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Making Pattern Queries Bounded in Big Graphs
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'RCBD and SKLSDE Lab, Beihang University,?University of Edinburgh

Abstract—It is cost-prohibitive to find matches Q(G) of a
pattern query @ in a big graph G. We approach this by fetching
a small subgraph G of G such that Q(Gg) = Q(G). We show
that many practical patterns are effectively bounded under access
constraints .A commonly found in real life, such that Gg can be
identified in time determined by @ and A only, independent of
the size|G| of G. This holds no matter whether pattern queries
are localized .g., via subgraph isomorphism) or non-localized
(graph simulation). We provide algorithms to decide whethe a
pattern Q is effectively bounded, and if so, to generate a query
plan that computes Q(G) by accessingGg, in time independent
of |G|. When @ is not effectively bounded, we give an algorithm
to extend access constraints and maké) bounded in G. Using
real-life data, we experimentally verify the effectivenes of the
approach, e.g., about 60% of queries are effectively bounded
for subgraph isomorphism, and for such queries our approach
outperforms the conventional methods by 4 orders of magnitde.

I. INTRODUCTION

Given a pattern queryy) and a graphG, graph pattern
matchingis to find the set)(G) of matches of@ in G. It is
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Fig. 1.

Example 1: ConsiderIMDb [22], a graphG, in which nodes
represent movies, casts, and awards from 1880 to 2014, and
edges denote various relationships between the nodes. An
example search ofMDb is to find pairs of first-billed actor

and actress (main characters) from the same country who co-
stared in a award-winning film released in 2011-2013

The search can be represented as a pattern gugeshown
in Fig. 1. Graph pattern matching here is to find the(3etG)
of matches,i.e., subgraphsi’ of Gy that are isomorphic to
Qo; we then extract and return actor-actress pairs from each
matchG’. The challenge is thaf, is large: thelMDb graph
has 5.1 million nodes and 19.5 million edges. Add to this that

used in,e.g., social marketing, knowledge discovery, mobile subgraph isomorphism idP-complete.

network analysis, intelligence analysis for identifyirgrorist

organizations [25], and the study of adolescent drug usg [17

Not all is lost. Using simple aggregate queries one can
readily find the followingreal-life cardinality constraints on

Whend is big, graph pattern matching is cost-prohibitive. the movie dataset from 1880-2014: (1) in each year, every
Facebook has 1.26 billion nodes and 140 billion links in itsaward is presented to no more than 4 movies (C1); (2) each

social graph, about 300PB of user data [28]. When the|size
of G is 1PB, a linear scan df takes 1.9 days using SSD with

movie has at most 30 first-billed actors and actresses (@G#), a
each person has only one country of origin (C3); and (3) there

scanning speed of 6GB/s. Worse still, graph pattern magchinare no more than 135 years (G4., 1880-2014), 24 major

is intractable if it is defined with subgraph isomorphism][31
and it takesO((|V'|+|Vgl|)(|E|+|Eg|))-time if we use graph
simulation [20], wheréG| = |V|+|E| and|Q| = |Vg|+|Eq].

Can we still efficiently compute exact answéyéG) when
G is big while we have constrained resources, such as
single processor? We approach this imaking big graphs
small capitalizing on a setd of access constraints, which
are a combination of indices and simple cardinality corrstsa
defined on the labels of neighboring nodesoiWe determine
whether( is effectively boundednder A4, i.e., for all graphs
G that satisfy.A, there exists a subgrafgi, C G such that

(a) Q(Gq) = Q(G), and _ o
(b) the size|Gg| of Gg and the time for identifying= are
both determined byd and @ only, independent ofG|.

movie awards (C5) and 196 countries (C6) in total [22]. An
index can be built on the labels and nodes®f for each of
the constraints, yielding a set, of 8 access constraints.

Under Ay, pattern@)y is effectively boundedNe can find
®0(Go) by accessingt most17923 nodes and 35136 edges in
Gy, regardless othe size ofGGy, by the following query plan:

(a) identify a setl; of 135 year nodes, 24award nodes and
196 country nodes, by using the indices for constraints C4-C6;

(b) fetch a set/; of at most24 x 3 x 4 = 288 award-winning
movies released in 2011-2013, with no more t2&R8 x 2 =

576 edges connecting movies to awards and years, by using
thoseaward andyear nodes inV; and the index for C1;

(c) fetch a se¥/s of at most(30+30)*288 = 17280 actors and

If  is effectively bounded, we can generate a query plaractresses with 17280 edges, usirig and the index for C2;

that for all G satisfying .4, computesQ(G) by accessing
(visiting and fetching) a smatlg in time independent ofG/,
no matter how bigG is. Otherwise, we will identify extra
access constraints on an ingtitand make() bounded inG.

A large number of real-life queries are effectively bounded

under simple access constraints, as illustrated below.

(d) connect the actors and actresse¥/4rto country nodes in
V1, with at most 17280 edges by using the index for C3. Output
(actor, actress) pairs connected to the sameuntry in V;.

The query plan visits at most 135 + 24 + 196 + 288 +
17280 = 17923 nodes, and 576 + 17280 + 17280 = 35136



edges, using the cardinality constraints and indiceglinas  (6) We experimentally evaluate our algorithms using réal-I
opposed to tens of millions of nodes and edgesvibb. O data (Section VII). We find that our approach is effective for
both localized and non-localized queries: (a) on graghsf
This example tells us that graph pattern matching is feasiblbillions of nodes and edges [1], our query plans outperfdren t
in big graphs within constrained resources, by making use ofonventional methods that compu@§G) directly by4 and 3
effectively bounded pattern queries. To develop a prdciipa  orders of magnituden average, for subgraph and simulation
proach out of the idea, several questions have to be answeraglieries, respectively, accessing at madi032%of the data in
(1) Given a pattern quer§ and a setd of access constraints, G; (b) 60% (resp. 33%) of subgraph (resp. simulation) queries
can we determine whethé€} is effectively bounded unded?  are effectively bounded under simple access constraint; a
(2) If Q is effectively bounded, how can we generate a queryc) all queriescan be made instance-boundedirby extend-
plan to compute&)(G) in big G by accessing a boundé#,?  ing constraints and accessing 0.016% of extra datd;iand
(3) If @ is not bounded, can we make it “bounded”’Ghby  95% become instance-bounded by accessing at most 0.009%
adding simple extra constraints? (4) Does the approach woréxtra data. Our algorithms are efficient: they take at mosts37
on both localized queriese(g., via subgraph isomorphism) to decide whethe@ is effectively bounded and to generate an
and non-localized queries (via graph simulation)? optimal query plan for all) and constraints tested.

Contributions. This paper aims to answer these questions for This work is the first effort to study effectively bounded

graph pattern matching. The main results are as follows. ~ graph queries, from fundamental problems to practical -algo
rithms. It suggests an approach to querying graphs: (1)ngive

(1) We introduce effective boundedness for graph pattera query@, we check whetheg) is effectively bounded under
queries (Section IlI). We formulate access constraints om set.4 of access constraints; (2) if so, we generate a query
graphs, and define effectively bounded pattern queries.I$de a plan that given a grapl satisfying.4, computesQ(G) by
show how to find simple access constraints from real-lifadat accessing= of size independent df7|, no matter how big

] ) ] G grows; (3) if not, we make) instance-bounded g’ with
(2) We characterize effectively boundedbgraph queries),  extra simple constraints. The approach worksdothlocalized

i.e., patterns defined by subgraph isomorphism (Section Ill)sybgraph querieand non-localized simulation queries.
We identify a sufficient and necessargondition to decide

whetherQ is effectively bounded under a sdtof access con- Given the prohibitive cost of querying big graphs, this

straints. Using the condition, we develop a decision atgori ~ @Pproach helps even when origited queriesare effectively

in O(|A||Eg|+|All[Vo|?) time, wherdQ| = |Vo|+|Eql, and bounded. In fact, we find that many queries on real-life detas

||.Al| is the number of constraints iA. The cost isndependent aré actually effectively bounded under very simple access
effectively bounded, we can make them instance-bounded.

