ex
tends the algorithm for evaluating bounded pattern quétigls

to weighted graphs. It can be easily verified that it is in
O(|Qu[?|V]) time to find all view matches for). Thus
Bcontain decides whethe®,, is contained iV in O(|Qp|?|V|)
time, from which Theorem 10 (1) follows.

Minimal bounded containment. To show Theorem 10 (2),
we give an algorithm for minimal containment checking,

We next show that the containment analysis of boundedenoted byBminimal (not shown). Similar taninimal (Fig. 5),

pattern queries is in cubic-time, up from quadratic-time.

Theorem 10:Given a bounded pattern que®, and a set of
view definitions, (1) it is iD(|Qp|?|V|) time to decide whether
Qb C V; (2) the minimal containment problem is also in

Bminimal first computes view matches for eathe V, in
O(|Qu[?|V]) time, and unions view matches unfilequals the
edge sett, of Q, as described abov8minimal then follows
the same strategies asnimal to eliminate redundant views;
whose removal will not cause am(e) = ) for eache € M\%".

O(|Qsu[*V|) time; and (3) the minimum containment problem Thus Bminimal is in O(|Qp[2|V|) time.

(denoted asBMMCP) is (i) NP-complete (decision version)
and APX-hard, but (i) approximable withinO(log |E,|) in
O(|IQb|2[V| + (|Q| - card(1))3/2) time. 0

Minimum bounded containment. Theorem 10 (3) (i) follows
from Theorem 6(1), sincMIMCP is a special case &MMCP
whenf.(e) = 1 for all edges. To show Theorem 10 (3) (i), we

To prove Theorem 10, we extend the notion of viewgive an algorithm for minimum containment checking, dedote
matches (Section IV) to bounded pattern queries. Given &y Bminimum (not shown). It is similar taminimum, except

bounded patter®Q, = (V},, E,, fu, fe) and a view definition
V = (VY EV fV V), we define theview matchfrom V to
Qp as follows. (1) We treaQ,, as aweighted data graphn
which each edge: has a weightf.(e). The distance from
nodew to u’ in Qp is given by the minimum sum of the
edge weights on shortest paths framo «’. (2) We define
V(Qb) = {(ev, Sey) | ev € V} as its counterpart foRs, except
that for each edgey = (v,v’) in V, the distance from to «’
in all pairs (u,u’) € S, is bounded byk if fY(ev) = k. (3)

that it computes view matches differentBminimum takes
O(]Qp|?|V|) time to find all view matches of. Thus, it takes
O(|Qb|?|V|+(|Qb|-card(V))3/2) time to return a subset df no

larger thanlog(|E,|) - card(VopT), whereVopt is aminimum
subset of) that containy,.

VII. EXPERIMENTAL EVALUATION
Using real-life and synthetic data, we conducted four sets

One may verify that there exists a unique, nonempty maximunof experiments to evaluate (1) the efficiency and scalsthiit

setV(Qy) if VB Qy. Theview matchM 3 from V to Q is

the union ofS,, for all ey in V.

Example 9: ConsiderQ, and V = {Vy,...,V7} shown
in Fig. 6. One may verify thatM3* = {(A, B), (B, E)},
where the corresponding node pairsQp satisfies the length
constraints imposed bys. As another example, it can be

algorithm MatchJoin for graph pattern matching using views;
(2) the effectiveness of optimization techniquesNtatchJoin;

(3) the efficiency and effectiveness of (minimal, minimum)
containment checking algorithms; and (4) the counterpzfrts

the algorithms in (1) and (3) for bounded pattern queries.

Experimental setting. We used the following data.



