
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answering graph pattern queries using views

Citation for published version:
Fan, W, Wang, X & Wu, Y 2014, Answering graph pattern queries using views. in IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014. Institute of
Electrical and Electronics Engineers (IEEE), pp. 184-195. https://doi.org/10.1109/ICDE.2014.6816650

Digital Object Identifier (DOI):
10.1109/ICDE.2014.6816650

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4,
2014

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1109/ICDE.2014.6816650
https://doi.org/10.1109/ICDE.2014.6816650
https://www.research.ed.ac.uk/en/publications/ff45e638-7610-4088-b174-2a8b4d6804be


Answering Graph Pattern Queries Using Views

Wenfei Fan1,2 Xin Wang 3 Yinghui Wu 4

1University of Edinburgh 2RCBD and SKLSDE Lab, Beihang University
3Southwest Jiaotong University 4UC Santa Barbara
{wenfei@inf, x.wang-36@sms}.ed.ac.uk, yinghui@cs.ucsb.edu

Abstract—Answering queries using views has proven an effec-
tive technique for querying relational and semistructured data.
This paper investigates this issue for graph pattern queries based
on (bounded) simulation, which have been increasingly usedin,
e.g., social network analysis. We propose a notion ofpattern
containment to characterize graph pattern matching using graph
pattern views. We show that a graph pattern query can be
answered using a set of viewsif and only if the query is contained
in the views. Based on this characterization we develop efficient
algorithms to answer graph pattern queries. In addition, we
identify three problems associated with graph pattern contain-
ment. We show that these problems range from quadratic-time
to NP-complete, and provide efficient algorithms for containment
checking (approximation when the problem is intractable).Using
real-life data and synthetic data, we experimentally verify that
these methods are able to efficiently answer graph pattern queries
on large social graphs, by using views.

I. I NTRODUCTION

Answering queries using views has been extensively stud-
ied for relational queries [19], [20], [25], XML [22], [36],[37]
and semistructured data [11], [32], [38]. Given a queryQ and a
setV = {V1, . . . , Vn} of views, the idea is to find another query
A such thatA is equivalent toQ, andA only refers to views in
V [19]. This yields an effective technique for evaluatingQ: if
such a queryA exists, then given a databaseD, one can com-
pute the answerQ(D) to Q in D by usingA, which uses only
the data in the materialized viewsVi(D), without accessingD.
This is particular effective whenD is “big” and/or distributed.
Indeed, views have been advocated forscale independence,
to query big data independent of the size of the underlying
data [8]. They are also useful in data integration [25], data
warehousing, semantic caching [13], and access control [14].

The need for studying this problem is even more evident for
answering graph pattern queries (a.k.a.graph pattern match-
ing) [16], [21]. Graph pattern queries have been increasingly
used in social network analysis [10], [16], among other things.
Real-life social graphs are typically large, and are often
distributed. For example, Facebook currently has more than
1 billion users with 140 billion links [3], and the data is
geo-distributed to various data centers [18]. One of the major
challenges for social network analysis is how to cope with
the sheer size of real-life social data when evaluating graph
pattern queries. Graph pattern matching using views provides
an effective method to query such data.

Example 1: A fraction of a recommendation network is
depicted as a graphG in Fig. 1 (a), where each node denotes
a person with name and job title (e.g.,project manager (PM),
database administrator (DBA), programmer (PRG), business
analyst (BA) and software tester (ST)); and each edge indicates
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Fig. 1: Data graph, views and pattern queries

collaboration,e.g.,(Bob, Dan) indicates thatDan worked well
with Bob on a project led byBob.

To build a team, a human resource manager issues a pattern
query [23]. The query, expressed asQs in Fig. 1 (c), is to find
a group ofPM, DBA andPRG. It requires that (1)DBA1 and
PRG2 worked well under the project managerPM; (2) each
PRG (resp.DBA) had been supervised by aDBA (resp.PRG),
represented as a collaboration cycle [23] inQs. For pattern
matching based ongraph simulation[16], [34], the answer
Qs(G) to Qs in G can be denoted as a set of pairs(e, Se)
such that for each pattern edgee in Qs, Se is a set of edges (a
match set) fore in G. For example, pattern edge(PM, PRG2)
has a match setSe = {(Bob, Dan), (Walt, Bill)}, in which each
edge matches the node labels and satisfies the connectivity
constraint of the pattern edge(PM, PRG2).

It is known that it takesO(|Qs|2 + |Qs||G| + |G|2) time
to computeQs(G) [16], [21], where |G| (resp. |Qs|) is the
size of G (resp.Qs). This is a daunting cost whenG is big.
For example, to identify the match set of each pattern edge
(DBAi, PRGi) (for i ∈ [1, 2]), each pair of (DBA, PRG) in G
has to be checked, and moreover, a number ofjoin operations
have to be performed to eliminate invalid matches.

One can do better by leveraging a set ofviews. Suppose
that a set of viewsV = {V1, V2} is defined, materialized and
cached (V(G) = {V1(G), V2(G)}), as shown in Fig. 1 (b).
Then as will be shown later, to computeQs(G), (1) we only
need to visit views inV(G), without accessing the original
big graphG; and (2)Qs(G) can be efficiently computed by
“merging” views in V(G). Indeed,V(G) already contains
partial answers toQs in G: for each query edgee in Qs,
the matches ofe (e.g.,(DBA1, PRG1)) are contained either in
V1(G) or V2(G) (e.g.,the matches ofe3 in V2). These partial
answers can be used to constructQs(G). As a result, the cost
of computingQs(G) is quadratic in|Qs| and |V(G)|, where
V(G) is typically much smaller thanG. 2

This example suggests that we conduct graph pattern
matching by capitalizing on available views. To do this, several



questions have to be settled. (1) How to decide whether a
pattern queryQs can be answered by a setV of views? (2) If
so, how to efficiently computeQs(G) from V(G)? (3) Which
views inV should we choose to answerQs?

Contributions. This paper investigates these questions for
answeringgraph pattern queriesusing graph pattern views.
We focus on pattern matching defined in terms ofgraph simu-
lation [21] andbounded simulation[16], which are particularly
useful in detectingsocial communities and positions[10].

(1) To characterize when graph pattern queries can be an-
swered using views based on graph simulation, we propose
a notion of pattern containment(Section III). It extends the
traditional notion of query containment [6] to deal witha set
of views. Given a pattern queryQs and a setV = {V1, . . . , Vn}
of view definitions, we show thatQs can be answered using
V if and only if Qs is contained inV .

We also provide an evaluation algorithm for answering
graph pattern queries using views (Section III). GivenQs and
a setV(G) of views on a graphG, the algorithm computes
Qs(G) in O(|Qs||V(G)| + |V(G)|2) time, without accessing
G at all whenQs is contained inV . It is far less costly than
O(|Qs|

2+ |Qs||G|+ |G|2) for evaluatingQs directly onG [16],
[21], sinceG is typically much largerthanV(G) in practice.

(2) To decide which views inV to use when answeringQs, we
identify three fundamental problems for pattern containment
(Section IV). GivenQs and V , (i) the containment problem
is to decide whetherQs is contained inV ; (ii) the minimal
containment problemis to identify a subset ofV thatminimally
containsQs, and (iii) theminimum containment problemis to
find a minimum subset ofV that containsQs.

We establish the complexity of these problems. We show
that the first two problems are in quadratic-time, whereas the
last one isNP-complete and approximation-hard. These results
are not only useful in answering pattern queries using views,
but are also interesting forquery minimization. Indeed, when
V contains a single view, the containment problem becomes
the classical query containment problem [6].

These results are a nice surprise. Note that even for rela-
tional conjunctive queries, the problem of query containment is
NP-complete [6]; for XPath fragments, it isEXPTIME-complete
or even undecidable [30]. In contrast, the (minimal) contain-
ment problem for graph pattern queries is in lowPTIME,
although graph pattern matching via (bounded) simulation may
be “recursively defined” (for cyclic patterns).

(3) We develop efficient algorithms for checking (minimal,
minimum) pattern containment (Section V). For containment
and minimal containment checking, we provide quadratic-
time algorithms in the sizes ofqueryQs andview definitions
V , which are much smallerthan graphG in practice. For
minimum containment, we provide an efficient approximation
algorithm with performance guarantees.

(4) We show that all these results carry over to bounded
simulation [16] (Section VI). More specifically, the notion
of pattern containment, the algorithm for answering pattern
queries using views, the three containment problems, and the
(approximation) algorithms for checking (minimal, minimum)

pattern containment can be extended to bounded simulation,
with the same or comparable complexity.

