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Abstract

For the past decade, query processing on relational data hasbeen studied extensively, and many theoretical and
practical solutions to query processing have been proposedunder various scenarios. With the recent popularity of
cloud computing, users now have the opportunity to outsource their data as well as the data management tasks to the
cloud. However, due to the rise of various privacy issues, sensitive data (e.g., medical records) need to be encrypted
before outsourcing to the cloud. In addition, query processing tasks should be handled by the cloud; otherwise, there
would be no point to outsource the data at the first place. To process queries over encrypted data without the cloud
ever decrypting the data is a very challenging task. In this paper, we focus on solving thek-nearest neighbor (kNN)
query problem over encrypted database outsourced to a cloud: a user issues an encrypted query record to the cloud,
and the cloud returns thek closest records to the user. We first present a basic scheme and demonstrate that such a
naive solution is not secure. To provide better security, wepropose a securekNN protocol that protects the confi-
dentiality of the data, user’s input query, and data access patterns. Also, we empirically analyze the efficiency of our
protocols through various experiments. These results indicate that our secure protocol is very efficient on the user
end, and this lightweight scheme allows a user to use any mobile device to perform thekNN query.

Keywords: Security,k-NN Query, Encryption, Cloud Computing

1 Introduction

As an emerging computing paradigm, cloud computing attracts many organizations to consider utilizing the benefits of
a cloud in terms of cost-efficiency, flexibility, and offload of administrative overhead. In cloud computing model [13,
16], a data owner outsources his/her databaseT and the DBMS functionalities to the cloud that has the infrastructure
to host outsourced databases and provides access mechanisms for querying and managing the hosted database. On
one hand, by outsourcing, the data owner gets the benefit of reducing the data management costs and improves the
quality of service. On the other hand, hosting and query processing of data out of the data owner control raises security
challenges such as preserving data confidentiality and query privacy.

One straightforward way to protect the confidentiality of the outsourced data from the cloud as well as from the
unauthorized users is to encrypt data by the data owner before outsourcing [1, 15, 19]. By this way, the data owner
can protect the privacy of his/her own data. In addition, to preserve query privacy, authorized users require encrypting
their queries before sending them to the cloud for evaluation. Furthermore, during query processing, the cloud can
also derive useful and sensitive information about the actual data items by observing the data access patterns even if
the data and query are encrypted [4, 27]. Therefore, following from the above discussions, secure query processing
needs to guarantee (1) confidentiality of the encrypted data(2) confidentiality of a user’s query record and (3) hiding
data access patterns.

Using encryption as a way to achieve data confidentiality maycause another issue during the query processing step
in the cloud. In general, it is very difficult to process encrypted data without ever having to decrypt it. The question
here is how the cloud can execute the queries over encrypted data while the data stored at the cloud are encrypted at
all times. In the literature, various techniques related toquery processing over encrypted data have been proposed,
including range queries [2, 11, 12, 24] and other aggregate queries [10, 17]. However, these techniques are either not
applicable or inefficient to solve advanced queries such as thek-nearest neighbor (kNN) query.

In this paper, we address the problem of secure processing ofk-nearest neighbor query over encrypted data (SkNN)
in the cloud. Given a user’s input queryQ, the objective of the SkNN problem is to securely identify thek-nearest
data tuples toQ using the encrypted database ofT in the cloud, without allowing the cloud to learn anything regarding
the actual contents of the databaseT and the query recordQ. More specifically, when encrypted data are outsourced
to the cloud, we observe that an effective SkNN protocol needs to satisfy the following properties:
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Table 1: Sample Heart Disease DatasetT

record-id age sex cp trestbps chol fbs slope ca thal num

t1 63 1 1 145 233 1 3 0 6 0
t2 56 1 3 130 256 1 2 1 6 2
t3 57 0 3 140 241 0 2 0 7 1
t4 59 1 4 144 200 1 2 2 6 3
t5 55 0 4 128 205 0 2 1 7 3
t6 77 1 4 125 304 0 1 3 3 4

• Preserve the confidentiality ofT andQ at all times

• Hiding data access patterns from the cloud

• Accurately compute thek-nearest neighbors of queryQ

• Incur low computation overhead on the end-user

In the past few years, researchers have proposed various methods [13,28,31] to address the SkNN problem. However,
we emphasize that the existing SkNN methods proposed in [13,28] violate at least one of the above mentioned desir-
able properties of a SkNN protocol. On one hand, the methods in [13,28] are insecurebecause they are vulnerable to
chosen and known plaintext attacks. On the other hand, recent method in [31] returns non-accuratekNN result to the
end-user. More precisely, in [31], the cloud retrieves the relevant encrypted partition instead of finding the encrypted
exactk-nearest neighbors. Furthermore, in [13, 31], the end-userinvolves in heavy computations during the query
processing step. By doing so, the method in [31] utilizes cloud as just a storage medium, i.e., no significant work is
done on the cloud side. More details about the existing SkNN methods are provided in Section 2.

Along this direction, with the goal of providing better security, this paper proposes a novel SkNN protocol that
satisfies the above properties altogether.

1.1 Problem Definition

Suppose the data owner Alice owns a databaseT of n records, denoted byt1, . . . , tn, andm attributes. Letti,j
denote thejth attribute value of recordti. In our problem setting, we assume that Alice initially encrypts her database
attribute-wise, that is, she computesEpk(ti,j), for 1 ≤ i ≤ n and1 ≤ j ≤ m, whereEpk denotes the encryption
function of a public-key cryptosystem that is semanticallysecure [18]. Let the encrypted database be denoted by
Epk(T ). We assume that Alice outsourcesEpk(T ) as well as the future querying processing services to the cloud.

Consider an authorized user Bob who wants to ask the cloud fork-neighbor records that are closest to his input
queryQ = 〈q1, . . . , qm〉 based onEpk(T ). During this process, Bob’s queryQ and contents of databaseT should
not be revealed to the cloud. In addition, the access patterns to the data should be protected from the cloud. We
refer to such a process as SecurekNN (SkNN) query over encrypted data in the cloud. Without loss of generality, let
〈t′1, . . . , t

′

k〉 denote thek-nearest records toQ. Then, we formally define the SkNN protocol as follows:

SkNN(Epk(T ), Q)→ 〈t′1, . . . , t
′

k〉

We emphasize that, at the end of the SkNN protocol, the output〈t′1, . . . , t
′

k〉 should be revealed only to Bob. We now
present a real-life application of the SkNN protocol.

Example 1. Consider a physician who would like to know the risk factor ofheart disease in a specific patient. Let
T denote the sample heart disease dataset with attributes record-id, age, sex, cp, trestbps, chol, fbs, slope, ca, thal,
and num as shown in Table 1. The description and range for eachof these attributes are shown in Table 2. The heart
disease dataset given in Table 1 is obtained from the UCI machine learning repository [14].

Initially, the data owner (hospital) encryptsT attribute-wise, outsources the encrypted databaseEpk(T ) to the
cloud for easy management. In addition, the data owner delegates the future query processing services to the cloud.
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Table 2: Attribute Description of Heart Disease DatasetT

age age in years

sex 1=male, 0=female

cp chest pain type: 1=typical angina, 2=atypical angina,

3=non-anginal pain, 4=asymptomatic

trestbps resting blood pressure (mm Hg)

chol serum cholesterol in mg/dl

fbs fasting blood sugar> 120 mg/dl (1=true; 0=false)

slope slope of the peak exercise ST segment

(1=upsloping, 2=flat, 3=downsloping)

ca number of major vessels (0-3) colored by flourosopy

thal 3=normal, 6=fixed defect, 7=reversible defect

num diagnosis of heart disease from 0 (no presence) to 4

Now, we consider a doctor working at the hospital, say Bob, who would like to know the risk factor of heart disease
in a specific patient based onT . Let the patient medical information beQ = 〈58, 1, 4, 133, 196, 1, 2, 1, 6〉. In the
SkNN protocol, Bob first need to encryptQ (to preserve the privacy of his query) and send it to the cloud. Then the
cloud searches on the encrypted databaseEpk(T ) to figure out thek-nearest neighbors to the user’s request. For
simplicity, let us assumek = 2. Under this case, the2 nearest neighbors toQ are t4 and t5 (by using Euclidean
distance as the similarity metric). After this, the cloud sendst4 and t5 (in encrypted form) to Bob. Here, the cloud
should identify the nearest neighbors ofQ in an oblivious manner without knowing any sensitive information, i.e., all
the computations have to be carried over encrypted records.Finally, Bob receivest4 andt5 that will help him to make
medical decisions. �

1.2 Our Contribution

In this paper, we propose a novel SkNN protocol to facilitate thek-nearest neighbor search over encrypted data in the
cloud that preserves both the data privacy and query privacy. In our protocol, once the encrypted data are outsourced to
the cloud, Alice does not participate in any computations. Therefore, no information is revealed to Alice. In particular,
the proposed protocol meets the following requirements:

• Data confidentiality - Contents ofT or any intermediate results should not be revealed to the cloud.

