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Abstract—The variety of memory devices in modern com-
puter systems holds opportunities as well as challenges for data
management systems. In particular, the exploitation of Graphics
Processing Units (GPUs) and their fast memory has been studied
quite intensively. However, current approaches treat GPUs as
systems in their own right and fail to provide a generic strategy
for efficient CPU/GPU cooperation. We propose such a strategy
for relational query processing: calculating an approximate result
based on lossily compressed, GPU-resident data and refine the
result using residuals, i.e., the lost data, on the CPU. We developed
the required algorithms, implemented the strategy in an existing
DBMS and found up to 8 times performance improvement, even
for datasets larger than the available GPU memory.

I. INTRODUCTION

Modern computer systems research has yielded a number
of different memory technologies with different characteristics.
Virtually all of these technologies face a fundamental trade-
off between capacity and performance: the higher the storage
capacity of a device, the higher its latency and the lower
its bandwidth. These tradeoffs are mainly economic (larger,
faster memory is simply more expensive to build) but also
partially systemic: larger memories are inherently harder to
address. Resolving an integer address to a physical location
on a chip or disk involves a decoding effort proportional to
the length of the address [1]. Figure 1 shows that even devices
of the same type (in this case flash memory) face a systemic
conflict between storage capacity and performance1 [2]. To
resolve this conflict, most systems combine multiple devices
into a memory hierarchy that speeds up localized access. To
achieve maximal performance, all of the available devices have
to be used optimally. Consequently, making efficient use of
hierarchical memories for relational data processing is one
of the fundamental challenges in data management research.
Fields such as cache-conscious algorithms, out-of-memory
processing and distributed data management strive to extract
maximal performance from the respective memory hierarchy
at the expense of an ever-increasing number of techniques,
technologies and tuning opportunities.
In this paper, we set out with a different goal:

Rather than achieving maximum performance for a specific
problem, we want to achieve good performance for a
wide range of (relational) operations in the presence of
hierarchical memories and large data sets.

As an exemplary case, we tackle an instance of this problem
that has recently received significant attention: the efficient use

1In Big Data terms: there is a conflict between data Volume and Velocity
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Fig. 1: Flash Memory Capacity/Bandwidth [2] (layout adjusted)

of fast but small memory of Graphics Processing Units (GPUs)
in addition to the large but slow CPU-attached memory2.

Due to their high bandwidth and computation power, GPUs
have been employed to speed up the processing of small, i.e.,
mostly GPU-resident sets of relational data [3], [4], [5], [6].
Most of this work focuses on the efficient implementation of
classic relational operators on GPUs and the selection of GPU
or CPU operators at runtime. In general, the GPU operators
transfer their inputs through the slow PCI-E bus, process them,
transfer the results back and potentially cache data for later
reuse. While vendors simplified CPU/GPU transfers through,
e.g., “unified virtual addressing”, little can be done about
the PCI-E bottleneck (which is merely an instance of the
well-known “Von Neumann” bottleneck). Therefore, such ap-
proaches only achieve good performance if the (hot) dataset fits
in the GPUs internal memory. This is generally not the case [7].

In earlier work [8], we proposed Bitwise Distribution
(BWD), a simple, generic storage model that helped us to
achieve good performance for a prototypical, GPU-supported
data management application. While bitwise distributed stor-
age helped improve the performance of a hard-coded proto-
type, it lacked an appropriate processing model to support
the full range of relational queries in a real system. In this
paper, we present such a processing model and demonstrate
its suitability for generic relational query processing.

To this end, we make the following contributions:

• We propose the novel Approximate & Refine (A&R)
processing paradigm for the management of bitwise dis-
tributed relational data.

2we discuss other applications for the approach in Section VII-B



• We develop efficient algorithms that form the basis for
the A&R operators on bitwise distributed data.

• We present and evaluate our implementation of the
paradigm in the relational Database Management System
(DBMS) MonetDB [9].

The rest of this paper is structured as follows: in Section II,
we introduce the basis of our work: the bitwise decomposed
storage model and the bulk processing model. The Sections III,
IV and V give a top-down tour through our system: In
Section III we present the conceptual framework that is the
foundation for our approach to the efficient processing of
bitwise distributed data. In Section IV, we describe the unique
algorithmic challenges of our processing paradigm and the
algorithms that solve them. We present our implementation
of the paradigm in MonetDB in Section V and evaluate it in
Section VI. In Section VII we compare our approach to similar
ideas, explore future work and conclude in Section VIII.

II. BACKGROUND

Before introducing the A&R query processing paradigm,
let us briefly recount the work on the underlying storage and
the processing model.

A. Bitwise Distributed Storage

To distribute persistent data across the available devices,
we build on the idea of Bitwise Decomposition/Distribution
(BWD) [8]. Figure 2 illustrates the bitwise distributed storage
model. Data values of a column are vertically partitioned at the
granularity of individual bits and (non-redundantly) distributed
among the memories of the available devices (leading zeros are
removed). The partition with the major bits effectively repre-
sents an approximation of the full value. This approximation
can be stored and processed in the fast memory, in isolation
of the residual (i.e., the minor bits). Since the data size of the
approximation scales with its resolution (the number of bits in
the approximation), it can be adapted to the storage capacity of
the respective device. When necessary, the approximation can
be joined with the residual on the tuple id to reconstruct the
precise values. Similar to different materialization strategies of
attributes in column-stores [10], bitwise decomposition allows
different reconstruction strategies (early, late, cost-based).

B. Bulk Processing

In this work, we focus on Memory-Resident DBMSs
(MRDBMSs) rather than disk-based systems. Due to the need
for CPU efficiency, most MRDBMS are implementations of
the bulk processing model (or a variant thereof) [11], [12],
[13] on fully decomposed data [14]. In this processing model,
operators are simple, tight loops without function calls that
physically materialize their results in arrays for the next
operator to pick up. This leads to high computational effi-
ciency at the cost of expensive intermediate materialization.
While Vectorized [12] and Just-in-Time compiled [13] query
processing address the problem of expensive materialization,
they follow the same principle: increasing CPU efficiency by
eliminating function calls from the critical execution path.

We decided to build upon MonetDB’s plain bulk-
processing model (we discuss the approach’s applicability in
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II. BACKGROUND

Before introducing the A&R query processing paradigm,
let us briefly recount the work on the underlying storage and
the processing model.