(5) Using real-life data (Amazon, YouTube and Citation) and
synthetic data, we experimentally verify the effectiveness and
efficiency of our view-based matching method (Section VII).
We find that this method reduces 94% of the time used by
prior methods for bounded pattern queries on large datasets
on average [16]. Moreover, our matching algorithm scales well
with both the data size and pattern size; and our algorithms for
(minimal, minimum) pattern containment checking take less
than 0.5 second on complex (cyclic) patterns. Furthermore,
we find that our optimization methods by identifying minimal
(minimum) containment effectively reduce redundant views
and improve the performance by 46% on average.

This work is a first step toward understanding graph pattern
matching using views, from theory to practical methods. We
contend that the method is effective: one may pick and
cache previous query results, and efficiently answer pattern
queries using these viewswithout accessing the large social
graphs. Better still, incremental methods are already in place
to efficiently maintain cached pattern views (e.g., [15]). The
view-based method can be readilycombinedwith existing dis-
tributed, compression and incremental techniques for graphs,
and yield a promising approach to querying “big” social data.

The proofs of the results of this work can be found in [4].

Related Work. There are two view-based approaches for query
processing: query rewriting and query answering [20], [25].
Given a queryQ and a setV of views, (1) query rewriting
is to reformulateQ into an equivalent queryQ′ in a fixed
language (i.e., for all D, Q(D) = Q′(D)), such thatQ′ refers
only to V ; and (2) query answering is to computeQ(D) by
evaluating an equivalent queryA of Q, while A refers only to
V and its extensionsV(D). While the former requires thatQ′

is in a fixed language, the latter imposes no constraint onA.
We study answering graph pattern queries using pattern views.

We next review previous work on these issues for relational
databases, XML data and general graphs.

Relational data. Query answering using views has been ex-
tensively studied for relational data (see [6], [20], [25] for
surveys). It is known that for conjunctive queries, query
answering and rewriting using views are already intractable
[20], [25]. For the containment problem, the homomorphism
theorem shows that one conjunctive query is contained in
another if and only if there exists a homomorphism between
the tableaux representing the queries, and it isNP-complete
to determine the existence of such a homomorphism [6].
Moreover, the containment problem for conjunctive queriesis
NP-complete, and is undecidable for relational algebra [6].

XML queries. There has been a host of work on processing
XML queries using views [29], [30], [33]. In [29], the con-
tainment of simple XPath queries is shown coNP-complete.
When disjunction,DTDs and variables are taken into account,
the problem ranges from coNP-complete toEXPTIME-complete
to undecidable for various XPath classes [30]. In [7], pattern
containment and query rewriting of XML are studied under
constraints expressed as a structural summary. For tree pattern
queries (a fragment of XPath), [22], [36] study maximally
contained rewriting instead of equivalent rewriting.



Semistructured data and RDF. There has also been work on
view-based query processing for semistructured data andRDF,
which are also modeled as graphs.

(1) Semistructure data. Views defined in Lorel are studied
in, e.g., [38], which are quite different from graph patterns
considered here. View-based query rewriting for regular path
queries (RPQs) is shownPSPACE-complete in [11], and anEX-
PTIME rewriting algorithm is given in [32]. The containment
problem is shown undecidable forRPQsin the presence of path
constraints [17] and for extended conjunctiveRPQs[9].

(2) RDF. An EXPTIME query rewriting algorithm is given
in [24] for SPARQL. It is shown in [12] that query containment
is in EXPTIME for PSPARQL, which supports regular expres-
sions. There has also been work on evaluatingSPARQLqueries
on RDF based on cached query results [13].

Our work differs from the prior work in the following.
(1) We study query answering using views for graph pattern
queries via (bounded) simulation, which are quite different
from previous settings, from complexity bounds to processing
techniques. (2) We show that the containment problem for the
pattern queries is inPTIME, in contrast to its intractable coun-
terparts fore.g.,XPath, regular path queries andSPARQL. (3)
We study a more general form of query containment between
a queryQs and a set of queries, to identify an equivalent
query for Qs that is not necessarily a pattern query. (4) The
high complexity of previous methods for query answering
using views hinders their applications in the real world. In
contrast, our algorithms have performance guarantees and yield
a practical method for querying real-life social networks.

We focus on (bounded) simulation in this work as it is
widely used in social data analysis [10], [16]. Nonetheless,
the techniques can be extended to revisions of simulation such
as dual and strong simulation [28] (see Section VIII).

II. GRAPHS, PATTERNS AND V IEWS

We first review pattern queries and graph simulation. We
then state the problem of pattern matching using views.

A. Data Graphs and Graph Pattern Queries

Data graphs. A data graphis a directed graphG = (V, E, L),
where (1)V is a finite set of nodes; (2)E ⊆ V ×V , in which
(v, v′) denotes an edge from nodev to v′; and (3) L is a
function such that for each nodev in V , L(v) is a set of labels
from an alphabetΣ. Intuitively, L specifies the attributes of a
node,e.g.,name, keywords, social roles [23].

Pattern queries [16]. A graph pattern query, denoted asQs,
is a directed graphQs = (Vp, Ep, fv), where (1)Vp and Ep

are the set ofpattern nodesand the set ofpattern edges,
respectively; and (2)fv is a function defined onVp such that
for each nodeu ∈ Vp, fv(u) is a label inΣ. We remark that
fv can be readily extended to specify search conditions in
terms of Boolean predicates [16] (see Fig. 7 for examples).

Graph pattern matching via simulation.We say that a data
graphG = (V, E, L) matchesa queryQs = (Vp, Ep, fv) via
simulation, denoted byQsEsimG, if there exists a binary rela-
tion S ⊆ Vp×V , refereed to as amatchin G for Qs, such that

• for each nodeu ∈ Vp, there exists a nodev ∈ V such
that (u, v) ∈ S, referred to as amatchof u; and

• for each pair(u, v) ∈ S, fv(u) ∈ L(v); for each
pattern edgee = (u, u′) in Ep, there exists an edge
(v, v′) in E, referred to as amatchof e in S, such
that (u′, v′) ∈ S.

WhenQsEsimG, it is known that there exists aunique max-
imummatchSo in G for Qs [21]. We derive{(e, Se) | e ∈ Ep}
from So, whereSe is the set of all matches ofe in So, called
the match setof e. HereSe is nonemptyfor all e ∈ Ep.

We define theresult of Qs in G, denoted asQs(G), to be
the unique maximum set{(e, Se) | e ∈ Ep} if QsEsimG, and
let Qs(G) = ∅ otherwise. We denote the size of queryQs by
|Qs|, and the size of resultQs(G) by |Qs(G)| (see Table I).

Example 2: Consider the pattern queryQs shown in Fig. 1
(c), where each pattern node carries a search condition (job
title), and each pattern edge indicates collaboration relationship
between two people. WhenQs is posed on the networkG of
Fig. 1 (a), the resultQs(G) is shown in the table below:

Edge Matches
(PM, DBA1) {(Bob, Mat), (Walt, Mat)}
(PM, PRG2) {(Bob, Dan), (Walt, Bill)}

(DBA1, PRG1) {(Fred, Pat), (Mat,Pat), (Mary, Bill)}
(DBA2, PRG2)

(PRG1, DBA2) {(Dan, Fred), (Pat, Mary),
(PRG2, DBA1) (Pat, Mat), (Bill, Mat)}

Here (1) bothBob and Walt are matches of pattern node
PM as they satisfy the search condition ofPM; similarly, Fred,
Mat, Mary matchDBA, andDan, Pat, Bill matchPRG; (2) query
edge(PM, DBA1) has two matches inG; and (3) query edges
(DBA1, PRG1) and (DBA2, PRG2) (resp.(PRG1, DBA2) and
(PRG2, DBA1)) have the same matches. 2

B. Graph Pattern Matching Using Views

We next formulate the problem of graph pattern matching
using views. We studyviews V defined as a graph pattern
query, and refer to the query resultV(G) in a data graphG
as theview extensionfor V in G or simply as aview [19].

Given a pattern queryQs and aset V = {V1, . . . , Vn}
of view definitions,graph pattern matching using viewsis
to find another queryA such that (1)A is equivalent to
Qs, i.e., A(G) = Qs(G) for all data graphsG; and (2) A
only refers to viewsVi ∈ V and their extensionsV(G) =
{V1(G), . . . , Vn(G)} in G, without accessingG. If such a
queryA exists, we say thatQs can be answered usingV .

In contrast to query rewriting using views [19] but along
the same lines as query answering using views [25], hereA
is not required to be a pattern query. For example, Fig. 1 (b)
depicts a view definition setV = {V1, V2} and their extensions
V(G) = {V1(G), V2(G)}. To answer the queryQs (Fig. 1 (c)),
we want to find a queryA that computesQs(G) by using only
V andV(G), whereA is not necessarily a graph pattern.

