
CrowdPlanner: A Crowd-Based Route
Recommendation System

Han Su

University of Queensland, Australia
h.su1@uq.edu.au

Abstract— As travel is taking more significant part in our
life, route recommendation service becomes a big business and
attracts many major players in IT industry. Given a user specified
origin and destination, a route recommendation service aims
to provide users the routes with the best travelling experience
according to criteria such as travelling distance, travelling time,
traffic condition, etc. However, previous research shows that even
the routes recommended by the big-thumb service providers can
deviate significantly from the routes travelled by experienced
drivers. It means travellers’ preferences on route selection are
influenced by many latent and dynamic factors that are hard to
be modelled exactly with pre-defined formulas. In this work we
approach this challenging problem with a completely different
perspective – leveraging crowds’ knowledge to improve the
recommendation quality. In this light, CrowdPlanner – a novel
crowd-based route recommendation system has been developed,
which requests human workers to evaluate candidates routes
recommended by different sources and methods, and determine
the best route based on the feedbacks of these workers. Our
system addresses two critical issues in its core components: a)
task generation component generates a series of informative and
concise questions with optimized ordering for a given candidate
route set so that workers feel comfortable and easy to answer; and
b) worker selection component utilizes a set of selection criteria
and an efficient algorithm to find the most eligible workers to
answer the questions with high accuracy.

I. INTRODUCTION

Travelling plays a vital role in our daily life. Thanks to
the rapid development of GPS technologies and flourish of
navigation service providers (e.g., Google Map, Bing Map,
TomTom), we can now travel to unfamiliar places with much
less effort, by simply following the recommended routes.
While the detailed mechanisms that are adopted to recom-
mend routes are different, travelling distance and time are the
most important criteria and factors in those recommendation
algorithms, which results in the shortest route and/or fastest
route. With increasing number of users who rely on these
map services to travel, a natural question arises: are these
routes always good enough to be the best choice when people
travel? Ceikute et al [3] are the first to assess the routing
service quality by comparing the popular routes, the ones most
drivers prefer, and the routes recommended by a big thumb
map service provider. Their results show that the there are big
distances between popular routes and recommended routes.
It concludes that experienced/frequent drivers’ preferences do
not always agree with the routes recommended by navigation
service. Actually the cause of this phenomenon is not difficult
to find out: drivers preferences are influenced by lots of

factors in addition to distance and time, such as the number
of traffic lights, speed limitation, road condition, weather,
amongst many others, which are very difficult to be taken into
consideration simultaneously by a single routing algorithm.
That is to say, driver’s preference is the ultimate criterion
to judge the goodness of a route, i.e., given a source and a
destination, route A is regarded as a better choice than route
B if more drivers prefer to drive along A for some reasons.

Then can we find the most popular routes between two
places and return them to the users? Ideally the routes
recommended in this way should have improved quality since
the popular routes are usually obtained by mining historical
trajectories of drivers and can better indicate the driver’s
preference. But after further investigation, we have observed
some problems of this approach. First, since users can specify
two arbitrary places as source and destination, it happens
that we cannot get enough support from historical trajectory
data to obtain reliable results. Even worse, in areas where
historical data are very sparse, the “popular” route can refer
to a bad one with some random historical data. Therefore, a
system that solely relies on those popular routes can perform
badly at large scale. Second, there exist a number of popular
route mining algorithms, each claiming some superiority from
certain perspectives. When the results of these algorithms
disagree with each other, it is still a pain for strangers to make
a wise choice.

As we can see from the above analysis, it is not uncommon
that routes recommended by different ways disagree with
each other. This makes choosing the best route to be a very
subjective question, which is hard for a computer algorithm to
answer. Inspired by the emerging concept of crowd sourcing
that explicitly leverages human knowledge to resolve complex
problems, we propose a novel crowd-based route recommen-
dation system – CrowdPlanner, which combines the strengths
from computers and human brains to recommend the best route
with respect to the knowledge of experienced drivers. Instead
of proposing new or optimizing existing routing algorithms,
our work takes an entirely different approach by consolidating
candidate routes from different sources (e.g., map service
providers, popular routes) and requesting experienced drivers
to select amongst them. Our system will return the most
promising one according to the selection of drivers.

It is a non-trivial task to perform route evaluation. First,
it is not easy to automatically publish a user friendly task.
Since the human’s knowledge of routes are quite different from

ar
X

iv
:1

30
9.

26
87

v1
 [

cs
.D

B
]

 1
0

Se
p

20
13

computers, that is human remember routes discretely while
computer process routes continuously. So the system should
intelligently select some typical points of the comparing routes
instead of giving the continuous routes for surveyors to choose
from. Second, we should select the workers to ensure the
quality of the task result since the quality of route evaluation
is largely relying on the traveling experience of the workers.

In this paper, we propose a CrowdPlanner system for rec-
ommending the evaluated best route. It comprises two layers: a
mobile client supporting users to send a route recommendation
request and answering surveys; a server which possesses the
request by generating recommendation route candidates, evalu-
ating candidate routes itself using existing evaluated routes and
publish a route recommendation task. Especially in publishing
a route recommendation task, a efficient question selecting and
ordering method is proposed, which selects a set of significant
landmarks to help workers select the their most recommend
route; an effective worker selecting method is also proposed
in order to assign each task to its most familiar and eligible
workers.