A. Bitwise Distributed Storage

To distribute persistent data across the available devices,
we build on the idea of Bitwise Decomposition/Distribution
(BWD) [8]. Figure 2 illustrates the bitwise distributed storage
model. Logically, data values of a column are vertically
partitioned at the granularity of individual bits (see Figure ??).
The partition with the major bits effectively represents an
approximation of the full value. This approximation can be
stored and processed in isolation of the residual (i.e., the
minor bits). Since the data size of the approximation scales
with its resolution (the number of bits in the approximation),
it can be adapted to the storage capacity of the respective
device. When necessary, the approximation can be joined with
the residual on the tuple id to reconstruct the precise values.
Similar to different materialization strategies of attributes in
column-stores [10], bitwise decomposition allows different
reconstruction strategies (early, late, cost-based).

Within the logical bitwise partitions, the physical represen-
tations can vary. In our original work [8], e.g., the values were
(radix-)clustered and prefix-compressed within a cluster.

B. Bulk Processing

In this work, we focus on Memory-Resident DBMSs
(MRDBMSs) rather than disk-based systems. Due to the need
for CPU efficiency, most MRDBMS are implementations of
the bulk processing model (or a variant thereof) [11], [12],
[13] on fully decomposed data [14]. In this processing model,
operators are simple, tight loops without function calls that
physically materialize their results in arrays for the next
operator to pick up. This leads to high computational effi-
ciency at the cost of expensive intermediate materialization.
While Vectorized [12] and Just-in-Time compiled [13] query
processing address the problem of expensive materialization,
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Fig. 2: Bitwise Decomposition & Distribution

they follow the same principle: increasing CPU efficiency by
eliminating function calls from the critical execution path.

We decided to build upon MonetDB’s plain bulk-
processing model (we discuss the approach’s applicability in
other setups in Section VII-B). This model has two main
advantages: a) It avoids the problem of explicit buffer man-
agement as needed by, e.g., the vectorized model. Such buffer
management is non-trivial in a multi-device setup and b) it
allows the evaluation of complex queries using a relatively
small set of operators. We use the existing MonetDB query
compiler [9] to break down complex queries to our new A&R
operators (see Section V-B for the query compilation process).

III. APPROXIMATE & REFINE PLANS

By their very definition, relational DBMS follow the idea
that all data, persistent as well as intermediate, is represented in
self-contained relations. Many properties of Codd’s relational
model [15], e.g., tree shaped plans or the notion of a single
implementation for each operator, are relaxed in many systems.
The notion of a unified data representation, however, is rarely
challenged, because it allows the free mixing and matching
of operators in the plan generation phase. Unfortunately, this
flexibility at plan generation time comes at a cost in later pro-
cessing phases, in particular when targeting multiple devices:

1) Operators have to invest effort into converting data from
the unified representation into an appropriate internal
representation and back. A GPU-operator, e.g., has to ship
data to and from the device which might be in vain if the
next operator needs the data on the GPU as well.

2) It limits optimization opportunities due to the coarse
granularity of operators. Operators can, e.g., not share
intermediate/internal data structures like hash-tables.

3) It hides the cross-device parallelization of operations
from the execution scheduler, which limits cross-device
execution to intra-operator parallelism.

Rather than fight these symptoms individually, we tackle
the problem at the root: the relational algebra processing model
itself. We propose a processing model that is not based on a
unified representation of data: the A&R model. Instead of the
classic relational operators, there are two classes of operators.
These produce fundamentally different kinds of outputs (see
Figure 3): approximation operators (marked in red) that pro-
duce a candidate result and refinement operators (blue) that
combine such candidate results with additional/residual data
to produce a correct result set. Each classic relational operator
can be modeled using one approximation and one (or more)
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allows the evaluation of complex queries using a relatively
small set of operators. We use the existing MonetDB query
compiler [9] to break down complex queries to our new A&R
operators (see Section V-B for the query compilation process).
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By their very definition, relational DBMS follow the idea
that all data, persistent as well as intermediate, is represented in
self-contained relations. Many properties of Codd’s relational
model [15], e.g., tree shaped plans or the notion of a single
implementation for each operator, are relaxed in many systems.
The notion of a unified data representation, however, is rarely
challenged, because it allows the free mixing and matching
of operators in the plan generation phase. Unfortunately, this
flexibility at plan generation time comes at a cost in later pro-
cessing phases, in particular when targeting multiple devices:

1) Operators have to invest effort into converting data from
the unified representation into an appropriate internal
representation and back. A GPU-operator, e.g., has to ship
data to and from the device which might be in vain if the
next operator needs the data on the GPU as well.

2) It limits optimization opportunities due to the coarse
granularity of operators. Operators can, e.g., not share
intermediate/internal data structures like hash-tables.

3) It hides the cross-device parallelization of operations
from the execution scheduler, which limits cross-device
execution to intra-operator parallelism.

Rather than fight these symptoms individually, we tackle
the problem at the root: the relational algebra processing model
itself. We propose a processing model that is not based on a
unified representation of data: the A&R model. Instead of the
classic relational operators, there are two classes of operators.
These produce fundamentally different kinds of outputs (see
Figure 3): approximation operators (marked in red) that pro-
duce a candidate result and refinement operators (blue) that
combine such candidate results with additional/residual data
to produce a correct result set. Each classic relational operator
can be modeled using one approximation and one (or more)
subsequent refinement operators. This division of the relational
operators has a number of advantages:

1) It simplifies operators implementation in multi-device
systems since each operator targets only one device,

2) creates additional opportunities for optimization at plan
level (see Subsection III-A),

3) allows the independent scheduling of operations on the
different devices at runtime,
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4) allows the fast computation of an approximate query
answer without wasting resources by evaluating only the
approximation subplan.

To achieve these benefits, however, we need to develop
these new classes of operators for each of the classic re-
lational operators. Before describing their implementation in
Section IV, we provide a brief overview of the two operator
classes.

