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Abstract—Nowadays, high-performance transaction processing
applications increasingly run on multisocket multicore servers.
Such architectures exhibit non-uniform memory access latency as
well as non-uniform thread communication costs. Unfortunately,
traditional shared-everything database management systems are
designed for uniform inter-core communication speeds. This
causes unpredictable access latencies in the critical path. While
lack of data locality may be a minor nuisance on systems with
fewer than 4 processors, it becomes a serious scalability limitation
on larger systems due to accesses to centralized data structures.

In this paper, we propose ATraPos, a storage manager design
that is aware of the non-uniform access latencies of multisocket
systems. ATraPos achieves good data locality by carefully par-
titioning the data as well as internal data structures (e.g., state
information) to the available processors and by assigning threads
to specific partitions. Furthermore, ATraPos dynamically adapts
to the workload characteristics, i.e., when the workload changes,
ATraPos detects the change and automatically revises the data
partitioning and thread placement to fit the current access
patterns and hardware topology.

We prototype ATraPos on top of an open-source storage
manager Shore-MT and we present a detailed experimental
analysis with both synthetic and standard (TPC-C and TATP)
benchmarks. We show that ATraPos exhibits performance im-
provements of a factor ranging from 1.4 to 6.7x for a wide
collection of transactional workloads. In addition, we show that
the adaptive monitoring and partitioning scheme of ATraPos
poses a negligible cost, while it allows the system to dynamically
and gracefully adapt when the workload changes.

I. INTRODUCTION

Over the years, relational database vendors have optimized
software for commodity servers: uniprocessors, shared memory
multiprocessors, and multicores. The common denominator of
these servers is the uniform communication speed between
any pair of CPU cores. However, the latest processor design
trends provide very different types of high performance servers.
There, we have groups of cores that communicate very fast
with cores that belong to the same group and several times
slower with cores from other groups. We call such a group of
fast communicating cores an Island [1]. Currently, an Island is
represented by a processor socket but in the near future, with
dozens of cores on the same socket, we expect that Islands
will form within a chip [2].

The problem. Online Transaction Processing (OLTP) is one
of the most important and demanding database applications
used in large enterprise systems. Thus, providing the maximum
possible performance is of significant importance. However,
OLTP systems suffer from non-uniform communication be-
tween cores in modern hardware.

Relational database systems are typically designed either as
shared-everything or shared-nothing architectures. In a shared-
everything design, we have one database instance that uses
all resources and manages all data. A shared-nothing design
consists of a set of database instances, each holding a data
partition, that collectively serve transactions. However, neither
of these designs exploits the full potential of multisockets
due to data sharing across sockets. Shared-everything design
suffers from excessive communication and contention among
threads [3][4][5], while shared-nothing systems suffer from the
overhead of distributed transactions. With the new hardware at
hand it is necessary to redesign existing software in order to
extract the maximum performance.

Our approach. In this paper, we present ATraPos, a scalable
shared-everything system that minimizes the impact of inter-
socket communication in the critical path of transaction
execution (i.e., the sequence of actions that determine the
duration of the transaction). ATraPos relies on precise data
partitioning and placement to maximize locality of data
accesses and on adaptive repartitioning to maintain data locality
even when the workload changes.

ATraPos first partitions the data logically, by allowing only
specific threads to access each data item, and then physically,
by partitioning tables and indices to map to the logical parts.
It takes the data locality principle further by keeping the
system state in hardware-aware data structures. These data
structures are designed such as they require only socket-local
data accesses in the critical path. Each thread is bound to
a precisely chosen processor core that allows it to have a
consistent view of the system state by accessing only a socket-
local partition of the shared data structures that track the state.

ATraPos ensures good performance by choosing the appropri-
ate partitioning scheme that maximizes resource utilization and
balances the load. The choice is based on a cost model that takes
into account a) static data dependencies, b) dynamic workload
information, and c¢) the underlying hardware topology. ATraPos
uses a lightweight monitoring mechanism that continuously
captures the transaction behavior. When the workload changes,
it adjusts the data partitioning and partition placement to
guarantee high and predictable performance.

Contributions. The contributions of this work can be
summarized as follows:

1) We show that scalable transaction processing systems for
multisocket servers must avoid accessing any centralized data
structure in the critical path. With more cores that commu-



nicate less uniformly, any such access eventually becomes a
bottleneck.

2) We demonstrate that a shared-everything design can scale
as well as a fine-grained shared-nothing design for perfectly
partitionable workloads on multisocket multicores. To achieve
that, we need to replace all centralized data structures with
hardware-aware data structures that avoid inter-socket accesses
in the critical path.

3) We present ATraPos, a storage manager design that is
aware of the non-uniform access latencies of multisocket
systems. On top of its hardware-aware internal structures,
ATraPos adopts a lightweight monitoring and repartitioning
mechanism that adapts the partitioning strategy upon workload
changes. Through such techniques, ATraPos achieves good data
locality by taking into account static and dynamic workload
information as well as the hardware topology.

4) We show that ATraPos exhibits significant performance
improvements, ranging from 1.4 to 6.7x, for a wide collection
of transactional workloads. At the same time, the adaptive
monitoring and partitioning scheme of ATraPos poses a
negligible cost, while allowing the system to dynamically and
gracefully adapt to workload and hardware changes.

Outline. The rest of this paper is structured as follows.
Section II surveys the current hardware trends and related work.
Section III motivates this work by identifying pitfalls of the
existing designs on multisocket multicores. Section IV discusses
how we can efficiently partition the shared data structures in
order to minimize their negative impact on the scalability of
the system. Section V presents our hardware and workload-
aware adaptive data partitioning and partition placement
method. Section VI presents our prototype implementation
and experimental results on standard benchmarks TPC-C and
TATP as well as on various microbenchmarks. Finally, Sections
VII and VIII discuss future work and conclude the paper.

II. RELATED WORK

Here, we discuss the necessary background and related work
as well as how ATraPos enhances the state-of-the-art.

