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Abstract

For the past decade, query processing on relational datbemsstudied extensively, and many theoretical and
practical solutions to query processing have been proposddr various scenarios. With the recent popularity of
cloud computing, users now have the opportunity to outsotireir data as well as the data management tasks to the
cloud. However, due to the rise of various privacy issuessitige data (e.g., medical records) need to be encrypted
before outsourcing to the cloud. In addition, query procestasks should be handled by the cloud; otherwise, there
would be no point to outsource the data at the first place. dogss queries over encrypted data without the cloud
ever decrypting the data is a very challenging task. In tagep, we focus on solving tHenearest neighbor{(NN)
query problem over encrypted database outsourced to a:cdouser issues an encrypted query record to the cloud,
and the cloud returns thieclosest records to the user. We first present a basic scheingeamonstrate that such a
naive solution is not secure. To provide better securitypwapose a secureNN protocol that protects the confi-
dentiality of the data, user’s input query, and data accatemms. Also, we empirically analyze the efficiency of our
protocols through various experiments. These results@teithat our secure protocol is very efficient on the user
end, and this lightweight scheme allows a user to use anylendévice to perform th&éNN query.

Keywords: Security,k-NN Query, Encryption, Cloud Computing

1 Introduction

As an emerging computing paradigm, cloud computing ainagny organizations to consider utilizing the benefits of
a cloud in terms of cost-efficiency, flexibility, and offloaflamlministrative overhead. In cloud computing model [13,
16], a data owner outsources his/her datalfased the DBMS functionalities to the cloud that has the irifragure

to host outsourced databases and provides access mechdnisgerying and managing the hosted database. On
one hand, by outsourcing, the data owner gets the benefidatieg the data management costs and improves the
quality of service. On the other hand, hosting and querygssing of data out of the data owner control raises security
challenges such as preserving data confidentiality and/quacy.

One straightforward way to protect the confidentiality of ttutsourced data from the cloud as well as from the
unauthorized users is to encrypt data by the data ownerdefasourcing 1, 15, 19]. By this way, the data owner
can protect the privacy of his/her own data. In addition,resprve query privacy, authorized users require encryptin
their queries before sending them to the cloud for evalnatieurthermore, during query processing, the cloud can
also derive useful and sensitive information about theadatata items by observing the data access patterns even if
the data and query are encrypted [4, 27]. Therefore, foliguitom the above discussions, secure query processing
needs to guarantee (1) confidentiality of the encrypted @jteonfidentiality of a user’s query record and (3) hiding
data access patterns.

Using encryption as a way to achieve data confidentiality o@ayse another issue during the query processing step
in the cloud. In general, it is very difficult to process emtgad data without ever having to decrypt it. The question
here is how the cloud can execute the queries over encryptediadile the data stored at the cloud are encrypted at
all times. In the literature, various techniques relateduery processing over encrypted data have been proposed,
including range querie§|[2,11,112)24] and other aggregageies [10, 117]. However, these techniques are either not
applicable or inefficient to solve advanced queries suchak-hearest neighbok(N) query.

In this paper, we address the problem of secure processingeérest neighbor query over encrypted data\[S)
in the cloud. Given a user’s input quegy, the objective of the BNN problem is to securely identify thie-nearest
data tuples t@) using the encrypted databaseloin the cloud, without allowing the cloud to learn anythingaeding
the actual contents of the datab&%and the query recor@. More specifically, when encrypted data are outsourced
to the cloud, we observe that an effectiveN]N protocol needs to satisfy the following properties:



Table 1: Sample Heart Disease DatdEet
record-id age sex cp trestbps chol fbs slope ca thal num

131 63 1 1 145 233 1 3 0 6 0
12 5 1 3 130 256 1 2 1 6 2
t3 57 0 3 140 241 O 2 0 7 1
ta 5 1 4 144 200 1 2 2 6 3
ts 5 0 4 128 205 O 2 1 7 3
ls 7 1 4 125 304 O 1 3 3 4

Preserve the confidentiality @f and@ at all times

Hiding data access patterns from the cloud

Accurately compute thg-nearest neighbors of que€y

Incur low computation overhead on the end-user

In the past few years, researchers have proposed variowsd{tL3, 28, 31] to address th€MN problem. However,
we emphasize that the existing$N methods proposed in [113,28] violate at least one of thevalpoentioned desir-
able properties of al\N protocol. On one hand, the methodslin|[13, 28] are inselsecause they are vulnerable to
chosen and known plaintext attacks. On the other hand, rewethod in[[31] returns non-accuraiBIN result to the
end-user. More precisely, in [31], the cloud retrieves #lewvant encrypted partition instead of finding the encrgpte
exactk-nearest neighbors. Furthermore,(inl[13, 31], the end-selfves in heavy computations during the query
processing step. By doing so, the method_in [31] utilizesidlas just a storage medium, i.e., no significant work is
done on the cloud side. More details about the existibiyI$ methods are provided in Sectigh 2.

Along this direction, with the goal of providing better seity this paper proposes a novetISN protocol that
satisfies the above properties altogether.

1.1 Problem Definition

Suppose the data owner Alice owns a datali&is#f »n records, denoted by, ..., t¢,, andm attributes. Let; ;
denote thg*" attribute value of recort}. In our problem setting, we assume that Alice initially eypts her database
attribute-wise, that is, she computgsy(¢; ;), for1 < i < nandl < j < m, whereE,;, denotes the encryption
function of a public-key cryptosystem that is semanticaligure[[18]. Let the encrypted database be denoted by
E,.(T). We assume that Alice outsourcEs;, (T") as well as the future querying processing services to thedclo
Consider an authorized user Bob who wants to ask the clouk-faighbor records that are closest to his input
queryQ = {(q1,...,qmn) based onE,;(T). During this process, Bob’s quety and contents of databageshould
not be revealed to the cloud. In addition, the access patterthe data should be protected from the cloud. We
refer to such a process as SeckiN (SENN) query over encrypted data in the cloud. Without loss afagality, let
(t},...,t,) denote thé:-nearest records Q. Then, we formally define theABIN protocol as follows:

SENN(Epi(T), Q) = (1, .- ., 1)

We emphasize that, at the end of theNBl protocol, the output!, . .., ¢} ) should be revealed only to Bob. We now
present a real-life application of thé&:SN protocol.

Example 1. Consider a physician who would like to know the risk factohe#rt disease in a specific patient. Let
T denote the sample heart disease dataset with attributesdedd, age, sex, cp, trestbps, chol, fbs, slope, ca, thal,
and num as shown in Tallé 1. The description and range for eftttese attributes are shown in Table 2. The heart
disease dataset given in Table 1 is obtained from the UCI imadbarning repository[[14].

Initially, the data owner (hospital) encrypfB attribute-wise, outsources the encrypted databBsg(T') to the
cloud for easy management. In addition, the data owner éééegthe future query processing services to the cloud.