Approximation: The goal of an approximation operator is
to provide a fast approximation of the result of its classic
relational counterpart based on approximate inputs. For struc-
tural/relational operators like selections and joins, this means
that it should provide a superset of the refined/actual output
relation. The condition predicates (if any) are relaxed in order
to produce an over-approximation of the accurate result. For
arithmetic or string operations on tuple values, this means that
it yields the expected value and strict error bounds of the result
based on the approximate inputs. The implementation of the
approximation operators is principally the same as the one of
the classic relational operators. The major difference is that the
arithmetic operators have to propagate the error bounds as a
part of the approximation, so later operators can relax predicate
conditions appropriately. Naturally, the operators have to be
implemented for the targeted device. Thus, when targeting
a GPU, the operators are executed on a massively parallel
platform and should, thus, be implemented accordingly.

Refinement: The refinement operators are fundamentally
different from their classic relational equivalents. Where a
relational operator accepts one or two inputs, a refinement
operator accepts an approximation and a refinement input for
each operand and an approximation input from the refinement’s
respective approximation operator. Many (not all) relational
operators receive a significant head start on their execution
when provided with an approximation of their output. We
discuss the respective benefits and the unique challenges
of each of the refinement operators in Section IV. Before,
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however, let us outline the new opportunities for optimization
that arise from such a multi-step query execution model.

A. (Rule-based) Optimization

While the A&R-processing model allows efficient co-
processing of data, it also introduces new degrees of freedom
in plan generation & optimization: approximation operators
on one attribute can be pushed below refinement operators on
another in order to speed up query execution. In general, we
assume the approximations to yield a significant reduction of
the result-set at (relatively) low costs. It is, therefore, sensible
to push down approximate selections as far as possible. This
optimization scheme can be extended with an appropriate cost
model in the future, but provides a good baseline method for
future work. Since the details are largely specific to the DBMS
at hand, we briefly cover the implementation of an appropriate
MonetDB query plan generator and optimizer in Section V-B.

IV. APPROXIMATE & REFINE OPERATORS

In this section we present the fundamentals of the indi-
vidual A&R operators by discussing an example query that
involves the relevant operations (Figure 4). Before focusing
on the operators themselves, however, let us introduce one of
the essential building blocks of our approach: the translucent
join.
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A. The Translucent Join

Query execution on fully decomposed (column-store) data
is known to involve a large number of joins to reconstruct tu-
ples from decomposed columns [10]. As an example, consider
the case of a simple selective projection (the blue nodes in
Figure 3). In a (late materializing) column-store, the query
processor will first perform the selection (in this case on
DATE). After that, the resulting tuple IDs will be joined with
the projected attribute (PRICE) and aggregated. While this
yields a high number of joins in the plan, these joins are
invisible joins [10], i.e., mere positional lookups, if the physical
location of a value can be easily derived from the tuple id.

Since Bitwise Distribution (BWD) decomposes relations
even further than mere decomposition at attribute granularity,
the number of joins increases accordingly. Almost every re-
finement operator involves the join of the (over)approximation
with the residual. The full plan in Figure 3, e.g., contains four
joins. It is, thus, important to efficiently support this operation.
While the joins with persistent residual are cheap, invisible
joins, the join of the refined selection and the approximate is
not. It is, however, not a generic join either, because some
helpful properties of the input relations are known to the
operator at runtime:

1) The tuple IDs that are returned by the SELECT
(refine) are a subset of the tuple IDs that are part
of the PROJECT (approximate).

2) The underlying SELECT (refine) and PROJECT
(approximate) operators are order-preserving:
SELECT (refine) because it is a non-parallelized
operation and PROJECT (approximate) because a
parallel projection writes values at the same positions as
the input ids

3) The SELECT (approximate), however, is not order-
preserving because a massively parallelized selection can
only maintain the input order at additional costs, which
we want to avoid.

Due to item 3, we cannot assume that the inputs are
ordered. Due to item 2, however, we know that the two inputs
have the same permutation and one is a subset of the other
(item 1). For this scenario (see Figure 5 for an example), we
developed a special kind of merge-join: Following the naming
convention of the invisible join, we refer to it as the translucent
join (it is more complex and costly than an invisible join but

function TRANSLUCENTLYJOIN(A, R) . (on id)
if SORTED (A.id) ∧ DENSE (A.id) then

return INVISIBLYJOIN (A,R)
else

iR ← 0, iA ← 0, C ← ∅
while iR < ‖R‖ do

if R.id [iR] = A.id [iR] then
C [iR]← (R [iR] , A [iA])
iR ← iR + 1
iA ← iA + 1

else
iA ← iA + 1

end if
end while
return C

end if
end function

Algorithm 1: The Translucent Join

not as much as a generic equi-join). This algorithm can be
applied to perform a natural join of two (enumerated) relations
A and B on attribute id under the following conditions3:

1) {A.id} and {B.id} are unique
2) {A.id} is a superset of {B.id}4 and
3) the elements of B.id that are present in A.id

have the same permutation in A.id as in B.id,
i.e., (x ∈ B.id ∧ y ∈ B.id ∧ iA.id (x) < iA.id (y))
⇒ iB.id (x) < iB.id (y) with iS (x) the number/position
of x in set S

The algorithm, displayed in Algorithm 1, processes data
similar to a sort-merge join but does not rely on the sortedness
of the values to decide which cursor to advance. Instead,
it always advances the cursor on A until a match with the
element at the cursor on B is found. In that case, both cursors
are advanced. Due to the conditions 2 and 1, all values in
B.id find exactly one join partner in A.id. It is, therefore,
enough to iterate through B.id and find the matching value
in A.id. Due to condition 3, the join partner cannot occur in
a position before the current position of the cursor on A.id.
Consequently, the cursor on A.id only needs to be advanced to
where the partner is found. Thus, the algorithm yields correct
results in O (|A.id|+ |B.id|) memory accesses and O (|A.id|)
comparisons under the stated conditions.

Conditions 1 and 2 always hold when an approximation
is joined with its residual. Condition 3 has to be established
by making sure the tuple order is not changed between the
approximation and the refinement. We ensure this by generat-
ing and optimizing plans such that no order-changing operator
(selections) appear between approximation and refinement.

B. Selections

Selections are the most likely candidate to benefit from
cross device processing: Since selections are the most input-
bandwidth hungry operators and generally yield a significant

3in this example, A contains the approximation and B the residuals
4Note that this, together with the uniqueness of {A.id} is equivalent to
{B.id} being a Foreign-Key set to {A.id}



reduction of the input, they are very well suited for a GPU
environment where input bandwidth (device memory) is avail-
able in abundance and output bandwidth (PCI-E bus) is scarce.