A. Multisocket Multicores

Uniprocessors have followed Moore’s law for decades
using higher frequencies and complex out-of-order execution
techniques. Recently, due to thermal and power limitations,
vendors turned to placing many simpler cores on the same
chip to gain higher performance. Today’s high-end servers
have multiple multicore processors on the same board, which
creates hardware Islands [1]. In a typical multisocket server,
each socket represents an Island since all its cores communicate
through shared last level cache. However, we can expect Islands
to form even within one chip. For example, the Tilera family
of multicore chips [6] has cores that are organized in the form
of a mesh. In this case, communication latency depends on the
number of hops between two cores, e.g., for the 36 core chip
it ranges from 45 to 65 cycles.

A lot of past work has focused on adapting databases for
legacy multisocket systems. For instance, many commercial

database systems provide configuration options to enable
NUMA support, i.e., a set of optimizations for NUMA hardware.
However, this setting is optimized for hardware where each
individual chip contains a single core. With newer multisocket
servers, enabling legacy NUMA support might lead to high
CPU usage and degraded performance [7][8].

Adapting software systems to today’s non-uniform hardware
is an area of active research. Scalable synchronization structures
typically rely on efficient inter-core communication using
atomic operations. Since an atomic operation becomes much
slower over inter-socket links, proposals for scalable NUMA-
aware locks rely on hierarchically partitioned structures to
maximize access locality [9][10]. On the system level, a recent
study on the performance of garbage collectors on multisocket
multicores analyzes synchronization patterns and systematically
removes bottlenecks without completely redesigning the system
[11]. We take inspiration from these works as we redesign our
storage manager for multisockets. We identify the scalability
bottlenecks in several steps since removing one bottleneck
causes another unscalable data structure to surface as the next
bottleneck. At each step we replace centralized data structures
or locks with their hierarchically partitioned versions based on
the socket boundaries.

Recent research efforts in NUMA-aware data management
systems mostly focus on complex analytical processing and
efficient evaluations of joins or aggregations [12][13][14] as
these operations are expensive due to large data movement.
Transactional workloads, however, pose a different set of
challenges due to much less data movement and much more
synchronization in the critical path compared to analytical
workloads.

Two recent studies analyze the behavior of transaction
processing systems on modern multisocket hardware [1][15].
The highlight of these studies is that traditional shared-
everything systems suffer on multisockets due to various
centralized communication points causing unpredictable access
latencies in the critical path. On the other hand, distributed
transactions hinder the performance of shared-nothing systems
if the data partitioning is not done carefully and is not dynamic.
In this paper, we corroborate the results of these studies but
also present and evaluate a design that would take the best
of both worlds. ATraPos achieves stable performance for non-
partitionable workloads and workload changes as in a shared-
everything design, while providing good data locality and low
access latencies in the critical path as in a shared-nothing one.

B. Data partitioning strategies

Previous works on static or dynamic data partitioning mainly
focus on shared-nothing environments and aim to minimize
the number of distributed transactions. Schism proposes a
graph-based partitioning and replication method for OLTP
workloads. The graph is constructed from transaction access
traces such that vertices represent tuples and edges connect
the tuples used in the same transaction. The partitions are
selected using the min-cut algorithm. A recent extension of
Schism, Sword [16], proposes a different graph compression



approach that allows incremental data movement between two
partitioning solutions for different workloads. Another approach
for automatic partitioning in shared-nothing OLTP systems is
Horticulture [17], which utilizes large neighborhood search
(LHS). It uses the database schema, the code of the stored
procedures, the workload trace consisting of data items that
were accessed, and timestamps. The output of the partitioning
strategy is a set of decisions whether to range or hash partition
a table or replicate it to all nodes. All these techniques generate
good initial partitioning. However, they are not designed to
monitor the workload changes at runtime and adapt to them
dynamically.

On the other hand, one of the recent proposals for adaptive
repartitioning algorithms targets physiologically partitioned
shared-everything systems [18]. The load on each partition is
monitored using histograms and work queues. Whenever a load
imbalance exceeds the threshold, data is repartitioned. While
this approach works great for adapting to skew on a single
table, it does not take into account changes in the frequencies
of different transactions, which causes the optimal number of
partitions of certain tables to change.

Finally, none of the partitioning methods mentioned above
takes into account the underlying non-uniform hardware
topology. In addition to that, ATraPos is the first system that
continuously adapts to the workload and hardware changes.

III. THE PROBLEM: SCALING OLTP ON MULTISOCKETS

In this section, we analyze the behavior of various sys-
tem designs when running transactional workloads on mul-
tisocket multicore servers. We compare centralized shared-
everything, shared-nothing, and physiologically partitioned
shared-everything designs on workloads that are perfectly
partitionable and less amenable to partitioning. We show
that none of these designs can use the full potential of the
multisockets due to data sharing across sockets.

We run our experiments on an 8-socket 10-core Intel
Westmere server with 192 GB of RAM. We use the state-
of-the-art multithreaded storage manager Shore-MT [19] and
Intel’s VTune Analyzer XE 2013 [20] for profiling.

A. Design options

Centralized shared-everything. We evaluate the traditional
shared-everything configuration by running Shore-MT as one
process using all available processor resources. In this case,
all data structures accessed by transaction execution threads
are centralized, e.g., the lock manager, the log, and the buffer
pool. We enable the optimizations that are beneficial to the
workloads we run, including speculative lock inheritance [21]
and optimized logging using Aether [22].

Shared-nothing. We benchmark two shared-nothing con-
figurations by running multiple instances of Shore-MT. All
instances communicate using a thin distributed transaction
execution layer implemented on top of the storage manager
[1]. Specifically, we simulate the extreme shared-nothing
architectures, such as H-Store [23], by running one instance of
Shore-MT per processor core; each record and page are touched
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Fig. 1. Instructions retired per cycle.

by a single thread, while locking and latching are disabled for
read-only workloads. For workloads that contain updates, we
still need to use locking. We also test a coarse shared-nothing
configuration, having one instance per processor socket, where
locking and latching are enabled.