• Query privacy - Bob’s input queryQ should not be revealed to the cloud.

• Correctness - The output〈t′1, . . . , t
′

k〉 should be revealed only to Bob. In addition, no information other than
t′1, . . . , t

′

k should be revealed to Bob.

• Low computation overhead on Bob - After sending his encrypted query record to the cloud, Bob involves
only in a little computation compared with the existing works [13,28,31]. More details are given in Section 4.2.

• Hidden data access patterns -Access patterns to the data, such as the records corresponding to thek-nearest
neighbors ofQ, should not be revealed to Alice and the cloud (to prevent anyinference attacks).

We emphasize that the intermediate results seen by the cloudin our protocol are either newly generated randomized
encryptions or random numbers. Thus, which data records correspond to thek-nearest neighbors ofQ are not known to
the cloud. In addition, after sending his encrypted query record to the cloud, Bob does not involve in any computations
(less workload at Bob’s local machine). Hence, data access patterns are further protected from Bob. More details are
given in Section 4.2.
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The rest of the paper is organized as follows. We discuss the existing related work and some background concepts
in Section 2. A set of security primitives that are utilized in the proposed protocols and their possible implementations
are provided in Section 3. The proposed protocols are explained in detail in Section 4. Section 5 discusses the
performance of the proposed protocols based on various experiments. We conclude the paper along with future work
in Section 6.

2 Related Work and Background

In this section, we first present an overview of the existing securek-nearest neighbor techniques. Then, we present the
security definition adopted in this paper and the Paillier cryptosystem along with its additive homomorphic properties
as a background.

2.1 Existing SkNN Techniques

Retrieving thek-nearest neighbors to a given queryQ is one of the most fundamental problem in many application
domains such as similarity search, pattern recognition, and data mining. In the literature, many techniques have been
proposed to address the SkNN problem, which can be classified into two categories basedon whether the data are
encrypted or not:centralizedanddistributed.

2.1.1 Centralized Methods

In the centralized methods, we assume that the data owner outsources his/her database and DBMS functionalities
(e.g.,kNN query) to an untrusted external service provider which manages the data on behalf of the data owner where
only trusted users are allowed to query the hosted data at theservice provider. By outsourcing data to an untrusted
server, many security issues arise, such as data privacy (protecting the confidentiality of the data from the server as
well as from query issuer). To achieve data privacy, data owner is required to use data anonymization models (e.g.,
k-anonymity) or cryptographic (e.g., encryption and data perturbation) techniques over his/her data before outsourcing
them to the server.

Encryption is a traditional technique used to protect the confidentiality of sensitive data such as medical records.
Due to data encryption, the process of query evaluation overencrypted data becomes challenging. Along this direction,
various techniques have been proposed for processing range[2, 11, 12, 24] and aggregation queries [10, 17] over
encrypted data. However, in this paper, we restrict our discussion to secure evaluation ofkNN query.

In the past few years, researchers have proposed different methods [13,28,31] to address the SkNN problem. Wong
et al. [28] proposed a new encryption scheme called asymmetric scalar-product-preserving encryption (ASPE) that
preserves scalar product between the query vectorQ and any tuple vectorti from databaseT for distance comparison
which is sufficient to findkNN. In [28], data and query are encrypted using slightly different encryption schemes
before outsourcing to the server. As an alternative, Hu et al. [13] proposed a method based on Privacy Homomorphism
(PH) encryption scheme. More specifically, they used a provably secure privacy homomorphism encryption scheme
from [5] that supports modular addition, subtraction and multiplication over encrypted data. They addressed the SkNN
problem under the following setting: the client has the ciphertexts of all data points in databaseT and the encryption
function ofT whereas the server has the decryption function ofT and some auxiliary information regarding each data
point. However, both methods in [13, 28] are not secure because they are vulnerable to chosen-plaintext attacks. We
refer the reader to [31] for more details on these security issues.

Recently, Yao et al. [31] designed a new SkNN method based on partition-based secure Voronoi diagram (SVD).
Instead of asking the cloud to retrieve the exactkNN, they required, from the cloud, to retrieve a relevant encrypted
partitionEpk(G) for Epk(T ) such thatG is guaranteed to contain thek-nearest neighbors ofQ. However, in our
work, we are able to solve the SkNN problem accurately by letting the cloud to retrieve the exactk-nearest neighbors
of Q (in encrypted form). In addition, most of the computations during the query processing step in [13, 31] are
performed locally by the end-user (i.e., query issuer) which conflicts the very purpose of outsourcing the DBMS
functionalities to the cloud. Since our proposed protocol solves the problem of findingk-nearest neighbors ofEpk(Q)
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over encrypted data, it can also be used in other relevant data mining tasks such as secure clustering, classification,
and outlier detection.

2.1.2 Data Distribution Methods

In the data distributed methods, data are assumed to be partitioned either vertically or horizontally and distributed
among a set of independent, non-colluding parties. In the literature, the data distributed methods rely on secure
multiparty computation (SMC) techniques that enable multiple parties to securely evaluate a function using their
respective private inputs without disclosing the input of one party to the others. Many efforts have been made to
address the problem ofkNN query in a distributed environment. Shaneck et al. [23] proposed privacy-preserving
algorithm to performk-nearest neighbor search. The protocol in [23] is based on secure multiparty computation for
privately computingkNN points in a horizontally partitioned dataset. Qi et al. [20] proposed a single-stepkNN search
protocol that is provably secure with linear computation and communication complexities. Vaidya et al. [25] studied
privacy-preserving top-k queries in which the data are vertically partitioned. Ghinita et al. [6] proposed a private
information retrieval (PIR) framework for answeringkNN queries in location-based services. However, their solution
protects only the query privacy, i.e., it does not address data confidentiality and access pattern issues.

We emphasize that the above data distribution methods are not applicable to performkNN queries over encrypted
data for two reasons: (1). In our work, we deal with encryptedform of database and query which is not the case in the
above methods (2). The database in our case is encrypted and stored on the cloud whereas in the above methods it is
partitioned (in plaintext format) among different parties.

2.2 Security Definition

In this paper, privacy/security is closely related to the amount of information disclosed during the execution of a
protocol. There are many ways to define information disclosure. To maximize privacy or minimize information
disclosure, we adopt the security definitions in the literature of secure multiparty computation (SMC) first introduced
by Yao’s Millionaires’ problem for which a provably secure solution was developed [29,30]. In this paper, we assume
that parties are semi-honest; that is, a semi-honest party (also referred to as honest-but-curious) follows the rules of
the protocol using its correct input, but is free to later usewhat it sees during execution of the protocol to compromise
security. We refer the reader to [7, 8] for detailed securitydefinitions and models. Briefly, the following definition
captures the above discussion regarding a secure protocol under the semi-honest model.

Definition 1. Let ai be the input of partyPi,
∏

i(π) bePi’s execution image of the protocolπ andbi be the result
computed fromπ for Pi. π is secure if

∏
i(π) can be simulated from〈ai, bi〉 and distribution of the simulated image is

computationally indistinguishable from
∏

i(π).

2.3 Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic and probabilistic asymmetric encryption scheme [18]. LetEpk

be the encryption function with public keypk given by (N, g), whereN is a product of two large primes andg is in
Z
∗

N2 . Also, letDsk be the decryption function with secret keysk. Givena, b ∈ ZN , the Paillier encryption scheme
exhibits the following properties:

a. Homomorphic Addition - Epk(a+ b)← Epk(a) ∗ Epk(b) mod N2;

b. Homomorphic Multiplication - Epk(a ∗ b)← Epk(a)
b mod N2;

c. Semantic Security -The encryption scheme is semantically secure [8, 9]. Briefly, given a set of ciphertexts, an
adversary cannot deduce any additional information about the plaintext.