To sum up, we make the following major contributions.

• We make a key observation that the cognition of routes
of humans is quite different from computers, that humans
recognize routes by concrete points while computers
recognize routes by continuous lines.

• We recommend the verified best route between two
places to users, while the routes recommended by route
recommendation web services are different from humans’
preference and the different popular route detection algo-
rithms provide different popular routes.

• We conduct extensive experiments based on hundreds of
volunteers and large-scale real trajectory dataset, which
empirically demonstrates that the CrowdPlanner system
can always provide best route between places efficiently
and the survey mechanism is intelligent and user friendly.

II. PROBLEM STATEMENT

In this section, we present some preliminary concepts and
give an overview of the CrowdPlanner system. Table I sum-
marized the major notations used in the rest of the paper.

TABLE I
SUMMARIZE OF NOTATIONS

Notation Definition
R a recommended route
R candidate set of recommended routes
p a place in the space
l a landmark in the space
l.s significance of landmark l
L a landmarks set
LR the questioned landmark set of routes set R
d(li, lj) Euclidean distance between landmarks li and lj
w a worker of the system
WR the selected workers of routes set R

A. Preliminary Concepts

Definition 1: Route: A route R is a continuous travelling
path. We use a sequence [p1, p2, · · · , pn], which consists of
a source, a destination, and a sequence of consecutive road
intersections in-between, to represent a route.

Definition 2: Landmark: A landmark is a geographical ob-
ject in the space, which is stable and independent of the
recommended routes. A landmark can be either a point (i.e.,
Point Of Interest), a line (i.e., street and high way) or a region
(i.e., block and suburb) in the space.

Definition 3: Landmark-based Route: A landmark-based
route R̄ is a route represented as a finite sequence of land-
marks, i.e., R̄ = {l1, l2, ..., ln}.

In order to obtain the landmark-based route from a raw
route, we employ our previous research results on anchor-
based trajectory calibration [21] to rewrite the continuous
recommend routes into landmark-based routes, by treating
landmarks as anchor points.

Definition 4: Discriminative landmarks: A landmark set L
is called discriminative to a set of landmark-based routes R̄ if
for any two routes R̄1 and R̄2 of R̄, the joint sets R̄1 ∩L and
R̄2 ∩ L are different.

For example, L1 = {l3, l4} is discriminative to R1 =
{l1, l2, l3} and R2 = {l1, l2, l4}, since the joint sets R1∩L1 =
{l3} and R2 ∩ L1 = {l4} are different, but L2 = {l1, l2} is
not discriminative to R1 and R2.

Definition 5: Simplest Discriminative: An identifiable set L
to R̄ is simplest discriminative to R̄ if removing any landmark
from L, L is not discriminative to R̄ any more.
Continuing with the previous example, L1 is not simplest
identifiable to R̄, since after removing l3 from L1 it still
identifiable to R̄, while sets L3 = {l3} and L4 = {l4} are.

B. Overview of CrowdPlanner

CrowdPlanner is a two-layer system (mobile client layer and
server layer) which receives user’s request from mobile client
specifying the source and destination, processes the request
on the server and finally returns the verified best routes to the
user. Fig. 1 shows the overview of the proposed CrowdPlanner
system, which comprises two modules: traditional route rec-
ommendation (TR) and crowd-based route recommendation
(CR). The workflow of CrowdPlanner is as follows: the TR
module firstly processes user’s request by trying to evaluating
the quality of candidate routes obtained from external sources
such as map services and historical trajectory mining; the
CR module will generate a crowdsourcing task when the TR
module can not distinguish the quality of candidate routes, and
return the best route based on the feedbacks of human workers
of the system.

1) Traditional Route Recommendation Module: This mod-
ule processes the user’s request by generating a set of can-
didate routes from external sources (route generation compo-
nent) and evaluating the quality of those routes automatically
without involving human effort (route evaluation component).

Control logic component: This component receives the
user’s request and controls the workflow of the entire system.

Historical

trajectories

 Map

web services
Compare

routes

Generate

popular routes

Verified

truth

Reuse

truth

Control

logic

Rank

routes
Select

workers

Generate

task

Reward

workers

Early

stop

Route

request

Response

a task

Assign

task

Fig. 1. System Overview

It also coordinates the interactions between the TR module
and CR module. Once a user’s request is received by the
control logic component, it will invoke reuse truth component
to match the request to the verified routes (truth) between two
places at his departure time. If the new coming request is
a hit of the truth, the system will return result immediately.
Otherwise the component will invoke the route generation
component to automatically generate some candidate routes
and route evaluation component to evaluate the qualities of
these candidate routes using the verified truth.

Route evaluation component: This component evaluates
the routes using computer power and it provides an efficient
way to reduce the cost of CrowdPlanner, since it can largely
reduce the amount of tasks generated. The component will
firstly build up a candidate route set by invoking route
generation component. If some of these routes agree with
each other to a high degree, one of them will be selected as
the best recommended route and added into a truth database
with the corresponding time tag. If a best recommended route
can not be determined, the system will assign each candidate
route a confidence score, which is generated by the verified
truths and illustrates the possibility of the route to be the best
recommended route. A route with the highest confidence score
that is greater than a threshold η will be regarded to be the
best recommended and returned to the user; otherwise the logic
control will hand over the request to the CR module.