PLP. One of the main problems of centralized shared-
everything systems on multicores is the contention in the
lock manager. This problem can be eliminated by using
physiological partitioning (PLP) [5][24]. PLP first logically
partitions the data and assigns each partition to a separate
thread. Transactions are decomposed into small actions, which
are routed to the relevant threads. Each thread contains a local
lock table that eliminates the need to access the centralized
lock manager for the majority of locks that each transaction
needs to acquire. Eliminating the lock manager bottleneck
exposes the bottleneck of latching on database pages. PLP
removes this bottleneck by using multi-rooted B-trees and
seamlessly changing the record insert operation. Multi-rooted
B-trees partition the original B-tree by having one root per
each logical partition. All data pages are pointed by a single
leaf page. Since subtree accesses are thread-local, both B-tree
and data page accesses can be latch-free.

B. Perfectly partitionable workloads

We start with a simple perfectly partitionable workload where
each transaction reads one row from a table that contains 10
integer columns. Different transactions in this workload have
no dependencies or conflicts, so the performance of a scalable
system should increase linearly with more resources. We run
the benchmark for the extreme shared-nothing configuration,
the traditional centralized shared-everything configuration, and
PLP. We use a dataset of 800K rows, equally divided between
the participating instances, for various numbers of processors
(1, 2, 4, and 8 processor sockets).

In Figure 1, we evaluate how well the above configurations
use the available processor resources by measuring the number
of retired instructions per cycle (IPC). Although we use a
processor that can achieve up to 4 IPC, OLTP workloads can
barely exceed 1. Low IPC is a general characteristic of OLTP
[25] due to the large instruction footprints and unpredictable
data accesses.

The shared-nothing architecture has constant IPC for all
configurations. As we see in Figure 2, which shows the through-
put of the three configurations as we increase the number of
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transactions increases.

sockets, it scales linearly and has the best performance on this
benchmark because the instances are completely independent
from each other and do not communicate.

When we examine the traditional centralized architecture,
we observe a slight decrease in IPC when we go from 1 to
2 sockets followed by an increase when we go to 4 and 8
sockets, where IPC exceeds 1.2. However, in these cases, high
IPC is due to high cache hit rates while waiting to acquire
contended locks. The time wasted on waiting is the reason
why the throughput decreases with more sockets in Figure 2.

When we run the perfectly partitionable microbenchmark
using PLP on more than one socket, we observe a performance
degradation similar to the centralized configuration. However,
the trends on the IPC graph are completely different. On the
striped bars in Figure 1, we see large drops in IPC due to
accesses to centralized data structures that are implemented
using atomic compare-and-swap (CAS) instructions. While
CAS instructions are executed efficiently on the same socket,
they become very expensive across sockets, as they require
accessing cache lines on remote processors.

Implication: Accessing any centralized data structure in the
critical path is a potential bottleneck on multisockets.

C. Workloads That Are Less Amenable to Partitioning

While the shared-nothing architecture exhibits great perfor-
mance on perfectly partitionable workloads, it suffers when the
workload is not as partitionable. We illustrate this problem with
a microbenchmark that has two types of transactions: 1) local
transactions that update 10 rows chosen from the local site and
2) multi-site transactions that update 1 row chosen from the
local site and the remaining 9 rows chosen uniformly from the
whole dataset. Multi-site transactions whose rows belong to
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Fig. 4. Time breakdown for coarse shared-nothing configuration.
different instances run as distributed transactions. We run these
transactions on the extreme shared-nothing configuration, the
coarse shared-nothing configuration, and the traditional shared-
everything configuration. In all cases, we use a dataset of 800K
rows, equally divided between the participating instances.

In Figure 3, we plot the throughput when we vary the
percentage of multi-site transactions from 0 to 100. We use
shared memory communication channels, which are signifi-
cantly faster than other communication mechanisms that involve
the operating system, such as UNIX domain sockets and
named pipes. However, we still observe a significant drop
in the performance of partitioned systems as the percentage
of multi-site transactions increases. The reason is that they
must execute multi-site transactions as distributed transactions.
In our implementation of distributed transactions we use the
standard two phase commit protocol. There, transactions have
to 1) hold locks until all the participating instances reach a
decision (commit or abort), 2) log additional information for
distributed transactions, and 3) store state information.

In Figure 4, we analyze the overheads of distributed update
transactions by breaking down the execution time to different
system components as we vary the percentage of multi-
site transactions for the coarse shared-nothing configuration.
The breakdowns are similar for the extreme shared-nothing
configuration. As we increase the percentage of multi-site
transactions, we see a significant increase in time spent in all
components, especially in logging and locking.

Implication: Even with fast inter-process communication,
the overhead of distributed update transactions limits the
benefits of shared-nothing designs to perfectly partitionable or
read-only workloads.

D. Accessing remote memory

One significant advantage of shared-nothing configurations,
where instances run within a single processor socket, is the
ability to achieve perfect NUMA locality by allocating all
memory in the local NUMA node. In this section, we quantify
the impact of memory allocation on the performance. We
run one Shore-MT instance per socket and change memory
allocation policy using the Linux utility numactl [26]. We test
the system in 3 modes: 1) each instance allocates memory in
the local NUMA node, 2) all instances allocate memory in
one NUMA node, and 3) every instance allocates memory in
a different remote NUMA node.

We use a microbenchmark that reads 100 rows chosen



Policy Socket] | Socket2 | Socket3 | Socket4 | SocketS | Socket6 | Socket7 | Socket8
Local 6992 7028 6913 7075 6991 7029 7016 7036
Central 6591 6643 6774 6645 6578 6839 6816 7018
Remote 6521 6774 6532 6775 6752 6588 6773 6575
TABLE I

THROUGHPUT (IN TRANSACTIONS PER SECOND) FOR VARIOUS MEMORY ALLOCATION POLICIES.

randomly from a 1 million row dataset (1.5GB), which is
enough to fill the memory of a large NUMA node in our server
(32GB). We choose data randomly to 1) minimize the chance
of a data hit in the last level cache and 2) limit the effectiveness
of data prefetchers. We summarize the performance in terms of
the throughput in Table I. When memory is allocated locally
(Local), throughput of each instance is within 1% of the average
for all instances. When we allocate all memory on a single
node (Central), for example on Node 8, instance 8 achieves
throughput similar to all local cases, while other instances
lose 2.5-6.2% of the performance. Finally, when every instance
accesses remote memory (Remote), they perform 3.3-7% worse
compared to the local case. Experiments with transactions that
read fewer rows show smaller differences in throughput, while
the ones that read more rows show similar performance drops.