(3) We provide an algorithm to generate query plans for  aj nroofs of the results of the paper can be found in [3
effectively bounded subgraph queries (Section V). Aftgr P pap 131

is found effectively bounded undet, the algorithm generates Related Work. We categorize related works as follows.

a query plan that, given a gragh that satisfies4, accesses a

subgraphG of size independent diG|, in O(|Vg||Eg||A|)  Effective boundednesShe study of effective boundedness
time. Moreover, we show that the planvrst-case-optimal ~ traces back to scale independence. The latter was propdjsed [
i.e., for each inputQ and A, thelargestGy, it finds from all  to approximately answer relational aggregate queries runde

graphsG that satisfy.A is theminimumamong all worst-case certain conditions, for key/value stores. It ai_ms to gutan
G, identified by all other query plans. that a bounded amount of work is required to execute

all queries in an application, regardless of the size of the
(4) If @ is not bounded unded, we make itinstance-bounded underlying data. The idea was formalized in [12], along veith
(Section V). That is, for a given graph that satisfiesd, we  notion of access constraints for relational queries. Ricahe
find an extensiomd,, of A such that underd,,;, we can find notion of [12] is revised in [10] by requiring that the amount
G¢ C G intime decided byd,, and@, andQ(Gg) = Q(G). of data accessed €., Gp) can be identified in time determined
We show that when the size of indicesin, is predefined, the by query Q and access constraintd only, referred to as
problem for deciding the existence dfy; is in low polynomial  effective boundednessis characterized fosPC queries [10].
time (PTIME), but it islog-APX-hard to find a minimund ;. . . . . .
WhenA,, is unbounded, all query loads can be made instance- Th|s_work differs from the previous work in the following. :
bounded by adding simple access constraints. (1) We |_ntroduce access constraints on graph (_jata, to gpecif

cardinality constraints on the labels of neighboring nodesl!
(5) We extend the study teimulation queriesi.e., patterns ~guide us to retrieve small subgraplig,. (2) Under such
interpreted by graph simulation (Section VI). It is more leha constraints, we formalize and characterize the effectiuenk-
lenging to cope with theon-localizedandrecursivenature of ~ €dness of graph patterns, an issue harder than its couriterpa
simulation queries. Nonetheless, we provide a charaetisiz ~ for relational queries [10], [12]. (3) We propose instance
of effectively bounded simulation queries. We also shovt thaboundedness for queries that are not effectively bounded.
our algorithms for checking effective boundedness, geimgra
query plans, and for making queries instance-bounded can
adapted to simulation queries, with the same complexity.

[Resource-bounded and anytime algorithnRelated are also
‘résource-bounded [16] and anytime algorithms [32]. The
former study reachability queries arngkrsonalizedpattern
gueries, in which some pattern nodes are designated to match




fixed nodes in a grap@. It is to compute approximate answers Q ¢
by accessing no more thanG| nodes and edges i@, for k AD

€ (0,1) [16]. Anytime algorithms [32] allow users either @c
to specify a budget on resourcesd., running time; known & (@) o ® - 4/.
as contract algorithms [33]), or to terminate the run of the T4 B A B D

algorithms at any time and get intermediate answers (know
as interruptible algorithms [19]). Contract anytime algons
have been explored for (a) budgeted search such as bounded- \yie write ¢ as (V,E) or (V,E, f) when it is clear from
cost planning [4], [29], [30], [32] under a user-specified tha context. Thaizeof (¢, denoted by G|, is defined to be the
budget; and (b) graph search via subgraph isomorphism,do fingia| number of nodes and edgesGhi.e., |G| = |V| + |E|.
intermediate approximate answers within the budget, elilie

assigning dynamically maintained budgets and costs tosiodgemark To simplify the discussion, we do not explicitly define
during the traversal [8], or by deciding search orders based edge labels. Nonetheless, our techniques can be readijtyeatia
the frequencies of certain features in queries and graphis [2 to edge labels: for each labeled edgewe can insert a
“dummy” node to represent, carryinge’s label.

Pig. 2. Pattern quer®): and data graplt;

This work differs from the prior work as follows. (1) We

aimto comput@xact_ar_lswertor pattern queries in big graphs, abeled setFor a setS C ¥ of labels, we say thats C V
as opposed to heuristic answers that may not have a provaql@mled sebf (@ if (_a) Vs| = |S| and (b) for each label

accuracy bound. (2) Weharacterizewhat pattern queries can iy g 'there exists a node in Vs such thatf(v) = Is. In
be answered exactly within a cost independent of the size articul,ar whenS = 0, the S-labeled set inG is 0

big graph, based on access constraints; in contrast, tbe pri

work does not study under what budget accurate answers aggnmon neighborsA nodew is called aneighborof another
warranted by using the semantics of the data. (3) We studgsqa.7in G if either (v,v') or (v/,v) is an edge inG. We

general pattern queries, which may dither localized or non- say thatv is a common neighboof a setVs of nodes inG

localized and maynot bepersonalized [16]. if for all nodesv’ in Vg, v is a neighbor ofv’. In particular,
when Vs is (), all nodes ofG are common neighbors dfs.

Graph indexing and compressiorThere are typically two
ways to reduce search space. (1) Graph indexing uses pre- - :
computed global information off to compute distance [11], ?u‘ligircap‘?s %raghgsand(‘;g,r%ééfli(,:sg/)lsea;ubgrgp‘gogfd

shortest paths [18] or substructure matching [26]. (2) Grap o -
compression computes a summary of a big graphG and v' € Vs, and for each € Vi, fo(v) = f(v) andv,(v) = v(v).

usesG. to answer all queries posed 6n[7], [13], [24].

Pattern queries A pattern query@ is a directed graph

In contrast to the prior work, (1) we compugract answers  (Vo, Eq, fo,9q), where (1)Vg, Eq and fq are analogous
rather than heuristic. (2) Instead of usitng samegraphG. to  to their counterparts in data graphs; and (2) for each node
answerall queriesposed on, we adopt alynamic reduction N Vg, go(u) is thepredicateof u, defined as a conjunction of
schemehat finds a subgrapfi, of G for each query). Since  atomic formulas of the fornfq (u) op ¢, wherec is a constant,
G consists of only the information needed for answerihg andop IS one of=, >, <, < and>. For instance, in pattern
it allows us to computé)(G) by usingGq much smaller than Qo Of Fig. 1, go(year) = year > 2011 A year < 2013. We
G. and hence, much less resources. (3) Wekeis effectively ~ Simply write Q as (Vg, Eq) or (Vg, Eq, fq)-
bounded, forll graphsG we can findG, of sizeindependent

of |G[; in contrast|G.| may be proportional toG|. We consider two semantics of graph pattern matching.

Subgraph queriesA match of@ in G via subgraph isomor-
phism[31] is a subgrapl&’ (V', E’, f’) of G that is isomorphic
to Q, i.e., there exists @ijective functionh from Vg to V’
such that (afu, ') is in Eq if and only if (h(u), h(u')) € E',
and (b) for eachu € Vi, fo(u) = f'(h(u)) andgg(v(h(uw)))
evaluates tdrue, wheregqg(v(h(u))) substitutes/(h(u)) for
fo(u) in go(u). HereQ(G) is the set of all matches @j in G.

Making big graphs smallThere have been other techniques
for reducing a big graph into small ones,g., distribute
query answering [23], pattern matching using views [154 an
incremental pattern matching [14]. These are complemgnta
to this work and can be readily combined with ougg.,our
methods can be readily adapted to distributed settings.

Simulation queriesA match of @ in G via graph simula-
_ ) ] tion [20] is a binary match relatioft C Vo x V' such that (a)

In this section we define access schema on graphs angr each(u,v) € R, fo(u) = f(v) andgg(v(v)) evaluates to
effectively bounded graph pattern queries. We start with arue, wheregg, (1/(v)) substitutes/(v) for fo(u) in go(u); (b)
review of graphs and patterns. Assume an alphabetlabels.  for each node: in Vy, there exists a node in V such that

. . () (u,v) € R, and (ii) for any edgdu,v’) in @, there exists

Graphs. A data graph is a node-labeled directed grépr 5, edge(v,v') in G such that(«/, ') € R.
(V,E, f,v), where (1)V is a finite set of nodes; (& C V xV ’ ’
is a set of edges, in whicfv,v’) denotes the edge fromto For any@ and G, there exists ainigue maximunmatch
v’; (3) f() is a function such that for each noddn V, f(v) relation Ry, via graph simulation (possibly empty) [20]. Here
is a label inX, e.g.,year; and (4)v(v) is the attribute value Q(G) is defined to b&R,,. Simulation queries are widely used
of f(v), e.g.,year = 2011. in social community analysis and social marketing [9].