Route generation component: This component generates
two types of candidate routes, the one provide by web services
such as Google Map and the one generated from historical
trajectories by using popular route mining algorithms, i.e.,
MPR, LDR and MFP.

2) Crowd Route Recommendation Module: Crowd route
recommendation module will take over the route recommenda-
tion request when the traditional route recommendation mod-
ule cannot provide the best route with high enough confidence.
The module will generate a crowdsourcing task consisting of a
series simple but informative binary questions (task generation
component), and assign the task to a set of selected worker
who are most suitable to answer these questions (worker
selection component).

Task generation component: As the core of CrowdPlanner,
this component generates a task by proposing a series of
questions for workers to answer. It is beneficial to have these
questions as simple and compact as possible, since both the
accuracy and economic effectiveness of the system can be
improved. The design of this component will address two
important issues: what to ask in questions and how to ask
the questions. We will discuss the detailed mechanism of this
part in Section III.

Worker selection component: This is another core compo-
nent of CrowdPlanner. In order to maximize the effectiveness
of the system, we need to select a set of eligible workers
who are most suitable to answer the questions in a given
task, by estimating the worker’s familiarity with the area of
request. Technical details of this component will be presented
in Section IV.

Early stop component: In most cases, we do not to need to
wait for all the answers of the assigned workers. When partial
feedbacks have been collected, this component will evaluate
the confidence of the answer and return the result to the user
as early as possible when the confidence is high enough.

Rewarding component: This component rewards the work-
ers according to their workload and the quality of their
answers. The reward points can be used later when they
request a route recommendation in CrowdPlanner.

In the following two sections, we will present the design and
technical details of the two core components of CrowdPlanner:
task generation and worker selection.

III. TASK GENERATION

Almost everyone has the experience that you can not explain
a route clearly to someone, even you know exactly how to get
there in mind, which implies describing a route concretely is
hard for human. Therefore we can not simply publish a task
to workers that requires them to describe the best route in a
turn-by-turn manner. As an alternative and more friendly way,
we may provide several pictures, which demonstrate these
candidate routes on a map, as multiple choices for workers
to choose. Taken the route recommendation request in Fig. 2
as example, we publish a multiple choice question to workers
by showing four routes on a map and ask them to pick the
route they most prefer. Although all the routes have been
visualized on a map, it still requires lots of efforts to realize
the differences among all candidate routes, especially when
they use smartphones with small screens to do this job. We
observe that humans like to use a set of significant locations,
i.e., landmarks, to describe a route in high level rather than
a sequence of continuous roads as computers do. So to make
the question easier to answer, we summarize the candidate
routes using landmarks and present the differences to workers,
instead of asking them to find out by themselves. Besides,
how the questions are presented can also affect the complexity
of a task. For example, a multiple choice question with all
candidate routes is more difficult to answer than a couple of
binary questions such as “ do you prefer the route passing

landmark A at 2:00pm?”, since [20] pointed out that several
binary choice questions are easier and more accurate than a
multiple choice question. Based on the above analysis, we will
generate a task as a sequence of binary question, each relating
to a landmark that can discriminate some of the candidate
routes.

l9
l1

l4

l7

l6
l2

l3 l8

l10

l5

0.9
0.7

0.3 0.8

0.2

0.4

0.5

0.2

Fig. 2. An example of landmark-based recommended routes between l1 and
l10

In this section, we will present in detail our task generation
process, which can be divided into three phases: inferring land-
mark significance, landmark selection and question ordering.
Specifically, the first phase infers the significance for each
landmark which indicates people’s familiarity with it. The
second phase tries to use a set of most significant landmarks
to summarize the difference among the candidate routes. The
third phase generates the final task by ordering the questions
in a smart way so that the expected number of issued questions
is as small as possible.

A. Inferring Landmark Significance

It is a common sense that landmarks has different signifi-
cances. For instance, the White House is world famous, but
Pennsylvania Ave, where the White House is located on, is
only known by some locals of Washington DC. People tend
to be more familiar with the landmarks that are frequently
referred to by different sources, e.g., public praise, news,
bus stop, yellow pages. In this work, we utilize the online
check-in record in a popular location-based social network
(LBSN) and trajectories of taxicabs in the target city to infer
the significance of landmarks, since these two datasets are
large scale enough to cover most areas of a city. By regarding
the travellers as authorities, landmarks as hubs, and check-
ins/visits as hyperlinks, we can leverage a HITS-like algorithm
such as [26] to infer the significance of a landmark. Readers
who are interested in the technical details can refer to [26].

B. Landmark Selection

Although any landmark can be used to generate a question,
not all of them are suitable for the purpose of generating easy
questions given a certain candidate route set R̄ (notably in
this section we rewrite all the routes in R into landmark-based
routes so we use R̄ to denote the candidate route set). First,
the selected landmark set L should be discriminative to the
candidate routes R̄, which ensures that the difference between
any two routes can be presented. Second, the landmarks of L
should have high significance, so that more people can answer
the question accurately. Third, in order to reduce the work load
of workers, the selected landmark set L should be as small
as possible. Therefore the problem of landmark selection is
to find a small set of highly significant landmarks which are

discriminative to all the candidate routes. It can be formally
represented as an optimization problem in below.
Given n landmark-based candidate routes R̄, and the signifi-
cance of each landmark
Select a landmark set L with the size of k (dlog2(n)e ≤ k ≤
n) which is discriminative to R̄
Maximize

∑
l∈L l.s · |L|−1

Here, the target function aims to maximize the product of two
opposite factors:

∑
l∈L l.s, which is proportional to the sum of

significances of L and |L|−1, which is inversely proportional
to the size of L.