To explore the causes of these performance drops for
different configurations, we use the Intel’s Performance Counter
Monitoring tool [27] to examine the interconnect utilization.
We measure that the ratio of interconnect (QPI) to memory
controller IMC) data traffic is 0.01 for the local case, in
contrast to 1.36 for the central case, and 1.49 for the remote
case. Total utilization of all QPI links for accessing memory
and maintaining cache coherence increases from 13Gb/s for
local node allocation to 21 Gb/s and 22 Gb/s, respectively.
Even in the case where all instances allocate memory on a
single node, QPI links are lightly utilized with the most used
link being utilized at 14%.

Implication: In contrast to performance bottlenecks during
accesses to shared data structures that are often found in remote
caches, the performance impact of accessing remote main
memory is limited to less than 10% and is not critical.

IV. SCALING UP THE STORAGE MANAGER

As we show in the previous section, state-of-the-art tech-
niques that are scalable for multicores are not sufficient for
multisockets. This is caused by the bottleneck of accessing
the centralized data structures in the critical path, i.e., the
list of active transactions and various mutexes. Sharing data
among threads that run on different sockets is expensive due
to the cost of cache coherence and high latency of accesses to
cache lines on remote sockets. ATraPos solves this problem
by partitioning these structures among sockets to increase the
locality of accesses. This section details our general approach
to hardware-aware data structures.

Most centralized data structures in a typical storage manager
are used for maintaining the global system state and are
protected by read/write locks. Typically a transaction acquires a
lock in read mode for a short period of time in order to change
state, e.g, a transaction acquires volume read lock during the
initialization phase. This is a fairly inexpensive operation on a
single chip, but becomes increasingly expensive when we need

to update data that is located on a remote chip or in memory.
These locks are never acquired in write mode in the critical
path of transaction execution. They are only used in write mode
by threads performing background tasks, e.g., checkpointing, to
ensure that no transaction changes state during this operation.

Shared locks. We reduce the cost of acquiring read locks,
e.g., by replacing centralized read/write locks with partitioned
NUMA-aware ones. In this design, we have one read/write
lock for each processor socket. This way, acquiring a read lock
entails accessing data cached on the local socket or stored in
the local memory node. Additionally, there is less contention
as the lock is shared only by the threads running on a specific
processor socket. Acquiring write locks is a significantly less
frequent operation and does not occur in the critical path. For
example, a write lock on the checkpoint mutex is required only
when the checkpointing procedure is running to ensure that no
transaction has changed state (committed or aborted). In the
centralized case, acquisition requires grabbing one write lock,
while in the partitioned case it requires grabbing a write lock
on every socket.

List of transactions. When a transaction starts, it is added to
this list and it stays there until it is completed. In Shore-MT, this
structure is a lock-free list that requires a transaction to do one
compare-and-swap on the list head to add itself to the list. When
the system is running over many sockets, and especially when
it is running short-lived transactions, this operation becomes
very expensive. ATraPos greatly reduces this cost by using
a separate list of transactions for each socket, which makes
the process of adding and removing elements from the list
socket-local. In this way, accessing the list of transactions in
the critical path never requires inter-socket memory access.
Background operations that need to traverse the whole list of
active transactions, such as checkpointing and page cleaning,
simply need to go through all local lists. Furthermore, these
accesses can be parallelized by using multiple threads that
perform background operations on a single socket or a group
of sockets.

Thread binding. In ATraPos we exploit information about
the underlying hardware to further improve scalability and
performance. On top of data partitioning to ensure locality, we
bind threads to specific processor cores and cache information
about their socket. This ensures that each thread always accesses
the same partition of any NUMA-aware data structure to
guarantee correctness. For example, each transaction is removed
from the list of active transactions by the same thread that
added it, which ensures that both operations are performed on
the same partition. Each partition is always local to the socket
where the thread is running on.

Proof of concept. In Figure 5, we repeat the experiment of
Figure 2 and include ATraPos as well as the coarse shared-
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nothing configuration discussed in Section III. Since we remove
expensive accesses to the centralized data structures from the

critical path, ATraPos can scale over multiple sockets and make

full use of the fact that the workload is perfectly partitionable.

In this case, we use the naive partitioning scheme where a
table is range partitioned with one partition per core. ATraPos
matches the performance of the coarse grained shared-nothing
configuration that has perfect locality because it runs one
instance per socket. Both of these architectures scale similarly
to the extreme shared-nothing architecture.

V. WORKLOAD AND HARDWARE-AWARE PARTITIONING

Making the storage manager scalable for simple perfectly
partitionable workloads is only one part of the problem. In
this case, ATraPos scales linearly since each worker thread
operates independently on its own data partition. For more
complex workloads, however, we need to partition and place
the data on cores in a way that reduces the inter-socket data
exchange as much as possible.

In this section, we first discuss the intuition behind our
partitioning scheme. Then, we present the cost model and the
search strategy that ATraPos uses to decide the appropriate
partitioning and placement scheme as well as its lightweight
monitoring and repartitioning mechanism.

A. Factors influencing transaction processing

There are a number of factors that we have to consider

when choosing a partitioning scheme for an OLTP workload.
Typically, the database schema is fixed and known a priori.

In addition, most or all transactions fall into one of the
predefined transaction classes expressed as parameterized
stored procedures [23]. Furthermore, the input parameters of a
transaction point to all data items this transaction is going to
access (with the exception of the items accessed through the
secondary indices). ATraPos exploits all this knowledge about
the workload (static and dynamic information about recently
executed transactions) and the underlying hardware topology
to efficiently choose a good partitioning scheme.

The goal of ATraPos is twofold: a) to maximize the CPU
utilization and b) to minimize the transaction synchronization
cost. We express the CPU utilization as the sum of work done
by its individual cores. We model the synchronization cost of
a transaction based on the placement of partitions that need
to communicate at each synchronization point. We present the
cost model in more detail in Section V-B.

2100 -~
1800 A
1500 A
1200 A
900 A

Throughput (KTPS)

Centralized

600 -
300 ~

HW-Aware
Workload-Aware
ATraPos

o

—
.Q- I
0 -

Fig. 6. Throughput of a simple transaction with varying partitioning and
placement strategies.