The approximation of a selection on a single attribute
A is straightforward: the conditions on the accurate value are
relaxed to match all values that have the same approximation
as a matching value and the input data is scanned with the
relaxed predicates. To this end, each selection operand x is
adapted according to the following function f :

f (x) =


appr (x) if op is ’== x’
appr (x)− 1 if op is ’> x’
appr (x) if op is ’>= x’
appr (x) + (1� resbits) + 1 if op is ’< x’
appr (x) + (1� resbits) if op is ’<= x’

With appr (x) the approximation of x according to the
decomposition selected for attribute A (bitmasking the value
with the bitwise compliment of (1� resbits)−1) and resbits
the number of bits used for the residuals. This yields a superset
of the precise result set of the selection (see Figure 4).

The refinement of a selection is a little bit more involved
(see Algorithm 2 or the Selection section in Figure 4 for a
conceptual overview). As a first step, the approximation of
the result is (translucently) joined with its residual. In the
second step, the accurate values are reconstructed by a bitwise
concatenation of the approximation and the residuals. Using
accurate values, the (precise) condition is reevaluated and false
positives are eliminated. In practice, the two operations (the
translucent join and the re-evaluation of the condition) can be
performed in one loop which eliminates the need for multiple
iterations through the data. As illustrated in Figure 4, the
refined result of the selection is correct (i.e., the predicate holds
for all resulting tuples).

For complex selections as well as other operations that
involve, e.g., arithmetic functions, the bulk-processing model
advocates breaking down the predicate into multiple primitives
that are evaluated using bulk-operators. The result of each of
these operators is materialized and used as input for the next
primitive operator or the selection operator itself. Using the
same technique, we can support arithmetic functions as long
as an approximate result (with error bounds) can be derived
from approximate operands (with error bounds). This holds
for basic arithmetic functions (add, subtract, multiply, divide)
as well as some more complex functions (sqrt, power). If a
user defined function can fulfill these properties, it also can be
supported by our approach.

C. Projections

In late materializing column-stores, projective joins are
used to add columns to the result set. As observed in previous
work [10], these projections are usually implemented using
positional lookups/invisible joins.

The approximation of a projection is implemented as an
invisible join/positional lookup of the overapproximated posi-
tion set and the approximated target values. Its implementation
is, thus, straightforward. If all bits of the projected attribute
are GPU resident (as they are in the example in Figure 4,

function SELECTREFINE(A, R)
C ← TRANSLUCENTLYJOIN (A,R)
Crefined ← ∅, i← 0
for cand in C do

if CONDITION
(
cand.appr +bw cand.res

)
then

Crefined[i]← o.appr +bw o.res
i← i+ 1

end if
end for
return Crefined

end function

+bw = bitwise concatenation
Algorithm 2: Refining a selection

Projection/Join section), the resulting relation does not have
to be refined. If some bits are CPU-resident, they have to
be joined with the approximation to reconstruct the accurate
values.

The refinement of a projection is essentially a translucent
(potentially invisible) join of the output of the approximation
and the residual of the input. This ensures that the residual and
the approximation stay aligned. In essence, the refinement step
of a projection is equivalent to a selection refinement without
a predicate.

D. Joins

Since joins are among the most common yet expensive rela-
tional operations, there is much incentive to support them using
GPUs. However, they are also among the operators that are
most difficult to implement on a GPU. The massively parallel
architecture, which is the basis for the superior computational
performance of GPUs becomes a curse when processing a non-
indexed, generic5 equijoin: the performance bottleneck in this
case is the hash-building phase of the hash-join. The massively
parallel construction of a hash-table involves many scattered,
conflicting writes into the shared memory which are generally
resolved using (partial) locking of the table on insert [16],
[17]. While locking is a viable approach if the PCI-E bus is
the effective bottleneck [17], it seriously limits performance
when reading data from the internal memory.

The efficient approximation of a join on a GPU is par-
ticularly difficult: since joins on approximate data expectedly
yield many conflicts during hash-build and many hits during
probing, the performance of equi-joins on approximate data is
unclear.

Theta joins, however, are generally implemented as nested
loop joins which a) are generally very bandwidth intensive,
b) often subject to computation intensive comparison functions
and c) trivial to (massively) parallelize because they do not em-
ploy intermediate structures that have to be locked. This makes
them a very good candidate for GPU-supported processing.

The refinement of such a join is not trivial either. Since
the approximation can only preserve the order of one of
the joined attributes, only one of the refinement-joins can be
performed using a translucent join. The other column has to

5i.e., not invisible or translucent/merge



be joined using, e.g., a hash-join. However the approximation
can transform a potential nested loop join into a hash join with
the accompanying benefits.

Due to the discussed complexity of the problem of generic
GPU join processing, we do not advance the state of the
art [5], [18] for this particular problem in this paper. In our
implementation, we resort to (pre-)building a hashtable on the
CPU in the form of a foreign-key index and leave support for
unindexed joins on the GPU for future work. Such foreign-
key joins are among the most common joins in analytical
applications since they connect fact and dimension tables in
multidimensional (star-schema) as well as relational OLAP.
With a pre-built hashtable, a foreign-key join is equivalent to
a projective join (Projection/Joins section in Figure 4). In our
implementation, they share the same code.

E. Grouping

Standalone grouping, i.e., the mere assignment of group
IDs to tuples, does not reduce the number of result tuples.
Therefore, the benefits of the A&R processing of a grouping
are noteworthy but less obvious.

The approximation group operator performs a pre-
grouping of the tuples based on the approximate values. In our
implementation we use hash-based grouping to assign group
IDs to unique values. The output is positionally aligned with
the input (see Grouping/Aggregation section in Figure 4).

Refinement The benefits of an approximate (pre-)grouping
are highly dependent on the physical representation of the
grouping result. If, e.g., the tuples are physically grouped, a
physical pregrouping in the GPU would localize the memory
accesses when refining the grouping in the CPU which can
give a significant performance benefit. In MonetDB, however,
groupings are physically represented by mappings of implicit
tuple IDs (i.e., positions in an array) to group IDs. In this rep-
resentation, a pregrouping cannot speed up memory accesses
and is therefore not used for the refinement.