Due to the trade-offs between maximizing accumulate sig-
nificance of the selected landmark set L and minimizing
the size of L as well as the restriction that L must be
discriminative to R̄, it is non-trivial to generate L. A straight-
forward method is to enumerate all the landmark combina-
tions of

⋃̄
R∈R̄

R̄ and find a discriminative landmark set with

the maximized target value. However, the time cost grows
exponentially with the size of landmark set, rendering this
method impractical. To speed up this process, we propose two
landmark selecting algorithms, called Incremental Landmark
Selecting and GreedySelect.

1) Incremental Landmark Selecting: The main idea of ILS
is to select several simplest discriminative landmark sets,
each of which has different size (from dlog2 ne to n). The
selected simplest discriminative set of size k has the maximum
objective equation value among all the simplest discriminative
landmark sets of size k. And then ILS can obtain the best land-
mark set using the selected simplest discriminative landmark
sets.

At the very beginning, we need to roughly filter out some
non-benificial landmarks which are on/ not on every candidate
route. The beneficial landmarks set of R̄ can be generated
as following: L =

⋃̄
R∈R̄

R̄ −
⋂̄
R∈R̄

R̄. Because of optimization

requirements, we sort L in descending order of their signif-
icances. Notably, the sorted landmarks should be not stored
in a set, but for convenience we still use L to denote to
sorted beneficial landmarks. We denote the selected simplest
discriminative set of size k by Lsim[k]. The aim of the step
is to find best landmark set LR̄ using Lsim[k], where k ranges
from dlog2 ne to n. The discriminative set Lk of length of
k with maximum objective equation value can be calculated
using Lsim[i] (dlog2 ne ≤ i ≤ k) as following:

Lk = arg max
dlog2 ne≤i≤k

GetV alue(GetMaxSet(L, k,Lsim[i]))

where the GetMaxSet(L, k,Lsim[i]) is a function which
returns the superset of Lsim[i] with the maximum objective
equation value among all the Lsim[i]’s supersets of size k and
GetV alue(·) is a function which returns the objective equation
value of ·. Lk must be discriminative to R̄. Since the L is
sorted, GetMaxSet(L, k,Lsim[i]) has the time complexity of
O(1). Afterward, LR can be generated as following:

LR = arg max
dlog2 ne≤k≤n

GetV alue(Lk)

In the sequel, we will discuss how to obtain Lsim[i].
In order to obtain all the Lsim[i], we use a “bottom up”

approach, of which landmark sets are extended from size one
to size n by adding one landmark at a time and groups of
landmark sets are tested. Let Sk denote a set forming by
several landmark combinations with the size of k. The Lsim[k]

generating can mainly divided into three steps. (1) Start step:
the algorithm start from k = 1, thus S1 stores all the combina-
tions of each single landmark of size 1. (2) Calculating step:
then the algorithm tests whether each combination S ∈ Sk
is discriminative. Among all the discriminative sets of Sk,
the set with the maximum objective equation value assigns
to Lsim[k]. Afterward all the discriminative combinations of
Sk and their superset are pruned and removed from Sk,
since their superset are all discriminative and their maximum
objective equation value can be easily generated from Lsim[k].
(3) Expansion step: If k equals to n, the algorithm stops.
Otherwise we generates Sk+1 from Sk, which consists of all
the undiscriminative landmark sets of size k. Adding a new
landmark l (l ∈ L − S) to S (S ∈ Sk) will form a element
S′ of Sk+1. However, the expansion cause same sets being
generated several times, i.e., {l1} expends l2 to {l1, l2} and
{l2} expends l1 to {l1, l2} too. So we restrict the significance
of adding landmark l must be less than the significance of any
landmark of S. Thus Sk+1 can be generated as following:

Sk+1 = {S′|S′ = S∪{l}∧l.s ≤ min
l′∈S

l′.s∧l ∈ L−S∧S ∈ Sk}

and repeat step 2.
2) GreedySelecting: The main idea of GreedySelecting is to

incrementally adding a landmark with the highest significance
among the possible landmarks to an discriminative landmark
set and use some tight upper bounds to prune many landmark
sets with low significance values. Let S denote the current
testing landmark set and Lbest the best landmark set which is
discriminative and has the highest target value. The landmark
selection process can be divided into three steps:

Preparation step: at the very beginning, we need to roughly
filter out some non-beneficial landmarks, the ones cannot
identify any routes of R̄. A straightforward way is to filter
out landmarks which are on/ not on every candidate route.
Thus the beneficial landmarks set of R̄ can be generated as
following: L =

⋃̄
R∈R̄

R̄ −
⋂̄
R∈R̄

R̄. Because of optimization

requirements, we sort L in descending order of their signifi-
cances. Please note the sorted landmarks should be not stored
in a set, but for convenience we still use L to denote to sorted
beneficial landmarks.