Il. EFFECTIVELY BOUNDED GRAPH PATTERN QUERIES




Data locality. A query @ is localizedif for any graphG that
matches(, any nodeu and neighbor/ of u in @, and for
any matchv of v in GG, there must exist a matctl of «' in
G such that' is a neighbor ofv in G. Subgraph queries are
localized. In contrast, simulation queries am@n-localized

Example 2: Consider a simulation quer§; and graphG,
shown in Fig. 2, where#; matches@;. Then @; is not
localized: us matchesws,...,vo,_o and ve,, but for all
k € [2,n], var—2 has no neighbor inG that matches the
neighborus of uy in Q. To decide whethern, matchesvs,

we have to inspect all the nodes on an unbounded cycle in

G O

and ¢ has the general form: for any pair ¢éar and award
nodes, there are at mostdbvie nodes connected to bothe.,
an award is given to at most 4 movies each year. We Aise
to denote the set of these access constraints. O

Effectively bounded patterns A pattern queryy is effectively
bounded undean access schema if for all graphsG that
satisfy A, there exists a subgragh, of G such that

(@) Q(Gq) =Q(G); and _ _
(b) G can be identified in time that is determined Qyand
A only, not by |G|.

By (b), |Gg| is alsoindependent othe size|G| of G.
Intuitively, Q is effectively bounded unded if for all graphs

We will study effective boundedness for subgraph querieg; that satisfy A, Q(G) can be computed by accessing a

in Sections IlI-V, and then extend the results to non-laeali

boundedG rather than the entir&’, and moreovery/, can

simulation queries in Section VI. To formalize effectively be efficiently accessed by using access constraint4. of

bounded patterns, we first define access constraints onggraph

Access schema on graphsAn access schemal is a set of
access constraintsf the following form:

S — (I,N),
where S C ¥ is a (possibly empty) set of labelsjs a label
in X, and N is a natural number.

A graphG(V, E, f) satisfiesthe access constraint if

o for any S-labeled setls of nodes inV, there exist at
most N common neighbors oVs with label /; and

o there exists aimdex onsS for [ such that for anys-labeled
setVs in G, it finds all common neighbors dfs labeled
with [ in O(N)-time, independent ofG|.

We say thaiG satisfiesaccess schemd, denoted byG = A,
if G satisfies all the access constraints4n

An access constraint is a combination of éagardinality
constraintand (b)an indexon the labels of neighboring nodes.
It tells us that for anyS-node labeled seVs, there exist a
bounded number of common neighbd#slabeled withi and
moreover,V; can be efficiently retrieved with the index.

Two specialtypesof access constraints are as follows:

(1) |S| = 0 (i.e., ® — (I,N)): for any G that satisfies the
constraint, there exist at most nodes inG labeledl; and

(2 |S| =1 (i.e., I — (I',N)): for any G that satisfies the
access constraint and for each nadklbeled with/ in G, at
most N neighbors ofv are labeled with’.

Intuitively, constraints of type (1) are global cardinglit
constraints on all nodes labelédand those of type (2) state
cardinality constraints off-neighbors of eacli-labeled node.

Example 3: Constraints C1-C6 omvDb given in Example 1
can be expressed as access constrantdor i € [1, 6]):

1. (year,award) — (movie,4); 4 0 — (year, 135);
2. movie — (actors/actress, 30); @5: 0 — (award, 24);
3. actor/actress — (country, 1); ¢g: 0 — (country, 196).

Here ¢, denotes a paimovie — (actors,30) and movie —
(actress, 30) of access constraints; similarly fgr;. Note that
w4 — g are constraints of type (1) — w3 are of type (2);

For instance, as shown in Example 1, quély is effec-
tively bounded under the access schempof Example 3.

Discovering access constraintd=rom experiments with real-
life data we find that many practical queries are effectively
bounded under simple access constraitits> (I, N) when

|S| is at most 3. We discover access constraints as follows.

(1) Degree bounds: if each node with labéls degree at most
N, then for any label’, | — (I’, N) is an access constraint.

(2) Constraints of type (1): such global constraints ardequi
common,e.g., s 0N IMDb: () — (country, 196).

(3) Functional dependencieBls): our familiar FDs X — A

are access constraints of the foh— (A4, 1), e.g.,movie —

year is an access constraint of type (2jovie — (year,1).
Such constraints can be discovered by shredding a graph into
relations and then using availali#® discovery tools.

(4) Aggregate queries: such queries allow us to discover the
semantics of the date,g.,grouping by ¢ear, country, genre)
we find (year, country, genre) — (movie, 1800), i.e., each
country releases at most 1800 movies per year in each genre.

Maintaining access constraints The indices in an access
schema can be incrementally afmtally maintained in re-
sponse to changes to the underlying graphlt suffices to
inspectAG U Nb (AG), where AG is the set of nodes and
edges deleted or inserted, aib; (AG) is the set of neighbors
of those nodes il\G, regardless of how big- is.

Ill. EFFECTIVEBOUNDEDNESS OFSUBGRAPH QUERIES

To make practical use of effective boundedness, we first
answer the following question, denoted Bgnd(Q, A):

o Input: A pattern query)(Vy, Eg), an access schema
o Question: IsQ effectively bounded unded?

We start with subgraph queries. The good news is that

(a) there exists a sufficient and necessary conditi@n, a
characterization for deciding whether a subgraph query
Q is effectively bounded unded; and better still,

(b) EBnd(Q,.A) is decidable in low polynomial time in the
size of @ and A, independent of any data graph.



We prove these results in the rest of the section. Algorithm EBChk
Input: A subgraph query) and an access schema

.. . Output: “yes” if @ is effectively bounded and “no” otherwise.
A. Characterizing the Effective Boundedness puty @ Y

1. foreach S — (I, N)in A (S # 0) do
The effective boundedness of subgraph queries is charag- find all V& — (u, N) in Q and add them t&; /* f(u) = I*/
terized in terms of a notion afoverage given as follows. 3. B:={veVy|0— (fo),N)isin A};
) 4. C:= B; Mnitialize VCov(Q, A)*/
Thenode covenof 4 onQ, denoted byCov(Q, A), isthe 5. |nitAuxi(L, ct); /#Initialize auxiliary structures*/
set of nodes i) computed inductively as follows: 6. while B is not emptydo
(@ if  — (I,N) is in A, then for each node in @ with ; ?or eifﬁz(?r', L[v] do
labell, v € VCov(Q, A); and . 9. Update (ct[¢]); *Update counterct[¢]*/
(b) if S— (I, N) isin A, then for eachS-labeled sets in 10. if ct[¢] = 0 andu ¢ C do /*supposeg: V& — (u, N)*/
Q, if Vs C VCov(Q, A), then all common neighbors of 11. B:=BU{u}; C:=CU{u};

Vs in @Q that are labeled with are also inVCov(Q,.A).  12. if Vo C C and all edges i) are inECov(Q, .A) then
13. return “yes”;
Intuitively, a nodeu is covered byA if in any graphG sat-  14. return “no”);l
isfying A, there exist a bounded numberazndidate matches — .
of u, and the candidates can be retrieved by using indices iR'9' 3 Algorithm EBChk
A. Obviously, (a)u is covered if its candidates are bounded Here|.A| denotes the total length of access constraints in
by type (1) constraints. (b) If for somg = S — (I, N) in A, ||.A|| is the number of constraints id, and a node/ is a
A, u is labeled withi and is a common neighbor dfs that  parentof « in @ if there exists an edge from’ to « in Q.
is covered byA, thenw is covered byA, since its candidates
are bounded (byV and the bounds on candidate matches ofAlgorithm . We prove Theorem 2 by providing a checking
Vs), and can be retrieved by using the indexyof algorithm. The algorithm is denoted HyBChk and shown
in Fig. 3. Given a subgraph query(Vy, Eg) and an access
Theedge covenf A on Q, denoted byECov(Q, A), isthe  schemad, it checks whether (a)p C VCov(Q,.A) and (b)
set of edges iii) defined as follows{u:, uz) is iNECov(Q, A)  Eg C ECov(Q, A); it returns “yes” if so, by Theorem 1.
if and only if there exist an access constrasht- (I, N) in A " : .
and aS-labeled seVs in Q such that (L), (resp.us) is in Vs To chec_k these conditions, we actua}IIAeon_Q. for each
andVs C VCov(Q, A) and (2)fo(uz) = L (resp.fo(u) =1). = (LN)in A (S #0), and each node in Q with fo(u) =
[, the actualized constrainis V¢ — (u, N), whereV§' is the
Intuitively, (u1,us) is in ECov(Q, A) if one of u; anduy is ~ maximum set of neighbors afin @ such that (a) there exists a
covered byA and the other has a bounded number of candidaté-labeled seVs C V¢ and (b) for each/ in V¢, fo(u') € S.
matches byS — (I, N). Thus, we can verify their matches in
a graphG by accessing a bounded number of edges.