For a setV of view definitions, we define the size|V| of
V to be the total size ofVi’s in V , and the cardinalitycard(V)
of V to be the number of view definitions inV .

The notations of the paper are summarized in Table I.



symbols notations

Qs = (Vp, Ep, fv) graph pattern query
Qs(G) query result ofQs in G

V = (V1, . . . , Vn) a set of view definitionsVi
V(G) = (V1(G), . . . , Vn(G)) a set of view extensionsVi(G)

QsEsimG (resp.QbEB
simG) simulation (resp. bounded simulation)

Qs ⊑ V (resp.Qb ⊑ V) Qs (resp.Qb) is contained inV

M
Qs
V

(resp.M
Qb
V

) view match from a viewV to Qs (resp.Qb)

|Qs| (resp.|Qb| and |V|)
size (total number of nodes and edges)
of Qs (resp.Qb and view definitionV)

|Qs(G)| (resp.|Qb(G)|)
total number of edges in setsSe
for all edgese in Qs (resp.Qb )

|V| total size of view definitions inV
card(V) the number of view definitions inV

TABLE I: A summary of notations

Remark. (1) We assumew.l.o.g. that graph patterns are
connected, since isolated pattern nodes can be easily handled
using the same matching semantic. (2) Our techniques can
be readily extended to graphs and queries with edge labels.
Indeed, an edge-labeled graph can be transformed to a node-
labeled graph: for each edgee, add a “dummy” node carrying
the edge label ofe, along with two unlabeled edges.

III. PATTERN CONTAINMENT: A CHARACTERIZATION

In this section we propose a characterization of graph
pattern matching using views,i.e., a sufficient and necessary
condition for deciding whether a pattern query can be answered
by using a set of views. We also provide a quadratic-time
algorithm for answering pattern queries using views.

Pattern containment. We introduce a notion of pattern con-
tainment, by extending the traditional notion of query con-
tainment toa set of views. Consider a pattern queryQs =
(Vp, Ep, fv) and a setV = {V1, . . . , Vn} of view definitions,
whereVi = (Vi, Ei, fi). We say thatQs is containedin V ,
denoted byQs ⊑ V , if there exists a mappingλ from Ep to
powersetP(

⋃

i∈[1,n] Ei), such that for all data graphsG, the
match setSe ⊆

⋃

e′∈λ(e) Se′ for all edgese ∈ Ep.

Example 3: Recall G, V and Qs in Fig. 1. ThenQs ⊑ V .
Indeed, there exists a mappingλ from Ep of Qs to sets of
edges inV , which maps edges(PM, DBA1), (PM, PRG2) of Qs

to their counterparts inV1; both(DBA1, PRG1), (DBA2, PRG2)
of Qs to e3, and (PRG1, DBA2), (PRG2, DBA1) to e4 in V2.
One may verify that for any graphG and any edgee of Qs,
its matches inG are contained in the union of the match
sets of the edges inλ(e), e.g., the match set of pattern edge
(DBA1, PRG1) in G is {(Fred, Pat), (Mat, Pat), (Mary, Bill)},
which is contained in the match set ofe3 of V2 in G. 2

Pattern containment and query answering. The main result
of this section is as follows: (1) pattern containment indeed
characterizes pattern matching using views; and (2) whenQs ⊑
V , for all graphsG, Qs(G) can be efficiently computed by
using viewsV(G) only, independent of|G|. In Sections IV and
V we will show how to decide whetherQs ⊑ V by inspecting
Qs andV only, alsoindependent of|G|.

Theorem 1: (1) A pattern queryQs can be answered usingV
if and only if Qs ⊑ V . (2) For any graphG, Qs(G) can be
computed inO(|Qs||V(G)| + |V(G)|2) time if Qs ⊑ V . 2

Proof sketch: Below we outline the proof (see [4] for details).

Input: A pattern queryQs, a set of view definitionsV
and their extensionsV(G), a mappingλ.

Output: The query resultM asQs(G).
1. for each edgee in Qs do Se := ∅;
2. M := {(e, Se) | e ∈ Qs};
3. for each e ∈ Qs do
4. for each e′ ∈ λ(e) do Se := Se ∪ Se′ ;
5. while there is change inSep for an edgeep = (u, u′′) in Qs do
6. for each e = (u′, u) in Qs ande′ = (v′, v) ∈ Se do
7. if there ise1 = (u′, u1) but noe′1 = (v′, v1) in Se1 then
8. Se := Se \ {e′};
9. if there ise2 = (u, u2) but noe′2 = (v, v2) in Se2 then
10. Se := Se \ {e′};
11. if Se = ∅ then return ∅;
12. return M = {(e, Se) | e ∈ Qs}, which isQs(G);

Fig. 2: AlgorithmMatchJoin

(I) We prove theOnly If condition in Theorem 1(1) by
contradiction. Assume thatQs can be answered usingV and
Qs 6⊑ V . By Qs 6⊑ V , there exists at least an edgee of Qs

that cannot be mapped to any edge in the match sets fromV .
We show that for such an edgee, one may always construct
a data graphG that matchesQs, but no match inG can be
identified by using onlyV . This contradicts the assumption
that Qs can be answered usingV by definition (Section II-B).

(II) We show the If condition of Theorem 1(1) by a
constructive proof: we next present an algorithm to evaluateQs

usingV(G), if Qs ⊑ V . We verify Theorem 1(2) by showing
that the algorithm is inO(|Qs||V(G)| + |V(G)|2) time. 2

Algorithm . The algorithm, denoted asMatchJoin, is shown
in Fig. 2. It takes as input (1) a pattern queryQs and a set
of view definitionsV = {Vi | i ∈ [1, n]}, (2) a mappingλ
for Qs ⊑ V (we defer the computation ofλ to Section V);
and (3) view extensionsV(G) = {Vi(G) | i ∈ [1, n]}. In
a nutshell, it computesQs(G) by “merging” (joining) views
Vi(G) as guided byλ. The merge process iteratively identifies
and removes those edges that are not matches ofQs, until a
fixpoint is reached andQs(G) is correctly computed.

More specifically,MatchJoin works as follows. It first
initializes M with empty match setsSe for each pattern edge
e (lines 1-2).MatchJoin setsSe as

⋃

e′∈λ(e) Se′ , whereSe′

is extracted fromV(G) (lines 3-4), following the definition of
λ(e) (Section II). It then performs a fixpoint computation to
remove all invalid matches fromSe (lines 5-10). Specifically,
for a pattern edgeep = (u, u′′) in Qs with changed match
set Se, it checks whether each matche′ of a pattern edge
e = (u′, u) still remains to be a match ofe (lines 7-10), by
the definition of simulation (Section II-A). Ife′ is no longer a
match, it is removed fromSe (lines 8,10). In the process, ifSe

becomes empty for some edgee, MatchJoin returns∅ since
Qs has no match inG. Otherwise, the process (lines 5-11)
proceeds untilM=Qs(G) is computed and returned (line 12).

Example 4: GivenQs, V , V(G) of Fig. 1, and the mappingλ
of Example 3,MatchJoin evaluatesQs usingV andV(G). For
each edgee of Qs, its match setSe is exactly

⋃

e′∈λ(e) Se′ ,
which yields the sameQs(G) as given in Example 2.

Consider another example shown in Fig. 3. One can verify
Qs ⊑ V by a mappingλ that maps(AI, Bio), (PM, AI) to e1, e2
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Fig. 3: Answering pattern queries using views

in V1, respectively; and(DB, AI), (AI, SE), (SE, DB) to e3, e4,
e5 in V2, respectively.MatchJoin then merges view matches
guided byλ. It next removes(AI1, SE1) from S(AI,SE), which
is not a valid match for(AI, SE) in Qs. This further leads
to the removal of(SE1, DB2) from S(SE,DB), (DB2, AI2) from
S(DB,AI), and yieldsQs(G) shown in the table below.

Edge Matches Edge Matches
(PM, AI) (PM1, AI2) (AI, Bio) (AI2, Bio1)

(DB, AI) (DB1, AI2) (AI, SE) (AI2, SE2)

(SE, DB) (SE2, DB1) 2

Correctness & Complexity. Denote the match set inG as
S∗

e for each edgee in Qs. One may verify thatMatchJoin
preserves two invariants: (1) at any time, for each edgee of Qs,
S∗

e ⊆ Se; and (2)Se = S∗
e whenMatchJoin terminates. Indeed,

Se is initialized with
⋃

e′∈λ(e) Se′ , henceS∗
e ⊆ Se due toQs ⊑

V . During thewhile loop (lines 5-10),MatchJoin repeatedly
refinesSe by removing invalid matches only (lines 8,10) until
Se can no longer be refined. Thus,Se = S∗

e when the algorithm
terminates. From these the correctness ofMatchJoin follows.