In this paper, we assume that a data owner encrypted his or herdata using Paillier cryptosystem before outsourcing
them to a cloud. Some common notations that are used extensively in this paper are shown in Table 3.
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Table 3: Common Notations
Alice The data owner of databaseT

Epk(T ) Attribute-wise encryption ofT

Bob An authorized user who can accessEpk(T ) in the cloud

n Number of data records inT

m Number of attributes inT

ti ith record inT

Q Bob’s query record

t′i ith nearest record toQ based onT

l Domain size (in bits) of the squared Euclidean distance

based onT

〈z1, zl〉 The most and least significant bits of integerz

[z] Vector of encryptions of the individual bits ofz

3 Basic Security Primitives

In this section, we present a set of generic protocols that will be used as sub-routines while constructing our proposed
SkNN protocol in Section 4.2. All of the below protocols are considered under two-party semi-honest setting. In
particular, we assume the existence of two semi-honest partiesP1 andP2 such that the Paillier’s secret keysk is
known only toP2 whereaspk is treated as public.

• Secure Multiplication (SM) Protocol:
This protocol considersP1 with input (Epk(a), Epk(b)) and outputsEpk(a ∗ b) to P1, wherea andb are not
known toP1 andP2. During this process, no information regardinga andb is revealed toP1 andP2. The output
Epk(a ∗ b) is known only toP1.

• Secure Squared Euclidean Distance (SSED) Protocol:
P1 with input (Epk(X), Epk(Y )) andP2 securely compute the encryption of squared Euclidean distance be-
tween vectorsX andY . HereX andY arem dimensional vectors whereEpk(X) = 〈Epk(x1), . . . , Epk(xm)〉
andEpk(Y ) = 〈Epk(y1), . . . , Epk(ym)〉. At the end, the outputEpk(|X − Y |2) is known only toP1.

• Secure Bit-Decomposition (SBD) Protocol:
P1 with inputEpk(z) andP2 securely compute the encryptions of the individual bits ofz, where0 ≤ z < 2l.
The output[z] = 〈Epk(z1), . . . , Epk(zl)〉 is known only toP1. Herez1 and zl denote the most and least
significant bits of integerz respectively.

• Secure Minimum (SMIN) Protocol:
P1 with input ([u], [v]) andP2 with sk securely compute the encryptions of the individual bits of minimum
number betweenu andv. That is, the output is[min(u, v)] which will be known only toP1. During this
protocol, no information regardingu andv is revealed toP1 andP2.

• Secure Minimum out ofn Numbers (SMINn) Protocol:
In this protocol,P1 hasn encrypted vectors([d1], . . . , [dn]) andP2 hassk. Here[di] = 〈Epk(di,1), . . . , Epk(di,l)〉
such thatdi,1 anddi,l are the most and least significant bits of integerdi respectively, for1 ≤ i ≤ n. P1 andP2

jointly compute the output[min(d1, . . . , dn)]. At the end of this protocol,[min(d1, . . . , dn)] is known only to
P1. During the SMINn protocol, no information regarding any ofdi’s is revealed toP1 andP2.

• Secure Bit-OR (SBOR) Protocol:
P1 with input (Epk(o1), Epk(o2)) andP2 securely computeEpk(o1 ∨ o2), whereo1 ando2 are two bits. The
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Algorithm 1 SM(Epk(a), Epk(b))→ Epk(a ∗ b)

Require: P1 hasEpk(a) andEpk(b); P2 hassk
1: P1:

(a). Pick two random numbersra, rb ∈ ZN

(b). a′ ← Epk(a) ∗ Epk(ra)

(c). b′ ← Epk(b) ∗ Epk(rb); senda′, b′ toP2

2: P2:

(a). Receivea′ andb′ fromP1

(b). ha ← Dsk(a
′); hb ← Dsk(b

′)

(c). h← ha ∗ hb mod N

(d). h′ ← Epk(h); sendh′ to P1

3: P1:

(a). Receiveh′ fromP2

(b). s← h′ ∗ Epk(a)
N−rb

(c). s′ ← s ∗ Epk(b)
N−ra

(d). Epk(a ∗ b)← s′ ∗ Epk(ra ∗ rb)
N−1

outputEpk(o1 ∨ o2) is known only toP1.

We now discuss each of these protocols in detail. Also, we either propose new solution or refer to the most efficient
known implementation to each one of them.

Secure Multiplication (SM). Consider a partyP1 with private input(Epk(a), Epk(b)) and a partyP2 with the secret
key sk. The goal of the secure multiplication (SM) protocol is to return the encryption ofa ∗ b, i.e.,Epk(a ∗ b) as
output toP1. During this protocol, no information regardinga andb is revealed toP1 andP2. The basic idea of the
SM protocol is based on the following property which holds for any givena, b ∈ ZN :

a ∗ b = (a+ ra) ∗ (b+ rb)− a ∗ rb − b ∗ ra − ra ∗ rb (1)

where all the arithmetic operations are performed underZN . The overall steps in SM are shown in Algorithm 1.
Briefly, P1 initially randomizesa andb by computinga′ = Epk(a) ∗ Epk(ra) andb′ = Epk(b) ∗ Epk(rb), and sends
them toP2. Herera andrb are random numbers inZN known only toP1. Upon receiving,P2 decrypts and multiplies
them to geth = (a + ra) ∗ (b + rb) mod N . Then,P2 encryptsh and sends it toP1. After this,P1 removes extra
random factors fromh′ = Epk((a + ra) ∗ (b + rb)) based on Equation 1 to getEpk(a ∗ b). Note that, for any given
x ∈ ZN, “N − x” is equivalent to “−x” underZN . Hereafter, we use the notationr ∈R ZN to denoter as a random
number inZN .

Example 2. Supposea = 59 and b = 58. For simplicity, let ra = 1 and rb = 3. Initially, P1 computes
a′ = Epk(60) = Epk(a) ∗ Epk(ra), b′ = Epk(61) = Epk(b) ∗ Epk(rb) and sends them toP2. Then,P2 de-
crypts and multiplies them to geth = 3660. After this,P2 encryptsh to geth′ = Epk(3660) and sends it toP1. Upon
receivingh′, P1 computess = Epk(3483) = Epk(3660−a∗ rb), ands′ = Epk(3425) = Epk(3483− b∗ ra). Finally,
P1 computesEpk(a ∗ b) = Epk(3422) = Epk(3425− ra ∗ rb). �

Secure Squared Euclidean Distance (SSED).In the SSED protocol,P1 holds two encrypted vectors(Epk(X), Epk(Y ))
andP2 holds the secret keysk. HereX andY are twom-dimensional vectors whereEpk(X) = 〈Epk(x1), . . . , Epk(xm)〉

8



Algorithm 2 SSED(Epk(X), Epk(Y ))→ Epk(|X − Y |2)

Require: P1 hasEpk(X) andEpk(Y ); P2 hassk
1: P1, for 1 ≤ i ≤ m do:

(a). Epk(xi − yi)← Epk(xi) ∗ Epk(yi)
N−1

2: P1 andP2, for 1 ≤ i ≤ m do:

(a). ComputeEpk((xi − yi)
2) using the SM protocol

3: P1:

(a). Epk(|X − Y |2)←
∏m

i=1 Epk((xi − yi)
2)

andEpk(Y ) = 〈Epk(y1), . . . , Epk(ym)〉. The goal of the SSED protocol is to securely computeEpk(|X−Y |
2), where

|X − Y | denotes the Euclidean distance between vectorsX andY . During this protocol, no information regardingX
andY is revealed toP1 andP2. The basic idea of SSED follows from following equation:

|X − Y |2 =

m∑

i=1

(xi − yi)
2 (2)

The main steps involved in SSED are shown in Algorithm 2. Briefly, for 1 ≤ i ≤ m,P1 initially computesEpk(xi−yi)
by using the homomorphic properties. ThenP1 andP2 jointly computeEpk((xi − yi)

2) using the SM protocol, for
1 ≤ i ≤ m. Note that the outputs of the SM protocol are known only toP1. After this, by applying homomorphic
properties onEpk((xi − yi)

2), P1 computesEpk(|X − Y |2) locally based on Equation 2.