Table 2: Attribute Description of Heart Disease Dataset

age age in years
sex 1=male, O=female
cp chest pain type: 1=typical angina, 2=atypical angjna,

3=non-anginal pain, 4=asymptomatic

trestbps resting blood pressure (mm Hg)

chol serum cholesterol in mg/dl

fbs fasting blood sugar 120 mg/dl (1=true; O=false)

slope slope of the peak exercise ST segment
(1=upsloping, 2=flat, 3=downsloping)

ca number of major vessels (0-3) colored by flourosgpy
thal 3=normal, 6=fixed defect, 7=reversible defect
num diagnosis of heart disease from 0 (no presence) tp 4

Now, we consider a doctor working at the hospital, say Bolm whuld like to know the risk factor of heart disease
in a specific patient based dh. Let the patient medical information ¢ = (58,1,4,133,196,1,2,1, 6). In the
SENN protocol, Bob first need to encry@t (to preserve the privacy of his query) and send it to the clothien the
cloud searches on the encrypted databasg(7") to figure out thek-nearest neighbors to the user’s request. For
simplicity, let us assumke = 2. Under this case, the nearest neighbors t@) are ¢, andt¢s (by using Euclidean
distance as the similarity metric). After this, the cloudidet, andt; (in encrypted form) to Bob. Here, the cloud
should identify the nearest neighbors(@fn an oblivious manner without knowing any sensitive infation, i.e., all
the computations have to be carried over encrypted recdtislly, Bob receiveg, andts that will help him to make
medical decisions. O

1.2 Our Contribution

In this paper, we propose a novétlN protocol to facilitate thé:-nearest neighbor search over encrypted data in the
cloud that preserves both the data privacy and query priva@ur protocol, once the encrypted data are outsourced to
the cloud, Alice does not participate in any computatioriger&fore, no information is revealed to Alice. In particula
the proposed protocol meets the following requirements:

e Data confidentiality - Contents ofl” or any intermediate results should not be revealed to thelclo
e Query privacy - Bob’s input queryQ should not be revealed to the cloud.

Correctness - The output(t/, ..., t,) should be revealed only to Bob. In addition, no informatitimes than
t,...,t, should be revealed to Bob.

Low computation overhead on Bob - After sending his encrypted query record to the cloud, Bablires
only in a little computation compared with the existing we{k3[28,31]. More details are given in Section 4.2.

Hidden data access patterns -Access patterns to the data, such as the records corresgdndhek-nearest
neighbors ofy), should not be revealed to Alice and the cloud (to preventigfieyence attacks).

We emphasize that the intermediate results seen by the olaug protocol are either newly generated randomized
encryptions or random numbers. Thus, which data recordesond to thé-nearest neighbors 6J are not known to
the cloud. In addition, after sending his encrypted quecpréto the cloud, Bob does not involve in any computations
(less workload at Bob’s local machine). Hence, data accaf$erps are further protected from Bob. More details are
given in Sectiof 4]2.



The rest of the paper is organized as follows. We discussxisére related work and some background concepts
in Sectiori 2. A set of security primitives that are utilizedfie proposed protocols and their possible implementstion
are provided in Sectionl 3. The proposed protocols are engulain detail in Sectiohl4. Sectidh 5 discusses the
performance of the proposed protocols based on variousiexgats. We conclude the paper along with future work
in Sectior[ 6.

2 Related Work and Background

In this section, we first present an overview of the existiegusek-nearest neighbor techniques. Then, we present the
security definition adopted in this paper and the Pailligptwsystem along with its additive homomorphic properties
as a background.

2.1 Existing StNN Techniques

Retrieving thek-nearest neighbors to a given qué&pyis one of the most fundamental problem in many application
domains such as similarity search, pattern recognitiod data mining. In the literature, many techniques have been
proposed to address thé&ISN problem, which can be classified into two categories basedhether the data are
encrypted or notcentralizedanddistributed

2.1.1 Centralized Methods

In the centralized methods, we assume that the data ownsowges his/her database and DBMS functionalities
(e.g.,kNN query) to an untrusted external service provider whichaggs the data on behalf of the data owner where
only trusted users are allowed to query the hosted data aettvice provider. By outsourcing data to an untrusted
server, many security issues arise, such as data privaste(ing the confidentiality of the data from the server as
well as from query issuer). To achieve data privacy, dataemisirequired to use data anonymization models (e.qg.,
k-anonymity) or cryptographic (e.g., encryption and datdyybation) techniques over his/her data before outsogrci
them to the server.

Encryption is a traditional technique used to protect thafidentiality of sensitive data such as medical records.
Due to data encryption, the process of query evaluation@venypted data becomes challenging. Along this direction,
various techniques have been proposed for processing fana#, 12/ 24] and aggregation queries]|[10, 17] over
encrypted data. However, in this paper, we restrict ourudision to secure evaluation &N query.

In the past few years, researchers have proposed diffeethbas([[13,28,31] to address theNsN problem. Wong
et al. [28] proposed a new encryption scheme called asynursstalar-product-preserving encryption (ASPE) that
preserves scalar product between the query végtand any tuple vectar; from databasé& for distance comparison
which is sufficient to findcNN. In [28], data and query are encrypted using slightlyatiéht encryption schemes
before outsourcing to the server. As an alternative, Hu.§13] proposed a method based on Privacy Homomorphism
(PH) encryption scheme. More specifically, they used a goigvsecure privacy homomorphism encryption scheme
from [5] that supports modular addition, subtraction andtiplication over encrypted data. They addressed thigi$
problem under the following setting: the client has the eiéxts of all data points in databaBeand the encryption
function of 7" whereas the server has the decryption functioff @hd some auxiliary information regarding each data
point. However, both methods in [13,28] are not secure bexthey are vulnerable to chosen-plaintext attacks. We
refer the reader to [31] for more details on these secustyss.

Recently, Yao et al [31] designed a newNIN method based on partition-based secure Voronoi diag&rij.
Instead of asking the cloud to retrieve the exad, they required, from the cloud, to retrieve a relevantrgpied
partition £, (G) for E,;(T") such thatG is guaranteed to contain ttienearest neighbors @. However, in our
work, we are able to solve théBN problem accurately by letting the cloud to retrieve thaet-nearest neighbors
of @ (in encrypted form). In addition, most of the computationsidg the query processing step In [L3] 31] are
performed locally by the end-user (i.e., query issuer) Wrdonflicts the very purpose of outsourcing the DBMS
functionalities to the cloud. Since our proposed protoobles the problem of finding-nearest neighbors @, (Q)



over encrypted data, it can also be used in other relevaatrdating tasks such as secure clustering, classification,
and outlier detection.

2.1.2 Data Distribution Methods

In the data distributed methods, data are assumed to béigraet either vertically or horizontally and distributed
among a set of independent, non-colluding parties. In tieealiure, the data distributed methods rely on secure
multiparty computation (SMC) techniques that enable mldtparties to securely evaluate a function using their
respective private inputs without disclosing the input ak@arty to the others. Many efforts have been made to
address the problem &NN query in a distributed environment. Shaneck et[all [28jpmsed privacy-preserving
algorithm to perfornk-nearest neighbor search. The protocolin [23] is based cmrsenultiparty computation for
privately computing:NN points in a horizontally partitioned dataset. Qi etla0][@roposed a single-stégNN search
protocol that is provably secure with linear computatiod aammunication complexities. Vaidya et al. [25] studied
privacy-preserving top- queries in which the data are vertically partitioned. Giairét al. [6] proposed a private
information retrieval (PIR) framework for answerikN queries in location-based services. However, theirtgniu
protects only the query privacy, i.e., it does not addre$s danfidentiality and access pattern issues.

We emphasize that the above data distribution methods &ppticable to perforniNN queries over encrypted
data for two reasons: (1). In our work, we deal with encryftech of database and query which is not the case in the
above methods (2). The database in our case is encryptedaxad sn the cloud whereas in the above methods it is
partitioned (in plaintext format) among different parties

2.2 Security Definition

In this paper, privacy/security is closely related to theoant of information disclosed during the execution of a
protocol. There are many ways to define information disgiesulo maximize privacy or minimize information
disclosure, we adopt the security definitions in the liter@bf secure multiparty computation (SMC) first introduced
by Yao’s Millionaires’ problem for which a provably secur@stion was developed [29,30]. In this paper, we assume
that parties are semi-honest; that is, a semi-honest palgy (eferred to as honest-but-curious) follows the rufes o
the protocol using its correct input, but is free to later what it sees during execution of the protocol to compromise
security. We refer the reader ta|[7, 8] for detailed secudigginitions and models. Briefly, the following definition
captures the above discussion regarding a secure protadet the semi-honest model.