Expansion step: this step generates the test landmark set
S. We recursively generate the test landmark set S, as shown
in Algorithm 1. In this step, we find all the landmarks not in
S, pick non-added biggest landmark of them, and add it to S.
Once the S is discriminative, we stop adding landmark to it
and roll back to previous level recursion. Since the same S
may be generated in different order, to eliminate duplication,
we only consider those landmarks with a lower significance

than any element in S. The process stops when all the possible
combinations have been visited.

Algorithm 1: expansion
1 if |S| = n then
2 stop or S ← landmark with the next biggest significance;

3 else
4 SetOfS ← ¡- all the landmarks has a lower sinificance

than any landmark of S;
5 Sort SetOfS in descending order of the significances of

landmarks;
6 for each l ∈ SetOfS do
7 if S ∪ {l} is not discriminative then
8 expand(S ∪ {l});

Test step: this step tests whether S is discriminative. If S
is discriminative, calculate the maximum target value m of S
and the supersets of S and if value is bigger than the current
maximum target value maxV alue, then the set with target
value value among S and the super sets of S will be assigned
to Lbest. Afterwards the supersets of S do not to be visited
since their are all discriminative and their maximum target
value will be no more than value. Thus all the landmarks of
S will be removed, which in other words S will be assigned
as ∅.

However, the above two algorithms can be very time
consuming when the size of L and n are large, since there
will be a large amount of landmark sets to be tested. In
order to improve the efficiency, we need to filter out more
non-beneficial landmarks in the preparation step, generate S
more intelligently by avoiding duplication in the expansion
step and test less S which prunes many insignificant enough
landmark sets and their supersets in the test step. Next we will
present the optimizations for each step respectively for both
algorithms.

C. Question Ordering

In the previous step we select questions (landmarks), which
can be regarded as the question library. However, presenting
those question to workers with random order is unwise because
of the following two reasons: 1) it is not necessary to ask
all the questions in most cases. For example, in Fig 2 if a
worker indicate he prefers the routes passing l2 from l1 to
l10, we do not need to ask whether he recommend to pass l8
since all the routes passing l2 do not pass l8; 2) each time we
ask a question, we would like to obtain the most informative
feedback, which is more likely to indicate the final answer.
This implies that 1) the next question to be asked depends on
the result of the previous question, so the question order is a
tree-like structure, denoted by T ; 2) the information strength
of a question q is proportional to people’s familiarity of a
landmark (the significance of the landmark) and the power of
filtering of a landmark (the information gain of the candidate
routes set using the landmark).

The information strength IS(lki) of question lki is defined
as following:

IS(lki
) =lki

.s[H(R̄k−1)− R̄+
k

R̄+
k

+R̄−
k

H(R̄+
k)− R̄−

k

R̄+
k

+R̄−
k

H(R̄−k)]

where H(·) is the empirical entropy of ·, R̄k−1 stands for
R̄
l
+/−
k1

l
+/−
k2
···l+/−

ki−1

and R̄+
k and R̄−k represent R̄

l
+/−
k1
···l+/−

ki−1
l+ki

and R̄
l
+/−
k1
···l+/−

ki−1
l−ki

respectively.

In order to get more information after each question, we em-
ploy the Iterative Dichotomiser 3 (ID3) algorithm [18], which
recursively selects the question with the largest information
strength as the next question, to build T . The algorithm can
be mainly divided into four steps. 1) Calculate the informa-
tion strength of every question using the whole routes set
R̄. 2) Split the routes set R̄

l
+/−
k1

l
+/−
k2
···l+/−

ki

into two subsets

R̄
l
+/−
k1
···l+/−

ki
l+ki+1

and R̄
l
+/−
k1
···l+/−

ki
l−ki+1

according to the answer

of question ki+1, which has the maximum information strength
among all questions. Here we use R̄

l
+/−
k1
···l+/−

ki
l
+/−
ki+1

to denote

the routes subset after answering questions lk1 , · · · , lki , lki+1

and the k+
i+1 denotes that the answer of ki+1 is yes and

k−i+1 denotes that the answer of ki+1 is no. 3) make a
decision node of T containing question ki+1. 4) perform the
above steps recursively on routes subsets R̄

l
+/−
k1
···l+/−

ki
l+ki+1

and R̄
l
+/−
k1
···l+/−

ki
l−ki+1

using remaining questions until all the

subsets have only one route.

IV. WORKER SELECTION

Some Crowdsourcing platforms such as AMT and Crowd-
Flower give workers the freedom to choose any questions.
However this may cause some problems, for example, many
workers choose to answer a same question while some other
questions are not picked by anyone, workers have to view
all the questions before they choose, workers may answer
questions that they are not familiar with. CrowdPlanner avoids
these problems by designing a dedicated component to assign
each task to a set of eligible workers. In order to judge whether
a worker is eligible for a task, many aspects of the worker have
to be taken into consideration, i.e., number of outstanding
tasks, worker’s response time and familiarity with a certain
area. First, since each worker may have many outstanding
tasks, in order to balance the workload and reduce the response
time, we use a threshold η#q to restrict the maximum number
of tasks of each worker. Second, each user of CrowdPlanner
can specify the longest time delay she allows to get an answer,
so this task will not be assigned to workers who have high
probability not to accomplish the task before the due time.
Last, a recommended route will have high confidence to be
correct if assigned workers are very familiar with this area.
Again, the worker’s familiarity with respect to a certain area
can also be affected by several factors, such as whether the
worker lives around the area, whether the worker has answered
questions relating to this area correctly in the past, etc. In
summary, an eligible worker should meet three conditions:
1. has quota to answer the question; 2. has high probability

to answer a question before due time; 3. has relatively high
familiarity level with the query regions.