Example 3. Refer to Table 1, let us assume thatP1 holds the encrypted data records oft1 and t2 as X and Y

respectively. That is,Epk(X) = 〈Epk(63), Epk(1), Epk(1), Epk(145), Epk(233), Epk(1), Epk(3), Epk(0), Epk(6),
Epk(0)〉 andEpk(Y ) = 〈Epk(56), Epk(1), Epk(3), Epk(130), Epk(256), Epk(1), Epk(2), Epk(1), Epk(6), Epk(2)〉.
During the SSED protocol,P1 initially computesEpk(x1− y1) = Epk(7), . . . , Epk(x10− y10) = Epk(−2). Then,P1

andP2 jointly computeEpk((x1−y1)
2) = Epk(49) = SM(Epk(7), Epk(7)), . . . , Epk((x10−y10)

2) = SM(Epk(−2),

Epk(−2)) = Epk(4). P1 locally computesEpk(|X − Y |2) = Epk(
∑10

i=1(xi − yi)
2) = Epk(813). �

Secure Bit-Decomposition (SBD).We assume thatP1 hasEpk(z) andP2 hassk, wherez is not known to both
parties and0 ≤ z < 2l. The goal of the secure bit-decomposition (SBD) protocol isto compute the encryptions of
the individual bits of binary representation ofz [21,22]. That is, the output is[z] = 〈Epk(z1), . . . , Epk(zl)〉, wherez1
andzl denote the most and least significant bits ofz respectively. At the end, the output[z] is known only toP1.

Since the goal of this paper is not to investigate existing SBD protocols, we simply use the most efficient SBD
protocol that was recently proposed in [21].

Example 4. Let us suppose thatz = 55 and l = 6. Then the SBD protocol with private inputEpk(55) gives
[55] = 〈Epk(1), Epk(1), Epk(0), Epk(1), Epk(1), Epk(1)〉 as the output toP1. �

Secure Minimum (SMIN). In this protocol,P1 with input([u], [v]) andP2 with sk securely compute the encryptions
of the individual bits ofmin(u, v), i.e., the output is[min(u, v)]. Here [u] = 〈Epk(u1), . . . , Epk(ul)〉 and [v] =
〈Epk(v1), . . . , Epk(vl)〉, whereu1 (resp.,v1) andul (resp.,vl) are the most and least significant bits ofu (resp.,v). At
the end, the output[min(u, v)] is known only toP1.

We assume that0 ≤ u, v < 2l and propose a novel SMIN protocol. The basic idea of the proposed SMIN protocol
is for P1 to randomly choose the functionalityF (by flipping a coin), whereF is eitheru > v or v > u, and to
obliviously executeF with P2. SinceF is randomly chosen and known only toP1, the output of the functionalityF is
oblivious toP2. Based on the output and chosenF , P1 computes[min(u, v)] locally using homomorphic properties.

9



Algorithm 3 SMIN([u], [v])→ [min(u, v)]

Require: P1 has[u] and[v], where0 ≤ u, v < 2l; P2 hassk
1: P1:

(a). Randomly choose the functionalityF

(b). for i = 1 to l do:

• Epk(ui ∗ vi)← SM(Epk(ui), Epk(vi))

• if F : u > v then:

– Wi ← Epk(ui) ∗ Epk(ui ∗ vi)
N−1

– Γi ← Epk(vi − ui) ∗ Epk(r̂i); r̂i ∈R ZN

else

– Wi ← Epk(vi) ∗ Epk(ui ∗ vi)
N−1

– Γi ← Epk(ui − vi) ∗ Epk(r̂i); r̂i ∈R ZN

• Gi ← Epk(ui ⊕ vi)

• Hi ← Hri
i−1 ∗Gi; ri ∈R ZN andH0 = Epk(0)

• Φi ← Epk(−1) ∗Hi

• Li ← Wi ∗ Φ
r′i
i ; r′i ∈R ZN

(c). Γ′ ← π1(Γ)

(d). L′ ← π2(L); sendΓ′ andL′ to C

2: P2:

(a). ReceiveΓ′ andL′ fromP1

(b). Mi ← Dsk(L
′

i), for 1 ≤ i ≤ l

(c). if ∃ j such thatMj = 1 then α← 1
elseα← 0

(d). M ′

i ← Γ′

i
α , for 1 ≤ i ≤ l

(e). SendM ′ andEpk(α) toP1

3: P1:

(a). ReceiveM ′ andEpk(α) fromP2

(b). M̃ ← π−1
1 (M ′)

(c). for i = 1 to l do:

• λi ← M̃i ∗ Epk(α)
N−r̂i

• if F : u > v thenEpk(min(u, v)i)← Epk(ui) ∗ λi

elseEpk(min(u, v)i)← Epk(vi) ∗ λi

10



The overall steps involved in the SMIN protocol are shown in Algorithm 3. To start with,P1 initially chooses the
functionalityF as eitheru > v or v > u randomly. Then, using the SM protocol,P1 computesEpk(ui ∗ vi) with the
help ofP2, for 1 ≤ i ≤ l. Now, depending onF , P1 proceeds as follows, for1 ≤ i ≤ l:

• If F : u > v, compute

Wi = Epk(ui) ∗ Epk(ui ∗ vi)
N−1

= Epk(ui ∗ (1− vi))

Γi = Epk(vi − ui) ∗ Epk(r̂i)

= Epk(vi − ui + r̂i)

• If F : v > u, compute:

Wi = Epk(vi) ∗ Epk(ui ∗ vi)
N−1

= Epk(vi ∗ (1 − ui))

Γi = Epk(ui − vi) ∗ Epk(r̂i)

= Epk(ui − vi + r̂i)

wherer̂i is a random number inZN

• Observe that ifF : u > v, thenWi = Epk(1) only if ui > vi, andWi = Epk(0) otherwise. Similarly, when
F : v > u, we haveWi = Epk(1) only if vi > ui, andWi = Epk(0) otherwise. Also, depending ofF , Γi

stores the encryption of randomized difference betweenui andvi which will be used in later computations.

• Compute the encrypted bit-wise XOR between the bitsui and vi asGi = Epk(ui ⊕ vi) using the below
formulation:

Gi = Epk(ui) ∗ Epk(vi) ∗ Epk(ui ∗ vi)
N−2

In general, for any two given bitso1 ando2, we haveo1 ⊕ o2 = o1 + o2 − 2(o1 ∗ o2)

• Compute an encrypted vectorH by preserving the first occurrence ofEpk(1) (if there exists one) inG by
initializing H0 = Epk(0). The rest of the entries ofH are computed asHi = Hri

i−1 ∗Gi. We emphasize that at
most one of the entry inH isEpk(1) and the remaining entries are encryptions of either 0 or a random number.
Also, if there exists an indexj such thatHj = Epk(1), then indexj is the first position (starting from the most
significant bit) at which the corresponding bits ofu andv differ.

• Then,P1 computesΦi = Epk(−1) ∗Hi. Note that “−1” is equivalent to “N − 1” underZN . From the above
discussions, it is clear thatΦi = Epk(0) at most once sinceHi is equal toEpk(1) at most once. Also, if
Φj = Epk(0), then indexj is the position at which the bits ofu andv differ first.

• Compute an encrypted vectorL by combiningW andΦ. Note thatWi stores the result ofui > vi or vi > ui

which depends onF known only toP1. Precisely,P1 computesLi = Wi ∗ Φ
r′i
i , wherer′i is a random number

in ZN . The observation here is if∃ an indexj such thatΦj = Epk(0), denoting the first flip in the bits ofu and
v, thenWj stores the corresponding desired information, i.e., whetheruj > vj or vj > uj in encrypted form.

After this,P1 permutes the encrypted vectorsΓ andL using two random permutation functionsπ1 andπ2. Specifically,
P1 computesΓ′ = π1(Γ) andL′ = π2(L), and sends them toP2. Upon receiving,P2 decryptsL′ component-wise to
getMi = Dsk(L

′

i), for 1 ≤ i ≤ l, and checks for indexj (decide the output ofF ). That is, ifMj = 1, then the output
of F is 1, and 0 otherwise. Let the output beα. Note that sinceF is not known toP2, the outputα is oblivious toP2.
In addition,P2 computes a new encrypted vectorM ′ whereM ′

i = Γ′

i
α, for 1 ≤ i ≤ l, sendsM ′ andEpk(α) to P1.