Actualized constraints help us ded¢€ov(Q, A): a node
u of @ is in VCov(Q, A) if and only if either

Note thatVCov(Q, A) C Vo andECov(Q, A) C Eq. o there exists) — (I, N) in A and fo(u) = I; or

The node and edge covers characterize effectively bounded © Vs = (4 N) and there exists &-labeled set of) that
subgraph queries (see [3] for a proof, which uses three lemma IS @ subset o¥g N VCov(Q, A).

and the data locality of subgraph queries). WhenVCov(Q, A) is in place, we can easily check whether

_ , Eg C ECov(Q,.A) by definition and using the actualized
Theorem 1: A subgraph queryy is effectively bounded under traint ithout licitl tinEC
an access schemd if and only if (iff) VCov(Q, A) = V and constraints, without explicitly computingCov(Q, A).

ECov(Q, A) = Eq. U We next present the details of algorittEBChk.

Examp|e 4: For queryQO(‘/O’ EO) of F|g 1 and access schema AUXiIiary structures EBChk uses three aUXiliary structures.
Ao of Example 3, one can verify thCov(Qo, A¢) = Vo and

ECov(Qo, Ag) = E,. From this and Theorem 1 it follows that (1) It maintains a seB of nodes inc that are inVCov(Q, A)
Qo is effectively bounded unded,. 0 but it remains to be checked whether other nodes can be

deduced from them. Initially3 includes nodes whose labels
are covered by type (1) constraints.ih(line 3). EBChk uses
B. Checking Effectively Bounded Subgraph Queries B to control thewhile loop (lines 5-10): it terminates when

Capitalizing on the characterization, we show that whethef® = ¥- i-e., all candidates foi/Cov(Q, A) are found.
Q is effectively bounded unded can be efficiently decided.

(2) For each node, EBChk uses an inverted indek[v] to

_ , o store all actualized constrainig’ — (u, N) such thav € V.

Theorem 2: For subgraph querieg), EBnd(Q, A) is in That is, L[v] indexes these constraintsthat can be used.on

(1) O(JA||Eg| + ||Al||Vo|?) time in general; and _ o

() O(|A||EZ| + |VQ|2)%me when either (3) For each actualized constraint= V¢ — (u, N), EBChk
o for each node iny, its parents have distinct labels; or Maintains a sett[¢] to keep track of those labels &f that

I traints i ft 1 2). are not coveredby nodes inV¥ N VCov(Q, A) yet. Initially,
o all-access constraints int are of type (1) or (2) O  ct[¢] = S. Whenct[¢] is empty,EBChk concludes that there



is a S-labeled subset of ¢ covered byWCov(Q, A), and thus IV. GENERATING QUERY PLANS

deduces that: should also be in/Cov(Q,.A) (line 10). After a subgraph query)(Vo, Eq) is found effectively
bounded under an access scheriawe need to generate a
“good” query plan forQ@ that, given any (big) grapl’, com-
putesQ(G) by fetching a smalG such thaQ(G) = Q(Gg)
jand|Gq| is determined by and.A, independent ofG|.

Using theseEBChk works in the following two steps.

(1) Computingl. It finds all actualized constraints of on @
and puts them i’ (lines 1-2). This can be done by scanning al

nodes of) and their neighbors for each access constraint.in The main results of this section are as follows:

Observe that there are at majst|||Vy| actualized constraints _ L

in T, i.e., T is bounded byO(||Al||Eql) o a notion of worst-case optimality for query plans; and
T QU o an algorithm to generate worst-case-optimal query plans

(2) ComputingVCov(Q, A), stored in a variableC. After in O(|Vol|Eql|A|) time.

initializing auxiliary structures as described above viage-
dure InitAuxi (omitted; lines 3-5)EBChk processes nodes in
B one by one (lines 6-11). For eaehe B and each actualized
constrainty = V¢ — (v, N) in L[u], it updates the set[¢] by
removing labelfo(u) by proceduréJpdate (omitted; line 9).
When ct[¢] = 0, i.e., there exists aS-labeled subset iV¢
that is covered by, EBChk addsu to C andB (lines 10-11).
When B is empty,i.e., all nodes have been inspecté&BChk
checks whethel; C VCov(Q,.A) and whether all edges are
covered byECov(Q, A). It returns “yes” if so (lines 12-13). On a graph, the operation is to retrieve a sahat(u) of
candidate matche®r » from G: given Vg that was retrieved
Example 5: Given subgraph quer@o of Fig_ 1 and access from G earlier, it fetches common neighbors vt from G
schemad, of Example 3,EBChk first computes the sdt of  that (i) are labeled withi and (ii) satisfy the predicateq (u)
actualized constraintsh; = (u1,u2) — (us,4), ¢o = uz of u. These nodes are fetched by using the index aihd are
(ug/us,30), and g3 = uyg/us — (ue, 1). It then sets bottB stored incmat(u). In particular, whenS = §), the operation
andC to be {uy, us, ug}, and initializesct[¢], ..., ct[¢s] fetches alli-labeled nodes iy ascmat(u) for w.
and lists L[uy], ..., L]ug] accordingly.EBChk then popsu,
andu, off from 5 and finds that; can be deduced. Thus it i, hig order. There may be multiple operations for the same
addsus to B andC. It then popsus off from B, processes ,4e,, in (), each fetching a sét of candidates for from
us andus, and confirms that, and us should be included \ye will ensure that foft; andft; for u, V* has less nodes
in C. At this point, it finds tha’C contains all the nodes i@ thanV;* if i < j, and we say thalt; reducescmat(u) fetched
and moreover, each edge @is also covered by at least one by ft;. We denoteV;* by V,, whereft, is the last operation

access constraint ido. Thus it retums “yes”. for u in P, i.e., it fetches the smallestmat(u) for u.

Below we first formalize query plans and define the worst-
case optimality. We then present the algorithm.

Query plans. A query plan® for @ under A is a sequence
of node fetchingoperations of the fornft(u, Vs, ¢, gg(u)),
wherew is al-labeled node inY, Vs denotes a5-labeled set
of @, ¢ is a constrainty = S — (I, N) in A, andgg(u) is
the predicate of: (refer to Section Il for the definition).

The operation$t; ft, - - - ft,, in P are executed one by one,

Correctness & ComplexityThe correctness dBChk follows pyilding G,. Intuitively, P tells us what nodes to retrieve

from Theorem 1 and the properties of actualized constraintﬁi

stated above. We next analyze the time complexitZB®€hk. isort?uicli' Z;%mut::dd?;acfg:ggﬁs@%f vggasgg%‘égl’lf P(;)
Ve = Uyeq Vs 1-€., it contains maximally reducedmat(u)
for each node: in Q; and (b)Ep consists of the following: for
each node pairv, v') in V,, x Vi, if (u,u’) is an edge inQ,
we check whethefv, v") is an edge inG and if so, include it in
Ep. This is done by accessing a bounded amount of data: we
first find ¢, = S — (fo(uv'), N) in A and aS-labeled sel/;
such thatv € Vs; we then fetch common neighbors B by
Uusing the index of,» and check whethar is one of them. As
Q is effectively bounded undeA (i.e., ECov(Q, A) = Ep),
if (v,0") is an edge inG then suchyp,, and Vg exist.