A. Response Time

Each task has a user-specified response time, with which
an answer must be returned. We assume the probability of
the response time t of a worker follows an exponential
distribution [24], i.e., f(t;λ) = λ exp−λt, which is standard
assumption in estimating worker’s response time. The cumu-
lative distribution function of f(t;λ) is F (t;λ) = 1−exp−λt.
If the probability of a worker to respond a task within time
t, represented by F (t;λ), is less than the threshold ηtime, we
will not assign the task to him.

B. Worker’s Familiarity Score

People usually have the best knowledge for areas where they
live or travel about frequently. In CrowdPlanner, we develop
a familiarity score f lw to estimate the knowledge of a worker
w about a landmark l. f lw is mainly affected by two factors:
(1) worker’s profile information, including her home address,
work place and familiar suburbs, which can be collected during
her registration to the system, and (2) history of worker’s tasks
around this area. f lw of landmark is defined as:

f lw =α · exp {−(d(l, phome) + d(l, pwork) + d(l, pfr)}
+ (1− α) · (#correct+ β ·#wrong)

where α is a smoothing variable, d(l, p∗) is the distance
between l and p∗, #correct is the number of correctly
answered question of l, #wrong is the number of incorrectly
answered question of l, and β is a constant less than 1,
which measures the gain of a wrong answer. Notably, since
the knowledge of a far away region can hardly influence the
knowledge here and in order to simplify the computation of
f lw, we assign +∞ to d(l, x) if d(l, p∗) is bigger than a
threshold ηdis. With all the n workers and m landmarks in our
system, a n∗m matrix M with mij = f

lj
wi is built, where f ljwi is

worker wi’s familiarity score of landmark lj . Since the number
of landmarks a worker has answered is always small compared
with the large number of landmarks in the space, M is very
sparse. Hence, if task assigning is only based on the sparse M ,
the assigning process has a strong bias to assign tasks to only
a few well-performed workers. Actually, workers who have
similar profile information or have answered several similar
questions are highly possible to share the similar knowledge.
For example, if a worker w1 has high familiarity score with
l1, l2 and l3 and another worker w2 living nearby has high
familiarity score with l1 and l2, w2 is also likely to be familiar
with l3 though w2 has not answered any question relating to
l3. Therefore, we need to predict familiarity scores of workers
on landmarks using the latent similarity between workers.

The familiarity scores of different landmarks of workers are
determined by some unweighed or even unobserved factors,
which are regarded as some hidden knowledge categories,
e.g. certain type of landmarks. However, we do not manually
specify these factors, as hard-coded factors are usually limited

and biased. Instead, we assume the familiarity score of each
worker-landmark pair is a linear combination of two groups
of scores, i.e. (1) how a worker is familiar with each hidden
knowledge category, and (2) how a landmark is related to each
hidden knowledge category. Then we employ Probabilistic
Matrix Factorization (PMF) [15] to factorize M into two
latent feature matrices, W ∈ Rd×n and Ld×m, which are the
latent worker and landmark feature matrices, respectively. That
is, M = WTL, where Wi,k describes how familiar worker
wi is with knowledge category k, and Lj,l describes how
related landmark lj is to knowledge category k. Further, we
assume there exists observation uncertainty R, and the un-
certain follows a normal distribution. Thus the distribution of
a new worker-landmark familiarity matrix M ′, which predicts
some familiarity by leveraging the similarity between different
workers and landmarks, conditioned on W and L is defined
as follows:

p(M ′|W,L, σ2) =
n∏

i=1

m∏
j=1

[N (Mij |WT
i Lj , σ

2)]
Iij (1)

where N (x|µ, θ2) is the probability density function of the
normal distribution with mean µ and variance θ2, and Iij is a
indicator which is equal to 1 if Mij is not zero, otherwise 0.
The prior of W and L are defined as follows:

p(W |σ2
W) =

n∏
i=1

N (Wi|0, σ2
W I)

p(L|σ2
L) =

m∏
i=1

N (Li|0, σ2
LI)

where I is identity matrix. The following objective function
maximizes the posterior of W and L with regularization
terms, which minimizes the prediction difference between our
model and the observed M , and also automatically detects
the appropriate number of factors d through the regularization
terms:

n∑
i=1

m∑
j=1

Iij(Mij −WT
i Lj)

2
+λW

n∑
i=1

‖Wi‖2F +λL

m∑
j=1

‖Lj‖2F

where λW = θ2/θ2
W , λL = θ2/θ2

L, and ‖·‖2F denotes the
Frobenius norm. A local minimum of the objective function
can be found by performing gradient descent in W and
L. Afterwards, more familiarity scores between workers and
landmarks are inferred in M .

A worker with a familiarity score of a landmark means he
has some knowledge about the region around the landmark,
not just the landmark itself. As a result, the accumulated
familiarity score F ljwi of lj of a worker wi is a weighted sum
of all the landmarks in the ηdis range of lj . We assume the
weight around a landmark l follows a normal distribution of
the distance to l, and the region that the knowledge of l can
cover is limited in a circle with the center of l and the radius
of ηdis. Thus, F ljwi is evaluated as follows:

F
lj
wi

=
∑

l∈Lnear∪{lj}
δlf

l
wi

where Lnear is the set of landmarks in the ηdis range of l.
The weight δl = N (d(l, lj)|0, σ2

0) where σ0 = ηdis/3. We use
M∗ to denote the worker-landmark matrix of the accumulated
familiarity score, where m∗ij equals to F ljwi .