After receivingM ′ andEpk(α), P1 computes the inverse permutation ofM ′ asM̃ = π−1
1 (M ′). Then,P1 performs

the following homomorphic operations to compute the encryption of ith bit of min(u, v), i.e.,Epk(min(u, v)i), for
1 ≤ i ≤ l:
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Table 4: P1 choosesF asv > u whereu = 55 andv = 58
[u] [v] Wi Γi Gi Hi Φi Li Γi’ L′

i Mi λi mini

1 1 0 r 0 0 −1 r 1 + r r r 0 1
1 1 0 r 0 0 −1 r r r r 0 1
0 1 1 −1 + r 1 1 0 1 1 + r r r −1 0
1 0 0 1 + r 1 r r r −1 + r r r 1 1
1 1 0 r 0 r r r r 1 1 0 1
1 0 0 1 + r 1 r r r r r r 1 1

All column values are in encrypted form exceptMi column. Also, r ∈R ZN is different for each row and column.

• Remove the randomness from̃Mi by computing

λi = M̃i ∗ Epk(α)
N−r̂i

• If F : u > v, compute theith encrypted bit ofmin(u, v) asEpk(min(u, v)i) = Epk(ui) ∗ λi = Epk(ui + α ∗
(vi − ui)). Otherwise, computeEpk(min(u, v)i) = Epk(vi) ∗ λi = Epk(vi + α ∗ (ui − vi)).

In the SMIN protocol, one main observation (upon which we canalso justify the correctness of the final output) is that
if F : u > v, thenmin(u, v)i = (1 − α) ∗ ui + α ∗ vi always holds, for1 ≤ i ≤ l. Similarly, if F : v > u, then
min(u, v)i = α ∗ ui + (1 − α) ∗ vi always holds.

Example 5. Consider thatu = 55, v = 58, andl = 6. Assume thatP1 holds[55] = 〈Epk(1), Epk(1), Epk(0), Epk(1),
Epk(1), Epk(1)〉 and [58] = 〈Epk(1), Epk(1), Epk(1), Epk(0), Epk(1), Epk(0)〉. In addition, we assume thatP1’s
random permutation functions are as given below. Without loss of generality, supposeP1 chooses the functionality

i = 1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓

π1(i) = 6 5 4 3 2 1

π2(i) = 2 1 5 6 3 4

F : v > u. Then, various intermediate results based on the SMIN protocol are as shown in Table 4. Following from
Table 4, we observe that:

• At most one of the entry inH is Epk(1) (= H3) and the remaining entries are encryptions of either 0 or a
random number inZN .

• Indexj = 3 is the first position at which the corresponding bits ofu andv differ.

• Φ3 = Epk(0) sinceH3 is equal toEpk(1). Also, sinceM5 = 1, P2 setsα to 1.

At the end, onlyP1 knows[min(u, v)] = [u] = [55]. �

Secure Minimum out of n Numbers (SMINn). ConsiderP1 with private input([d1], . . . , [dn]) andP2 with sk,
where0 ≤ di < 2l and [di] = 〈Epk(di,1), . . . , Epk(di,l)〉, for 1 ≤ i ≤ n. The goal of the SMINn protocol is to
compute[min(d1, . . . , dn)] = [dmin] without revealing any information aboutdi’s to P1 andP2. Here we construct a
new SMINn protocol by utilizing SMIN as the building block. The proposed SMINn protocol is an iterative approach
and it computes the desired output in an hierarchical fashion. In each iteration, minimum between a pair of values is
computed and are feeded as input to the next iteration. Therefore, generating a binary execution tree in a bottom-up
fashion. At the end, onlyP1 knows the final result[dmin].
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Algorithm 4 SMINn([d1], . . . , [dn])→ [dmin]

Require: P1 has([d1], . . . , [dn]); P2 hassk
1: P1:

(a). [d′i]← [di], for 1 ≤ i ≤ n

(b). num← n

2: P1 andP2, for i = 1 to ⌈log2 n⌉:

(a). for 1 ≤ j ≤
⌊
num
2

⌋
:

• if i = 1 then:

– [d′2j−1]← SMIN([d′2j−1], [d
′

2j ])

– [d′2j ]← 0

else

– [d′2i(j−1)+1]← SMIN([d′2i(j−1)+1], [d
′

2ij−1])

– [d′2ij−1]← 0

(b). num←
⌈
num
2

⌉

3: P1:

(a.) [dmin]← [d′1]

The overall steps involved in the proposed SMINn protocol are highlighted in Algorithm 4. Initially,P1 assigns
[di] to a temporary vector[d′i], for 1 ≤ i ≤ n. Also, he/she creates a global variablenum and initialize it ton, where
num represents the number of (non-zero) vectors involved in each iteration. Since the SMINn protocol executes in
a binary tree hierarchy (bottom-up fashion), we have⌈log2 n⌉ iterations, and in each iteration, the number of vectors
involved varies. In the first iteration (i.e.,i = 1), P1 with private input([d′2j−1], [d

′

2j ]) andP2 with sk involve in the
SMIN protocol, for1 ≤ j ≤

⌊
num
2

⌋
. At the end of the first iteration, onlyP1 knows[min(d′2j−1, d

′

2j)] and nothing is
revealed toP2, for 1 ≤ j ≤

⌊
num
2

⌋
. Also,P1 stores the result[min(d′2j−1, d

′

2j)] in [d′2j−1], updates[d′2j ] to zero and
num to

⌈
num
2

⌉
.

During theith iteration, only the non-zero vectors are involved, for2 ≤ i ≤ ⌈log2 n⌉. For example, during second
iteration (i.e.,i = 2), only [d′1], [d

′

3], and so on are involved. Note that in each iteration, the output is revealed only to
P1 andnum is updated to

⌈
num
2

⌉
. At the end of the SMINn protocol,P1 assigns the final encrypted binary vector of

global minimum value, i.e.,[min(d1, . . . , dn)] which is stored in[d′1] to [dmin].
For example, assume thatP1 holds〈[d1], . . . , [d6]〉 (i.e.,n = 6). Then, based on the SMINn protocol, the binary

execution tree (in a bottom-up fashion) to compute[min(d1, . . . , d6)] is as shown in Figure 1. Note that,[d′i] is initially
set to[di], for 1 ≤ i ≤ 6.

Secure Bit-OR (SBOR). Let us assume thatP1 holds(Epk(o1), Epk(o2)) andP2 holdssk, whereo1 ando2 are
two bits not known to both parties. The goal of the SBOR protocol is to securely computeEpk(o1 ∨ o2). At the end
of this protocol, onlyP1 knowsEpk(o1 ∨ o2). During this process, no information related too1 ando2 is revealed to
P1 andP2. Given the secure multiplication (SM) protocol,P1 can computeEpk(o1 ∨ o2) as follows:

• P1 with input(Epk(o1), Epk(o2)) andP2 with sk involve in the SM protocol. At the end of this step, the output
Epk(o1 ∗ o2) is known only toP1. Note that, sinceo1 ando2 are bits,Epk(o1 ∗ o2) = Epk(o1 ∧ o2).
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[dmin]← [min(d′1, d
′

5)]

[d′5]

[d′5]← [min(d′5, d
′

6)]

[d′6][d′5]

[d′1]← [min(d′1, d
′

3)]

[d′3]← [min(d′3, d
′

4)]

[d′4][d′3]

[d′1]← [min(d′1, d
′

2)]

[d′2][d′1]

Figure 1: Binary execution tree forn = 6 based on the SMINn protocol

• Epk(o1 ∨ o2) = Epk(o1 + o2) ∗ Epk(o1 ∧ o2)
N−1.

We emphasize that, for any given two bitso1 ando2, the propertyo1 ∨ o2 = o1 + o2 − o1 ∧ o2 always holds. Note
that, by homomorphic addition property,Epk(o1 + o2) = Epk(o1) ∗ Epk(o2).

4 The Proposed Protocols

In this section, we first present a basic SkNN protocol and demonstrate why such a simple solution is notsecure.
Then, we discuss our second approach, a fully securekNN protocol. Both protocols are constructed using the security
primitives discussed in Section 3 as building blocks.

As mentioned earlier, we assume that Alice’s database consists ofn records, denoted byT = 〈t1, . . . , tn〉, andm
attributes, whereti,j denotes thejth attribute value of recordti. Initially, Alice encrypts her database attribute-wise,
that is, she computesEpk(ti,j), for 1 ≤ i ≤ n and1 ≤ j ≤ m. Let the encrypted database be denoted byEpk(T ).
We assume that Alice outsourcesEpk(T ) as well as the future query processing service to the cloud. Without loss of
generality, we assume that all attribute values and their Euclidean distances lie in[0, 2l).