Definition 1. Leta; be the input of party?;, [[,(7) be P;'s execution image of the protocelandb; be the result
computed fromr for P;. 7 is secure iff [, (7) can be simulated frortu;, b;) and distribution of the simulated image is
computationally indistinguishable froff, ().

2.3 Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic arabpbilistic asymmetric encryption schernel[18]. &
be the encryption function with public key: given by (V, g), whereN is a product of two large primes amds in
Z2. Also, let Dy be the decryption function with secret kek. Givena,b € Zy, the Paillier encryption scheme
exhibits the following properties:

a. Homomorphic Addition - E,(a + b) + Epk(a) x Epx(b) mod N?;
b. Homomorphic Multiplication - E,.(a * b) < Ep(a)® mod N?;

¢. Semantic Security -The encryption scheme is semantically secliel[8, 9]. Brigilyen a set of ciphertexts, an
adversary cannot deduce any additional information atheuplaintext.

In this paper, we assume that a data owner encrypted his atat@using Paillier cryptosystem before outsourcing
them to a cloud. Some common notations that are used exédnsivthis paper are shown in Talble 3.
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Table 3: Common Notations
Alice The data owner of databa%e

E,(T) | Attribute-wise encryption of’

Bob An authorized user who can accdsg; (T') in the cloud
n Number of data records ifi

m Number of attributes ifl”

t; it" record inT

it" nearest record t@ based o’

Q Bob’s query record
t
l

Domain size (in bits) of the squared Euclidean distance
based o’
(z1,21) | The most and least significant bits of integer

(2] Vector of encryptions of the individual bits ef

Basic Security Primitives

In this section, we present a set of generic protocols thhbeiused as sub-routines while constructing our proposed
SENN protocol in Sectioh 412. All of the below protocols are simered under two-party semi-honest setting. In
particular, we assume the existence of two semi-honesepdrt and P, such that the Paillier's secret key: is
known only to P, whereak is treated as public.

Secure Multiplication (SM) Protocol:

This protocol consider®; with input (E,x(a), Ep, (b)) and outputsE,i(a « b) to P, wherea andb are not
known toP; andP,. During this process, no information regardingndb is revealed tad”?, andP,. The output
Epi(a % b) is known only toP;.

Secure Squared Euclidean Distance (SSED) Protocol:

Py with input (E,,(X), Ep,(Y')) and P, securely compute the encryption of squared Euclideanrdisthe-
tween vectorsy andY'. HereX andY arem dimensional vectors whet®,, (X ) = (Epi (1), . .., Epk(zm))
andE,;(Y) = (Epk(v1), - - -, Epi(ym)). At the end, the output,; (| X — Y|?) is known only toP; .

Secure Bit-Decomposition (SBD) Protocol:

Py with input E,,1.(z) and P, securely compute the encryptions of the individual bits ofvhere0 < » < 2.
The output[z] = (Epi(21),...,Epk(21)) is known only toP;. Herez; andz; denote the most and least
significant bits of integet respectively.

Secure Minimum (SMIN) Protocol:

Py with input ([u], [v]) and P, with sk securely compute the encryptions of the individual bits @afimum
number betweem andv. That is, the output i$min(u,v)] which will be known only toP;. During this
protocol, no information regardingandv is revealed taP; and P.

Secure Minimum out oft Numbers (SMIN,) Protocol:

In this protocol P, hasn encrypted vector§d: ], .. ., [d,]) andP, hassk. Here[d;] = (Epi(din), - - ., Epr(di))
such thatl; ; andd; ; are the most and least significant bits of integerespectively, fod <14 <n. P, andP;
jointly compute the outputmin(ds, ..., d,)]. Atthe end of this protocolmin(ds,...,d,)] is known only to
P,. During the SMIN, protocol, no information regarding any @f’s is revealed ta?;, and P.

Secure Bit-OR (SBOR) Protocol:
Py with input (Ep(01), Epk(02)) and P, securely computé,,;. (o1 V 02), whereo; andos are two bits. The



Algorithm 1 SM(Epx(a), Epi (b)) — Epk(a *b)
Require: P hasE,;(a) andE,(b); P» hassk
1. P

(a). Pick two random numbersg, r, € Zy

(b). @’ «+ Epi(a) * Epk(ra)

(©). b < Epi(b) x Epi(1p); senda’, b’ to P,
2: Py

(a). Receiver’ andd’ from P,

(b). ha < Dsi(a’); hy < Dsi(b')

(). h < hg * hy mod N

(d). b < E,i(h); sendh’ to P,
3 P

(a). Receivey from P,

(b). s« B/« Ep(a)N ="

(€). 8" < s* Ep(b)N~"a

(d). Epi(axb) « s * Epp(rg xmp) N1

outputE, (o1 V o02) is known only toP; .

We now discuss each of these protocols in detail. Also, weeepropose new solution or refer to the most efficient
known implementation to each one of them.

Secure Multiplication (SM). Consider a party?; with private input(E,x(a), Epx (b)) and a partyP, with the secret
key sk. The goal of the secure multiplication (SM) protocol is tture the encryption ok « b, i.e., Ep,(a * b) as
output toP;. During this protocol, no information regardinagandb is revealed taP; and P,. The basic idea of the
SM protocol is based on the following property which holdsday givena, b € Zy:

axb=(a+ry)*(b+ry) —axry—bxry —7Tq %71y (1)

where all the arithmetic operations are performed ur&ler The overall steps in SM are shown in Algorittit 1.
Briefly, P; initially randomizes: andb by computings’ = E,;(a) * Ep(re) andd’ = E,;(b) * Epi(rp), and sends
them toP,. Herer, andr;, are random numbers iy, known only toP;. Upon receiving P, decrypts and multiplies
them to geth = (a + 7,) * (b + r,) mod N. Then, P, encryptsh and sends it td°;. After this, P, removes extra
random factors from’ = Epi((a + r4) * (b + 13,)) based on Equatidd 1 to gé&t,.(a * b). Note that, for any given
x € Zn, "N — 2" is equivalent to “-z” underZy . Hereafter, we use the notatiere p Zy to denoter as a random
number inZy .

Example 2. Supposex = 59 andb = 58. For simplicity, letr, = 1 andr, = 3. Initially, P, computes
a = E,(60) = Epi(a) *x Epk(ry), b = Epr(61) = E,i(b) * Epi(rp) and sends them té». Then, P, de-
crypts and multiplies them to gkt= 3660. After this,P, encryptsh to geth’ = E,;,(3660) and sends it td? . Upon
receivingh’, P, computes = E,;(3483) = E,;(3660 —axry), ands’ = E,;(3425) = Epi(3483 —bx1,). Finally,
P, computest,, (a * b) = Epr(3422) = Epi (3425 — rg * 1p). O

Secure Squared Euclidean Distance (SSED)n the SSED protocol; holds two encrypted vectof&,; (X ), Epr(Y))
andP; holds the secret keyk. HereX andY are twom-dimensional vectors whetg,, (X) = (Epk (1), - - ., Epp(zm))



Algorithm 2 SSEQE,x (X), Epi(Y)) — Epr(|X — Y|?)
Require: P, hasE,;(X)andE,;(Y); P, hassk
1. P, for1 <¢<mdo:

(@). Epk(zi — yi) « Epi(x;) * Epk(yi)N_l

2. PrandP,, for 1 <7 <mdo:

(a). ComputeF,((x; — y;)?) using the SM protocol
3 Py

@). Epn(|X =Y ?) [T Epr (i — vi)?)

andE,, (Y) = (Epk(y1), - - -, Epk(ym)). The goal of the SSED protocol is to securely compijg(| X —Y'|?), where
|X — Y| denotes the Euclidean distance between vectoandY . During this protocol, no information regardidg
andY is revealed taP; and . The basic idea of SSED follows from following equation:

m

X =Y = (@ — ) 2

=1

The main steps involved in SSED are shown in Algorifim 2. Briéor 1 < i < m, P initially computesE, (x; —y;)
by using the homomorphic properties. ThBnand P jointly computeE, ((x; — y;)?) using the SM protocol, for
1 <4 < m. Note that the outputs of the SM protocol are known only?to After this, by applying homomorphic
properties orE,, ((z; — y;)?), P1 computest,, (| X — Y|?) locally based on Equatidn 2.