For the complexity, it takesO(|Qs|) time to initialize M
(lines 1-2), andO(|Qs||V|) time to initialize Se (lines 3-4).
MatchJoin then removes invalid matches by using a dynam-
ically maintained index, which maps pattern edges to their
possible matches (see [4] for details). Thewhile loop (lines 5-
11) is bounded byO(|V(G)|2) time. Putting these together,
MatchJoin is in O(|Qs||V(G)| + |V(G)|2) time.

The analysis above completes the proof of Theorem 1.

Remark. (1) It takes O(|Qs|2 + |Qs||G| + |G|2) time to
evaluateQs(G) directly onG [16]. In contrast,MatchJoin is
in O(|Qs||V(G)| + |V(G)|2) time, without accessingG. As
will be seen in Section VII,V(G) is much smaller thanG,
and MatchJoin is more efficient than the algorithm of [16].
Indeed, forYoutubegraph in our experiments, only3 to 6
views are used to answerQs, and the overall size ofV(G) is
no more than4% of the size of theYoutubegraph.

Optimization. MatchJoin may visit eachSe multiple times.
To reduce unnecessary visits, below we introduce an opti-
mization strategy forMatchJoin. The strategy evaluatesQs

by using ranks in Qs as follows. Given a patternQs, the
strongly connected component graphGSCC of Qs is obtained
by collapsing each strongly connected componentSCC of
Qs into a single nodes(u). The rank r(u) of each node
u in Qs is computed as follows: (a)r(u) = 0 if s(u)
is a leaf in GSCC, where u is in the SCC s(u); and (b)

r(u) = max{(1 + r(u′)) | (s(u), s(u′)) ∈ ESCC} otherwise.
HereESCC is the edge set of theGSCC of Qs. The rankr(e)
of an edgee = (u′, u) in Qs is set to ber(u).

Bottom-up strategy. We reviseMatchJoin by processing edges
e in Qs following an ascending order of their ranks (lines 5-
11). One may verify that this “bottom-up” strategy guarantees
the following for the number of visits.

Lemma 2: For all edgese = (u′, u), whereu′ and u do not
reach any non-singletonSCC in Qs, MatchJoin visits its match
setSe at most once, using the bottom-up strategy. 2

In particular, whenQs is a DAG pattern (i.e., acyclic),
MatchJoin visits each match set at most once, and the total
visits are bounded by the number of the edges inQs. As will be
verified in Section VII, the optimization strategy improvesthe
performance by at least46% over (possibly cyclic) patterns,
and is even more effective over denser data graphs.

IV. PATTERN CONTAINMENT PROBLEMS

We have seen that given a pattern queryQs and a setV of
views, we can efficiently answerQs by using the views when
Qs ⊑ V . In the next two sections, we study how to determine
whetherQs ⊑ V . Our main conclusion is that there are efficient
algorithms for these, with their costs as a function of|Qs| and
|V|, which are typically small in practice, and areindependent
of data graphs and materialized views.

In this section we study three problems in connection with
pattern containment, and establish their complexity. In the
next section, we will develop effective algorithms for checking
Qs ⊑ V and computing mappingλ from Qs to V .

Pattern containment problem. The pattern containment
problemis to determine, given a pattern queryQs and a setV
of view definitions, whetherQs ⊑ V . The need for studying
this problem is evident: Theorem 1 tells us thatQs can be
answered by using views ofV if and only if Qs ⊑ V .

The result below tells us thatQs ⊑ V can be efficiently
decided, in quadratic-time in|Qs| and |V|. We will prove the
result in Section V, by providing such an algorithm.

Theorem 3: Given a pattern queryQs and a setV of view
definitions, it is inO(card(V)|Qs|2 + |V|2 + |Qs||V|) time to
decide whetherQs ⊑ V and if so, to compute a mappingλ
from Qs to V , where|V| is the size of view definitions. 2

A special case of pattern containment is the classicalquery
containmentproblem [6]. Given two pattern queriesQs1 and
Qs2, the latter is to decide whetherQs1 ⊑ Qs2, i.e.,whether for
all graphsG, Qs1(G) is contained inQs2(G). Indeed, whenV
contains only a single view definitionQs2, pattern containment
becomes query containment. From this and Theorem 3 the
result below immediately follows.

Corollary 4: The query containment problem for graph pattern
queries is in quadratic time. 2

Like for relational queries (see,e.g., [6]), the query con-
tainment analysis is important in minimizing and optimizing



pattern queries. Corollary 4 shows that the analysis can be
efficiently conducted for graph patterns, as opposed to the in-
tractability of its counterpart for relational conjunctive queries.

Minimal containment problem . As shown in Section III, the
complexity of pattern matching using views is dominated by
|V(G)|. This suggests that we reduce the number of views
used for answeringQs. Indeed, the less views are used, the
smaller|V(G)| is. This gives rise tothe minimal containment
problem. Given Qs and V , it is to find a minimal subsetV ′

of V that containsQs. That is, (1)Qs ⊑ V ′, and (2) for any
proper subsetV ′′ of V ′, Qs 6⊑ V ′′.

The good news is that the minimal containment problem
does not make our lives harder. We will prove the next result
in Section V by developing a quadratic-time algorithm.

Theorem 5: GivenQs andV , it is in O(card(V)|Qs|2 + |V|2 +
|Qs||V|) time to find a minimal subsetV ′ of V containingQs

and a mappingλ from Qs to V ′ if Qs ⊑ V . 2

Minimum containment problem . One may also want to find
a minimumsubsetV ′ of V that containsQs. The minimum
containmentproblem, denoted byMMCP, is to find a subset
V ′ of V such that (1)Qs ⊑ V ′, and (2) for any subsetV ′′ of
V , if Qs ⊑ V ′′, thencard(V ′) ≤ card(V ′′).

As will be seen shortly (Examples 6 and 7) and verified
by our experimental study,MMCP analysis often finds smaller
V ′ than that found by minimal containment checking.

MMCP is, however, nontrivial: its decision problem is
NP-complete and it isAPX-hard. HereAPX is the class of
problems that allowPTIME algorithms with approximation
ratio bounded by a constant (see [35] forAPX). Nonetheless,
we show thatMMCP is approximable withinO(log |Ep|) in
low polynomial time, where|Ep| is the number of edges of
Qs. That is, there exists an efficient algorithm that identifiesa
subsetV ′ of V with performance guaranteeswheneverQs ⊑ V
such thatQs ⊑ V ′ and |card(V ′)| ≤ log(|Ep|)|card(VOPT)|,
whereVOPT is a minimum subset ofV that containsQs.

Theorem 6: The minimum containment problem is (1)NP-
complete (its decision problem) andAPX-hard, but (2) it is
approximable withinO(log |Ep|) in O(card(V)|Qs|2 + |V|2 +
|Qs||V| + (|Qs| · card(V))3/2) time. 2

Proof sketch: (I) The decision problem ofMMCP is to
decide whether there exists a subsetV ′ of V such that
Qs ⊑ V ′ and card(V ′) ≤ k, wherek is an integer bound. It
is in NP since there exists anNP algorithm that first guesses
V ′ and then checks whetherQs ⊑ V ′ and card(V ′) ≤ k in
PTIME. The lower bound is verified by reduction from the
NP-completeset coverproblem (cf. [31]). Given a setX , a
collectionU of its subsets and an integerB, the latter is to
decide whether there is aB-element subset ofU that covers
X . We show that there exists a set cover of sizek if and only
if there exists ak-element subsetV ′ of V that containsQs.

(II) The APX-hardness ofMMCP is verified by approxima-
tion preserving reduction [35] from the minimum set cover
problem, which isAPX-hard (cf. [35]; see [4] for details).2

We defer the proof of Theorem 6(2) to Section V, where
an approximation algorithm is provided.

V. DETERMINING PATTERN CONTAINMENT

We next prove Theorems 3, 5 and 6(2) by providing
effective (approximation) algorithms for checking pattern con-
tainment, minimal containment and minimum containment, in
Sections V-A, V-B and V-C, respectively.

A. Pattern Containment

We start with a proof of Theorem 3,i.e., whetherQs ⊑ V
can be decided inO(card(V)|Qs|2 + |V|2 + |Qs||V|) time. To
do this, we first propose asufficient and necessarycondition to
characterize pattern containment. We then develop a quadratic-
time algorithm based on the characterization.

Sufficient and necessary condition. To characterize pattern
containment, we introduce a notion ofview matches.

Consider a pattern queryQs and a setV of view definitions.
For eachV ∈ V , let V(Qs) = {(eV, SeV

) | eV ∈ V}, by
treatingQs as adata graph. Obviously, if VEsimQs, thenSeV

is the nonempty match set ofeV for each edgeeV of V (see
Section II-A). We define theview matchfrom V to Qs, denoted
by MQs

V , to be the union ofSeV
for all eV in V.