In our proposed protocols, we assume the existence of two non-colluding semi-honest cloud service providers,
denoted byC1 andC2, which together form a federated cloud. We emphasize that such an assumption is not new
and has been commonly used in the related problem domains [3,26]. The intuition behind such an assumption is as
follows. Most of the cloud service providers in the market are well-established IT companies, such as Amazon and
Google. Therefore, a collusion between them is highly unlikely as it will damage their reputation which in turn effects
their revenues.

Under this setting, Alice outsources her encrypted databaseEpk(T ) to C1 and the secret keysk to C2. The goal
of the proposed protocols is to retrieve the topk records that are closest to the user query in an efficient and secure
manner. Briefly, consider an authorized user Bob who wants tofind k records that are closest to his query record
Q = 〈q1, . . . , qm〉 based onEpk(T ) in C1. Bob initially sends his queryQ (in encrypted form) toC1. After this,C1

andC2 involve in a set of sub-protocols to securely retrieve (in encrypted form) the set ofk records corresponding
to thek-nearest neighbors of the input queryQ. At the end of our protocols, only Bob will receive thek-nearest
neighbors toQ as the output.

4.1 Basic Protocol

In the basic securek-nearest neighbor query protocol, denoted by SkNNb, we relax the desirable properties to produce
an efficient protocol (more details are given in the later part of this section).

The main steps involved in the SkNNb protocol are given in Algorithm 5. Bob initially encrypts his queryQ
attribute-wise, that is, he computesEpk(Q) = 〈Epk(q1), . . . , Epk(qm)〉 and sends it toC1. Upon receivingEpk(Q)
from Bob,C1 with private input(Epk(Q), Epk(ti)) andC2 with the secret keysk jointly involve in the SSED protocol,
whereEpk(ti) = 〈Epk(ti,1), . . . , Epk(ti,m)〉, for 1 ≤ i ≤ n. The output of this step, denoted byEpk(di), is the
encryption of squared Euclidean distance betweenQ andti, i.e., di = |Q − ti|

2. As mentioned earlier,Epk(di) is
known only toC1, for 1 ≤ i ≤ n. We emphasize that computation of exact Euclidean distancebetween encrypted
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vectors is hard to achieve as it involves square root. However, in our problem, it is sufficient to compare the squared
Euclidean distances as it preserves relative ordering. After this,C1 sends{〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} to C2,
where entry〈i, Epk(di)〉 correspond to data recordti, for 1 ≤ i ≤ n. Upon receiving〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉,
C2 decrypts the encrypted distance in each entry to getdi = Dsk(Epk(di)). Then,C2 generates an index listδ =
〈i1, . . . , ik〉 such that〈di1 , . . . dik〉 are the topk smallest distances among〈d1, . . . , dn〉. After this,C2 sendsδ to C1.
Upon receivingδ, C1 proceeds as follows:

• Select the encrypted recordsEpk(ti1 ), . . . , Epk(tik) as thek-nearest records toQ and randomize them attribute-
wise. More specifically,C1 computesEpk(γj,h) = Epk(tij ,h) ∗ Epk(rj,h), for 1 ≤ j ≤ k and1 ≤ h ≤ m.
Hererj,h is a random number inZN andtij ,h denotes the columnh attribute value of data recordtij . Sendγj,h
toC2 andrj,h to Bob, for1 ≤ j ≤ k and1 ≤ h ≤ m.

Upon receivingγj,h, for 1 ≤ j ≤ k and1 ≤ h ≤ m, C2 decrypts it to getγ′

j,h = Dsk(γj,h) and sends them to Bob.
Note that, due to randomization byC1, γ′

j,h is always a random number inZN .
Finally, upon receivingrj,h fromC1 andγ′

j,h fromC2, Bob computes the attribute values ofjth nearest neighbor
to Q ast′j,h = γ′

j,h − rj,h mod N , for 1 ≤ j ≤ k and1 ≤ h ≤ m. Note thatN is the RSA modulus or part of the
public keypk.

4.2 Fully SecurekNN Protocol

The above-mentioned SkNNb protocol reveals the data access patterns toC1 andC2. That is, for any givenQ, C1 and
C2 know which data records correspond to thek-nearest neighbors ofQ. Also, it revealsdi values toC2. However,
leakage of such information may not be acceptable in privacy-sensitive applications such as medical data. Along this
direction, we propose a fully secure protocol, denoted by SkNNm(where m stands for maximally secure), to retrieve
thek-nearest neighbors ofQ. The proposed SkNNm protocol preserves all the desirable properties of a securekNN
protocol as mentioned in Section 1.

The main steps involved in the proposed SkNNm protocol are as shown in Algorithm 6. Initially, Bob sends his
attribute-wise encrypted queryQ, that is,Epk(Q) = 〈Epk(q1), . . . , Epk(qm)〉 toC1. Upon receiving,C1 with private
input (Epk(Q), Epk(ti)) andC2 with the secret keysk jointly involve in the SSED protocol. The output of this step
is Epk(di) = Epk(|Q − ti|

2) which will be known only toC1, for 1 ≤ i ≤ n. Then,C1 with inputEpk(di) andC2

with sk securely compute the encryptions of the individual bits ofdi using the SBD protocol. Note that the output of
this step[di] = 〈Epk(di,1), . . . , Epk(di,l)〉 is known only toC1, wheredi,1 anddi,l are the most and least significant
bits ofdi respectively. Note that0 ≤ di < 2l, for 1 ≤ i ≤ n.

After this,C1 andC2 compute the topk (in encrypted form) records that are closest toQ in an iterative manner.
More specifically, they computeEpk(t

′

1) in the first iteration,Epk(t
′

2) in the second iteration, and so on. Heret′s de-
notes thesth nearest neighbor toQ, for 1 ≤ s ≤ k. At the end ofk iterations, onlyC1 knows〈Epk(t

′

1), . . . , Epk(t
′

k)〉.
To start with, in the first iteration,C1 andC2 jointly compute the encryptions of the individual bits of the minimum
value amongd1, . . . , dn using SMINn. That is,C1 with input 〈[d1], . . . , [dn]〉 andC2 compute[dmin], wheredmin

is the minimum value amongd1, . . . , dn. The output[dmin] is known only toC1. Now, C1 performs the following
operations locally:

• Compute the encryption ofdmin from its encrypted individual bits as below

Epk(dmin) =

l−1∏

γ=0

Epk(dmin,γ+1)
2l−γ−1

= Epk(dmin,1 ∗ 2
l−1 + · · ·+ dmin,l)

wheredmin,1 anddmin,l are the most and least significant bits ofdmin respectively.

• Compute the encryption of difference betweendmin and eachdi. That is,C1 computesτi = Epk(dmin) ∗
Epk(di)

N−1 = Epk(dmin − di), for 1 ≤ i ≤ n.
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Algorithm 5 SkNNb(Epk(T ), Q)→ 〈t′1, . . . , t
′

k〉

Require: C1 hasEpk(T ); C2 hassk; Bob hasQ
1: Bob:

(a). ComputeEpk(qj), for 1 ≤ j ≤ m

(b). SendEpk(Q) = 〈Epk(q1), . . . , Epk(qm)〉 toC1

2: C1 andC2:

(a). C1 receivesEpk(Q) from Bob

(b). for i = 1 to n do:

• Epk(di)← SSED(Epk(Q), Epk(ti))

(c). Send{〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} toC2

3: C2:

(a). Receive{〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} fromC1

(b). di ← Dsk(Epk(di)), for 1 ≤ i ≤ n

(c). Generateδ ← 〈i1, . . . , ik〉, such that〈di1 , . . . , dik 〉 are the topk smallest distances among〈d1, . . . , dn〉

(d). Sendδ to C1

4: C1:

(a). Receiveδ fromC2

(b). for 1 ≤ j ≤ k and1 ≤ h ≤ m do:

• γj,h ← Epk(tij ,h) ∗ Epk(rj,h), whererj,h ∈R ZN

• Sendγj,h toC2 andrj,h to Bob

5: C2:

(b). for 1 ≤ j ≤ k and1 ≤ h ≤ m do:

• Receiveγj,h fromC1

• γ′

j,h ← Dsk(γj,h); sendγ′

j,h to Bob

6: Bob:

(a). for 1 ≤ j ≤ k and1 ≤ h ≤ m do:

• Receiverj,h fromC1 andγ′

j,h fromC2

• t′j,h ← γ′

j,h − rj,h mod N
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• Randomizeτi to getτ ′i = τrii = Epk(ri ∗ (dmin − di)), whereri is a random number inZN . Note thatτ ′i is
an encryption of either 0 or a random number, for1 ≤ i ≤ n. Also, permuteτ ′ using a random permutation
functionπ (known only toC1) to getβ = π(τ ′) and send it toC2.