(1) General caseObserve the following. (a) Computifigis in
O(|A||Eg]|) time, since for eaclp in A, we can find all actu-
alized constraints op in O(X,cv,deg(v)|p|) = O(|¢||Eq]|)
time, wheredeg(v) is the number of neighbors of. (b)
ComputingVCov(Q, A) takesO(||A|||Vg|?) time. For eachp

in A, the sets:t(¢) for all corresponding actualized constraints
¢ in T are updated in tim&(Z,cv,, (deg(v)?)) = O(|Vol?).
As each¢ in T' is processed once, the total time is bounde
by O(||A|||[Vo|?). (c) The checking of lines 12-13 takes
O(|A||Eg| + [Vg|?) time. Thus,EBChk takesO(|A||Eq| +
IAlIIVQ P + Vo) = O( A Eq| + [JAll[Vg?) time. Bounded plansWe say that a query pla® for Q under.A
(2) Special cases/Ve next show thaEBChk can be optimized gsfgicgvggcﬁaﬁggﬁgé?éz; Sg(é) gn%u'(lg)stﬁesgggig?
to O(|A||Eq| + [Vg|?) time for each of the two special cases fetching data fronG by all operationsin P depends o4 and

given in Theorem 2. The idea is to use a countgf] instead O only. That is, P fetches a bounded amount of data fréf
of ct[¢] in EBChk such thatn[¢] always equaldct[¢]|. This Y. y . g
does not hurt the correctness since in the special casds, ea%nd buildsCi from it. By (b), |Gl is independent ofc:.

time when we updatet|¢], we remove a distinct Iat_)el. V_Vith Optimality . We naturally want aroptimal plan P that finds
this new auxiliary structure, step (b) in the analysis absve | o minimumGl, i.e., for each graplG' = A, G, identified
in O(||A|||Eq|) time in total since the counters are updatedy, p pas the smallest size among all subgraphs identified by

O(|JAl|(Xvev,deg(v))) = O(|[All|Eg|) times in total, and ;
LU y effectively bounded query plans. Unfortunately, theule
each updates take3(1) time: it just decreases[¢] by 1. below shows that this is impossible (see [3] for a proof).



Algorithm QPlan After the initialization,QPlan recursively processes nodes
Input: An effectively bounded subgraph que®, access schemd.  u of @ to retrieve or reduce theimat(u) (lines 7-9), starting
Output: A worst-case optimal and effectively bounded query pfan  from those nodes. identified in line 4. It picks the next

1. Build actualized grap®r(Vr, Er) from Q andT; nodeu by a functioncheck (omitted). Herecheck(u) does the
2. for each w in Vi do following: it (i) finds the setVP of parents ofu in Qr such
3. size[u] = +oo; sn[u] = false that sn[v] = true for all v € VP, (ii) selects a subsel,, of
4, if there existsp = 0 — (I, N) in A with fo(u) =1 do VP such thatV, forms aS-labeled set for some constraipf,
5. appendt(u, nil, ¢, go(u)) to P; =S — (fo(u),N) in A, and moreoverN x Iy, size[v] is
6. snfu] = true size[u] = N; minimum among all sucl$-labeled sets of;; and (iii) returns
7. while there existsu in Vi such thaicheck(u) = true do true if N *I1,cy, size[v] < size[u]. If check(u) = true, QPlan
g- gl/)ur;eﬁt&t?zey';hg) (.;)c;ctl;e;:;(u) ’ setssize[u] = N x Il cy,size[v] andsn(u) = true by function
10. return P PP 9Q ' ocheck (omitted), and adds a fetching operation7ofor u
. using ., andV,,. It proceeds until for na: in @, check(u) =
Fig. 4. Algorithm QPlan true (line 7). At this point,QPlan returns? (line 10).
Theorem 3: There exists no query plan that is both effectively
bounded and optimal for all graph§ = A. 0O Example 6: Given queryQ, of Fig. 1 and access schemf

of Example 3,QPlan findsP as follows. Using the actualized

This motivates us to introduce worst-case optimality. Anconstraintd” of .4, on Q) (see Example 5), it first buildQr,

effectively-bounded query pla® for Q@ under A is worst-  which is the same a§), except the directions of the edges

case optimalif for any other effectively bounded query plan (us,u1) and (ug,uz) are reversed. Using type (1) constraints
P’ for @ under A, max |G| < max |Gj,|, whereGg and  in Ap, QPlan addsfty (ug, nil, s, true), fto(usg, Nl @4, year >
, GEA GEA . 2011 A year < 2013) and fts(ug, nil, g, true) to P. In the
G, are subgraphs identified by and 7, respectively. while loop, it findscheck(us) = trueand addst, (us, {u1, us},
Thatis, given any) and A, for all G |= A, thelargestsub- 1, true) to P. As a consequence 6, it finds thatcheck(u.)
graphGy, identified byP is no larger than the worst-case sub- and check(us) becometrue and thus addsts (u4, {us}, ¢2,

graphs identified by any other effectively bounded querpgla true) and ftg(us, {us}, ¢2,true) to P. Now P cannot be

) o , _ further improved, and it return® with 6 fetching operations,
Worst-case optimal query plans are within reach in practice

) ) ) We next show how thisP identifies G from the IMDb
Theorem 4: There exists an algorithm that, given any effec-graph G, of Example 1 forQ,. (a) It executes its fetching
tively bounded subgraph que€y under an access scherdd  operations one by one, and retrievesat(u) from G, for u
finds a query plan that is both effectively bounded and worstranging overu;—ug, with at most 24, 3, 288, 8640, 8640 and
case optimal for) under A, in O(|Vg||Eq|[A[) time. O 196 nodes, respectively. These are treated as the nodgs,of

no more than 17791 in total. (b) It then adds edges-te.

Algorithm . We prove Theorem 4 by giving such an algorithm, For each(vs, v1) € cmat(us) x cmat(uy), it checks whether
denoted byQPlan and shown in Fig. 4. The algorithm inspects (vs,v1) is an edge inGy by usingcmat(uy), cmat(us) and
each node: of @, finds an access constraiptin A such that cmat(u3), and the index of; of Ay, as suggested by fetching
its index can help us retrieve candidatesat(u) for v from  operationft, for uz given above. If so(vs,v;) is included in
an input graphz, generates a fetching operation accordingly,G . This check24 x 3 x 4 neighbors otmat(u3) in the worst
and stores it in a lisP. It then iteratively reducesmat(u) for ~ case. Similarly, it examines at most 288, 8640, 8640, 8640 an
eachu in ) to optimizeP, until P cannot be further improved. 8640 candidates matches @, for edges(us, us), (us,u4),
(us, us), (ug,ug) and(ug, ug) in Qo, respectively. This yields
at most 34848 edges i in total. Note that query pla® is
(1) An actualized graptQr (Vi-, Er), which is a directed graph  €Xactly the one described in Example 1, and accesses at most
constructed fron) and the ser" of all actualized constraints 17923 nodes and 35136 edges in total. Qpdyt of the data
of A on Q (see Section Ill). Here (a)i = Vi; and (b) for accessed b is included inG, for answeringQ. O
any two nodes:; andug in Vp, (ui,us2) is in Er iff there
exists a constraints — (us, N) in T' such thatu, is in Vg.
Intuitively, @r represents deduction relations for node$/in
and guides us to extract candidate matchegjfor

The algorithm uses the following structures.

Correctness & ComplexityFor the correctness @Plan, ob-
serve the following about the query plahgenerated fo€) and
A. (1) P is effectively boundedndeed, (a) the total amount
of data fetched byP is decided byA and Q since P only
(2) For each node: in @, a countersize[u] to store the uses indices inA to retrieve data; and (b)(Gg) = Q(G)
cardinality of cmat(u), and a Boolean flagn[u] to indicate  since G¢ includes all candidate matches froé for nodes
whether the fetching operations in currghtan findecmat(u).  and edges inR. By the data locality of subgraph queries, if
) ] a nodev in G matches a node in @, then for any neighbor
With these structures, algorith@Plan works as follows. It ;7 of 4 in @, matches ofu’ must be neighbors of in G.
first builds actualized grap@r (line 1), and initializesize[u]  That is whycmat(u) collects candidate node matches from
= +oo andsn[u] = falsefor all the nodes: in Qr (lines 2-3).  npejghbors; similarly for edges. (2% is worst-case optimal

It then finds nodes., for which cmat(u) can be retrieved by  sjnce thewhile loop reducescmat(u)| to be the minimum.
using the index specified in some type (1) constraihts:

(I, N) in A (lines 4-6). For eachy, QPlan adds a fetching To see thaQPlan is in O(|Vg||Egl|.A|) time, observe the
operation toP and setsn[ug] = true andsize[ug] = N. following. (1) Line 1 is inO(|A||Eg|) time. (2) Thefor loop