The result below shows that view matches yield a charac-
terization of pattern containment.

Proposition 7: For view definitionsV and patternQs with
edge setEp, Qs ⊑ V if and only if Ep =

⋃

V∈V MQs

V . 2

Proof sketch: We outline the proof below (see [4] for details).
(1) AssumeEp =

⋃

V∈V MQs

V . We construct a mappingλ
from Ep to the edges of the views inV , as a “reversed” view
match relation. The mappingλ ensures that for any data graph
G, if eo in G is a match ofe in Qs (eo ∈ Se), there must
exist an edgeei ∈ λ(e) such thateo ∈ Sei

. Thus,Qs ⊑ V .

(2) Assume by contradictionQs ⊑ V but Ep 6=
⋃

V∈V MQs

V .
Then byEp 6=

⋃

V∈V MQs

V , there exists an edgee in Ep but
not in

⋃

V∈V MQs

V . SinceQs ⊑ V , if an edgeeo in G matches
e in Qs, then eo is in Sei

of V(G) for someV ∈ V . These
together lead to the contradiction, since if such ane exists,
we can expand mappingλ(e) by includingei of V; thuse is
“covered” byMQs

V . Therefore, ifQs ⊑ V , Ep=
⋃

V∈V MQs

V . 2

Algorithm . Following Proposition 7, we present an algorithm,
denoted ascontain (not shown) to check whetherQs ⊑ V .
Given a pattern queryQs and a setV of view definitions, it
returns a boolean valueans that istrue if and only if Qs ⊑ V .
The algorithm first initializes an empty edge setE to record
view matches fromV to Qs. It then checks the condition of
Proposition 7 as follows. (1) Compute view matchMQs

V for
eachV in V , by invoking the simulation evaluation algorithm
in [16]. (2) ExtendE with MQs

V by union, sinceMQs

V is asubset
of Ep. After all view matches are merged,contain then checks
whetherE = Ep. It returnstrue if so, andfalse otherwise.

Example 5: Recall the pattern queryQs and viewsV =
{V1, V2} given in Fig. 1. As remarked earlier,Qs ⊑ V . Indeed,
one can verify that

⋃

i∈[1,2] M
Qs

Vi
= Ep.
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Vi M
Qs

Vi
Vi M

Qs

Vi

V1 {(C, D)} V2 {(B, E)}
V3 {(A, B), (A, C)} V4 {(B, D), (C, D)}
V5 {(B, D), (B, E)} V6 {(A, B), (A, C), (C, D)}
V7 {(A, B), (A, C), (B, D)}

Consider another pattern queryQs and a set of view
definitionsV = {Vi | i ∈ [1, 7]} given in Fig. 4. The view
matchesMQs

Vi
of Vi for i ∈ [1, 7] are shown in the table above.

GivenQs andV , contain returnstrue since
⋃

Vi∈V MQs

Vi
is the

set of edges ofQs. One can verify thatQs ⊑ V . 2

Correctness & Complexity. The correctness of algo-
rithm contain follows from Proposition 7. For eachV ∈ V , it
takesO(|Qs||V|+ |Qs|2+ |V|2) time to computeMQs

V [16], and
O(1) time for set union. Thefor loop (lines 2-3) hascard(V)
iterations, and it takesO(card(V)|Qs|2 + |V|2 + |Qs||V|) time
in total, since bothcard(V) · |V| and |V| are bounded by|V|.

From these and Proposition 7, Theorem 3 follows.

Remarks. (1) Algorithm contain can be easily adapted to
return a mappingλ that specifies pattern containment (Sec-
tion III), to serve as input for algorithmMatchJoin. This
can be done by following the construction given in the proof
of Proposition 7. (2) In contrast to regular path queries and
relational queries, pattern containment checking is inPTIME.

B. Minimal Containment Problem

We now prove Theorem 5 by presenting an algorithm that,
given Qs and V , finds a minimal subsetV ′ of V containing
Qs in O(card(V)|Qs|2 + |V|2 + |Qs||V|) time if Qs ⊑ V .

Algorithm . The algorithm, denoted asminimal, is shown in
Fig. 5. Given a queryQs and a setV of view definitions,
it returns either a nonempty subsetV ′ of V that minimally
containsQs, or ∅ to indicate thatQs 6⊑ V .

The algorithm initializes (1) an empty setV ′ for selected
views, (2) an empty setS for view matches ofV ′, and (3) an
empty setE for edges in view matches. It also maintains an
indexM that maps each edgee in Qs to a set of views (line 1).
Similar to contain, minimal first computesMQs

Vi
for all Vi ∈

V (lines 2-7). However, instead of simply merging the view
matches as incontain, it extendsS with a new view match
MQs

Vi
only if MQs

Vi
contains a new edge not inE, and updatesM

accordingly (lines 4-7). Thefor loop stops as soon asE = Ep

(line 7), asQs is already contained inV ′. If E 6= Ep after
the loop, it returns∅ (line 8), sinceQs is not contained isV
(Proposition 7). The algorithm then eliminates redundant views
Vj ∈ V ′ (lines 9-11), by checking whether the removal ofVj

causesM(e) = ∅ for somee ∈ MQs

Vj
(line 10). If no suche

exists, it removesVj from V ′ (line 11). After all view matches
are checked,minimal returnsV ′ (line 12).

Input: A pattern queryQs, and a set of view definitionsV.
Output: A subsetV ′ of V that minimally containsQs.
1. setV ′ := ∅; S := ∅; E := ∅; mapM := ∅;
2. for each view definitionVi ∈ V do
3. computeMQs

Vi
;

4. if M
Qs
Vi

\ E 6= ∅ then
5. V ′ := V ′ ∪ {Vi}; S := S ∪ {MQs

Vi
}; E := E ∪ M

Qs

Vi
;

6. for each e ∈ M
Qs
Vi

do M(e) := M(e) ∪ {Vi};
7. if E = Ep then break ;
8. if E 6= Ep then return ∅;
9. for each M

Qs
Vj

∈ S do

10. if there is noe ∈ M
Qs

Vj
such thatM(e) \ {Vj} = ∅ then

11. V ′ := V ′ \ {Vj}; updateM;
12. return V ′;

Fig. 5: Algorithmminimal

Example 6:ConsiderQs andV given in Fig. 4. AfterMQs

Vi
(i ∈

[1, 4]) are computed, algorithmminimal finds thatE already
equalsEp, and breaks the loop, whereM is initialized to be
{((A, B) : {V3}), ((A, C) : {V3}), ((B, D) : {V4}), ((C, D) :
{V1, V4}), ((B, E) : {V2})}. As the removal ofV1 does not
make anyM(e) empty,minimal removesV1 and returnsV ′ =
{V2, V3, V4} as a minimal subset ofV . 2

Correctness & Complexity.To see the correctness ofminimal,
observe the following: (1)Qs ⊑ V ′ if V ′ 6= ∅; indeed,V ′ is
returnedonly if the union of the view matches inS equals
Ep, i.e., Qs ⊑ V ′ by Proposition 7; and (2)Qs 6⊑ V ′′ for any
V ′′ ⊂ V ′. To see this, note that by the strategy ofminimal for
reducing redundant views inV ′ (lines 9-11), foranyV ′′ ⊂ V ′,
⋃

V∈V′′ MQs

V is not equal toEp, the edge set ofQs. Hence
again by Proposition 7,Qs 6⊑ V ′′.

It takes minimal O(card(V)|Qs|
2 + |V|2 + |Qs||V|) time

to find all the view matches ofV (line 3). Its nested loop
for M (line 6) takesO(card(V) · |Qs|) time. The redundant
elimination is processed inO(card(V) · |Qs|) time (lines 9-11).
Thusminimal is in O(card(V)|Qs|2 + |V|2 + |Qs||V|) time.

From the algorithm and its analyses Theorem 5 follows.
Again algorithmminimal can be readily extended to return a
mappingλ that specifies containment ofQs in V ′.

C. Minimum Containment Problem

We next prove Theorem 6 (2),i.e.,MMCP is approximable
within O(log |Ep|) in O(card(V)|Qs|2+ |V|2+ |Qs||V|+(|Qs| ·
card(V))3/2) time. We give such an algorithm forMMCP,
following the greedy strategy of the approximation of [35]
for the set cover problem. The algorithm of [35] achieves an
approximation ratioO(log n), for ann-element set.

Algorithm . The algorithm is denoted asminimum (not
shown). Given a patternQs and a setV of view definitions,
minimum identifies a subsetV ′ of V such that (1)Qs ⊑ V ′

if Qs ⊑ V and (2)card(V ′) ≤ log(|Ep|) · card(VOPT), where
VOPT is a minimum subset ofV that containsQs. In other
words, minimum approximatesMMCP with approximation
ratio O(log |Ep|). Note that|Ep| is typically small.