Upon receivingβ, C2 decrypts it component-wise to getβ′

i = Dsk(βi), for 1 ≤ i ≤ n. After this, he/she computes an
encrypted vectorU of lengthn such thatUi = Epk(1) if β′

i = 0, andEpk(0) otherwise. Here we assume that exactly
one of the entries inβ equals to zero and rest of them are random. This further implies that exactly one of the entries
in U is an encryption of 1 and rest of them are encryptions of 0’s. However, we emphasize that ifβ′ has more than one
0’s, thenC2 can randomly pick one of those indexes and assignEpk(1) to the corresponding index ofU andEpk(0)
to the rest. Then,C2 sendsU to C1. After receivingU , C1 performs inverse permutation on it to getV = π−1(U).
Note that exactly one of the entry inV isEpk(1) and the remaining are encryption of 0’s. In addition, ifVi = Epk(1),
thenti is the closest record toQ. However,C1 andC2 do not know which entry inV corresponds toEpk(1).

Finally,C1 computesEpk(t
′

1), encryption of the closest record toQ, and updates the distance vectors as follows:

• C1 andC2 jointly involve in the secure multiplication (SM) protocolto computeV ′

i,j = Vi ∗ Epk(ti,j), for
1 ≤ i ≤ n and1 ≤ j ≤ m. The outputV ′ from the SM protocol is known only toC1. After this, by using
homomorphic properties,C1 computes the encrypted recordEpk(t

′

1) = 〈Epk(t1,1), . . . , Epk(t1,m)〉 locally,
Epk(t

′

1,j) =
∏n

i=1 V
′

i,j , where1 ≤ j ≤ m. Note thatt′1,j denotes thejth attribute value of recordt′1.

• It is important to note that the first nearest tuple toQ should be obliviously excluded from further computations.
However, sinceC1 does not know the record corresponding toEpk(t

′

1), we need to obliviously eliminate the
possibility of choosing this record again in next iterations. For this,C1 obliviously updates the distance corre-
sponding toEpk(t

′

1) to the maximum value, i.e.,2l− 1. More specifically,C1 updates the distance vectors with
the help ofC2 using the SBOR protocol as below, for1 ≤ i ≤ n and1 ≤ γ ≤ l.

Epk(di,γ) = SBOR(Vi, Epk(di,γ))

Note that whenVi = Epk(1), the corresponding distance vectordi is set to the maximum value. That is, under
this case,[di] = 〈Epk(1), . . . , Epk(1)〉. However, whenVi = Epk(0), the OR operation has no affect ondi.

The above process is repeated untilk iterations, and in each iteration[di] corresponding to the current chosen record is
set to the maximum value. However, sinceC1 does not know which[di] is updated, he/she has to re-computeEpk(di)
in each iteration using their corresponding encrypted binary vectors[di], for 1 ≤ i ≤ n. In iterations, Epk(t

′

s) is
known only toC1.

At the end of the iterative step (i.e., step 3 of Algorithm 6),C1 has〈Epk(t
′

1), . . . , Epk(t
′

k)〉 - the list of encrypted
records ofk-nearest neighbors to the input queryQ. The rest of the process is similar to steps 4 to 6 of Algorithm5.
Briefly, C1 randomizesEpk(t

′

j) attribute-wise to getγj,h = Epk(t
′

j,h) ∗ Epk(rj,h) and sendsγj,h to C2 andrj,h to
Bob, for1 ≤ j ≤ k and1 ≤ h ≤ m. Hererj,h is a random number inZN . Upon receivingγj,h’s, C2 decrypts them
to get the randomizedk-nearest records asγ′

j,h = Dsk(γj,h) and sends them to Bob, for1 ≤ j ≤ k and1 ≤ h ≤ m.
Finally, upon receivingrj,h from C1 andγ′

j,h from C2, Bob computes thejth nearest neighboring record toQ, as
t′j,h = γ′

j,h − rj,h mod N , for 1 ≤ j ≤ k and1 ≤ h ≤ m.

4.3 Security Analysis

Here we analyze the security guarantees of the proposed protocols. First, due to the encryption ofQ and by semantic
security of the Paillier cryptosystem, Bob’s input queryQ is protected from Alice,C1 andC2 in both protocols.

In the SkNNb protocol, the decryption operations at step 3(b) of Algorithm 5 revealdi values toC2. In addition,
sinceC2 generates the topk index list (at step 3(c) of Algorithm 5) and sends it toC1, the data access patterns are
revealed toC1 andC2. Therefore, our basic SkNNb protocol is secure under the assumption thatdi values can be
revealed toC2 and data access patterns can be revealed toC1 andC2.

On the other hand, the security analysis of SkNNm is as follows. At step 2 of Algorithm 6, the outputs of SSED
and SBD are in encrypted format, and are known only toC1. In addition, all the intermediate results decrypted byC2

in SSED are uniformly random inZN . Also, as mentioned in [21], the SBD protocol is secure. Thus, no information is
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Algorithm 6 SkNNm(Epk(T ), Q)→ 〈t′1, . . . , t
′

k〉

Require: C1 hasEpk(T ) andπ; C2 hassk; Bob hasQ
1: Bob sendsEpk(Q) = 〈Epk(q1), . . . , Epk(qm)〉 toC1

2: C1 andC2:

(a). for i = 1 to n do:

• Epk(di)← SSED(Epk(Q), Epk(ti)) and[di]← SBD(Epk(di))

3: for s = 1 to k do:

(a). C1 andC2:

• [dmin]← SMINn([d1], . . . , [dn])

(b). C1:

• Epk(dmin)←
∏l−1

γ=0 Epk(dmin,γ+1)
2l−γ−1

• if s 6= 1 then, for 1 ≤ i ≤ n

– Epk(di)←
∏l−1

γ=0 Epk(di,γ+1)
2l−γ−1

• for i = 1 to n do:

– τi ← Epk(dmin) ∗ Epk(di)
N−1

– τ ′i ← τrii , whereri ∈R ZN

• β ← π(τ ′); sendβ to C2

(c). C2:

• β′

i ← Dsk(βi), for 1 ≤ i ≤ n

• ComputeU , for 1 ≤ i ≤ n:

– if β′

i = 0 thenUi = Epk(1)

– elseUi = Epk(0)

• SendU toC1

(d). C1:

• V ← π−1(U)

• V ′

i,j ← SM(Vi, Epk(ti,j)), for 1 ≤ i ≤ n and1 ≤ j ≤ m

• Epk(t
′

s,j)←
∏n

i=1 V
′

i,j , for 1 ≤ j ≤ m

• Epk(t
′

s) = 〈Epk(t
′

s,1), . . . , Epk(t
′

s,m)〉

(e). C1 andC2, for 1 ≤ i ≤ n:

• Epk(di,γ)← SBOR(Vi, Epk(di,γ)), for 1 ≤ γ ≤ l

The rest of the steps are similar to steps 4-6 of SkNNb
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revealed during step 2 of Algorithm 6. In each iteration, theoutput of SMINn is known only toC1 and no information
is revealed toC2. Also,C1 andC2 do not know which record belongs to current global minimum. Thus, data access
patterns are protected from bothC1 andC2. At step 3(c) of Algorithm 6, a component-wise decryption ofβ reveals
the tuples that satisfy the current global minimum distanceto C2. However, due to permutation byC1, C2 cannot
trace back to the corresponding data records. Also, note that decryption ofβ gives either encryptions of 0’s or random
numbers inZN . Similarly, sinceU is an encrypted vector,C1 cannot know which tuple corresponds to current global
minimum distance. Thus, data access patterns are further protected at this step fromC1. In addition, the update process
at step 3(e) of Algorithm 6 does not leak any information toC1 andC2. In summary,C1 andC2 do not know which
data records correspond to the output set〈t′1, . . . , t

′

k〉.
Based on the above discussions, it is clear that the proposedSkNNm protocol protects the confidentiality of the

data, privacy of user’s input query, and hides the data access patterns.

4.4 Complexity Analysis

The computation complexity of SkNNb is bounded byO(n ∗m + k) encryptions, decryptions and exponentiations.
In practicek ≪ n ∗m; therefore, the computation complexity of SkNNb is bounded byO(n ∗m) encryptions and
exponentiations (assuming that encryption and decryptionoperations under Paillier cryptosystem take similar amount
of time).