V>="10K" R>="5" C="Music"  A<="100" C="Sports' ~R>="4"L<="200"  R>="5" V>="10K"

(1) Real-life graphsWe used three real-life graphs: (@jna- I I

zon [1], a product co-purchasing network witht8K nodes I SR SUR AL SRR . s
and1.78M edges. Each node has attributes such as title, group Py P2 Ps Pa Ps P
and sales-rank, and an edge from produtt y indicates that CoMgc Ao 00 CoReds” 0" V>0 Cft A= Rl RSO G Voo
people who buyz also buyy. (b) Citation [2], with 1.4M i
nodes and3M edges, in which nodes represent papers with ccomes oo o vomioe =200 Ro=ar Lo=1200C="Comedy” Co'sports" CSports”  Ro=4" C="Music
attributes such as title, authors, year and venue, and edges 7 Pe P Po P P2
denote citations. (cYouTube[5], a recommendation network Fig. 7: Youtube views

with 1.6M nodes andl.5M edges. Each node is a video with

attributes such as category, age and rate, and each edge frgiyerimental results. We next present our findings.
x to y indicates thaty is in the related list of:.

, . Exp-1: Query answering using views.We first evaluated
(2) Synthetic dataWe designed a generator to produce ran-, : . :
dom graphs, controlled by the numb@f| of nodes and the the performance of graph pattern matching using views,

; i.e., algorithmsMatchJoin,,;, andMatchJoin.,,, compared to
number|E| of edges, with node labels from an alphabiet Match [16], [21]. Using real-life data, we studied the efficiency

(3) Pattern and view generatolVe implemented a generator ©f MatchJoingin, MatchJoing, andMatchJoin, by varying the
for bounded pattern queries controlled by four parameters:'2€ of the_querles.. We also evaluz_;tted the scalability odehe
the numberV,| of pattern nodes, the numb#E, | of pattern three algorithms with large synthetic datasets.

edges|E,|, label f,, from X, and an upper bounk for f.(e)
(Section VI), which draws an edge bound randomly fridryk].
Whenk = 1 for all edges, bounded patterns are pattern querie
We use(|V, |, |E,|) (resp.(|V,l, |Eyl, k)) to present the size of
a (resp. bounded) pattern query.

Efficiency Figures 8(a), 8(b) and 8(c) show the results on
éAmazom Citation andYouTuberespectively. The:-axis repre-
Sents pattern siz@V,|, | E,|). The results tell us the following.
(1) MatchJoiny,;, and MatchJoinn,, substantially outperform
Match, taking only 45% and 57% of its running time on
We generated a sef of 12 view definitions foreach average over all real-life datasets. (2) All three algaonish
real-life dataset. (a) FoOAmazon we generated 12 frequent spend more time on larger patterns. NonetheldaschJoin i,
patterns following [27], where each of the view extensionsand MatchlJoin,,, are less sensitive thallatch, since they
contains in averag&Xk nodes and edges. The views takereuse previous computation cached in the views.
14.4% of the physical memory of the entire Amazon dataset.
(b) For Citation, we designed.2 views to search for papers Scalability Using large synthetic graphs, we evaluated the
and authors in computer science. The view extensions atcouscalability of MatchJoin,;,, MatchJoin,, andMatch. Fixing
for 12% of the Citation graph. (c) We generaté? views for  pattern size with|V,| = 4 and |E,| = 6, we varied the
Youtube shown in Fig. 7, where each node specifies videosiode numbefV| of data graphs frond.3M to 1M, in 0.1M
with Boolean search conditions specified byg., age (4), increments, and sef| = 2|V|. As shown in Fig. 8(d), (1)
length (), category (), rate ) and visits {"). Each view  MatchJoin, scales best witHG|, consistent with the com-
extension has about00 nodes and edges, and put togetherplexity analysis oMatchJoin; and (2)MatchJoiny,;, accounts
they take4% of the memory for Youtube. for about 49% of the time oMatchJoin,,. This verifies
that evaluating pattern queries by using less view ext@ssio
significantly reducegomputational time, which is consistent
gvith the observation of Figures 8(a), 8(b) and 8(c).