Algorithm minimum iteratively finds the “top” view whose
view match can cover most edges inQs that are not covered.



To do this, we define a metricα(V) for a view V, where

α(V) =
|MQs

V \ Ec|

|Ep|
.

Here Ec is the set of edges inEp that have been covered
by selected view matches, andα(V ) indicates the amount of
uncoverededges thatMQs

V covers. We selectV with the largest
α in each iteration, and maintainα accordingly.

Similar tominimal, algorithmminimum computes the view
matchMQs

Vi
for eachVi ∈ V , and collects them in a setS. It

then does the following. (1) It selects viewVi with the largest
α, and removesMQs

Vi
from S. (2) It mergesEc with MQs

Vi
if MQs

Vi

contains some edges that are not inEc, and extendsV ′ with
Vi. During the loop, ifEc equalsEp, the setV ′ is returned.
Otherwise,minimum returns∅, indicating thatQs 6⊑ V .

Example 7: Given Qs and V = {V1, . . . , V7} of Fig. 4,
minimum selects views based on theirα values. More specifi-
cally, in the loop it first choosesV6, since its view matchMQs

V6

= {(A, B), (A, C), (C, D)} makesα(V6) = 0.6, the largest
one. ThenV6 is followed byV5, asα(V5) = 0.4 is the largest
one in that iteration. AfterV5 andV6 are selected, algorithm
minimum finds thatEc = Ep, and thusV ′ = {V5, V6} is
returned as a minimum subset that containsQs. 2

Correctness & Complexity. Observe thatminimum finds a
nonemptyV ′ such thatQs ⊑ V ′ if and only if Qs ⊑ V
(Proposition 7). The approximation ratio ofminimum can
be verified by an approximation-preserving reduction from
MMCP to theset cover problem[31], by treating eachMQs

Vi
in

S as a subset ofEp. Algorithmminimum extends the algorithm
of [35] (with approximation ratiolog(n) for n-element set) to
query containment, and preserves approximation ratiolog |Ep|.

For the complexity,minimum computes view matches in
O(card(V)|Qs|2 + |V|2 + |Qs||V|) time (lines 1-3). Thewhile
loop is executedO((|Qs| · card(V))1/2) times. Each iteration
takesO(|Qs| · card(V)) time to find a view with the largestα.
Thus,minimum is in O(card(V)|Qs|2 + |V|2 + |Qs||V|+(|Qs| ·
card(V))3/2) time, where|Qs| and card(V) are often smaller
than |V|. This completes the proof of Theorem 6 (2).

VI. B OUNDED PATTERN MATCHING USING V IEWS

In this section, we show that the results of the previous
sections carry over tobounded patternqueries, which extend
patterns with distance constraints on pattern edges, and have
been verified effective in social network analysis [16].

Bounded pattern queries [16]. A bounded pattern query,
denoted asQb, is a directed graph(Vp, Ep, fv, fe), where
(1) Vp, Ep andfv are the same as in a patternQs (Section II),
and (2)fe is a function defined onEp such that for all(u, u′)
in Ep, fe(u, u′) is either a positive integerk or a symbol∗.

A data graphG = (V, E, L) matchesQb via bounded
simulation, denoted byQbE

B
simG (Table I), if there exists a

binary relationS ⊆ Vp×V such that (1) for each nodeu ∈ Vp,
there exists amatchv ∈ V such that(u, v) ∈ S, and (2) for
each pair(u, v) ∈ S, fv(u) ∈ L(v), and for each pattern edge
e = (u, u′) in Ep, there exists a nonemptypath from v to v′

in G, with its length bounded byk if fe(u, u′) = k. When
fe(u, u′) = ∗, there is no constraint on the path length.

Intuitively, Qb extends pattern queries by mapping an edge
(u, u′) in Ep to a nonempty path fromv to v′ in data graph
G, such thatv can reachv′ within fe(u, u′) hops.

It is known that whenQbE
B
simG, there exists aunique

maximummatchSo in G for Qb [16]. Along the same lines
as Section II, we define the query resultQb(G) to be the
maximumset {(e, Se) | e ∈ Ep} derived fromSo, whereSe

is a set of node pairs fore = (u, u′) such that (1)v (resp.v′)
is a match ofu (resp.u′), and (2) thedistanced from v to v′

satisfies the bound specified infe(e), i.e., d ≤ k = fe(e).

Example 8:ConsiderQb = (Vp, Ep, fv, fe), a bounded pattern
in which (1) Vp, Ep and fv are the same as inQs of Fig 3;
and (2)fe(AI, Bio) = 2, andfe(e) = 1 for all the other edges
e. The resultQb(G) in graphG of Fig. 3 (a) is:

Edge Matches Edge Matches
(PM, AI) (PM1, AI1), (PM1, AI2) (AI, Bio)(AI1, Bio1), (AI2, Bio1)

(DB, AI) (DB1, AI2), (DB2, AI2) (AI, SE) (AI1, SE1), (AI2, SE2)

(SE, DB)(SE1, DB2), (SE2, DB1)

Note that the pattern edge(AI, Bio) has a match(AI1, Bio1),
which denotes a path

(

(AI1, SE1), (SE1, Bio1)
)

of length2. 2

Observe that pattern queries (Section II) are a special case
of bounded patterns whenfe(e) = 1 for all edgese. While
bounded patterns are more expressive, they do not incur extra
complexity when it comes to query answering using views
(Section VI-A) and their containment analysis (Section VI-B).

A. Answering Bounded Pattern Queries

Given a bounded pattern queryQb and a setV of view
definitions (expressed as bounded pattern queries), the problem
of answering queries using views is to computeQb(G) by only
referring toV and their extensionsV(G).

Pattern containment forQb is defined in the same way as
for pattern queries. That is,Qb is contained inV , denoted as
Qb ⊑ V , if there existsa mappingλ that maps eache ∈ Ep

to a setλ(e) of edges inV , such that for any data graph
G, the match setSe ⊆

⋃

e′∈λ(e) Se′ for all edgese of Qb.
Along the same lines as Theorem 1, one can readily verify
that pattern containment also characterizes whether bounded
pattern queries can be answered using views.

Theorem 8: A bounded pattern queryQb can be answered
using viewsV if and only if Qb is contained inV . 2

Better still, answering bounded pattern queries using views
is no harder than its counterpart for pattern queries.

Theorem 9: Answering bounded pattern queryQb on graph
G using viewsV is in O(|Qb||V(G)| + |V(G)|2) time. 2

To prove Theorem 9, we outline an algorithm for comput-
ing Qb(G) by usingV andV(G) whenQb ⊑ V . To cope with
edge-to-path mappings, it uses an auxiliary indexI(V) such
that for each match(v, v′) in V(G) of some edge inV , I(V)



includes a pair〈(v, v′), d〉, whered is the distance fromv to
v′ in G. Note that the size ofI(V) is bounded by|V(G)|.

Algorithm. The algorithm, denoted byBMatchJoin (not
shown), takes as inputQb, V , V(G), I(V) and a mapping
λ from the edges ofQb to edge sets inV . Similar to
algorithmMatchJoin (Fig. 2), it evaluatesQb by (1) “merging”
views inV(G) to M according toλ, and (2) removing invalid
matches. It differs fromMatchJoin in the following: for an
edgeep = (u, u′′) of Qb with changedSep

, it reduces match set
Se of a “parent” edgee = (u′, u) in Qb by gettingthe distance
d (by queryingI(V) in O(1) time) from v′ to v1 (resp.v to
v2), checking whether(v′, v1) ∈ Se1 (resp. (v, v2) ∈ Se2 )
for pattern edgee1 = (u′, u1) (resp.e2 = (u, u2)) such that
distanced is no greater thanfe(u

′, u1) (resp.fe(u, u2)), and
removing(v′, v) from Se if no (v′, v1) (resp.(v, v2)) exists.
The removal of(v′, v) may introduce more invalid matches
in M , which are removed repeatedly byBMatchJoin until a
fixpoint is reached. ThenM is returned as the answer.

The correctness ofBMatchJoin follows from Theorem 8.
One can verify thatBMatchJoin takes O(|Qb||V(G)| +
|V(G)|2) time, the same as the complexity ofMatchJoin.

Remarks. (1) EvaluatingQb directly in a graphG takes cubic-
time O(|Qb||G|2) [16]. In contrast, it takesO(|Qb||V(G)| +
|V(G)|2) time using views, andV(G) is much smallerthanG
in practice. (2) The optimization strategy in Section III can be
naturally incorporated intoBMatchJoin (see details in [4]).