Example 3. Refer to Tablé]l, let us assume that holds the encrypted data records @f and ¢, as X andY
respectively. That isE,,(X) = (Epk(63), Epk(1), Epr(l), Epr(145), Epk(233), Epi(1), Epi(3), Epk(0), Epk(6),
Ep(0)) and By (Y) = (Eyi(56), Epi (1), Epi(3), Epr(130), By (256), By (1), Epi(2), Epi (1), Epi (6), By (2)).
During the SSED protocoR initially computesE,, (x1 —y1) = Epk(7), . .., Epk(z10 — y10) = Epr(—2). Then,P;
and P, jointly computeE,, ((z1—y1)?) = Ep(49) = SM (Epk(7), Epk (7)), - -+, Epe((10—y10)?) = SM (Ep(—2),
Epe(=2)) = Epi(4). P locally computes, (|X — Y[?) = Epk(zgl (i —y:)*) = Epr (813). O

Secure Bit-Decomposition (SBD).We assume thaP, hasE,;(z) and P, hassk, wherez is not known to both
parties and) < z < 2!. The goal of the secure bit-decomposition (SBD) protocebisompute the encryptions of
the individual bits of binary representation0f21/22]. That is, the outputig] = (E,i(21), ..., Epr(21)), wherez;
andz; denote the most and least significant bits @éspectively. At the end, the outplut is known only toP;.

Since the goal of this paper is not to investigate existindp SiBotocols, we simply use the most efficient SBD
protocol that was recently proposed(in][21].

Example 4. Let us suppose that = 55 and! = 6. Then the SBD protocol with private inpi,(55) gives
[55] = <Epk(1), Epk(l), Ep (0), Epk(l), Epk(l), Epk(l» as the output ta?; . ]

Secure Minimum (SMIN). In this protocol,P; with input([u], [v]) and P; with sk securely compute the encryptions
of the individual bits ofmin(u,v), i.e., the output i§min(u,v)]. Here[u] = (Epk(u1), ..., Ep(w)) andv] =
(Epk(v1), ..., Epp(vy)), whereu; (resp.,v1) andu, (resp.,v;) are the most and least significant bitsuresp. v). At
the end, the outpdtnin(u, v)] is known only toP; .

We assume thdt < u,v < 2! and propose a novel SMIN protocol. The basic idea of the weg&MIN protocol
is for P, to randomly choose the functionaliy (by flipping a coin), wheré- is eitheru > v or v > u, and to
obliviously executd” with P,. SinceF' is randomly chosen and known only £, the output of the functionality’ is
oblivious to P». Based on the output and chosEnP; computegmin(u, v)] locally using homomorphic properties.



Algorithm 3 SMIN([u], [v]) — [min(u,v)]

Require: P; has[u] and[v], where0 < u,v < 2!; P, hassk
1. Pr:

(a). Randomly choose the functionality
(b). for i = 1to! do:

o Epi(u; *v;) < SM(Epg(u;), Epr(v;))
o if F':u > vthen:

— Wi+ Epr(ui) * Epg(u; * v;) V1

— Ty < Epp(vi — ;) * Epp(7); 7 € Zn
else

- W; + Epk(vi) * Epk(ui * 'Ui)Nil
=T« Epp(u; — v;) x Epi(74); 7 €r Zn
o G, Epp(u; @ v;)
o H, + H:il x Gy r; ER LN andHo = Epk(O)
o &, Epk(_l) * H;

° Ll<—WZ*(I):I,T‘; ER LN

©). I« m (T)

(d). L' «+ mo(L); sendl” andL’ to C
2: Py

(a). Receivd” andL’ from P,

(b). M; < Dy (L)), for1 <i <1

(c). if 3jsuchthatM; = 1thena + 1
elsea «+ 0

(d). M} + T/ for1 <i<lI
(e). SendV’ andE,;(a) to Py
3 P
(a). Receivel!’ andE,;(«) from P,
(b). M « =7 (M)
(c). for i = 1tol do:

o )\ — ]\Z s Epp ()N =T

o if F:u > vthen E,,(min(u,v);) < Epk(u;) *

elseE,; (min(u, v);) « Epr(vi) * X\

g
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The overall steps involved in the SMIN protocol are shown igakithm[3. To start with P, initially chooses the
functionality F' as eithers > v or v > « randomly. Then, using the SM protocét, computest,, (u; * v;) with the
help of P, for 1 < i <. Now, depending o', P, proceeds as follows, far < i < :

o If F':u > v, compute

Wi = Epp(u;) * Epg(u; * UZ‘)N71
= Epp(u;* (1 —v;))
Fi = Epk (’Ui — ul) * Epk (721)
= Epk(vi — u; + 721)
e If F:v > u,compute:
Wi = Epi(v;) * Epg(u; * vi)N_l
= Epk(vi * (1 — ul))
Fi = Epk (ul — vi) * Epk (721)
Epk (ui —v; + 721)

wherer; is a random number i

e Observe that i’ : v > v, thenW; = E,;(1) only if u; > v;, andW; = E,;(0) otherwise. Similarly, when
F :v > u, we haveW,; = E;(1) only if v; > u,;, andW; = E,;(0) otherwise. Also, depending &, T';
stores the encryption of randomized difference betweemdv; which will be used in later computations.

e Compute the encrypted bit-wise XOR between the bitaindv; asG; = E,i(u; ® v;) using the below
formulation:

Gi = pk(ul) * Epk(vi) * Epk(ui * vi)N*Q

In general, for any two given bits; andos, we haveo; @ 02 = 01 + 02 — 2(01 * 02)

e Compute an encrypted vectdf by preserving the first occurrence &%, (1) (if there exists one) irG by
initializing Hy = E,x(0). The rest of the entries df are computed afl; = H;" , * G,. We emphasize that at
most one of the entry il is E,;(1) and the remaining entries are encryptions of either O or damrmumber.
Also, if there exists an indexsuch that; = E,(1), then indey; is the first position (starting from the most
significant bit) at which the corresponding bitswoindv differ.

e Then,P; computesd; = E,,(—1) = H;. Note that “-1” is equivalentto IV — 1" underZy. From the above
discussions, it is clear that;, = E,;(0) at most once sincél; is equal toE,;(1) at most once. Also, if
¢, = E,;(0), then indexj is the position at which the bits af andwv differ first.

e Compute an encrypted vectorby combiningi” and®. Note thatl¥; stores the result af; > v; orv; > u;

which depends o’ known only toP;. Precisely,P; computes.; = W, tI)Z;‘, wherer, is a random number
in Zx. The observation here is#an index;j such thatb; = E,;(0), denoting the first flip in the bits af and
v, then¥; stores the corresponding desired information, i.e., wdreth > v; orv; > u; in encrypted form.