However, we expect that in practice groupings on attributes
with very high cardinality are rare since they yield an equally
high number of groups (this holds for, e.g., the TPC-H bench-
mark). This means that few bits are necessary to represent
them which makes it possible to keep these columns GPU
resident after compression, which eliminates the necessity for
a subgrouping. However, the potential false positives that may
still be in the result-set from earlier operators have to be
eliminated. This is, again, done using a translucent join (see
Grouping/Aggregation section in Figure 4).

F. Aggregation

The handling of (grouped) aggregations in the A&R frame-
work is dependent on the aggregation function: while count
is trivial, min and max are slightly more complex. Sum and
avg are victim to a form of destructive distributivity (see
Section IV-G) and are, therefore, evaluated on the CPU unless
all data is GPU-resident.

The Approximation of a min or max operation is difficult
because care has to be taken in order to make sure that the
result tuple survives the approximation phase and is considered
during the refinement. Since the approximation of two values

xcondition

y

approximate condition

}approximation
granularity

false 
minimum

correct 
minimum

Precise Query: select min(Y) from R where x>6
Approx. Query: select min(Y) from R where x>=4

Fig. 6: Calculating Min/Max in the A&R framework

is not enough to decide which one is greater, the approximation
of a minimum must be a set of candidates. For a global
aggregation without conditions, this set contains all tuples that
have the same (minimal) value. If a condition is applied before
the aggregation, the case is more complicated. To illustrate
this, consider the example in Figure 6. When evaluating the
approximate selection on the approximate data, three tuples
qualify for the condition on x, one of which is a false positive.
The false positive tuple happens to be the one with the single
minimal approximate value for y. Thus, it is not enough to
return all values with the minimal approximation. The result
of the approximation of a minimum has to assuredly include
the tuple ID of the actual minimum. To guarantee this, the
error bounds of the applied selections are propagated to the
aggregation.

The refinement of a minimum is comparatively simple:
a join of the candidate set with the input residuals and the
calculation of the minimum.

G. Destructive Distributivity

While many relational operators can be modeled by an
A&R operator pair, there are limitations of the approach. A
simple example of these limitations are even basic arithmetic
operations. Consider, e.g., the following multiplication of the
values a and b represented as the sum of their approximation
(xap) and residual (xre):

(aap + are) · (bap + bre) = aap · bap + aap · bre
+bap · are + are · bre

The expansion of the product indicates that the result of
these multiplications cannot be accurately derived from the
product of the approximations of the input and the residuals



of the inputs only6. The subterm aap · bre , e.g., can only
be calculated when both factors are present on the same
device. For this reason, each A&R-operator has access to
the approximations of the inputs. While it is usually more
expensive to access the approximations of the inputs rather
than the approximation of the result during refinement, it is
sometimes necessary. To reduce the costs of accessing the
approximation, it can be cached on the respective device.

In addition to the architectural implications (a refinement
operator has to have access to the inputs of the approximation
operators), this also has performance implications: since the
approximation cannot be used to speed up the calculation of
the exact result, why should it be calculated at all? In addition
to the refinement, the approximation could be used in other
approximation operators or as the result of the query. If, e.g.,
a query contains a condition on the product of two attributes,
the approximation of the product can be used to approximate
the result of the selection.

V. IMPLEMENTATION

In addition to theoretically developing the necessary algo-
rithms, we implemented our A&R query processing paradigm
in MonetDB, an existing relational DBMS focused on analyt-
ical workloads on memory resident data. In this section, we
briefly discuss the implementation.

A. Preparation: Decomposition

Before processing data using A&R operators, it has to
be decomposed and distributed to the respective processing
devices. From a relational system’s perspective, a bitwise
decomposed attribute is similar to an index. Consequently, it
has to be explicitly defined like an index by the user.

We implemented the bitwise decomposition of attributes in
MonetDB as a side-effect of a (dummy) user-defined function
with the appropriate parameters. The function call is wrapped
in an SQL function. Thus, the query

select bwdecompose(A, 24) from R;
decomposes the 32-bit integer attribute A of relation R into 24
GPU-resident and 8 CPU-resident bits and applies a prefix-
compression to the approximate data.

B. Physical Plan Generation

MonetDB uses the MonetDB Assembly Language (MAL)
to describe the (physical) query plan. An initial MAL-plan
is generated from the logical relational algebra plan and
repeatedly rewritten by micro-optimizers. To generate a A&R
plan, we developed an additional micro-optimizer that replaces
classic MAL operators with pairs of A&R operators. This
optimizer is added to the end of the optimizer pipeline and,
thus, benefits from optimizations that happened in earlier
stages. We also added a very simple rule-based optimizer
that pushes approximate selections below refined selections.
Figure 7 shows the graphical representation of the A&R MAL-
plan for a simple select and aggregate query. The paired ap-
proximate & refine operators that make up a classic relational
MonetDB operator are clearly visible. In addition, it is apparent

6Even the calculation of error bounds on the result does not allow the correct
refinement of the approximation.
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Fig. 7: A Physical MonetDB A&R Query Plan for
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that no approximate operator depends on the result of a refine
operator. Thus, the approximation subplan can be evaluated
entirely yielding an approximate result before starting the first
refinement operator.

C. Processing

Most column-stores use the fully decomposed represen-
tation for persistent as well as intermediate data. The indi-
vidual attributes are stored in contiguous arrays with implicit
(positional) or explicit (materialized) tuple IDs. In MonetDB,
these arrays come in the form of Binary Association Tables
(BATs). These are pairs (hence “binary”) of arrays that map
(hence “association”) tuple IDs to attribute values. If the tuple
IDs are dense (i.e., equi-distant) and sorted (e.g., in persistent
attributes), they can be inferred from their position in the array
and are, thus, not materialized. We use BATs to represent
approximations as well as residuals and use explicit positions
to keep them aligned. We extended the BAT data structures
to keep pointers to their respective memory regions on the
GPU, the CPU resident residuals as well as metadata like the
decomposition strategy (i.e., the number and significance of
bits that are resident on each device that also serves to encode
the error of the approximate data) and the compression strategy
(i.e., the base for the prefix compression).
We added the new A&R query processing operators to the
MonetDB internal operator set as a supplementary module that
has to be enabled at compile-time.