B. Bounded Pattern Containment

We next show that the containment analysis of bounded
pattern queries is in cubic-time, up from quadratic-time.

Theorem 10:Given a bounded pattern queryQb and a setV of
view definitions, (1) it is inO(|Qb|2|V|) time to decide whether
Qb ⊑ V ; (2) the minimal containment problem is also in
O(|Qb|

2|V|) time; and (3) the minimum containment problem
(denoted asBMMCP) is (i) NP-complete (decision version)
and APX-hard, but (ii) approximable withinO(log |Ep|) in
O(|Qb|2|V| + (|Qb| · card(V))3/2) time. 2

To prove Theorem 10, we extend the notion of view
matches (Section IV) to bounded pattern queries. Given a
bounded patternQb = (Vp, Ep, fv, fe) and a view definition
V = (V V, EV, fV

v , fV
e ), we define theview matchfrom V to

Qb as follows. (1) We treatQb as aweighted data graphin
which each edgee has a weightfe(e). The distance from
node u to u′ in Qb is given by the minimum sum of the
edge weights on shortest paths fromu to u′. (2) We define
V(Qb) = {(eV, SeV

) | eV ∈ V} as its counterpart forQs, except
that for each edgeeV = (v, v′) in V, the distance fromu to u′

in all pairs (u, u′) ∈ SeV
is bounded byk if fV

e (eV) = k. (3)
One may verify that there exists a unique, nonempty maximum
setV(Qb) if VEB

simQb. Theview matchMQb

V from V to Qb is
the union ofSeV

for all eV in V.

Example 9: Consider Qb and V = {V1, . . . , V7} shown
in Fig. 6. One may verify thatMQb

V3
= {(A, B), (B, E)},

where the corresponding node pairs inQb satisfies the length
constraints imposed byV3. As another example, it can be
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Fig. 6: Containment for bounded pattern queries

shown that the view matchMQb

V7
from V7 to Qb is ∅, since

the distance fromC to D in Qb is greater than2. 2

Similar to Proposition 7, the result below gives asufficient
and necessarycondition forQb containment checking.

Proposition 11: For view definitionsV and bounded pattern
queryQb, Qb ⊑ V if and only if Ep =

⋃

V∈V MQb

V . 2

Bounded pattern containment. To prove Theorem 10 (1), we
give an algorithm for checking bounded pattern containment
following Proposition 11, denoted byBcontain (not shown).
Bcontain is the same ascontain (Section III) except that it
computes view matches differently. More specifically, it ex-
tends the algorithm for evaluating bounded pattern queries[16]
to weighted graphs. It can be easily verified that it is in
O(|Qb|2|V|) time to find all view matches forV . Thus
Bcontain decides whetherQb is contained inV in O(|Qb|2|V|)
time, from which Theorem 10 (1) follows.

Minimal bounded containment. To show Theorem 10 (2),
we give an algorithm for minimal containment checking,
denoted byBminimal (not shown). Similar tominimal (Fig. 5),
Bminimal first computes view matches for eachV ∈ V , in
O(|Qb|2|V|) time, and unions view matches untilE equals the
edge setEp of Qb as described above.Bminimal then follows
the same strategies asminimal to eliminate redundant viewsVi

whose removal will not cause anyM(e) = ∅ for eache ∈ MQb

Vi
.

ThusBminimal is in O(|Qb|2|V|) time.

Minimum bounded containment. Theorem 10 (3) (i) follows
from Theorem 6(1), sinceMMCP is a special case ofBMMCP
whenfe(e) = 1 for all edges. To show Theorem 10 (3) (ii), we
give an algorithm for minimum containment checking, denoted
by Bminimum (not shown). It is similar tominimum, except
that it computes view matches differently.Bminimum takes
O(|Qb|2|V|) time to find all view matches ofV . Thus, it takes
O(|Qb|2|V|+(|Qb|·card(V))3/2) time to return a subset ofV no
larger thanlog(|Ep|) · card(VOPT), whereVOPT is a minimum
subset ofV that containsQb.

VII. E XPERIMENTAL EVALUATION

Using real-life and synthetic data, we conducted four sets
of experiments to evaluate (1) the efficiency and scalability of
algorithmMatchJoin for graph pattern matching using views;
(2) the effectiveness of optimization techniques forMatchJoin;
(3) the efficiency and effectiveness of (minimal, minimum)
containment checking algorithms; and (4) the counterpartsof
the algorithms in (1) and (3) for bounded pattern queries.

Experimental setting. We used the following data.



(1) Real-life graphs. We used three real-life graphs: (a)Ama-
zon [1], a product co-purchasing network with548K nodes
and1.78M edges. Each node has attributes such as title, group
and sales-rank, and an edge from productx to y indicates that
people who buyx also buyy. (b) Citation [2], with 1.4M
nodes and3M edges, in which nodes represent papers with
attributes such as title, authors, year and venue, and edges
denote citations. (c)YouTube[5], a recommendation network
with 1.6M nodes and4.5M edges. Each node is a video with
attributes such as category, age and rate, and each edge from
x to y indicates thaty is in the related list ofx.

(2) Synthetic data. We designed a generator to produce ran-
dom graphs, controlled by the number|V | of nodes and the
number|E| of edges, with node labels from an alphabetΣ.

(3) Pattern and view generator. We implemented a generator
for bounded pattern queries controlled by four parameters:
the number|Vp| of pattern nodes, the number|Ep| of pattern
edges|Ep|, labelfv from Σ, and an upper boundk for fe(e)
(Section VI), which draws an edge bound randomly from[1, k].
Whenk = 1 for all edges, bounded patterns are pattern queries.
We use(|Vp|, |Ep|) (resp.(|Vp|, |Ep|, k)) to present the size of
a (resp. bounded) pattern query.

We generated a setV of 12 view definitions foreach
real-life dataset. (a) ForAmazon, we generated 12 frequent
patterns following [27], where each of the view extensions
contains in average5K nodes and edges. The views take
14.4% of the physical memory of the entire Amazon dataset.
(b) For Citation, we designed12 views to search for papers
and authors in computer science. The view extensions account
for 12% of the Citation graph. (c) We generated12 views for
Youtube, shown in Fig. 7, where each node specifies videos
with Boolean search conditions specified bye.g., age (A),
length (L), category (C), rate (R) and visits (V ). Each view
extension has about700 nodes and edges, and put together
they take4% of the memory for Youtube.

For synthetic graphs, we randomly constructed a setV of
22 views with node labels drawn from a setΣ of 10 labels.
We cached their view extensions (query results), which take
in total 26% of the memory for the data graphs.

(4) Implementation. We implemented the following algo-
rithms, all in Java: (1)contain, minimum and minimal
for checking pattern containment; (2)Bcontain, Bminimum
and Bminimal for bounded pattern containment; (3)Match,
MatchJoinmin andMatchJoinmnl, whereMatch is the matching
algorithm without using views [16], [21]; andMatchJoinmin

(resp.MatchJoinmnl) revisesMatchJoin by using a minimum
(resp. minimal) set of views; (4)BMatch, BMatchJoinmin

and BMatchJoinmnl, where BMatch evaluates bounded pat-
tern queries without using views [16], andBMatchJoinmin

and BMatchJoinmnl are the counterparts ofMatchJoinmin

and MatchJoinmnl for bounded pattern queries, respectively;
and (5) a version ofMatchJoin (resp. BMatchJoin) with-
out using the ranking optimization (Section III), denoted by
MatchJoinnopt (resp.BMatchJoinnopt).

All the experiments were run on a machine powered by an
Intel Core(TM)2 Duo 3.00GHz CPU with 4GB of memory,
using scientific Linux. Each experiment was run5 times and
the average is reported here.
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Experimental results. We next present our findings.

Exp-1: Query answering using views.We first evaluated
the performance of graph pattern matching using views,
i.e., algorithmsMatchJoinmin andMatchJoinmnl, compared to
Match [16], [21]. Using real-life data, we studied the efficiency
of MatchJoinmin, MatchJoinmnl andMatchJoin, by varying the
size of the queries. We also evaluated the scalability of these
three algorithms with large synthetic datasets.

Efficiency. Figures 8(a), 8(b) and 8(c) show the results on
Amazon, Citation andYouTube, respectively. Thex-axis repre-
sents pattern size(|Vp|, |Ep|). The results tell us the following.
(1) MatchJoinmin andMatchJoinmnl substantially outperform
Match, taking only 45% and 57% of its running time on
average over all real-life datasets. (2) All three algorithms
spend more time on larger patterns. Nonetheless,MatchJoinmin

and MatchJoinmnl are less sensitive thanMatch, since they
reuse previous computation cached in the views.