After this, P, permutes the encrypted vect@randL using two random permutation functiomsandms. Specifically,
P, computed” = 11 (T") andL’ = m2(L), and sends them t8,. Upon receiving P, decryptsL’ component-wise to
getM; = Dy, (L}), for1 < i <, and checks for index (decide the output of). That s, if M; = 1, then the output
of F'is 1, and 0 otherwise. Let the output heNote that sincé’ is not known toPs, the outputy is oblivious toPs.
In addition, P, computes a new encrypted vectat where)M; = I'}*, for 1 < i < [, sendsM’ and E,;(«) to P;.
After receivingM’ and E,;(«), P1 computes the inverse permutation/df asM = 77 H(M'). Then,P; performs
the following homomorphic operations to compute the entoypof i* bit of min(u,v), i.e., Epx(min(u,v);), for
1< <UL
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Table 4: P, choosed"” asv > u whereu = 55 andv = 58

=

1 1 0 T 0 0O -1 r 1+r T T 0 1
1 1 0 T 0 0O -1 r T T T 0 1
0 1 1 —14r 1 1 0 1 1+r r r -1 0
1 0 0 1+r 1 r r r —14r r r 1 1
1 1 0 T 0 T T T T 1 1 0 1
1 0 0 1+7r 1 r r r r r r 1 1

All column values are in encrypted form excepf, column. Also,r €r Zy is different for each row and column.

« Remove the randomness fralf; by computing

Ai = M;  Eppy ()N ™7

e If F: u > v, compute the' encrypted bit ofnin(u, v) asEyx (min(u, v);) = Epk(u;) * \i = Epg(u; + o *
(v; — u;)). Otherwise, comput&,, (min(u,v);) = Epp(vi) * \i = Epi(vi + o * (u; — v;)).

In the SMIN protocol, one main observation (upon which we aiso justify the correctness of the final output) is that
if 7 :u > v, thenmin(u,v); = (1 — «) *x u; + a * v; always holds, fol < i <. Similarly, if F' : v > u, then
min(u,v); = a*u; + (1 — a) * v; always holds.

Example 5. Consider tha. = 55, v = 58, andl = 6. Assume thaP; holds[55] = (E,; (1), Epi(1), Epk(0), Epk(1),
Eo(1), Epi(1)) and [58] = (Epk(1), Epi(1), Epk(1), Epk(0), Epk(1), Ep(0)). In addition, we assume thd?'s
random permutation functions are as given below. Withoss lof generality, suppos®, chooses the functionality

i = 1 2 3 4 5 6
N N

m(i) = 6 5 4 3 2

m@ = 2 1 5 6 3 4

F : v > u. Then, various intermediate results based on the SMIN padtare as shown in Tablg 4. Following from
Table[4, we observe that:

e At most one of the entry i is E,;(1) (= Hs) and the remaining entries are encryptions of either 0 or a
random number ifZ .

e Index;j = 3 is the first position at which the corresponding bitsucind v differ.
o O3 = F,;,(0) sinceHs is equal toE,;(1). Also, sincells = 1, P, setsa to 1.
At the end, onlyP; knows[min(u, v)] = [u] = [55]. O

Secure Minimum out of n Numbers (SMIN,,). ConsiderP; with private input([d:],...,[d,]) and P, with sk,
where0 < d; < 2! and[d;] = (Ep(din), ..., Epe(diyg)), for 1 < i < n. The goal of the SMIN protocol is to
computemin(dy, . .., d,)] = [dmin] Without revealing any information abodf'’s to P, and P». Here we construct a
new SMIN, protocol by utilizing SMIN as the building block. The progakSMIN, protocol is an iterative approach
and it computes the desired output in an hierarchical fasHio each iteration, minimum between a pair of values is
computed and are feeded as input to the next iteration. Tdreregenerating a binary execution tree in a bottom-up
fashion. At the end, only?; knows the final resulid .,y |-
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Algorithm 4 SMIN,,([d1], - .., [dn]) = [dmin]

Require: P; has([di],...,[d,]); P> hassk
1. Pr:

(@). [di] «+ [d;i],for1<i<mn

(b). num +n
2: Py andP,, for i = 1to [log, n]:

(@). for 1 <j < |mum|:

e if ; = 1then:
- [d/2j71] — SMIN([d/ijl]v [dég])
— [dIQj] «—0
else

= [db;j_1y41) = SMIN([d; ;1) 14]s [dos51])

- [d/Qijfl] <0

(b). num + [%]
3 Py

(a-) [dmin] — [dll]

The overall steps involved in the proposed SMIprotocol are highlighted in Algorithinl 4. InitiallyP; assigns
[d;] to a temporary vectdel}], for 1 < i < n. Also, he/she creates a global variablen and initialize it ton, where
num represents the number of (non-zero) vectors involved i @acation. Since the SMIN protocol executes in
a binary tree hierarchy (bottom-up fashion), we h@leg, n] iterations, and in each iteration, the number of vectors
involved varies. In the first iteration (i.e.,= 1), P with private input([ds; ], [d5,]) and P with sk involve in the
SMIN protocol, forl < j < |24 |. At the end of the first iteration, onli; knows[min(dj; ,,d5;)] and nothing is
revealed taP, for 1 < j < |24m|. Also, P, stores the resultnin(ds; _,,ds;)] in [ds;_,], updategds;] to zero and
num to [%1 .

During thei*” iteration, only the non-zero vectors are involved,fot i < [log, n]. For example, during second
iteration (i.e.i = 2), only [d}], [d}], and so on are involved. Note that in each iteration, theudugrevealed only to
P, andnum is updated td%} At the end of the SMII\ protocol, P, assigns the final encrypted binary vector of
global minimum value, i.e[min(dy, ..., d,)] which is stored iffd}] t0 [din].

For example, assume thB} holds([d],...,[ds]) (i.e.,n = 6). Then, based on the SM|Norotocol, the binary
execution tree (in a bottom-up fashion) to compguién(ds, . . . , dg)] is as shown in Figuiig 1. Note th#d;] is initially

setto[d;], for1 < i < 6.

Secure Bit-OR (SBOR). Let us assume tha®; holds (E,x(01), Epi(02)) and P, holds sk, whereo, ando, are
two bits not known to both parties. The goal of the SBOR prokixto securely comput&,,; (o1 V 02). At the end
of this protocol, onlyP; knowsE,; (01 V 02). During this process, no information relatedstoando, is revealed to
Py andP». Given the secure multiplication (SM) protocét, can compute®,; (o1 V 02) as follows:

e P, with input(E,x(01), Epr(02)) and P2 with sk involve in the SM protocol. At the end of this step, the output
E,k (01 % 02) is known only toP; . Note that, since, ando, are bits,E,; (01 * 02) = Epi(01 A 02).
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dpin] < [min(d}, df)]

T~

[d1] ¢ [min(dy, d3)] [ds]

[d1] < [min(dy, d3)]  [d3] « [min(dy, d})]  [d5] < [min(ds, dg)]

/\ /\ /\

[d1]  [do)] [ds] [di] [d5)  [de]

Figure 1: Binary execution tree far = 6 based on the SMIN protocol

o Epr(01V02) = Ep(01 + 02) % Epi(01 A og) V7L,

We emphasize that, for any given two bitsandoo, the property; V oo = 01 + 02 — 01 A 02 always holds. Note
that, by homomorphic addition proper,i (o1 + 02) = Epi(01) * Epr(02).

4 The Proposed Protocols

In this section, we first present a basieN8N protocol and demonstrate why such a simple solution isseotire.
Then, we discuss our second approach, a fully seleNié protocol. Both protocols are constructed using the sgcur
primitives discussed in Secti@h 3 as building blocks.

As mentioned earlier, we assume that Alice’s database st3rodin records, denoted by = (¢4,...,¢,), andm
attributes, where; ; denotes thg'" attribute value of recoré;. Initially, Alice encrypts her database attribute-wise,
that is, she computes, ;. (t; ;), for1 < i < nandl < j < m. Let the encrypted database be denotedthy(T').
We assume that Alice outsourcEs; (T") as well as the future query processing service to the clouthoi loss of
generality, we assume that all attribute values and thestiiean distances lie iff), 2').