Static workload information. We use database schema
information, such as foreign keys, to extract the static data
dependencies. We automatically infer the following static
information about transaction classes from the transaction
code: a) the number of actions that access each table, b) the
dependencies between pairs of actions (via foreign keys of
the tuples they access), and c) the number of synchronization
points. A synchronization point in the transaction flow graph is
the point where two or more actions need to exchange data. Its
cost depends on which sockets the actions are running on and
on the size of data they need to exchange. The synchronization
cost of a transaction is the sum of the costs of all the individual
synchronization points it includes.

Dynamic workload information. We track the dynamic
aspect of a transactional workload by capturing the amount
of work that is done by each partition and which partitions
are involved in each synchronization point. This information
allows us to estimate the core utilization and synchronization
costs for any partitioning and placement scheme and to choose
the best scheme for the current workload.

Hardware topology. The static and dynamic workload
information already provides valuable pointers for deciding a
good partitioning scheme. In addition to that, ATraPos takes into
consideration the underlying non-uniform hardware topology
to specialize the partitioning scheme for each machine. This
information can also be dynamic; as in the case that the system
is running on a virtual machine whose available computing
resources change over time.

Simple Transaction Example. The following example
illustrates the impact of the various factors in our partitioning
scheme. We use two tables, A and B, and the following
transaction whose input parameters are ID_a and ID_b:

select = from A where pk_a = ID_a;
select x from B where pk_a = ID_a
and pk_b = ID_b;

Figure 6 shows the throughput on various configurations. We
use the centralized shared-everything and the PLP designs as
baselines. We compare them against the naive partitioning
scheme from Section IV and the ATraPos model using the
criteria discussed above.

The naive partitioning scheme (HW-aware) creates one
partition of each table per processor core. As both tables
have the same number of rows and we use range partitioning,
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this scheme achieves perfect locality for this simple workload.
The hardware-awareness of the underlying storage manager
produces 1.7-2x better performance compared to the baseline
configurations. However, it suffers from oversaturation as in
every core there are two partitions that contend for resources.
To eliminate oversaturation, we place only one partition per
core. In this case, we create 40 partitions for each table and
compare two placement strategies: 1) the partitions are placed
in a hardware-oblivious manner (Workload-aware) and 2) the
partitions are placed in a workload and hardware-aware way
(ATraPos). By removing oversaturation, we achieve 2.3x better
performance even though the partitions of tables A and B are
spread over 4 sockets each. However, this placement incurs
inter-socket synchronization for every transaction. So by placing
dependent partitions on the same socket, the performance
improves by 10%. In conclusion, for this workload we can
get over 4x performance improvement by using hardware and
workload-aware partitioning and placement.

Complex Transaction Example. In this example, we briefly
illustrate a more complex scenario, i.e., the NewOrder
transaction in the TPC-C benchmark and explain the challenges
in choosing good partitioning and placement scheme. This
transaction models the ordering for 5 to 15 items from one
warehouse and Figure 7 depicts its execution plan.

The NewOrder transaction accesses 8 tables, and has fixed
and variable parts. Both of these parts contain read, insert, and
update operations, denoted as R, I, and U, respectively. The
fixed part accesses one tuple each from 5 different tables, while
the variable part accesses one tuple per ordered item from 3
different tables. Furthermore, in our transaction flow graph,
we have four synchronization points that all, except for the
second, involve a variable number of partitions. The number
of partitions that need to synchronize depends on the number
of items in the order. For the partitioning decision, we have to
assign more CPU cores to tables that are accessed more times.
Finally, for the partition placement policy, we should place

the partitions that are involved in the same synchronization
point on cores that belong to the same socket to reduce the
synchronization overhead.

Conclusions from examples. From the previous two ex-
amples, we can conclude that using the naive partitioning
scheme is not enough; both workload and hardware-awareness
of the partitioning mechanism are important for achieving high
performance. Our system uses the data-oriented transaction
execution model [5] where each worker thread operates on
a single partition of a specific table. Using well-known
partitioning schemes for TATP and TPC-C workloads (which
are practically identical to the naive partitioning in our system)
causes severe overloading.

The next section presents a model that guides ATraPos in
choosing good partitioning and placement scheme for complex
workloads.

B. Cost model

ATraPos uses a partitioning and placement scheme that
achieves two goals: maximal resource utilization and minimal
transaction synchronization overhead. One of our main metrics
is balanced resource utilization. In the case of multicore
systems, we define balanced resource utilization as the ability
to avoid overloading any particular core. If some of the cores
are 100% utilized, they cannot process more requests. By
balancing the load, we aim to leave the same amount of free
resources on each core so that they can process proportionally
more requests and the system can achieve higher throughput.
Our other metric is the transaction synchronization overhead.
We assess the quality of a placement scheme according to its
ability in reducing the inter-socket communication costs; i.e.,
the smaller these costs are, the better the placement scheme is.

We express the resource utilization metric for the workload
trace W and the partitioning and placement scheme S as:

) =>_|RU(c) = RUqu,|

(&
where RU(c) is the utilization of a particular core ¢ and

RU(c) . e .
RUgvg = # is the average utilization for all N cores.

We compute the utilization of one core c as:

=2, > C

pEP:. acA(p)
where P, is the set of partitions that are placed on core ¢, A(p)

is the set of all actions that use partition p, and C(a) is the
time we need to execute action a.