The approximation operators are native (C implemented)
wrappers around OpenCL-operators. The C part is only respon-
sible for the data structure management (locating the approx-
imation in the GPU’s internal memory, allocating resources,
checking types, ...) as well as the error/resolution propagation
from the inputs to the produced output. 7

7Since the error propagation rules are relatively easy to develop and space
in this paper is limited, we do not cover them here.



The data intensive part of the code is executed on the
GPU. To yield efficient code, the OpenCL operator code is
generated and compiled just-in-time. The code is generated
using the data type, the decomposition as well as compression-
strategy as parameters. We leave it to the OpenCL-compiler
to do further optimization. We parallelized the operators over
the number of processed tuples which generally yields a very
high degree of parallelism. To keep the code portable and
maintainable, we did not perform any hardware-specific tuning
by, e.g., artificially reducing the parallelism, double buffering
or optimization for memory bank conflicts.

The refinement operators are not generated at runtime
but implemented, just like the other MonetDB operators, in
C using static type expansion. The expansion is implemented
using C-preprocessor macros and statically expanded by the C-
compiler. This allowed us to generate efficient loops without
function calls for the refinement.

We implemented both classes of operators to the best of
our abilities but believe that there is potential for optimization
that is orthogonal to our approach8.

VI. EVALUATION

To evaluate the approach, we used two benchmarks: the
spatial range query benchmark [19] that we used to evaluate
the BWD prototype [8] and a representative subset of the
TPC-H benchmark. As mentioned before, we believe that
with other, orthogonal optimization of individual operators, the
performance can be improved further. This evaluation should,
therefore, be interpreted as a baseline for the approach.

A. Setup

All experiments were conducted on a server-class system
with two eight-core Intel R© Xeon R© E5-2650 CPUs running
at 2.00 GHz. The system was equipped with 256 GB of main
memory (16 modules, 16 GB each), which well exceeds the
size of all used datasets. Each CPU was connected to eight
memory modules through four 1.6 GHz channels. The system
was equipped with two GeForce GTX 680 cards (2 GB device
memory) using CUDA 4.2.1 and the device driver 304.54.

A&R implementation: We based our implementation on the
MonetDB v11.11.5 (July 2012) release and developed the new
A&R operators as well as the ’bwd pipe’ optimizer pipeline
which rewrites plans generated by the standard ’minimal pipe’
optimizer pipeline into A&R-plans. Our A&R query processor
implementation currently does not support the use of multiple
GPUs for the processing of a single query. Therefore, we only
use a single GPU when reporting query times (in Sections VI-C
and VI-D) and both of the available cards with replicated
datasets when reporting throughput (in Section VI-E).

CPU only implementation: As a CPU implementation, we
used standard MonetDB with the ’sequential pipe’ optimizer
pipeline on pre-heated data: We report the third run of each
query when showing per-operator breakdowns and averages of
15 runs for benchmarks of single operators.

8The current version at the time of writing can be accessed using
the revision-hash a46ca0cc4919 in the MonetDB mercurial repository
(http://dev.monetdb.org/hg/MonetDB)

GPU streaming implementation: To compare against the
state of the art approach, i.e., streaming data to the GPU
before processing, we would have liked to evaluate an existing
system. However, we did not find a GPU supported relational
DBMS that is mature enough and of sufficient quality to
form a reasonable basis for such a comparison. To give some
indication of the performance that can be expected of such
a system, however, we report the minimal amount of work
any of these systems would have to do assuming that the
(hot) data size exceeds the memory capacity of the GPU:
copy the input data to the GPU. To assess the costs for this
operation, we measured the achievable bandwidth using the
TransferOverlap tool that is part of AMD’s Accelerated
Parallel Processing (APP) SDK9. We measured an average
bandwidth of 3.95 GB/s using DMA-transfer and calculated the
transfer time from the size of the input data. In the respective
charts, we indicate the time it would (theoretically) take to
transfer the input relation through the PCI-E bus with the label
’Stream (Hypothetical)’.

B. Microbenchmarks

To compare the performance of the individual A&R-
operators with their standard MonetDB equivalents, we con-
ducted a set of microbenchmarks. All of them were performed
on 100 million unique, randomly shuffled integers (value range
0 to 100 million) and are displayed in Figure 8. All of them
display the costs of the approximation phase (Approximation)
as well as the overall costs (Approximate+Refine). Where
applicable, we show the costs of the respective MonetDB
operator.

Figures 8a and 8b shows the performance of our (inequality-
)selection operator: our implementation outperforms the stan-
dard MonetDB selection unless the data is distributed (24 bit
GPU, 8 bit CPU) and the selectivity is above 60%. In this case,
the high refinement costs defeat the benefits of the approach.
Figure 8c shows the performance impact of the number of
GPU-resident bits on the selection performance for different
selectivities (.1%, .5% and 5% qualifying tuples): Naturally,
when more tuples satisfy the predicate, fewer bits are needed
on the GPU to achieve close to optimal performance.
Figures 8d and 8e show the projection/indexed join perfor-
mance (recall that MonetDB uses indexed joins for projec-
tions). It shows that the A&R projection consistently out-
performs the MonetDB projection, though less so at higher
selectivities.
Figure 8f shows that the performance of our grouping imple-
mentation is consistently better than the standard MonetDB
grouping performance. The performance improves with the
number of groups due to fewer write conflicts on the grouping
table.

C. Spatial Range Queries

We evaluated the performance of the spatial range query
benchmark to compare our generic MonetDB based imple-
mentation with the hardcoded, hand-optimized prototype of
the original BWD-work [8].

9http://developer.amd.com/tools/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk/
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Fig. 9: Performance of the Spatial Range Queries

1) Setup: The spatial range query dataset contains around
250 million tuples that represent GPS points (fixes) gathered
from users’ navigation devices. We stored them using the
schema that is presented in Table I and applied the same
decomposition that was used in the original work.

2) Data Volume: The points in the spatial dataset span a
relatively wide range (27.09371 to 70.13643 and -12.62427 to
29.64975) and respectively use many bits. The opportunities
for our (global) prefix compression were, thus, fairly limited:
we achieved a 25% reduction of the (cumulative CPU & GPU)
data volume by factoring out the highest of the 4 value bytes.