In our proposed protocols, we assume the existence of twecalhimding semi-honest cloud service providers,
denoted byC; andC-, which together form a federated cloud. We emphasize that an assumption is not new
and has been commonly used in the related problem doméal@€][3The intuition behind such an assumption is as
follows. Most of the cloud service providers in the market eell-established IT companies, such as Amazon and
Google. Therefore, a collusion between them is highly whjilas it will damage their reputation which in turn effects
their revenues.

Under this setting, Alice outsources her encrypted dawbgs(T") to C; and the secret keyk to C». The goal
of the proposed protocols is to retrieve the fopecords that are closest to the user query in an efficient ecurs
manner. Briefly, consider an authorized user Bob who wanfstbk records that are closest to his query record
Q = {q1,...,qm) based orE,;(T) in C;. Bob initially sends his querg) (in encrypted form) ta”;. After this, Cy
and(C, involve in a set of sub-protocols to securely retrieve (iorgpted form) the set of records corresponding
to the k-nearest neighbors of the input quepy At the end of our protocols, only Bob will receive tthenearest
neighbors ta? as the output.

4.1 Basic Protocol

In the basic securke-nearest neighbor query protocol, denoted b}, we relax the desirable properties to produce
an efficient protocol (more details are given in the latet péthis section).

The main steps involved in thek8BINy, protocol are given in Algorithrhl5. Bob initially encryptsshgquery@
attribute-wise, that is, he comput&s, (Q) = (Epik(q1), - - -, Epk(¢m)) and sends it t@;. Upon receivingt, (Q)
from Bob,C with private input £, (Q), E,x (t;)) andC, with the secret keyk jointly involve in the SSED protocol,
whereEp,(t;) = (Epe(tin), ..., Epk(tim)), for 1 < ¢ < n. The output of this step, denoted &y (d;), is the
encryption of squared Euclidean distance betw@eandt;, i.e.,d; = |Q — t;|*. As mentioned earliet,(d;) is
known only toCy, for 1 < ¢ < n. We emphasize that computation of exact Euclidean distaatgeen encrypted
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vectors is hard to achieve as it involves square root. How@veur problem, it is sufficient to compare the squared
Euclidean distances as it preserves relative orderingerAfiis,C; sends{(1, E,x(d1)), ..., {n, Epk(d,))} to Co,
where entry(i, E,x(d;)) correspond to data recotd for 1 < ¢ < n. Uponreceivingl, E,;(d1)), ..., (n, Epr(dn)),

C, decrypts the encrypted distance in each entry tadget D, (E,i(d;)). Then,Cy generates an index ligt =
(i1,...,1k) such thatd,,, ... d;, ) are the topk smallest distances amofdy, . . ., d,, ). After this,C> sends) to C.
Upon receiving, C; proceeds as follows:

e Selectthe encrypted recorflsy (¢, ), . . ., Epk (t:, ) @s thek-nearest records @ and randomize them attribute-
wise. More specificallyC'; computesty, (vj,n) = Epk(ti;n) * Epi(rjn), forl < j < kandl < h < m.
Herer; ;, is a random number i@ y andt;, ;, denotes the columh attribute value of data recorg,. Sendy; ;,
to C» andr; j, to Bob, forl < j < kandl <h <m.

Upon receivingy; 5, for1 < j < kandl < h < m, C, decryptsiit to getyg.yh = Dgi(v;,1) and sends them to Bob.
Note that, due to randomization 6%, 7} , is always a random number .

Finally, upon receiving; 5, from C4 and%,h from C5, Bob computes the attribute values;jéf nearest neighbor
toQast);, =i, —rjn mod N, forl <j <kandl <h < m. Note thatV is the RSA modulus or part of the
public keypk.

4.2 Fully SecurekNN Protocol

The above-mentionedSINy,, protocol reveals the data access patterrs;tandC,. That is, for any giverd), C; and

Cs know which data records correspond to fhaeearest neighbors @. Also, it revealsd; values toC>. However,
leakage of such information may not be acceptable in prigsitive applications such as medical data. Along this
direction, we propose a fully secure protocol, denoted bMI$,(where m stands for maximally secure), to retrieve
the k-nearest neighbors @. The proposed BNNp, protocol preserves all the desirable properties of a sedNN
protocol as mentioned in Sectibh 1.

The main steps involved in the proposelNB\,, protocol are as shown in Algorithiid 6. Initially, Bob sends hi
attribute-wise encrypted que€, that is,E,;(Q) = (Epk(q1), - - - s Epk(¢m)) to C1. Upon receivingC with private
input (E,,(Q), Epk(t;)) andCs with the secret keyk jointly involve in the SSED protocol. The output of this step
is Epr(d;) = Epk(|Q — t;]*) which will be known only toC;, for 1 < i < n. Then,C; with input E,x(d;) andCs
with sk securely compute the encryptions of the individual bitg,0fising the SBD protocol. Note that the output of
this stepld;] = (Epk(din), ..., Epk(di;)) is known only toC, whered; ; andd;; are the most and least significant
bits of d; respectively. Note that < d; < 2!, for1 < i < n.

After this, C; andCy compute the tog (in encrypted form) records that are closesttan an iterative manner.
More specifically, they computB, (¢} ) in the first iteration E,x (¢5) in the second iteration, and so on. Hefale-
notes thes'" nearest neighbor tg, for 1 < s < k. Atthe end ofk iterations, onlyCy knows(E, (), ..., Epk(t},)).

To start with, in the first iteration’; andCs jointly compute the encryptions of the individual bits o&tminimum
value amongly, ..., d, using SMIN,. That is,C; with input ([d1], ..., [d,]) andCy compute[d,in], Wwheredmin
is the minimum value among,, .. ., d,,. The output{d,,i,] is known only toC;. Now, C, performs the following
operations locally:

e Compute the encryption af,,;,, from its encrypted individual bits as below

-1

l—y—1
Epk(dmin) = HEpk(dmin,’Y+l)2 ’
~v=0

= Epk (dmin,l * 2l_1 + -+ dmin,l)
whered,in,1 anddmin,; are the most and least significant bitsigf,,, respectively.

e Compute the encryption of difference betwegp, and eachd;. That is,C, computesr; = E,i(dmin) *
Epk(di)N_l = Epk(dmin — di), forl1 < <n.
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Algorithm 5 SkENNp(Epx(T), Q) — (th, ..., t},)

Require: Cy hasE,,(T'); Co hassk; Bob hasQ)
1: Bob:

(a). Computel,(g;),forl < j<m
(b). SendEpk(Q) = (Epk(q1), - - -, Epi(am)) to C1
2: C1 andCsy:
(a). C receivesty, (Q) from Bob
(b). for i = 1ton do:
* Epi(di) < SSEXEpk(Q), Epr(ti))

(c). Send{(1, Epi(di)), ..., (n, Epr(dy))} to Csy

(a). Receive((1, Epi(di)),. .., (n, Epp(dn))} from Cy

(b). di < Dsp(Ep(d;)),forl <i<mn

(c). Generaté < (i1,...,ix), suchthatd,,,...,d;, ) are the togs smallest distances amoiid , . . ., dy)
(d). Send to Cy

4: Oy

(a). Receive from Cs
(b). for 1 < j <kandl < h <mdo:

® Vin Epk(tij,h) * Epk(T‘j,h), Whererm ErR LN

e Sendy, ; to Cy andr; , to Bob

(b). for 1 < j <kandl < h <mdo:

¢ Receivey; ), from C;
. 7.;-7h < D, (v4,n); sendy.;h to Bob
6: Bob:
(@).for1 <j<kandl <h<mdo:
e Receiver; j from C; and'y;._’h from Cy

/ /
° tj_’h “Yin — ik mod N
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e Randomizer; to getr! = 7,° = E,i(r; * (dmin — d;)), wherer; is a random number i 5. Note thatr] is
an encryption of either 0 or a random number, fox i < n. Also, permuter’ using a random permutation
function7 (known only toC1) to getg = «(7') and send it ta’s.