We compute the transaction synchronization overhead
TS(S, W) for the workload trace W and the partitioning and
placement scheme S as T'S(S, W) = >,y Sync(T), where
Sync(T) is the synchronization cost of a single transaction 7.
We express this cost with the following formu]a:

Sync(T Z C(s
seS(T)
where C'(s) represents the synchronization cost for a partic-

ular synchronization point s. We express cost C(s) of the
synchronization point s as:

C(s) = (nsocket(s) — 1) * Data(s)



Algorithm 1 Choose Partitioning

Algorithm 2 Choose Placement

1: // Greedily choose initial partitioning S
2: repeat

3:  Good < true

4 for all underutilized core ¢ do

5: Se <= move a sub-partition to ¢

6: if RU(S., W) < RU(S,W) then
7:
8

S <= S.
: Good <= false
9: break
10: until Good

11: Spa,rt = S

1. S« Spart

2: repeat

3: Good < true

4:  for all s such that C(s) > 0 do

5: Ss <= switch partitions to minimize C'(s)
6: if TS(Ss,W) <TS(S,W) then
7: S < S,

8: Good <= false

9: break

10: until Good

11: Sopt = S

where Ngocret(s) is the number of unique sockets that actions
in s run on and Data(s) is the cost of the data exchange
operation in this synchronization point. The synchronization
cost of two actions that are running on the same socket is zero,
while when they are on different sockets it can be a considerable
cost depending on their distance. The data exchange cost is
expressed as:
Data(s) = Distance(s) * Size(s)

where Distance(s) is the average communication cost between
the participating sockets and Size(s) is the size of data that
has to be exchanged.

C. Search strategy

The goal of the ATraPos partitioning and placement mech-
anism is to be able to quickly find a good solution that will
maximize the throughput of the system for the current workload.
To that end, we use a two step exhaustive search strategy that
first chooses the partitioning scheme and then decides a good
partition placement.

In the first step, we use information about the current load for
sub-partitions of existing partitions to choose a new partitioning
scheme. As shown in Algorithm 1, we group sub-partitions into
new partitions that balance the resource utilization according
to our cost model. We initially assign one new partition per
core in a greedy fashion: we first estimate the target average
utilization and keep adding sub-partitions until we exceed that
load. Then, move to the next core. Next, we iteratively try to
improve the assignment by choosing a new partition placed
on a core with the highest under-utilization, moving a sub-
partition of the same table to that partition, and recomputing
the utilization metric. If an under-utilized core contains the
only partition of a table, we place a sub-partition of another
table on that core to improve overall utilization. If the global
utilization balance improves, we use this solution as the current
best case and restart the search. We conclude the search when
we cannot improve the overall utilization of the scheme by
moving sub-partitions to under-utilized cores.

After finding the partitioning that balances the resource
utilization, we choose the placement that aims to reduce the
synchronization overhead using Algorithm 2. We start from a
placement that evenly distributes partitions of every table to
different sockets. We iteratively examine various alternatives
that move the partitions involved in a costly synchronization
point to the same socket by switching them with other partitions.
If the switch lowers the global synchronization cost, we keep

the placement as the new best and restart the search. We reach
the solution when we can no longer improve the placement.

D. Monitoring and adaptive behavior

While the hardware topology and the static workload
characteristics are inferred beforehand, the dynamic properties
are captured at runtime. Our goal is to capture all the required
information we use in our cost model in a lightweight manner.

Monitoring overhead. We minimize the monitoring over-
head by storing the traces in thread-local data structures and
aggregating system-wide traces periodically. In this way, we
do not add unnecessary inter-socket accesses in the critical
path. The global traces are collected by a special monitoring
thread that is also in charge of deciding the best partitioning
and placement scheme for the captured traces. To minimize the
storage overhead, we discard the traces after each computation.

Monitoring data structures. Since both the number of
tuples in a table and the number of transactions that arrive
in a time period vary greatly across different transactional
workloads, the space overhead of the tracing structure should
not depend on the dynamic characteristics of the workload. We
use two thread-local arrays per partition: a) one that stores the
cost of all actions executed by a specific sub-partition, and b)
one that keeps the number of synchronization points executed
for each local sub-partition. We initialize arrays based on the
number of sub-partitions upon a new partition creation. In our
experiments we use 10 sub-partitions per partition as it offers
a good trade-off between the size of the arrays and the number
of repartitioning operations needed to adapt to even the most
drastic changes in the workload.

Detecting changes. ATraPos uses the lightweight monitoring
mechanism described above to be able to adapt to any change
in the workload. When the system starts up for the first time, it
has no information about the dynamic aspects of the workload
so it sets up the partitions using the naive partitioning scheme
described in Section IV. ATraPos continuously monitors the
workload using the array-based approach described above.
It periodically aggregates the trace information using the
monitoring thread and decides the optimal partitioning and
placement scheme according to the cost model. Since changes
in the workload may happen during different time intervals,
ATraPos uses an adaptive approach where it tunes the time
interval length based on the frequency of the workload
fluctuations. When the workload is stable for a long time
it increases the intervals, while upon having frequent workload



changes it shortens them. ATraPos starts from a 1 second
interval and monitors the throughput. If the throughput is
within 10% of the average of the previous 5 measurements
it doubles the monitoring interval. After each monitoring
interval, it checks if the throughput difference has exceeded
the threshold; if it has, it evaluates the model, otherwise it
increases the monitoring interval. If the result of the evaluation
is the decision to repartition, ATraPos resets the monitoring
interval to 1 second.

Repartitioning. One of the design goals of ATraPos is to
quickly adapt to any change. To that end, when we decide on
the new partitioning and placement scheme, we generate a set of
repartitioning actions and pause the execution of regular actions
while we execute them. We do not interleave the execution of
repartitioning and regular actions because interleaving different
types of actions causes dependencies between actions that add
significant and unpredictable delays. A repartitioning action
can either be a split or a merge and it modifies both the logical
and physical representation of the data. The split action divides
an existing partition into two new partitions at a specific key,
while the merge action creates a new partition by merging
two existing partitions. These operations modify the physical
multi-rooted B-trees, the logical partition-local structures such
as action queues and lock tables, and the global partitioning
information. After we complete all the repartitioning actions,
we empty the partition-local monitoring data structures and
restart the monitoring operation.

VI. EXPERIMENTAL EVALUATION

In this section, we discuss a detailed experimental evaluation
using both microbenchmarks and standard benchmarks such
as TPC-C and TATP. We designed and implemented ATraPos
on top of Shore-MT [19]. We show that ATraPos manages to
better exploit hardware resources compared to the state-of-the-
art, providing a significant performance boost even when the
workload changes.

A. Experimental setup

Our experimental platform is a server with 8 Intel Xeon
E7-L8867 processors connected in a twisted cube topology.
Each processor has 10 cores with private L1 (32KB each
for data and instructions) and L2 (256KB) caches, as well
as 30MB of shared L3 cache. Our system has 192GB of
RAM and we use memory mapped disks for both data and
log files. All experiments run on Red Hat Enterprise Linux
6.4 (kernel 2.6.32) and we compile using GCC 4.4.7 with
maximum optimizations.