(lines 2-6) is iINO(|Vy|) time by using the inverted indices. o Question: Does there exist&-bounded extensioml,

(3) Thewhile loop (lines 7-9) iteratesl|? times, since for of A such thatQ is instance-bounded i@ under.4,,?
each node: in @, (a) cmat(u) is reduced only iftmat(u’) is . ] ) )
reduced for its “ancestors? in Qr, |V|—1 times at most, by This problem is decidable iRTIME.

the definition ofsize[u] andcheck (i.e., size[u] remains larger .
thansize[u']), and (b) each reduction tonat(u’) requires usto 1 heorem 6:EEP(Q, A, M, G) is in O(|G|+(|Al+| Q]| Eol+
check once whethemat(u) is also reduced as a consequence (Al + |Q)[Vol*) time, where|G| = V] + |E], [Eo| =
In each iterationcheck(u) andocheck(u) take O(deg(u)|A|)  2qee [l Vol = Xgeo Vol and[Q] = |Eo| +[Vo|. O
time. As O(|Vg| * Suecv,deg(u)|A]) = O(|Vg||Eql|A|), the

while loop takesO(|Vq || Eql|Al) time in total. For a frequent query loa@, we identify A,;; if Ay exists,

we build additional indices o and makeG = A/, as
preprocessingffline. We can then repeatedly instantiate and
V. MAKING QUERIESINSTANCE BOUNDED process query templates of by accessing a bounded amount

Consider a frequent query load, such as dinite set of of data inG, andincrementally maintairindices in response
parameterized queries as found in recommendation syster® changes t@:. Note that real-life queries are typically small.

If some querie<) in Q are not effectively bounded under an e prove Theorem 6 by giving a checking algorithm. The

access schemd, can we still comput&)(&) in a big graph  zigorithm, denoted bEEChk, consists of two steps.
G? The main conclusion of this section is positive: one can

often make all queries i@ instance-bounded i& and answer  Step (1) (Maximuni/-bounded extension}ind all types (1)
them inG by accessing a bounded amount of data. and (2) constraint§ — (I', N) and! — (I’, N) on G for all
labels! and(l, 1) that are inboth@ andG, such thatV < M

Extending access schemasThe idea is to extendd such and( satisfies their corresponding cardinality constraintg. Le
that its indices suffice to help us fetch bounded subgraphs ofl,, include all these constraints and all those4n

G for answeringQ. Consider aconstant)M. An M-bounded

extensiond,, of A includes all access constraintsdnand ad- ~ Step (2) (CheckinglCheck whetheQ is instance-bounded in
ditional access constraints of types (1) and (2) (see Setijio g underA])wfby USiT]%a mgd revision OEB?hk(g?, vzlé?w)ése)e

. / . / ection IIl) for each € Q; return “yes” if EBChk(Q, A,
Type (1):0 = (', N) .Type (2):0 = (I, N) returns “yes” for allQ in Q, and “no” otherwise.
such thatV < M. Note thatA,, is also an access schema.
Example 7: Consider a given bountl/ = 150, thelMDb graph
O . ; Gy of Example 1, a se® with onl of Fig. 1, and an access
pattern queries !mstance-bounded it under. A, if for all scohemaA cgnsistinge%f all conit?aoints ig% of Example 3
Q € Q, there exists a subgrahip of & such that excepty, and 5. Given theseEEChk finds a M -bounded
@) Q(Gg) = Q(G); and extensiond,, of A. (1) It finds, among others, thét satisfies
(b) G¢ can be found in time determined by, and(Q only. the cardinality constraints of two type 1 access conssaint
= — (year,135) and s = ) — (award,24), and135 < M

As aresult of (b) and the use of constadt |G| is a function ~and24 < M. It extendsA by including ¢4 and s, yielding
of A, Q and)M. As opposed to effective boundedness, instanced ;. (2) It then invokesEBChk(Q,.A,s) and confirms that
boundedness aims to procesdinite setQ of queries ona is instance-bounded i& under.A;,. O

particular instanceG by accessing a bounded amount of data. ) ,
Correctness & ComplexityThe correctness oEEChk is en-

Given these, we answe? in a big G as follows. If some sured by the following. (1) If there existd}, such thatQ is
queries inQ are not effectively bounded undet, we extend instance-bounded i& under.4’,, thenQ is instance-bounded
A to Ay, by adding simplest access constraints such that alh G under.A,, for A}, C Ays; hence it suffices to consider
queries inQ are instance-bounded i@ under.Aj;. the maximumi/-bounded extensionl,; of A. (2) Checking

instance boundedness is a mild revisionE&Chk(Q, Axr),
Proposition 5: For any finite seQ of subgraph queries, access Wwith the same complexity stated in Theorem 2.

schemad and graphG = A, there exist\/ and an) -bounded . L
; . o i X For the complexity, observe that Step (1) EEChk is in
extensionA,; under whichQ is instance-bounded iy. O O(G|) time, | Ax;| and||.Ax|| are bounded by.A| + || and
. . . Al| + |9, respectively. Step (2) take3((|.A| + |Q|)|Eo| +
That is, additional access constraints of types (1) and (2&| 2\ i :
suffice to makeQ instance-bounded i&'. We show in [3] that Al + [QD)[Vel") time by the complexity oEBChk.

Ay extendsA with at most22e) additional constraints, Remark One might want to find alinimumAaZ-extensionA ,

where L is the total number of labels i@. of A such thatQ is instance-bounded undgly,, and.A,; has
) - the least number of access constraints among/aééxtensions

Resource-bounded extensionsProposition 5 always holds of 4 that makeQ instance-bounded i Unfortunately, it
when M is sufficiently large. Whenl/ is a small predefined i 155 APX-hard to find such a minimuni/-extension for

bound indicating our constrained resources, we have toemswgiven 0, A, M andG. Herelog APX-hard problems ar&lP
the following question, denoted BEP(Q, A, M, G): optimization problems for which n@TIME algorithms have
o Input: A finite set Q of subgraph queries, an access aPproximation ratio belowlogn, wherec is some constant

schemad, a natural numbed/, and a graptG = A. andn is the input size (cf. [6]; see [3] for a proof of this).

Instance-bounded patterns ConsiderG |= A,;. A set Q of




VI. EFFECTIVELY BOUNDED SIMULATION QUERIES Analogous to Theorem 1, one can verify the following

We have seen that effective boundedness helps us answ§f€ [3] for a proof, which does not use data locality).
subgraph queries in big graphs within constrained ressurce ) . . . .
A natural question asks whether the same idea works fof N€orem 7: A simulation queryQ(Vo, Eq) is effectively

simulation queries, which are non-localized and recursive S\c/"c‘g\?(eg’ .,ljlr)]d;r:daEr']Qa:CCseESCSo \/5(%5‘76%?” and only if Vg =

This section settles this question in positive. For effetyi
bounded simulation queries, we provide (1) a characténizat gyxample 9: Recall Q; and .A; from Example 8. One can
(Section VI—_A); (2) a checkipg algorit_hm (Section VI-B); @n verify that neitheru; nor us in @ is in sVCov(Q1,.4;) and
(3) an algorithm for generating effectively bounded andstor  hence , is not effectively bounded undet; by Theorem 7.

case optimal query plans (Section VI-C), all with the samerhjs is consistent with the observation of Example 8.
complexity as their counterparts for subgraph queries. Mt a

give (4) an algorithm for making a finite set of unbounded Now define Q2(V2, E») by reversing the directions of
simulation queries instance-bounded (Section VI-D). We(us,u2) and (u4,uz) in Q1. Then sVCov(Q2, A1) = V5
contend that the effective-boundedness approach is getiteri andsECov(Q2,.A1) = E>. Hence,(Q, is effectively bounded
works on general pattern queries, localized or non-loedliz  under.4; by Theorem 7. Giveni; of Fig. 2, we can find
Q2(G1) = 0 without fetching the unbounded cycle 6f,. O