C. Finding Top-k Eligible Workers
Next we discuss how to find the top-k eligible workers

for a given task. Given a task (the selected n landmarks
L), the worker-landmark accumulated familiarity score matrix
M∗, a response time t, a positive integer k, a top-k eligible
workers query returns k workers who have the most knowledge
of landmarks in L among all the workers and have high
possibility to finish the task within time t.

For a single landmark lj , there may be several workers,
denoted as Wlj , who have non-zero accumulated familiar
scores, which means these workers have some knowledge
of lj . For a task (a set of landmarks L),

⋃
l∈L

Wl represents

workers who have knowledge of any landmark of L. Then we
filter out workers, of who the possibility of finishing the task
within time t is no more than ηt, from

⋃
l∈L

Wl. Afterwards

the remained workers in
⋃
l∈L

Wl are regarded as candidate

workers denoted by W. However, simply adding up a worker’s
accumulated familiarity scores on all the landmarks of L may
lead biased result in worker selection. For example, there are
ten landmarks in a task and two candidates workers w1 and
w2, that w1 only has a very good knowledge of landmark
l1 , F l1w1

=2) and knows nothing about the rest landmarks,
F liw1

= 0 (2 ≤ i ≤ 10), while w2 has some knowledge of all
the landmarks that Fw2(li) = 0.1 (1 ≤ i ≤ 10). Comparing
the adding up sum of accumulated familiarity scores of the
ten landmarks, w1 will be selected to be assigned the task.
However, the coverage of w1’s knowledge of the landmark
set is too narrow, that w1 may feel hard to answer questions
about l2, l3, · · · , l10, in the knowledge coverage manner, w2 is
a better choice. Thus, when selecting workers from candidate
workers, not only their sum of accumulated familiarity scores
of all the landmarks, but also the knowledge coverage of all
the landmarks should be considered. The choosing rules are
quite similar to rated voting system [25], of which the wining
option is chosen according to the voters preferences score of
options and the number of voters preferring the options. In
our system, we can treat each landmark of L as a voter and
each worker of W as an option. Adopting the idea of rated
voting system, we can measure the landmark lj’s preference of
all the candidate workers as the following two steps: 1) rank
workers of Wlj ∩W, who are in the candidate workers set W
and have accumulated familiar scores F ljw bigger than zero, in
descending order of F ljw ; 2) the preference score plj (w) of lj
to each worker w in Wlj ∩W is defined as follows:

plj (w) =

{
1− rank(w)−1

|Wlj
| , if w ∈Wlj

0, otherwise

where rank(w) is the ranked place of w among Wlj ∩
W. In this way the worker with high accumulate familiarity
score will get a relatively high preference score and ensure the
preference score will not result in a bias in worker selecting.
Afterwards, all the landmarks will vote their preferences to the
candidate workers, at this time we sum up the preferences of
each worker voted by landmarks and then the workers with the
top-k biggest adding up preference scores will be the query
results.

V. RELATED WORK

To our knowledge, there is no existing work on evaluating
the quality of recommended routes. As the goal of this work
is to evaluate the quality of recommended routes by web
services and mining algorithms, the route recommendation
algorithms (mining frequent path algorithms) used in this
paper are reviewed first. Then we will review route generating
algorithms. Since in our Crowdplanner system, we reuse truth
to reduce the request times of Crowdsourcing, which share
similar inspiration and techniques with route generating. Also
we leverage the generating easy questions and finding target
workers to improve the quality of evaluating and reduce
the workers’ workload, which share the same motivation of
some research works of Crowdsourcing question designing
and workers selecting. Therefore in the last of this section,
we will review these two lines of related work.

Route Recommendation Algorithms. The popular routes
mining has received tremendous research interests for a decade
and a lot of works are on it, such as [19], [14], [6], [7], [26],
[6], [14], [7], [26], [12], [11], [5], [10]. Among these works,
[4], [23], [13], [3] are the most representative. Chen et al.
[4] proposes a novel popularity function for path desirability
evaluation using historical trajectory datasets. The popular
routes recommended by it tends to have fewer vertices. The
work in [23] provides k popular routes by mining uncertain
trajectories. The recommendation routes of this work tend
to be rough routes instead of correct routes. [13] claims the
popular routes change as time, so it carries out a popular routes
mining algorithms which can provide the recommended routes
in arbitrary time periods specified by the users. [3] provides
the evidences that the routes recommended by web services are
sometimes different from drivers’ preference. Thus it mines the
individual popular routes from his historical trajectories. The
recommended routes of this method reflect certain people’s
preference.

Question Designing. Question designing is always an ap-
plication dependent strategy, which may consider the cost
of questions or the number of questions. [8], [16] propose
strategies to minimize the cost of the questions designed. The
question designing strategy of [22] is to minimize the number
of questions. The question designing strategy of [17] is to
generate the optimal set of questions.