We use microbenchmarks and the standard OLTP bench-
marks TATP [28] and TPC-C [29]. The TATP benchmark
models a mobile phone provider. Its schema contains 4
tables that are perfectly partitionable on the SubscriberID
attribute. TATP uses a set of 7 transactions of 3 different classes.
It contains read-only transactions that access only a single
table (e.g., Get SubData), read-only transactions that access
multiple tables (e.g., GetNewDest), and update transactions
(e.g., UpdLocation). In all experiments with TATP, we use
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Fig. 8. Improving throughput on standard benchmarks (TATP and TPC-
C) with ATraPos: Normalized performance over the state-of-the-art (y =
ATraPos/PLP).

a dataset with 800K subscribers (1.8GB). The more complex
TPC-C benchmark models a wholesale supplier. There, we
have 9 tables and 5 different transactions. In contrast to TATP,
all TPC-C transactions require data from 3 or more tables. We
use the TPC-C dataset with scaling factor 80 (13GB) in all
experiments.

B. Improving throughput on standard benchmarks with ATraPos

In our first experiment we demonstrate the significant perfor-
mance boost that ATraPos brings on the standard benchmarks
TATP and TPC-C. The performance metric used is throughput,
i.e., how many transactions the system executes per second.
We compare ATraPos against the state-of-the-art, PLP, which
assigns one partition of each table per processor core.

The graph on the left-hand side of Figure 8 shows the be-
havior of ATraPos on the TATP benchmark. The y-axis depicts
the throughput of ATraPos normalized over the throughput of
PLP, ie., y = Throughput(ATraPos)/Throughput(PLP).
In this way, the y-axis represents the throughput improvement
achieved by ATraPos; 1 for no-improvement. We show results
both for individual transaction types as well as the standard
TATP transaction mix (denoted as TATP-Mix). Although the
GetSubData transaction is perfectly partitionable and both
PLP and ATraPos place one partition of the Subscriber
table per core, ATraPos achieves 6.7x improvement due to
NUMA-aware data structures. For other transactions, ATraPos
achieves significant throughput improvements due to good
partitioning and placement scheme. For example, for the
GetNewDest transaction, where we need to access data
from two tables, ATraPos brings an improvement of 3.2x.
The improvement rises to 5.4x and 4.4x for UpdSubData
and TATP-Mix, respectively. The higher improvement in
performance for update transactions mainly comes from the
decreased contention on the log since the better partitioning
scheme of ATraPos creates fewer partitions, hence less threads
are competing for the log resources.

The graph on the right-hand side of Figure 8 depicts
the throughput improvement on the TPC-C benchmark. We
plot the normalized performance of ATraPos (over PLP) for
the two read-only transactions of TPC-C as well as for



Workload | No monitoring | Monitoring | Overhead (%)
GetSubData 4461960.1 4313524.2 3.32
GetNewDest 326249.9 325890.6 0.11
UpdSubData 64650 63994.5 1.01

TATP-Mix 276601.3 274019 0.93

TABLE II

ATRAPOS MONITORING BRINGS NEGLIGIBLE OVERHEAD.
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Fig. 9. Scalability of ATraPos repartitioning mechanism.

TPCC-Mix. We observe a large performance improvement
of 2.7x for the heavyweight StockLevel transactions. For
the lightweight OrderStatus transactions, improvement is
1.4x. This variation on performance comes from the fact that
the StockLevel transaction benefits significantly from the
NUMA-aware data structures while it performs a join requiring
many data accesses. On the other hand, OrderStatus mainly
benefits from the better data partitioning that creates balanced
load across all cores in the system. Finally, the throughput of
TPCC-Mix improves by 50%.

Summary. ATraPos brings a significant improvement com-
pared to the state-of-the-art for various types of workloads due
to NUMA-aware data structures and its data partitioning and
placement scheme.

C. Monitoring and repartitioning cost

Next, we demonstrate that the ATraPos monitoring and
repartitioning mechanisms pose a negligible overhead.

First we quantify the monitoring overhead. To achieve this
we test ATraPos in two modes: a) with monitoring enabled and
b) with monitoring disabled. Table II shows the performance
while running various transactions and the workload mix of the
TATP benchmark as well as the overhead in percentages. In all
cases, the monitoring mechanism poses a minimal overhead on
throughput. The only transaction that is slightly affected is the
GetSubData transaction where the throughput deteriorates
by at most 3.32%. This occurs because GetSubData is a
notably short transaction, so the total number of actions that
needs to be tracked per second by the monitoring subsystem
represents the worst-case scenario.

To quantify the repartitioning overhead, we use the following
experiment. On a table of 800K rows and 10 integer attributes,
we vary the number of repartitioning actions we trigger and
measure the time it takes to complete each individual action.
Figure 9 shows the results. For each case we show the average
time of 10 repeated measurements with standard deviation.
The merge operation combines two trees into one, the split
divides one tree into two, and the rearrangement performs one
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Fig. 10. Adapting to workload changes.

split and one merge. As we see in Figure 9, the cost of all
repartitioning sequences increases linearly with the number of
repartitioning actions needed. The merge operation is always
cheaper compared to the split operation. This is because the
latter performs more updates to the metadata. A rearrangement
consists of one split and one merge. In this way, a sequence of
rearrangements is hard to predict, because of the interference
of splits and merges. In Figure 9, we observe the trend of
slowly increasing costs as we increase the number of operations.
However, even the costliest repartitioning scenario (i.e., 80
rearrangements in our 80-core system) completes in less than
200 milliseconds.

Summary. ATraPos monitoring mechanism poses negligible
overhead on the system performance. In addition, the reparti-
tioning operations are lightweight and complete in a fraction
of a second to ensure that ATraPos can quickly adapt the
partitioning scheme to workload changes.