Upon receiving3, Cs decrypts it component-wise to gét = D, (5;), for 1 < i < n. After this, he/she computes an
encrypted vectot/ of lengthn such that/; = E,,(1) if 5, = 0, andE,;(0) otherwise. Here we assume that exactly
one of the entries iy equals to zero and rest of them are random. This further @apliat exactly one of the entries
in U is an encryption of 1 and rest of them are encryptions of O@wéler, we emphasize thatif has more than one
0's, thenC'; can randomly pick one of those indexes and as&ign(1) to the corresponding index éf and £, (0)
to the rest. Then(> sendsU to C;. After receivingU, C; performs inverse permutation on it to gét= =—1(U).
Note that exactly one of the entry Inis E,; (1) and the remaining are encryption of 0’s. In additiori/if= E,; (1),
thent; is the closest record Q. However,C';, andC> do not know which entry i corresponds t@, (1).

Finally, C; computesE,, (¢} ), encryption of the closest record€ and updates the distance vectors as follows:

e C; and(; jointly involve in the secure multiplication (SM) protoctd computeV;;, = V; x Epi(t; ;), for
1 <i<nandl <j < m. The outputV’ from the SM protocol is known only t6;. After this, by using
homomorphic properties;; computes the encrypted recofg; (t]) = (Epk(t1,1),- -, Epk(ti,m)) locally,
Epi(th ;) = TTi=, Vi ;» wherel < j < m. Note thatt ; denotes thg'" attribute value of record.

e |tis important to note that the first nearest tupléxshould be obliviously excluded from further computations.
However, since”; does not know the record correspondingig. (t;), we need to obliviously eliminate the
possibility of choosing this record again in next iteratiofror this,C; obliviously updates the distance corre-
sponding taE, (t;) to the maximum value, i.e2! — 1. More specificallyC; updates the distance vectors with
the help ofCs using the SBOR protocol as below, foK i < nandl <~ <.

Epk (dm) = SBOR(Viv Epk (dm))

Note that wherV; = E,;(1), the corresponding distance vecthiis set to the maximum value. That is, under
this case[d;] = (E,x(1),. .., Epr(1)). However, wherl; = E,;(0), the OR operation has no affect dn

The above process is repeated uhiterations, and in each iteratide; ] corresponding to the current chosen record is
set to the maximum value. However, sin€edoes not know whicld;] is updated, he/she has to re-compHjg(d;)

in each iteration using their corresponding encryptedtyiractors(d;], for 1 < i < n. In iterations, Ep(t,) is
known only toC} .

At the end of the iterative step (i.e., step 3 of Algorithm®),has(E,i(t}), ..., Epk(t})) - the list of encrypted
records ofk-nearest neighbors to the input qué&y The rest of the process is similar to steps 4 to 6 of AlgoriBhm
Briefly, C1 randomizes,;(t}) attribute-wise to get; , = Eyi(t) ;) * Epk(r;,») and sendsy; , to C2 andr;,, to
Bob, forl < j < kandl < h < m. Herer;; is a random number i@ . Upon receivingy; 5’s, C» decrypts them
to get the randomizek-nearest records aﬁ_’h = D, (v;,n) and sends them to Bob, far< j < kandl < h < m.
Finally, upon receiving-; ;, from C andy;’h from C,, Bob computes thg*" nearest neighboring record @, as
t;‘,h :73,,1 —rjpmod N,forl <j<kandl <h<m.

4.3 Security Analysis

Here we analyze the security guarantees of the proposeacpist First, due to the encryption @ and by semantic
security of the Paillier cryptosystem, Bob's input quérys protected from AliceC’; andC5 in both protocols.

In the StNNy, protocol, the decryption operations at step 3(b) of Aldoni8 reveali; values toCs. In addition,
sinceC, generates the top index list (at step 3(c) of Algorithria]5) and sends it@y, the data access patterns are
revealed toC; andCs. Therefore, our basicNNy protocol is secure under the assumption tyatalues can be
revealed ta’; and data access patterns can be revealéd tndCs.

On the other hand, the security analysis N8I, is as follows. At step 2 of Algorithml6, the outputs of SSED
and SBD are in encrypted format, and are known onl¢'toIn addition, all the intermediate results decryptedby
in SSED are uniformly random id ;. Also, as mentioned in [21], the SBD protocol is secure. Thosnformation is
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Algorithm 6 SkENNm(Ep(T), Q) — (th, ..., t})

Require: Cy hasE,,(T') andr; Cs hassk; Bob hasQ)
1: Bob send¥,.(Q) = (Epk(q1); - - -, Epk(gm)) 10 C1
2: C1 andCsy:
(a). for i = 1ton do:
o E,.(di) < SSEOE,L(Q), Epk(t:)) and[d;] < SBD(E,x(d;))
3: for s =1tok do:
(a). ¢y andCy:
L4 [dmin] — SMINn([dl]a LR [dn])

(). C':

l—y—1

1—
o Epk (dmin) — nyzlo Epk (dmin,fy+1)2
e if s 1then forl <i<n

l—~v—1

l7
- Epr(di) « Hyzlo Epi(diy41)?
e for i = 1ton do:

— T; & Epk(dmin) * Epk(di)Nil
— 7/ < 7", wherer; er Zn

o 5« m(7'); sends to Cs
(C). Cs:

o [l Dg(B;),forl <i<mn
e Computel/, forl <i < n:

— if 8] =0thenU; = Ep,(1)
— elseU; = E,;(0)

e SendU to C;
(d). C1:

o V «— 7T71(U)
. V{_d — SM(V;, Epi(ti ;). forl <i <mandl <j <m
o Epp(t, ;) « [[im, Vi for1 <j<m
o Epr(ty) = (Epe(tsn)s - Epr(tim))
(e). Cy andCy, forl <i < n:
e Epi(diy) < SBORV;, Epi(diy)), forl <~ <1

The rest of the steps are similar to steps 4-6/afN},
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revealed during step 2 of Algorithinh 6. In each iteration,dligout of SMIN, is known only toC; and no information
is revealed ta’s. Also, C; andC> do not know which record belongs to current global minimurhug, data access
patterns are protected from bath andCs,. At step 3(c) of Algorithni b, a component-wise decryptionsafeveals
the tuples that satisfy the current global minimum distatoc€>. However, due to permutation ky;, Cy cannot
trace back to the corresponding data records. Also, noteldtayption off gives either encryptions of O’s or random
numbers irZ . Similarly, sincel is an encrypted vecto€;; cannot know which tuple corresponds to current global
minimum distance. Thus, data access patterns are furtbiexgbed at this step frod; . In addition, the update process
at step 3(e) of Algorithrh]6 does not leak any informatiorftoandCs. In summary(C; andC> do not know which
data records correspond to the output(ggt. . ., 7).

Based on the above discussions, it is clear that the prog®dell,, protocol protects the confidentiality of the
data, privacy of user’s input query, and hides the data aquatserns.

4.4 Complexity Analysis

The computation complexity of NNy is bounded byO(n « m + k) encryptions, decryptions and exponentiations.
In practicek < n * m; therefore, the computation complexity ofISNy, is bounded byO(n * m) encryptions and
exponentiations (assuming that encryption and decrypji@nations under Paillier cryptosystem take similar anhoun
of time).