A. Characterization for Simulation Queries

Simulation queries introduce challenges to the analysis. B. Deciding Effective Boundedness of Simulation Queries
We now revisitEBnd(@, .4) (Section Ill): given a simula-
Example 8: Consider the simulation querg),(V;, Es) of tion query@ and an access scherdait is to decide whethep
Example 2, and an access schemawith o4 = B — (A4, 2), is effectively bounded undet. We show that graph simulation
o =CD — (B,2), oc =0 — (C,1), andpp =0 — (D,1).  does not increase the complexity BBnd(Q, A).
One can verify tha¥Cov(Q1,.41) = V4 andECov(Q1, A1) =
E,. However,@Q; is not effectively bounded. Indeed;; of = Theorem 8: For simulation queries)), EBnd(Q,.A) has the
Fig. 2 matches);, and the maximum match relatiap, (G1) same complexity as for subgraph queries, in both the general
“covers” a cycle inG; with length proportional tdG;|. That  case and the two special cases stated in Theorem 2. O
is, while A; constrains the neighbors of each nodedn, it
does not suffice: as shown in Example 2, to check whether To prove Theorem 8 we give a checking algorithm, denoted
vy of G; matchesu; of @1, we need to inspect nodes 6f by sEBChk, which is the same asBChk of Fig. 3 except that
far beyond the neighbors af;, due to the non-localized and it uses a revised notion of actualized constraints. For each
recursive nature of simulation queries. O S — (I,N)in Awith S # 0, and each node in @ with
fo(u) =1, its actualized constraint for simulatiois Vg —
This suggests a stronger notion of node covers. fitde  (u, V), whereV§' is the maximum set of neighbors afin @
coverof an access scheréion a simulation querg), denoted  such that (a) there exists&labeled set/y C V¢, and (b) for
by sVCov(Q, A), is the set of nodes i) computed as follows: eachu’ € V¢, (i) fo(u') € S; and (i) (u, «’) is an edge of).
In contrast to its counterpart defined in Section Ill, thisiom

(a) if a type (1) constraint — (I, V) is in A, then for each  rther requires condition (i) to cope witVCov(Q, A).

nodew in Q with labell, u € sVCov(Q, A); and

(b) if S — (I,N) isin A, then for eachS-labeled sef’s in
@, a common neighbot of Vg in @ is in sVCov(Q, .A)
if (i) u is labeled withl, (ii) Vs C sVCov(Q,.A) and (iii)
for each nodeus in Vg, (u,ug) is an edge ofy.

Example 10: Given Q2 (V2, E») and.4, considered in Exam-
ple 9,sEBChk first computes the sét of actualized constraints
for ./41 on Qg: ¢1 = (U3,U4) — (UQ,2), (bg = Ug > (U1,2).
It then initializes both3 andC to be{us, u4}, setsct[¢1] = 2,
As opposed td/Cov for subgraph queries, a nodeis in ctp2] = 1, and initializes listsL[u1], ..., L[u] accordingly
sVCov(Q, A) if in any graphG' |= A, the number of candidate (S€€ Fig. 3). As in Example 5, it finds thi} € C and that
matches ofu is bounded inG, no matter whetherthese ~©ach edge ob is covered by some constraint iy Thus it
nodes are in the same neighborhandhot We includew in ~ '€tUms “yes’,i.e., Q2 is effectively bounded unded;. O
sVCov(Q, A) only if some of its children are covered byand )
they bound the candidate matches:dfy an access constraint. ~ The correctness ofEBChk follows from the characteri-
When we enforcé/;, = sVCov(Q, A) (see Theorem 9 below), Zation of Theorem 7. Along the.same lines as the analysis of
this ensures thaall children of « have a bounded number EBChk, the proof uses the following property 9/ Cov(Q, A):
of candidates inG. This rules out unbounded matches whena nodeu of @ is in sVCov(Q, A) if and only if either

retrieving maximum matches by using the indices/f o there exist®) — (1, N) in A_ande(u) — I or
The edge covenf A on @, denoted bysECov(Q, A), is o Vg = (u,N) and there exists &-labeled set of) that
defined in the same way &Cov(Q, .A) for subgraph queries is a subset ob/g N sVCov(Q, A).

(Section 1I), usingsVCov(Q, A) instead ofVCov(Q, A).
Algorithm seEBChk has the same complexity &BChk:

Covers for simulation queries are more restrictive tharsEBChk is the same a&BChk except the computation of the
their counterparts for subgraph queries/Cov(Q@,.A) C setI" of all actualized constraints (lines 1-2 of Fig. 3), which
VCov(Q, A) C Vi andsECov(Q, A) C ECov(Q, A) C Eq. remains inO(|.A|| Eq|) time, the same as for subgraph queries.



C. Generating Effectively Bounded Query Plans

We next show that for effectively-bounded simulation
queries@ under an access schema we can generate query
plans P such that in any graplz, P computesQ(G) by
accessing a bounded subgraph of @), leveraging the indices

Experimental setting. We used three real-life datasets.

Internet Movie Data Grapl{IMDbG) was generated from the
Internet Movie DatabaséNIDb) [22], with 5.1 million nodes,
19.5 million edges and 168 labels iMDbG.

of A, such thaQ(G) = Q(Gq). Indeed, Theorem 4, the result Knowledge graph(DBpediaG) was taken from DBpedia 3.9
for subgraph queries, carries over to simulation queries. [2], with 4.1 million nodes, 19.5 million edges and 1434 lisbe

Theorem 9: There exists an algorithm that, given any effec-Webbase-200XWebBG) recorded Web pages produced in
tively bounded simulation quer) under an access schema 2001 [1], in which nodes are URLs, edges are directed links
A, generates an effectively bounded and worst-case optim&letween them, and labels are domain names of the URLs. It

query plan inO(|Vg||Eg||A|) time. O

We show that a minor revisiosQPlan of algorithmQPlan

has 118 million nodes, 1 billion edges and 0.18 million label

Access schemalNe extracted 168, 315 and 204 access con-

(Fig. 4) suffices to do these, retaining the same complexitgtr@ints fromMDbG, DBpediaG andWebBG, respectively, by
as QPlan. The only difference is that we use actualized USiNg degree bounds, label frequencies and data semdtuics.

constraints for simulation given above, and the strongéono
of node covers instead of data locality. Due to the spac
constraint we defer the proof and analysis to [3].

Example 11: Given Q2(Va, E2) of Example 9 andA; of
Example 8sQPlan generates a query pldd. Using the sel”
of actualized constraints of; on Q5 (see Example 10QPlan
buildsQr(Vr, Er), whereVi = V,, and Er contains(us, us),
(ug,u2) and (usz,uq). Initially, it addsft(us, nil, ¢¢, true) and
ft(uq, nil, pp, true) to P. It then finds thatus and w; can
be deduced fromus and uy by using Qr, and thus adds
ft(ue, {us,us}, pp,true) andft(uy, {uz}, pa, true) to P.

For any graphG |= A;, we compute)s(G) by usingP. It
retrieves 8 candidate matches for node®)in i.e., 4 for uq, 2
for us, 1 for each ofus andwuy. It then finds at most 12 edges
between these candidates that are possible edge matches
using the indices of4;: 4 for each of(uy,us) and (usz,uq),
and 2 for each ofus, us) and (us,us). That is, P fetches a
subgraphGg, of ()2, by accessing 8 nodes and 12 edges.

D. Making Simulation Queries Instance Bounded

Finally, we study finite set® of simulation queries when
they are not effectively bounded under an access schéeriée
show that Proposition 5 also holds here: for any gr&p A,
there exists an\/-bounded extensionl;; of .4 under which
Q is instance-bounded i for some bound\/ (see Section V
for M-bounded extensions, and [3] for a proof).

For a predefined and small, we revisitEEP(Q, A, M, G)
to decide whether there exists dri-bounded extensiom
of A that make<Q instance-bounded i& (see Section V). We
show that Theorem 6 remains intact on simulation queries.

Theorem 10: For simulation queriesEEP(Q, A, M, G) is in
O(IG| + (I + 1QDIEa| + (I[A[l +[2])[Val?*) time. o

As a proof, we show that a minor revisiaitEChk of
EEChk (Section V) can checkEP for simulation queries, with
the same complexity aSEChk (see [3] for a proof).

VIl. EXPERIMENTAL STUDY

example, {ctress, year) — (feature_film, 104) is a constraint

on IMDbG, stating that each actress starred in no more

than 104 feature films per year. We found it easy to extract
access constraints from real-life data. There are many more
constraints for our datasets, which we did not use in oustest

For each constrain — (I, N), we built index by (a)
creating a table in which each tuple encodes an actualized
constraintVs — (u, N); and (b) building an index on the
attributes forVs in the new table, usingylySQL 5.5.35.