Scalability. Using large synthetic graphs, we evaluated the
scalability ofMatchJoinmin, MatchJoinmnl andMatch. Fixing
pattern size with|Vp| = 4 and |Ep| = 6, we varied the
node number|V | of data graphs from0.3M to 1M , in 0.1M
increments, and set|E| = 2|V |. As shown in Fig. 8(d), (1)
MatchJoinmin scales best with|G|, consistent with the com-
plexity analysis ofMatchJoin; and (2)MatchJoinmin accounts
for about 49% of the time ofMatchJoinmnl. This verifies
that evaluating pattern queries by using less view extensions
significantly reducescomputational time, which is consistent
with the observation of Figures 8(a), 8(b) and 8(c).

To further evaluate the impact of pattern sizes on the
performance ofMatchJoinmin, we generated four sets of
patterns with (|Vp|,|Ep|) ranging from (4,8) to (7,14), kept
|Ep| = 2|Vp|, and varied|G| as in Fig. 8(d). The results
are reported in Fig. 8(e), which tell us the following. (1)
MatchJoinmin scales well with|Qs|, which is consistent with
Fig. 8(d). (2) The largerQs is, the more costlyMatchJoinmin

is. For largerQs, more views may be needed to “cover”Qs;
andMatchJoinmin takes longer time, using the selected views.

Exp-2: Optimization techniques. We also evaluated the
effectiveness of the optimization strategy given in Section III,
by comparing the performance ofMatchJoinmin and
MatchJoinnopt using patterns of size(4, 6) and same set
of views. The synthetic graphs are generated following the
densification law [26]:|E| = |V |α. Fixing |V | = 200K, we
varied α from 1 to 1.25 in 0.05 increments. As shown in
Fig. 8(f), MatchJoinmin is more efficient thanMatchJoinnopt

over all the datasets. Indeed, the running time ofMatchJoinmin

is on average 54% of that ofMatchJoinnopt. The improvement
becomes more evident whenα increases. This is because
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Fig. 8: Performance evaluation

when graphs become dense, more redundant edges can be
removed by the bottom-up strategy used inMatchJoinmin. The
results forBMatchJoinmin andBMatchJoinnopt are consistent
with Fig. 8(f) and are hence not shown.

Exp-3: Query containment. We evaluated the performance
of pattern containment checkingw.r.t. query complexity.

Efficiency ofcontain. We generated two sets ofDAG andcyclic
patterns, denoted byQDAG and QCyclic, respectively. Fixing
a set of synthetic viewsV , we varied the pattern size from
(6, 6) to (10, 20), where each size corresponds toa set of
patternswith different structures and/or node labels. As shown
in Figure 8(g), (1)contain is efficient,e.g.,it takes only39 ms
to decide whether acyclic pattern with|Vp|=10 and|Ep|=20 is
contained inV ; (2) contain takes more time over largerDAG
and cyclic patterns, as expected; and (3) when pattern size is
fixed,cyclic patterns cost more thanDAG patterns forcontain,
due to a more time-consuming fixpoint process.

minimum vs minimal. To measure the performance of
minimum and minimal, we defineR1 = |Tmin|/|Tmnl| as the
ratio of the time used byminimum to that of minimal; and
R2 = |Minimum|/|Minimal| for the ratio of the size of subsets
of views found byminimum to that of minimal. Using the
same view definitions andcyclic patterns as in Figure 8(g),
we varied the size of pattens from (6,6) to (10, 20). As shown
in Fig. 8(h), (1)minimum is efficient on all patterns used,e.g.,
it takes about0.4s over patterns with10 nodes and20 edges;
(2) minimum is effective: whileminimum takes up to 120%
of the time ofminimal (R1), it finds substantially smallersets
of views, only about 40%-55% of the size of those found by
minimal, as indicated byR2. Both algorithms take more time
over larger patterns, as expected.

Exp-4: Efficiency and scalability of BMatchJoin. In
this set of experiment we evaluated (1) the efficiency of
BMatchJoinmin vs. BMatchJoinmnl andBMatch over the real-
life datasets, by varying the size of pattern queries, and (2) the
scalability of BMatchJoinmin over large synthetic graphs, by
varying the size of patterns and data graphs.

Efficiency.We used the same patterns as forMatchJoin in
Exp-1, except that the edge bounds of the patterns were
set to befe(e) = 2 (resp. fe(e) = 3) for queries over
Amazon (resp. Citation). Figure 8(i) shows the results on
Amazonin which the x-axis (|Vp|, |Ep|, fe(e)) indicates the
size of patternsQs = (Vp, Ep, fe). From the results we find
that BMatchJoinmin andBMatchJoinmnl performmuch better
thanBMatch: (1) BMatchJoinmin (resp.BMatchJoinmnl) needs
only 10% (resp. 14%) of the time ofBMatch; (2) when
pattern size increases, the running time ofBMatchJoinmin

(resp.BMatchJoinmnl) grows slower than that ofBMatch; and
(3) BMatchJoinmin always outperformsBMatchJoinmnl. These
are consistent with the result forCitation, shown in Fig. 8(j).

Fixing pattern size with|Vp| = 4 and |Ep| = 8,
we varied fe(e) from 2 to 6. As shown in Fig. 8(k),
(1) BMatchJoinmin substantially outperformsBMatch; when
fe(e) = 3, for example,BMatchJoinmin accounts for only 3%
of the computational time ofBMatch; (2) the largerfe(e)
is, the more costlyBMatch is, as it takes longer forBFS to
identify ancestors or descendants of a node within the distance
bound fe(e); and (3) BMatchJoinmin is more efficient than
BMatchJoinmnl, as it uses less views.

Scalability.Fixing |Vp| = 4, |Ep| = 6 andfe(e) = 3, we varied
|V | from 0.3M to 1M in 0.1M increments, while letting|E| =
2|V |. As shown in Fig 8(l), (1)BMatchJoinmin scales best
with |G|; this is consistent with its complexity analysis; and



(2) BMatchJoinmin takes only 6% of the computation time of
BMatch, and the saving is more evident whenG gets larger.

Summary. We find the following. (1) Answering (bounded)
pattern queries using views is effective in querying large
social graphs. For example, by using views, matching via
bounded simulation takes only3% of the time needed for
computing matches directly inYouTube, and6% on synthetic
graphs. For graph simulation, the improvement is over 51%
at least. (2) Our view-based matching algorithms scale well
with the query and data size. Moreover, they are much less
sensitive to the size of data graphs. (3) It is efficient to
determine whether a (bounded) pattern query can be answered
using views. In particular, our approximation algorithm for
minimum containment effectively reduces redundant views,
which in turn improves the performance of matching by55%
(resp.94%) for (resp. bounded) pattern queries. (4) Better still,
our optimization strategy further improves the performance of
pattern matching using views by46%.

VIII. C ONCLUSION

We have studied graph pattern matching using views,
from theory to algorithms. We have proposed a notion of
pattern containment tocharacterizewhat pattern queries can be
answered using views, and provided such an efficient matching
algorithm. We have also identified three fundamental problems
for pattern containment, established their complexity, and de-
veloped effective (approximation) algorithms. Our experimen-
tal results have verified the efficiency and effectiveness ofour
techniques. These results extend the study of query answering
using views from relational and XML queries to graph pattern
queries. Moreover, our techniques can be readily extended to
strong simulation [28], retaining the same complexity.

The study of graph pattern matching using views is still
in its infancy. One issue is to decide what views to cache
such that a set of frequently used pattern queries can be
answered by using the views. Techniques such as adaptive and
incremental query expansion may apply. Another issue is to de-
velop efficient algorithms for computingmaximally contained
rewriting using views, when a pattern query is not contained
in available views [25]. A third problem concerns view-based
pattern matching via subgraph isomorphism. The fourth topic
is to find a subsetV ′ of V such thatV ′(G) is minimum for all
graphsG. Finally, to find a practical method to query “big”
social data, one needs to combine techniques such as view-
based, distributed, incremental, and compression methods.

Acknowledgments. Fan, Wang and Wu are supported in part
by 973 Programs2012CB316200and 2014CB340302, NSFC
61133002, Guangdong Innovative Research Team Program
2011D005and Shenzhen Peacock Program1105100030834361
of China, as well asEPSRC EP/J015377/1, UK.

REFERENCES

[1] Amazon dataset.http://snap. stanford.edu/ data/ index.html.

[2] Citation. http://www.arnetminer.org/citation/.

[3] Facebook.http://newsroom.fb.com.

[4] Full version. http://homepages.inf.ed.ac.uk/s0944873/View.pdf.

[5] Youtube dataset.http://netsg.cs.sfu.ca/youtubedata/.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[7] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou. Struc-
tured materialized views for XML queries. InVLDB, 2007.

[8] M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and
D. A. Patterson. Generalized scale independence through incremental
precomputation. InSIGMOD, 2013.
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