Worker Selecting. Selecting workers with high individual
qualities for tasks always does beneficial to the final quality
of answers. Thus [9] propose an algorithm to select workers

fulfilling some skills with the minimized the cost of choosing
them. In [1] use emails communication to identifying skillful
workers. Cao et al [2] assign tasks to micro-blog users by
mining users’ knowledge and measuring their error rate.

VI. CONCLUSIONS

In this paper we have taken an important step towards
evaluating recommended routes from different providers, web
services and popular routes mining algorithms, to provide
users the verified best routes. After studying the difference
between web service recommended routes and popular routes
mined from historical trajectories, we have proposed a system
CrowdPlanner which give users the verified best routes and
allow computers together with crowds to evaluate routes
effectively and efficiently. We use many components to reduce
the time cost and manpower cost of the route evaluating
procedure, such as, truth reusing, landmark selecting and
worker selecting, where in this paper we details the human
evaluating related part. Landmark selecting automatically gen-
erates an identifiable set of landmarks with the highest mean
significance. Worker selecting finds the top-k most eligible
workers who have good knowledge of the task. Extensive
experiments have been conducted involving a lot of volunteers
and using a real trajectory dataset. We have demonstrated
that the CrowdPlanner system can always give users the best
routes. The MFP (Mining Frequent Path) has the highest
possibility to give the best route. The ideas from this work
open a new direction for future research, such as quality
control of popular route mining algorithms, and mining latent
factor which may affect drivers’ driving routes.

REFERENCES

[1] C. Campbell, P. Maglio, A. x. Cozzi, and B. Dom. Expertise identifi-
cation using email communications. In CIKM, pages 528–531. ACM,
2003.

[2] C. Cao, J. g. She, Y. Tong, and L. Chen. Whom to ask? jury selection
for decision making tasks on micro-blog services. PVLDB, 5(11):1495–
1506, 2012.

[3] V. Ceikut and C. Jensen. Routing service qualityłlocal driver behavior
versus routing services. In MDM, pages 195–203. IEEE, 2013.

[4] Z. Chen, H. Shen, and X. Zhou. Discovering popular routes from
trajectories. In ICDE, pages 900–911, 2011.

[5] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of
regression models. In SIGKDD, pages 63–72. ACM, 1999.

[6] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern
mining. In KDD, pages 330–339, 2007.

[7] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. Sondag. Adaptive
fastest path computation on a road network: A traffic mining approach.
In PVLDB, pages 794–805, 2007.

[8] S. Guo, A. Parameswaran, and H. Garcia-Molina. So who won? dynamic
max discovery with the crowd. In SIGMOD, pages 385–396. ACM,
2012.

[9] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In SIGKDD, pages 467–476. ACM, 2009.

[10] J. Lee, J. Han, X. Li, and H. Gonzalez. Traclass: trajectory classification
using hierarchical region-based and trajectory-based clustering. PVLDB,
1(1):1081–1094, 2008.

[11] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-
group framework. In SIGMOD, page 604, 2007.

[12] X. Li, J. Han, J. Lee, and G. Traffic density-based discovery of hot
routes in road networks. In SSTD, pages 441–459. Springer, 2007.

[13] W. Luo, H. Tan, L. Chen, and L. Ni. Finding time period-based most
frequent path in big trajectory data. In SIGMOD, pages 195–203. ACM,
2013.

[14] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and
D. Cheung. Mining, indexing, and querying historical spatiotemporal
data. In KDD, pages 236–245, 2004.

[15] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In
NIPS, pages 1257–1264, 2007.

[16] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh,
and J. Widom. Crowdscreen: Algorithms for filtering data with humans.
In SIGMOD, pages 361–372. ACM, 2012.

[17] A. Parameswaran, A. Sarma, H. Garcia-Molina, N. Polyzotis, and
J. Widom. Human-assisted graph search: it’s okay to ask questions.
PVLDB, 4(5):267–278, 2011.

[18] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–
106, 1986.

[19] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. Sellis. On-line discovery of hot motion paths. In
EDBT, pages 392–403, 2008.

[20] H. Su, J. Deng, and F. Li. Crowdsourcing annotations for visual object
detection. In AAAI, 2012.

[21] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajectory
data for similarity-based analysis. In SIGMOD, pages 833–844. ACM,
2013.

[22] J. Wang, T. Kraska, M. Franklin, and J. Feng. Crowder: Crowdsourcing
entity resolution. PVLDB, 5(11):1483–1494, 2012.

[23] L.-Y. Wei, Y. Zheng, and W.-C. Peng. Constructing popular routes
from uncertain trajectories. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 195–203. ACM, 2012.

[24] wikipedia. Exponential distribution, 2012.
[25] wikipedia. Voting system, 2012.
[26] Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining interesting locations

and travel sequences from gps trajectories. In WWW, pages 791–800,
2009.

	I Introduction
	II Problem Statement
	II-A Preliminary Concepts
	II-B Overview of CrowdPlanner
	II-B.1 Traditional Route Recommendation Module
	II-B.2 Crowd Route Recommendation Module

	III Task Generation
	III-A Inferring Landmark Significance
	III-B Landmark Selection
	III-B.1 Incremental Landmark Selecting
	III-B.2 GreedySelecting

	III-C Question Ordering

	IV Worker Selection
	IV-A Response Time
	IV-B Worker's Familiarity Score
	IV-C Finding Top-k Eligible Workers

	V Related Work
	VI Conclusions
	References