3) Performance: The results of the spatial range query
evaluation (Figure 9) give an indication of the impact of the

Schema: create table trips (tripid int, lon deci-
mal(8,5), lat decimal(7,5), time int);

Decomposition: select bwdecompose(lon,24), bwdecom-
pose(lat,24) from trips;

Query: select count(lon) from trips where lon
between 2.68288 and 2.70228 and lat
between 50.4222 and 50.4485;

TABLE I: The Spatial Range Query Benchmark

PCI-E bottleneck: Since the total data volume of the coordinate
values is around 1.8 GB and some space has to be kept
available for data processing, the entire input data for this
query does not fit onto the 2 GB available GPU memory. This
makes this query the worst case for the streaming approach
(assuming a Least Recently Used (LRU) replacement strategy
for GPU resident data): multiple runs of the same query cannot
benefit from previously loaded data because it has just been
evicted. Figure 9 shows that streaming in the input data is
almost as expensive as an evaluation of the query on the CPU.

The GPU/CPU A&R implementation outperforms the
CPU-only implementation by a factor of around 3.4 and the
GPU transfer by around 3.2. Most of the time (almost 80
%) is spent processing data on the GPU. At first sight, this
stands in opposition to the original work [8], in which we
report performance gains of orders of magnitude. However, the
original work was a case-specific program that was a) relying
on clustered indices to improve compression as well as access
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Fig. 10: Performance of selected TPC-H Queries

locality b) bulking up queries/cooperatively scanning attributes
c) manually tuned towards the application. We believe that by
incorporating data clustering and cooperative scanning into our
approach we can achieve similar performance gains. This is,
however, beyond the scope of this (foundations) paper.

D. Relational TPC-H Queries

Since TPC-H is an integrated benchmark that covers many
aspects of a data management system, not all of them actually
stemming from the relational query processor (but rather
arithmetic or string operations processors). Since we focus
on the relational aspects of data management, we selected
a subset of the standard TPC-H queries that we consider
representative for many relational workloads such as relational
and multidimensional OLAP (on star- as well as snowflake
schemas).

1) Setup: In comparison to the spatial data, the TPC-
H dataset turned out more difficult to handle in the A&R
paradigm. To illustrate this, consider the lineitem attributes
that are used in the selections of Query 6: l_quantity,
l_discount and l_shipdate. The values of all of
these attributes are (almost) uniformly distributed between
the extreme values and need only few bits to repre-
sent (l_quantity: 50 values/6 bits, l_discount: 10
values/4 bits and l_shipdate: 2526 values/12 bits) – There
is simply very little to decompose in l_quantity and
l_discount. Due to the low number of used bits, however,
these attributes only occupy little space on the GPU if stored
bit-packed. This allowed us to evaluate the performance of
TPC-H (SF-10) in an all-GPU case (labeled A & R) as well
a space constrained case in which we arbitrarily limit the
available space and store the data distributed over the available
devices (labeled A & R Space Constraint). For the space
constraint case we decomposed (8-bit CPU, 24 bit GPU) the
most important selection column l_shipdate.

When conducting the experiments, we also noticed that the
costs of TPC-H Query 14 when evaluated by MonetDB are
dominated by the evaluation of a string prefix predicate on the
p_type column of the part-table. Since the focus of this
paper are relational, rather than string-operations, we replaced
this operation by a range-selection on an ordered dictionary of
the (125) string values of the column. While other DBMS may

support this optimization out of the box, we had to manually
implement it for MonetDB.

2) Performance: Since the properties of the data made it
possible to keep all necessary data (for the selections) GPU
resident, we conducted a GPU-only experiment and CPU &
GPU experiment for each query.

Query 1: The costs of Query 1 in MonetDB are split
between the selection, the grouping and the aggregation. While
the earlier two can benefit from our A&R-approach, the
latter involves a multiplication and, consequently, suffers from
destructive distributivity (see Section IV-G) which limits the
speedup to a factor around 3x (see Figure 10a). However,
since almost all tuples qualify in the selection l_shipdate,
a reduced resolution has limited impact.

Since the necessary input data is comparatively small
(around 1080 MB), but used in complex operations (i.e., group-
ing), the transfer of the data to the GPU is significantly faster
than the A&R processing. This indicates that the performance
of this query (most importantly the grouping) is bound by the
internal memory bandwidth of the GPU. This would, however,
also hold for a system that employs streaming of the data.

Query 6: The results (see Figure 10b) generally match our
expectations: the GPU-only approach outperforms the CPU-
only approach by more than a factor six. By decomposing the
l_shipdate attribute, the performance naturally decreases
by about 35 percent.

Query 14: involves a selection, a foreign key join and
subsequent calculations/aggregation. The last, again, suffers
from destructive distributivity while the earlier two see a
speedup. Since the selection yields a smaller result set than
the one in Query 1, a lower data resolution on the GPU has a
larger impact (see Figure 10c).

E. GPUs versus Multi-cores versus both

In some of the previous experiments most of the time is
spent performing the approximation (especially in the spatial
range queries experiment). This indicates that the CPU may be
underused. This is consistent with the original work [8] that
reports a suboptimal load distribution when evaluating single
queries on the GPU (we will discuss a potential parallelization
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method in Section VII-B). While suboptimal load distribution
can be a problem, in general, in this case, it is not problematic:
freed up CPU resources can simply be used by other queries.

To evaluate this, we conducted another experiment: we
ran two parallel query streams on the different devices. The
one targeting the GPU runs single threaded while the one
targeting the CPU uses all of the 32 CPU hardware threads (16
Cores with Hyperthreading). Figure 11 shows that increasing
the number of threads eventually hits a limit due to memory
bandwidth saturation. Since the GPU has a separate memory,
it is not bound by the same memory bandwidth limitation.
The Figure shows that GPU operations (CPU w/ GPU bar)
have little impact on the performance of the CPU operation
(CPU Parallel bar): these two can be combined to achieve
additive performance. Thus, a GPU is a good means to scale
out an existing, quite expensive (>$10,000) system using two
comparatively cheap (>$500 each) GPU cards.

VII. FUTURE AND RELATED WORK

Before concluding, let us put our approach in the context
of the data management landscape. To this end, we dedicate
this section to the discussion of related and future work.