In the SkNNm protocol, the computation complexity is bounded byO(n) instantiations of SBD and SSED,O(k)
instantiations of SMINn, andO(n ∗ l) instantiations of SBOR. We emphasize that the computation complexity of
the SBD protocol proposed in [21] is bounded byO(l) encryptions andO(l) exponentiations. Also, the computation
complexity of SSED is bounded byO(m) encryptions andO(m) exponentiations. In addition, the computation
complexity of SMINn is bounded byO(l ∗n∗ log2 n) encryptions andO(l ∗n∗ log2 n) exponentiations. Since SBOR
utilizes SM as a sub-routine, the computation cost of SBOR isbounded by (small) constant number of encryptions and
exponentiations. Based on the above analysis, the total computation complexity of the SkNNm protocol is bounded by
O(n ∗ (l +m+ k ∗ l ∗ log2 n)) encryptions and exponentiations.

5 Empirical Results

In this section, we discuss the performances of the proposedprotocols in detail under different parameter settings. We
used Paillier cryptosystem [18] and implemented the proposed protocols in C. Various experiments were conducted
on a Linux machine with an IntelR© XeonR© Six-CoreTM CPU 3.07 GHz processor and 12GB RAM running Ubuntu
10.04 LTS.

Since it is difficult to control the parameters in a real dataset, we randomly generated synthetic datasets depending
on the parameter values in consideration. Using these synthetic datasets we can perform a more elaborated analysis
on the computation costs of the proposed protocols under different parameter settings. We encrypted these datasets
attribute-wise, using the Paillier encryption whose key size is varied in our experiments, and the encrypted data were
stored on our machine. Based on the protocols protocols, we then executed a random query over this encrypted data.
For the rest of this section, we do not discuss about the performance of Alice since it is a one-time cost. Instead, we
evaluate and analyze the performances of SkNNb and SkNNm separately. In addition, we compare the two protocols.
In all our experiments, the Paillier encryption key size, denoted byK, is set to either 512 or 1024 bits.

5.1 Performance of SkNNb

In this sub-section, we analyze the computation costs of SkNNb by varying the number of data records (n), number of
attributes (m), number of nearest neighbors (k), and encryption key size (K). Note that SkNNb is independent of the
domain size of attributes (l).

First, by fixingk = 5 andK = 512, we evaluated the computation costs of SkNNb for varyingn andm. As
shown in Figure 2(a), the computation costs of SkNNb grows linearly withn andm. For example, whenm = 6, the
computation time of SkNNb increases from 44.08 to 87.91 seconds whenn is varied from 2000 to 4000. A similar
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(a) SkNNb for k = 5 andK = 512
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(b) SkNNb for k = 5 andK = 1024
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(c) SkNNb for m = 6 andn = 2000
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(d) SkNNm for n = 2000 andK = 512
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(e) SkNNm for n = 2000 andK = 1024
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Figure 2: Time complexities of SkNNb and SkNNm for varying values ofn, m, l, k and encryption key sizeK

trend is observed forK = 1024 as shown in Figure 2(b). For any fixed parameters, we observedthat the computation
time of SkNNb increases almost by a factor of 7 whenK is doubled.

Next, by fixingm = 6 andn = 2000, we evaluated the running times of SkNNb for varyingk andK. The results
are shown in Figure 2(c). Irrespective ofK, the computation time of SkNNb does not change much with varyingk.
This is because most of the cost in SkNNb comes from the SSED protocol which is independent ofk. E.g., when
K = 512 bits, the computation time of SkNNb changes from 44.08 to 44.14 seconds whenk is changed from 5 to 25.
Based on the above discussions, it is clear that the running time of SkNNb mainly depends on (or grows linearly with)
n andm which further justifies our complexity analysis in Section 4.4.

5.2 Performance of SkNNm

We also evaluated the computation costs of SkNNm for varying values ofk, l andK. Throughout this sub-section, we
fix m = 6 andn = 2000. However, we observed that the running time of SkNNm grows linearly withn andm.

ForK = 512 bits, the computation costs of SkNNm for varyingk andl are as shown in Figure 2(d). Following
from Figure 2(d), forl = 6, the running time of SkNNm varies from 11.93 to 55.65 minutes whenk is changed from 5
to 25 respectively. Also, forl = 12, the running time of SkNNm varies from 20.68 to 97.8 minutes whenk is changed
from 5 to 25 respectively. In either case, the cost of SkNNm grows almost linearly withk andl.

A similar trend is observed forK = 1024 as shown in Figure 2(e). In particular, for any given fixed parameters,
we identified that the computation cost of SkNNm increases by almost a factor of 7 whenK is doubled. For example,
whenk = 10, SkNNm took 22.85 and 157.17 minutes to generate the 10 nearest neighbors ofQ underK = 512 and
1024 bits respectively. Furthermore, whenk = 5, we observed that around 69.7% of cost in SkNNm is accounted due to
SMINn which is initiatedk times in SkNNm (once in each iteration). Also, the cost incurred due to SMINn increases
from 69.7% to at least 75% whenk is increased from 5 to 25.

In addition, by fixingn = 2000,m = 6, l = 6 andK = 512, we compared the running times of both protocols
for varying values ofk. As shown in Figure 2(f), the running time of SkNNb remains to be constant at 0.73 minutes
since it is almost independent ofk. However, the running time of SkNNm changes from 11.93 to 55.65 minutes as we
increasek from 5 to 25.
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Figure 3: Comparison of parallel and serial versions of SkNNb for m = 6, k = 5 andK = 512 bits

Based on the above results, it is clear that the computation costs of SkNNm are significantly higher than that of
SkNNb. However, we emphasize that SkNNm is more secure than SkNNb; therefore, the two protocols act as a trade-
off between security and efficiency. Also, it is important tonote that Bob’s computation cost is mainly due to the
encryption of his input query record. As an example, form = 6, Bob’s computation costs are 4 and 17 milliseconds
whenK is 512 and 1024 bits respectively. This further shows that our proposed protocols are very efficient from
end-user’s perspective.

5.3 Towards Performance Improvement

At first, it seems that the proposed protocols are costly and may not scale well for large datasets. However, in both
protocols, we emphasize that the computations involved on each data record are independent of others. Therefore, we
can parallelize the operations on data records for efficiency purpose. To further justify this claim, we implemented
a parallel version of our SkNNb protocol using OpenMP programming and compared its computation costs with its
serial version. As mentioned earlier, our machine has 6 cores which can be used to perform parallel operations on 6
threads. Form = 6, k = 5 andK = 512 bits, the comparison results are as shown in Figure 3. The observation is
that the parallel version of SkNNb is roughly 6 times more efficient than its serial version. This is because of the fact
that the parallel version can execute operations on 6 data records at a time (i.e., on 6 threads in parallel). For example,
whenn = 10000, the running times of parallel and serial versions of SkNNb are 40 and 215.59 seconds respectively.

We believe that similar efficiency gains can be achieved by parallelizing the operations in SkNNm. Based on
the above discussions, especially in a cloud computing environment where high performance parallel processing can
easily be achieved, we claim that the scalability issue of the proposed protocols can be eliminated or mitigated. In
addition, using the existing map-reduce techniques, we candrastically improve the performance further by executing
parallel operations on multiple nodes. We will leave this analysis to future work.

6 Conclusion

Query processing is an important task in database management systems. In particular,k-nearest neighbors is one
of the commonly used query in many data mining applications such as detection of fraud by credit card companies
and prediction of tumor cells levels in blood. With the recent growth of cloud computing as a new IT paradigm,
data owners are more interested to outsource their databases as well as DBMS functionalities to the cloud. Under
an outsourced database environment, where encrypted data are stored in the cloud, secure query processing over
encrypted data becomes challenging. To protect user privacy, various securek-nearest neighbor (SkNN) techniques
have been proposed in the literature. However, the existingSkNN techniques over encrypted data are not secure.

Along this direction, we proposed two novel SkNN protocols over encrypted data in the cloud. The first protocol,
which acts as a basic solution, leaks some information to thecloud. On the other hand, our second protocol is fully
secure, that is, it protects the confidentiality of the data,user’s input query, and also hides the data access patterns.
However, the second protocol is more expensive compared to the basic protocol. Also, we evaluated the performance
of our protocols under different parameter settings. As a future work, we will investigate and extend our research to
other complex conjuctive queries over encrypted data.
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