Pattern queriesFor each dataset, we randomly generated 100
pattern queries using its labels, controlled#y, #e and+#p,

the number of nodes, edges and match predicates in the ranges
[3, 7], [#n-1, 1.5%#n ] and [2, 8], respectively. We did not use

big patterns to favor conventional methods2 and optVF2

(see below), which do not work on large queries.

by
Algorithms We implemented the following algorithms in C++:

(1) EBChk, QPlan, EEChk for subgraph queries, ar@&BChk,
sQPlan, sEEChk for simulation queries; (2) pattern match-
ing algorithmsbVF2 and bSim for subgraph and simulation
queries, by using query plans generatedd®an andsQPlan,
respectively; (3) conventional matching algorithgsm [21]
andVF2 (using C++ Boost Graph Library) for simulation and
subgraph queries, respectively, and their optimized @Bssi
optgsim andoptVF2 by using indices in the access constraints.

The experiments were conducted on an Amazon EC2
memory optimized instance r3.4xlarge with 122GB memory
and 52 EC2 compute units. All the experiments were run 3
times. The average is reported here.

Experimental results. We next report our findings.

Exp-1: Effectiveness of effective boundedness

(1) Percentage of effectively bounded queri&s checked the
randomly generated queries using algorithiBBChk and
sEBChk, and found the following: (1) 61%, 67% and 58%
of subgraph queries oiMDbG, DBpediaG and WebBG are
effectively bounded under the access constraints describe
above, and (2) 32%, 41% and 33% for simulation queries,
respectively. These tell us that (a) by using a small nhumber

Using real-life data, we conducted three sets of experismentof simple access constraints, many subgraph and simulation
to evaluate (1) the effectiveness of our query evaluation apqueries are effectively bounded; and (b) more subgraphegier
proach based on effective boundedness, (2) the effecigenfe are bounded than simulation queries under the same con-
instance boundedness and (3) the efficiency of our algosithm straints, due to their locality (Section Il), as expected.
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(2) Effectiveness of bounded querid® evaluate the impact

18 20 3 4 5 6 7

() WebBG: index size

12

(k) WebBG: varying ||.A||

three datasets. (3) AlgorithmgF2 and optVF2 do not scale

of effectively bounded queries, we compared their runningvith Q. When#n > 4, none of them could run to completion

time bybVF2 andbSim (with query plans generated I&Plan
andsQPlan) vs. the conventional method&-2, optVF2 and
gsim, optgsim. As VF2 andoptVF2 are slow, we only report

within 40000s, on all three datasets. (4) Algorithgsén and
optgsim are much slower thahSim for all queries.

their performance when they ran to completion. Unless dtate(C) Impact ofj|A||. To evaluate the impact of access constraints

otherwise, we used all access constraints and full-sizesdts.

(a) Impact of|G|. Varying the size G| by using scale factors

on bVF2 and bSim, we varied ||.4|| from 12 to 20 and
processed effectively bounded queries using the varieidesd
in A. As shown in Figures 5(c), 5(g) and 5(k), more access

from 0.1 to 1, we report the results on the three datasetsgyin Fi constraints helQPlan andsQPlan get better query plans, as

ures 5(a), 5(e) and 5(i). Observe the following. (1) The eaal
tion time of effectively bounded queriesirsdependent ofG|.

expected. For example, &lebBG, when 20 access constraints
were usedpSim andbVF2 took 0.36s and 5.6s, respectively,

Indeed bVF2 andbSim consistently took 4.45s, 2.02s, 5.8s andwhile they were 9.3s and 75.1s whénl|| = 12.

0.25s, 0.23s, 0.34s on all subgraph$MDbG, DBpediaG and
WebBG, respectively. (2)VF2 and optVF2 could not run to
completion within 40000s on all subgraphsw&bBG, and on
subgraphs ofMDbG and DBpediaG with scale factor above
0.3. On the full-sizeWebBG, bVF2 took 0.9s as opposed
to 25729s byoptVF2 for queries thabptVF2 could process
within reasonable time, at lea®8587 times faster(3) Algo-
rithmsoptgsim andgsim are sensitive t¢G| (note the logarith-
mic scale of they-axis), and are much slower th&Sim. For
instance, on the full-siz&VebBG, bSim took 0.34s vs. 1630s
by optgsim, 4793 times fasteiThe improvement ofVF2 over
optVF2 is bigger than that obSim over optgsim as optVF2
has a higher complexity and thus, is more sensitivgGto

(3) Size of accessed datm the same setting as Exp-1(2)(b)
above, we examined the size of data accessed\#2 and
bSim. For each effectively bounded quef} we examined (a)
laccessedg|, the size of data accessed, and {ip}lexp|, the
size of indices in those access constraints usechMB2 and
bSim for answering®. We report the average in Figures 5(d),
5(h) and 5(I). The results tell us that the query plans aetkss
no more than 0.13% ofiG| for all subgraph and simulation
queries on all datasets, with indices less than 8%0f This
further confirms the effectiveness of our approach.

Exp-2: Effectiveness of instance boundednes¥arying z,
we examined the minimuml/ that makesz% of queries

(b) Impact of@). To evaluate the impact of patterns, we variedinstance-bounded undev/-bounded extensions olvIDbG,
#n of @ from 3 to 7. The results, as shown in Figures 5(b), 5(f)DBpediaG and WebBG, via EEChk and sEEChk. As Figures

and 5(j), tell us the following. (1) The small€} is, the faster
all the algorithms are, as expected. (2) For all queni®&;2

6(a) and 6(b) show, a smal/ (compared tdG|) suffices to

make a large percentage of the queries instance-bounded. Fo

andbSim are efficient: they return answers within 12.7s on allinstance, when\/ is 14113, 25218 and 70916 (resp. 77873,

1
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89068, 101134), over 95% of all subgraph (resp. simulation)[e]
queries randomly generated are instance-boundé pbG, 7]
DBpediaG and WebBG, respectively; that isp/ is 0.057%,
0.107% and 0.006% df7| (resp. 0.32%, 0.38% and 0.009%). [8]
When M is 181448 (0.016% oiVebBG), all subgraph and
simulation queries become instance-bounded in all dataset (9]
Expt-3: Efficiency. Finally, we evaluated the efficiency of our [1q;
algorithms. We found th&BChk, QPlan, sEBChk andsQPlan
took at most 7ms, 37ms, 6ms and 32ms, respectively, for aflli]
gueries on three datasets with all the access constraints. 1)
Summary. From the experiments we find the following. (1) [13]
The approach by effective boundedness is practical foepatt
queries on large graphs. (a) Itis easy to find access comistrai [14]
from real-life datasets. (b) About 60% (resp. 33%) subgraph
(resp. simulation) queries are effectively bounded undenall  [15]
number of access constraints. (¢) Effectively boundedigser
scale well with big graphs: their evaluation timarislependent (16]
of |G|. (2) The approach is effective for both localized and[l7]
non-localized queriesbVF2 and bSim outperform optVF2
and optgsim by 4 and 3 orders of magnitude on average on
WebBG, respectively. (3) A small/ suffices to make queries [18]
instance-bounded: 0.006% (resp. 0.009%)®f for 95% of
subgraph (resp. simulation) queries WebBG, and 0.013% (19
(resp. 0.016%) to boundll queries. (4) Our algorithms are 20]
efficient: they take no more than 37ms in all cases.
[21]
VIIl. CONCLUSION [22]

We propose to answer graph pattern queries in big graphsg)
by making use of effective boundedness. We have devel-
oped techniques underlying the approach: access coristrain
on graphs, effectively bounded pattern queries, chaiaater
tions and algorithms for deciding whether pattern queries a [25]
effectively bounded, algorithms for generating (worstea
optimal query plans if so, and otherwise, algorithms for mgk
queries instance-bounded. We have verified, analyticalty a [26]
experimentally, the effectiveness of the approach: it wddc
both localized queries and non-localized queries. [27)

One topic for future work is to develop a systematic method?®l
for discovering access constraints on graphs. Anothec tigpi [29]
to studyincrementalboundedness: Given an access schema

A, a graphG and a pattern querg, it is to incrementally [30]
computeQ (G @ AG) in response to all changesG to G, by
accessing a bounded amount of data fr@munder A. (31]
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