In the StNN,, protocol, the computation complexity is bounded®§r) instantiations of SBD and SSED)(k)
instantiations of SMIN, andO(n « [) instantiations of SBOR. We emphasize that the computationptexity of
the SBD protocol proposed in [21] is bounded®y) encryptions and(!) exponentiations. Also, the computation
complexity of SSED is bounded b§(m) encryptions and)(m) exponentiations. In addition, the computation
complexity of SMIN, is bounded by) (I x n xlog, n) encryptions and (I x n x log, n) exponentiations. Since SBOR
utilizes SM as a sub-routine, the computation cost of SBA®isded by (small) constant number of encryptions and
exponentiations. Based on the above analysis, the totgbatation complexity of the BNNy, protocol is bounded by
O(n (I +m+ k =1 xlogy n)) encryptions and exponentiations.

5 Empirical Results

In this section, we discuss the performances of the propmsgdcols in detail under different parameter settings. We
used Paillier cryptosystern [18] and implemented the preggsotocols in C. Various experiments were conducted
on a Linux machine with an Int@ Xeon®) Six-Cord™ CPU 3.07 GHz processor and 12GB RAM running Ubuntu
10.04 LTS.

Since it is difficult to control the parameters in a real dataswe randomly generated synthetic datasets depending
on the parameter values in consideration. Using these sljotilatasets we can perform a more elaborated analysis
on the computation costs of the proposed protocols undtarelift parameter settings. We encrypted these datasets
attribute-wise, using the Palillier encryption whose keye$g varied in our experiments, and the encrypted data were
stored on our machine. Based on the protocols protocolsharedxecuted a random query over this encrypted data.
For the rest of this section, we do not discuss about the pedioce of Alice since it is a one-time cost. Instead, we
evaluate and analyze the performancesifiS, and (NN, separately. In addition, we compare the two protocols.
In all our experiments, the Paillier encryption key sizepated byK, is set to either 512 or 1024 bits.

5.1 Performance of NN,

In this sub-section, we analyze the computation costg:bf\g, by varying the number of data recoradg (number of
attributes {n), number of nearest neighborg) (and encryption key sizé{). Note that NNy, is independent of the
domain size of attributeg)(

First, by fixingk = 5 and K = 512, we evaluated the computation costs &N, for varyingn andm. As
shown in Figuré¢ 2(3), the computation costs &N8l, grows linearly withn andm. For example, whem = 6, the
computation time of 8NNy, increases from 44.08 to 87.91 seconds wheg varied from 2000 to 4000. A similar
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Figure 2: Time complexities of ANy and S:NN, for varying values oh, m, [, k and encryption key siz&

trend is observed foK = 1024 as shown in Figurg 2(p). For any fixed parameters, we obsématthe computation
time of StNNy, increases almost by a factor of 7 wh&nis doubled.

Next, by fixingm = 6 andn = 2000, we evaluated the running times ofISN;, for varyingk and K. The results
are shown in Figurg 2(c). Irrespective Bf, the computation time of/S\N, does not change much with varyitg
This is because most of the cost iBNIN, comes from the SSED protocol which is independent.oE.g., when
K = 512 bits, the computation time offNy, changes from 44.08 to 44.14 seconds whésichanged from 5 to 25.
Based on the above discussions, it is clear that the runimmegdf ScNNy, mainly depends on (or grows linearly with)
n andm which further justifies our complexity analysis in Sectiad.4

5.2 Performance of $NN,

We also evaluated the computation costs @fi, for varying values of, [ and K. Throughout this sub-section, we
fix m = 6 andn = 2000. However, we observed that the running time &NB\,, grows linearly withn andm.

For K = 512 bits, the computation costs okI$Ny, for varyingk and! are as shown in Figufe 2{d). Following
from Figurd 2(d), for = 6, the running time of 8NN, varies from 11.93 to 55.65 minutes wheis changed from 5
to 25 respectively. Also, far= 12, the running time of 8NN, varies from 20.68 to 97.8 minutes wheris changed
from 5 to 25 respectively. In either case, the cost S, grows almost linearly with: andi.

A similar trend is observed fak” = 1024 as shown in Figurg 2(g). In particular, for any given fixedgpaeters,
we identified that the computation cost dflN, increases by almost a factor of 7 whE&nis doubled. For example,
whenk =10, kNN, took 22.85 and 157.17 minutes to generate the 10 nearesthwegof@ underK =512 and
1024 bits respectively. Furthermore, when 5, we observed that around 69.7% of costiN8l,, is accounted due to
SMIN,, which is initiatedk times in S:NNp, (once in each iteration). Also, the cost incurred due to SMitreases
from 69.7% to at least 75% whénis increased from 5 to 25.

In addition, by fixingn = 2000, m = 6,l = 6 and K = 512, we compared the running times of both protocols
for varying values of. As shown in Figurg 2(f), the running time of: 8N, remains to be constant at 0.73 minutes
since it is almost independent bf However, the running time offNN, changes from 11.93 to 55.65 minutes as we
increase: from 5 to 25.
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Figure 3: Comparison of parallel and serial versions/dfiN,, for m = 6,k = 5 and K = 512 bits

Based on the above results, it is clear that the computatiets ©f NNy, are significantly higher than that of
SkNNyp. However, we emphasize thakSN, is more secure thank8INy; therefore, the two protocols act as a trade-
off between security and efficiency. Also, it is importantiote that Bob’s computation cost is mainly due to the
encryption of his input query record. As an example,/foe= 6, Bob’s computation costs are 4 and 17 milliseconds
when K is 512 and 1024 bits respectively. This further shows thatppaposed protocols are very efficient from
end-user’s perspective.

5.3 Towards Performance Improvement

At first, it seems that the proposed protocols are costly aag not scale well for large datasets. However, in both
protocols, we emphasize that the computations involvedhach data record are independent of others. Therefore, we
can parallelize the operations on data records for effigignurpose. To further justify this claim, we implemented
a parallel version of our NN}, protocol using OpenMP programming and compared its conipataosts with its
serial version. As mentioned earlier, our machine has 6scmtech can be used to perform parallel operations on 6
threads. Formn = 6,k = 5 and K = 512 bits, the comparison results are as shown in Figlire 3. Theradison is
that the parallel version ofd\Ny, is roughly 6 times more efficient than its serial version.sTikibecause of the fact
that the parallel version can execute operations on 6 deteids at a time (i.e., on 6 threads in parallel). For example,
whenn = 10000, the running times of parallel and serial versions N8I, are 40 and 215.59 seconds respectively.

We believe that similar efficiency gains can be achieved bljgdizing the operations in SNN,. Based on
the above discussions, especially in a cloud computingenrient where high performance parallel processing can
easily be achieved, we claim that the scalability issue efgtoposed protocols can be eliminated or mitigated. In
addition, using the existing map-reduce techniques, welcastically improve the performance further by executing
parallel operations on multiple nodes. We will leave thialgsis to future work.

6 Conclusion

Query processing is an important task in database manageystams. In particulak-nearest neighbors is one
of the commonly used query in many data mining applicatiarthsas detection of fraud by credit card companies
and prediction of tumor cells levels in blood. With the recgrowth of cloud computing as a new IT paradigm,
data owners are more interested to outsource their datgbaseell as DBMS functionalities to the cloud. Under
an outsourced database environment, where encrypted datdased in the cloud, secure query processing over
encrypted data becomes challenging. To protect user grivadous securé-nearest neighbor ¢NN) techniques
have been proposed in the literature. However, the exiSiMgN techniques over encrypted data are not secure.

Along this direction, we proposed two novetiSN protocols over encrypted data in the cloud. The first proko
which acts as a basic solution, leaks some information teliied. On the other hand, our second protocol is fully
secure, that is, it protects the confidentiality of the dater’s input query, and also hides the data access patterns.
However, the second protocol is more expensive compardttbdsic protocol. Also, we evaluated the performance
of our protocols under different parameter settings. Astar&uwork, we will investigate and extend our research to
other complex conjuctive queries over encrypted data.
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