A. Past (Related) Work

GPU-supported DBMS: In the recent past, GPUs have re-
ceived significant attention from data management researchers
mostly due to their high memory bandwidth [5], [3], [20],
[6], [4]. This lead to impressive performance boosts of re-
lational query processing on GPU-resident data. However,
these systems usually assumed that data fits into the GPU’s
internal memory. Since this is generally not the case [7],
researchers identified specific operations that can benefit from
GPU support even if the data has to be transfered through
the PCI-E bottleneck first [8], [18], [21], [17]. To the best of
our knowledge, our work is the first approach that holistically
accelerates relational query processing on data that is larger
than the internal memory of the GPU while minimizing (or
eliminating) the impact of the PCI-E bottleneck.

Approximate Query Processors: There is a large body of
existing work on providing approximate answers to analytical
queries [22], [23]. However, these approaches are usually
based on sampling and thus a) rely on assumptions about
the distribution of the data and b) do not allow the subsequent

refinement of the approximate results. Instead queries have to
be re-evaluated on the full dataset. The notion of pre-filtering
and refinement to improve processing performance is, however,
the idea behind many other techniques. The most prominent
ones of these are bitmap indices and Bloom filters.

Bitmap Indices: In many ways, the approximation part
of a bitwise decomposed attribute is similar to an underde-
fined/binned bitmap index. Consequently, techniques of classic
bitmap-indexed processing can be applied. However, most of
these techniques are used to improve performance of individ-
ual operators (largely selective scans). A processing scheme
that relies on bitmaps for projections is, to the best of our
knowledge, unprecedented. Many DBMSs allow the definition
and use of covering indices (B+-trees or hashes) that allow the
projection of values in addition to selection.

Bloom filters: To provide fast set inclusion checking,
bloom filters [24] can be added to traditional hashes. The
idea is to maintain a data structure that deliberately accepts
false positives when checking for inclusion. The checks are,
however, very fast due to the small footprint of the underlying
data structure which can be kept in memory/cache.

B. Future Work

Hardware Conscious Algorithms: One of the strengths of
the A&R paradigm is that it decouples the approximation from
the refine phase of the operators. This allows the independent
development of efficient algorithms and tuning for the different
devices. We hope that, by incorporating sophisticated present-
day as well as future algorithms, the performance of relational
cross-device processing can be further improved. However, the
transfer of existing algorithms might not always be straight-
forward. The potentially high number of false positives may
induce different sweet spots for existing algorithms or require
new algorithms altogether. However, the number of false
positives also holds opportunities for, e.g., compression of the
approximation results that go through the PCI-E bus.

Cooperative Scans: When comparing our results to the
original work [8], it is apparent that the performance of our
system is not competitive to the original, hand-tuned solution.
This can be explained in part by the generality of our system.
The original solution uses a technique that is similar to the idea
of cooperative scans [25]. While cooperative scans are very
challenging to integrate into an existing system, this indicates
that they may yield a significant performance boost.

Storage Optimization: While A&R processing enables the
efficient use of multiple devices, it also enlarges the, already
considerable, database design and tuning problem space. We,
therefore, feel that there is a call for automatic decomposition
solutions. The problem of optimal physical arrangement of
persistent data has been addressed in previous work [26],
[27], [28] that can be appropriately extended. Due to the high
overhead of re-organization we believe the predictive modeling
and optimization approach [26], [27] to be most appropriate.

Query Optimization: In this work, we established a base-
line for the expected query processing performance with a
very simple, straight-forward heuristic for rule-based query
optimization. Since most DBMS involve some form of cost-
based query optimization, assessing its impact on our approach
would be worthwhile.



Applications: Since we focused on relational processing in
this work, we deliberately left other kinds of applications for
future work. Applications involving other kinds of operators
like string-matching or theta-joins should be studied in depth.
In particular string processing on GPUs is still an open problem
due to the variable length of string attributes. We believe that
our approach can help to solve this problem by approximating
variable length strings with a fixed length prefix.

Different Storage and Processing Models: As mentioned
in Section I, we consider GPU/CPU combinations an instance
of the memory hierarchy problem. Since more instances of this
problem exist, it is valuable to evaluate the A&R approach for
other instances of this problem. A naturally related instance
is the support of CPU-based data management solutions by
FPGA-based co-processors. We believe that porting our ap-
proach to FPGAs is straight-forward (indeed, some FPGAs
already allow OpenCL programming).

Another suitable instance of this problem can be found
in the domain of disk-resident DBMSs: traditional rotating
disks can be accompanied or replaced by Solid State Disks
(SSDs). A significant body of research exists that targets such
combined setups [29], [30] and could form a good basis for
an evaluation of our approach. However, most disk-resident
DBMS implement the Volcano-style processing on N-ary (i.e.,
row) storage, rather than bulk-processing. Consequently, the
A&R approach has to be adapted accordingly: Similar to
our implementation, each operator has to be divided into
approximation and refinement and, consequently, provide two
respective iterators. These iterators would operate on data on
the different devices (disks, SSDs).

But even in the domain of in-memory data processing,
the bulk-processing model is not without alternatives. Vector-
ized [12] as well as Just-in-Time-compiled (JiT-compiled) [13]
query processing provide high cache efficiency for CPU-only
setups. Combining these processing models with the A&R-
paradigm seems rewarding but challenging: these models use
sophisticated processing techniques that might be non-trivial to
combine with our approach. While we believe our approach
can be adapted to such processing models, it needs a detailed
study to prove this.

VIII. CONCLUSION

To address the problem of wasted resources caused by
increasingly heterogeneous hardware, we proposed a generic
processing paradigm for bitwise distributed relational data.
Based on classic relational algebra, the paradigm is simple,
yet powerful enough to a) provide a generic framework
for efficient cross device relational data processing, b) allow
architecture specific optimizations of individual operations and
c) permit the parallel execution of operations on the available
devices. This paradigm prescribes the multi-stage (Approxi-
mate & Refine) execution of relational operators. This leads
to significant performance improvements (up to 8 times faster
query evaluation than classic MonetDB) when handling large
databases in a CPU/GPU co-processing setup Additionally, it
provides the possibility to compute a fast approximation of the
query result before it is calculated at no additional costs. To
back the paradigm, we introduced efficient algorithms for the

arising problems and proved its feasibility by implementing it
in an existing relational DBMS.
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