D. Adaptive behavior of ATraPos

Here, we demonstrate that ATraPos can successfully adapt to
a) changes in the workload characteristics, b) skewed accesses
to data, c) changes in the underlying hardware topology, and d)
different frequencies of workload changes. As we have already
shown that ATraPos outperforms the state-of-the-art approach,
in this set of experiments we compare ATraPos to its static
version where monitoring and adaptation are disabled.

1) Workload characteristics: First, we test the behavior
of ATraPos when the workload changes. We use TATP and
every 30 seconds we switch to a different transaction type.
Specifically, for the first 30 seconds we run only UpdSubData
transactions; then for the next 30 seconds we run only
GetNewDest transactions; and for the last 30 seconds we
run the standard TATP-Mix. Figure 10 depicts the results.

Every time the workload changes, ATraPos quickly adapts,
i.e., within 5 seconds, boosting the throughput of the system
significantly. For example, when during the first workload
change throughput is 220 KTPS (thousands of transactions
per second) for the first 5 seconds, ATraPos increases the
throughput to 360 KTPS by monitoring and quickly detecting
the workload change and subsequently reoptimizing data and
thread placement.

2) Data skew: Figure 11 depicts the benefits of the adaptive
ATraPos behavior when skew appears in the workload. In this
experiment, we use the Get SubData transaction from the
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TATP benchmark. This transaction initially chooses uniformly
distributed values from the whole dataset. After 20 seconds,
we introduce skew by specifying that 50% of the requests go to
the 20% of the data. The heavy skew causes the throughput to
drop by ~ 80%. ATraPos quickly detects the change, optimizes
for the new workload characteristics and it manages to achieve
3x better performance than the static system.

3) Underlying hardware topology: The next experiment
demonstrates the ability of ATraPos to gracefully adapt to
hardware changes. In this case, we test the behavior when a
processor fails. We simulate the failure of a processor P by
excluding all cores of P and leaving them idle. We use the
GetSubData transaction from TATP since it is a very short
transaction that is sensitive to the changes in the environment.
Figure 12 shows that at the time of the simulated processor
failure (one 10-core processor fails at the 20th second), the
static system fails to optimally use the rest of the available
hardware. It still uses a partitioning plan that assumes 80
processor cores are available. Therefore, it implicitly overloads
1 full processor (with 10 cores) that now needs to satisfy not
only its own requests but also the requests that would normally
go to the processor that failed. This causes a 22% drop in
throughput. On the other hand, ATraPos detects the change in
the underlying hardware topology and repartitions the data to
create one partition for each of the 70 available cores. The
optimized repartitioning removes the overloading effects and
improves throughput by 11%.

4) Frequency of changes: In our last experiment, we
demonstrate how ATraPos gracefully adapts to workload
fluctuations. We test a dynamic scenario that consists of
workloads GetNewDest and TATP-Mix from the TATP
benchmark, denoted as A and B, respectively, in Figure 13.
Workload A is active for the first 60 secs. ATraPos continuously
monitors the throughput and as long as it remains stable, it
relaxes its monitoring interval; during the first 60 secs the
interval is 1 sec and it gradually becomes 8 sec (this is the
upper bound). When the workload shifts to workload B at
the 60th sec, ATraPos manages to identify the throughput
degradation within 8 seconds. Then, it adjusts to the optimal
partitioning scheme for workload B and it sets its monitoring
interval back to 1 sec so it can be more alert until it realizes
that the workload is stabilized; when this happens, it gradually
increases the monitoring interval again. As Figure 13 depicts,
when frequent workload fluctuations occur, ATraPos remains
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alert (keeping the monitoring interval low) and it quickly adapts
to the changes. For example, in the last two workload shifts
ATraPos adapts within about 2 seconds. Overall, ATraPos
manages to continuously adapt and autonomously retune its
monitoring setup to follow the workload fluctuations.
Summary. By monitoring the workload and available
resources in longer intervals, and by graciously adapting
its data and thread placement, ATraPos provides predictable
performance for a wide variety of dynamic workloads.

VII. FUTURE WORK

In this paper, we present the ATraPos workload and hardware-
aware dynamic partitioning and placement mechanism that is
designed on top of a physically partitioned shared-everything
architecture. However, our techniques can also be applied to
other transaction processing architectures, with the modifica-
tions we describe in the next two paragraphs.

Coarse-grained shared-nothing. We can apply the ATraPos
cost model to the physically partitioned shared-nothing archi-
tecture with a few modifications. Since data is physically parti-
tioned, the primary cost in the model is the cost of distributed
transactions, as in previously proposed partitioning methods for
the physically partitioned systems [30][17]. Similarly, the cost
of repartitioning includes the cost of physical data movement
from one instance to another. This cost is generally much
higher than the repartitioning cost in the logically partitioned
systems. The resource estimation part of the model can be
used to determine sizes of individual instances in the system
if amended with the cost model for the contention among
different threads in larger instances.

Fine-grained shared-nothing. The ATraPos model can also
be applied to fine-grained shared-nothing systems that are aware
of the hardware topology. Such systems could detect a situation
where all the participating instances of a distributed transaction
are located on the same machine. Then they are able to switch
to a more efficient communication channel, e.g., shared memory.
In that case, the cost model could include information about
the relative cost of two types of distributed transactions to
choose the partitioning scheme that reduces the number of
more expensive distributed transactions.

VIII. CONCLUSIONS

In this paper, we analyze how non-uniform hardware
topology influences transaction processing. We quantify the
impact of hardware topology and show that ignoring it severely
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limits system scalability. We identify the main shortcoming
of the state-of-the-art shared-everything transaction processing
systems on multisocket multicore servers as the existence of
centralized data structures in the critical path.

We address this problem in ATraPos by systematically
making all data structures accessed in the critical path hardware-
aware. This allows us to achieve linear scalability for perfectly
partitionable workloads. To address the workloads that are not
perfectly partitionable, ATraPos includes a dynamic lightweight
monitoring and repartitioning mechanism. Our partitioning
mechanism takes into account static and dynamic workload
characteristics as well as the hardware topology to choose a
good partitioning and placement scheme for current workload.
When workload or hardware characteristics change, it quickly
adapts the current partitioning scheme to the new environment.
In this way, ATraPos offers robust performance on a variety
of dynamic transactional workloads on today’s and upcoming
non-uniform hardware platforms.
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