For synthetic graphs, we randomly constructed alseff
22 views with node labels drawn from a setof 10 labels.
We cached their view extensions (query results), which tak
in total 26% of the memory for the data graphs. To further evaluate the impact of pattern sizes on the

. . . performance ofMatchJoin,i,, We generated four sets of

(4) Implementation We implemented the following algo- patterns with (V,|,|E,|) ranging from ¢.8) to (7,14), kept
rithms, all in Java: (1)contain, minimum- and r.ni'nimal |E,| = 2|V,|, and varied|G| as in Fig. 8(d). The results
for checking pattern containment; (Bcontain, Bminimum e reported in Fig. 8(e), which tell us the following. (1)
and Bminimal for bounded pattern containment; (B)atch, — atchJoin,y;, scales well with|Q,|, which is consistent with
MatchJommi,_1 andMat_chJou_nmm, whereMatch is the matching Fig. 8(d). (2) The largeR is, the more costlMatchJoinmin
algorithm without using views [16], [21]; anWatchJoinmin is. For largerQs, more views may be needed to “cove®;

(resp.MatchJoinmy) revisesMatchJoin by using a minimum 504 MatchJoing,, takes longer time, using the selected views.
(resp. minimal) set of views; (4BMatch, BMatchJoinmin

and BMatchJoin,,,;, where BMatch evaluates bounded pat-
tern queries without using views [16], ar8MatchJoinmin
and BMatchJoiny,, are the counterparts oMatchJoingyi,
and MatchJoinm,, for bounded pattern queries, respectively;
and (5) a version ofMatchJoin (resp. BMatchJoin) with-
out using the ranking optimization (Section Ill), denoted b
MatchJoingept (resp.BMatchJoinngpt).

Exp-2: Optimization techniques. We also evaluated the
effectiveness of the optimization strategy given in Sectib,
by comparing the performance oMatchJoing,,, and
MatchJoinnope USINg patterns of sizg4,6) and same set
of views. The synthetic graphs are generated following the
densification law [26] E| = |V|*. Fixing |V| = 200K, we
varied o from 1 to 1.25 in 0.05 increments. As shown in
All the experiments were run on a machine powered by arkig. 8(f), MatchJoinn;, is more efficient tharMatchJoinngpe
Intel Core(TM)2 Duo 3.00GHz CPU with 4GB of memory, over all the datasets. Indeed, the running tim&latchJoini,
using scientific Linux. Each experiment was riirtimes and is on average 54% of that dflatchJoinnepe. The improvement
the average is reported here. becomes more evident whem increases. This is because
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Fig. 8: Performance evaluation

when graphs become dense, more redundant edges can bBep-4: Efficiency and scalability of BMatchJoin. In
removed by the bottom-up strategy usedatchJoin,,i,. The  this set of experiment we evaluated (1) the efficiency of
results forBMatchJoinmi, and BMatchJoin,epe are consistent BMatchJoingin vS. BMatchJoinmn andBMatch over the real-
with Fig. 8(f) and are hence not shown. life datasets, by varying the size of pattern queries, ahth@
scalability of BMatchlJoiny,;, over large synthetic graphs, by

Exp-3: Query containment. We evaluated the performance varying the size of patterns and data graphs.

of pattern containment checkingr.t. query complexity. Efficiency.We used the same patterns as fdetchJoin in

Exp-1, except that the edge bounds of the patterns were
set to bef.(e) = 2 (resp. fe(e) = 3) for queries over
Amazon (resp. Citation). Figure 8(i) shows the results on
Amazonin which the z-axis (|V, |, |E,|, fc(e)) indicates the
size of pattern)s = (V,,, E,, f.). From the results we find
nthatBMatchJoinm;n and BMatchJoiny,, performmuch better

Efficiency ofcontain. We generated two sets BAG andcyclic
patterns, denoted by)pac and Qcycic, respectively. Fixing
a set of synthetic viewd’, we varied the pattern size from
(6,6) to (10,20), where each size corresponds doset of
patternswith different structures and/or node labels. As show

in Figure 8(g), (1)ontain is efficient,e.qg.,it takes only39 ms thanBMatch: (1) BMatchJoin... (resp.BMatchJoin needs
to decide whether ayclic pattern with|V,,|=10 and| £,|=20 is only 10% (.re(sio. 14%) of ’{‘r']"e( tim% oBMatch: ’2‘5')) when

contained inV; (2) contain takes more time over larg&AG e size increases, the running time RiflatchJoing,
andcyclic patterns, as expected; and (3) when pattern size 'gresp.BMatchJoinmm) grows slower than that dMatch; and
fixed, cyclic patterns cost more thd»AG patterns forcontain, (3) BMatchJoinn, always outperformBMatch Joingy. These

due to a more time-consuming fixpoint process. are consistent with the result f@itation, shown in Fig. 8(j).

minimum VS minimal. To measure the performance of Fixing pattern size with|V,| = 4 and |E,| = 8,
minimum and minimal, we defineR; = |Tmin|/|Tmn| as the  we varied f.(e) from 2 to 6. As shown in Fig. 8(k),
ratio of the time used byninimum to that of minimal; and (1) BMatchJoiny,, substantially outperform8Match; when
Ry = |Minimum|/|Minimal| for the ratio of the size of subsets f.(e) = 3, for example BMatchJoinmin accounts for only 3%
of views found byminimum to that of minimal. Using the of the computational time oBMatch; (2) the largerf.(e)
same view definitions andyclic patterns as in Figure 8(g), is, the more costlyBMatch is, as it takes longer foBFS to
we varied the size of pattens fror,§) to (10, 20). As shown identify ancestors or descendants of a node within therdista
in Fig. 8(h), (1)minimum is efficient on all patterns used,g., bound f.(e); and (3) BMatchJoiny,, is more efficient than
it takes aboub.4s over patterns witi0 nodes and®0 edges; BMatchJoinn,y, as it uses less views.

(2) minimum is effective: whileminimum takes up to 120%

of the time ofminimal (R,), it finds substantially smallesets  Scalability.Fixing |V,,| = 4, |E,| = 6 andf.(e) = 3, we varied
of views, only about 40%-55% of the size of those found by|V| from 0.3M to 1M in 0.1 M increments, while lettingF’| =
minimal, as indicated byR,. Both algorithms take more time 2|V|. As shown in Fig 8(l), (1)BMatchJoinm,i, scales best
over larger patterns, as expected. with |G]; this is consistent with its complexity analysis; and




(2) BMatchJoing,, takes only 6% of the computation time of [6]
BMatch, and the saving is more evident whéhgets larger.
[7]

Summary. We find the following. (1) Answering (bounded) (8]

pattern queries using views is effective in querying large
social graphs. For example, by using views, matching via
bounded simulation takes onl§% of the time needed for [9]
computing matches directly ifouTubeand6% on synthetic
graphs. For graph simulation, the improvement is over 51%t0]
at least. (2) Our view-based matching algorithms scale wel
with the query and data size. Moreover, they are much les
sensitive to the size of data graphs. (3) It is efficient to[l]
determine whether a (bounded) pattern query can be answereé
using views. In particular, our approximation algorithnr fo [13]
minimum containment effectively reduces redundant views,
which in turn improves the performance of matching 3%/
(resp.94%) for (resp. bounded) pattern queries. (4) Better still,[14]
our optimization strategy further improves the performeant

1]

pattern matching using views by6%. [15]
[16]

VIIl. CONCLUSION
[17]

We have studied graph pattern matching using views,
from theory to algorithms. We have proposed a notion ofi18]
pattern containment tcharacterizevhat pattern queries can be
answered using views, and provided such an efficient majchin

algorithm. We have also identified three fundamental prokle (19
for pattern containment, established their complexityl da- [20]
veloped effective (approximation) algorithms. Our expem-

tal results have verified the efficiency and effectivenessuwsf 27

techniques. These results extend the study of query ansyveri
using views from relational and XML queries to graph pattern[22]
gueries. Moreover, our techniques can be readily extenaled t
strong simulation [28], retaining the same complexity. (23]

The study of graph pattern matching using views is still
in its infancy. One issue is to decide what views to cachd?4]
such that a set of frequently used pattern queries can b[?
answered by using the views. Techniques such as adaptive a q
incremental query expansion may apply. Another issue igto d 26]
velop efficient algorithms for computingaximally contained
rewriting using views, when a pattern query is not containedz27
in available views [25]. A third problem concerns view-base
pattern matching via subgraph isomorphism. The fourthctopi [28]
is to find a subseY’ of ¥ such tha®’(G) is minimum for all
graphsG. Finally, to find a practical method to query “big” [2°]
social data, one needs to combine techniques such as vie\fgb]
based, distributed, incremental, and compression methods
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