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Making Pattern Queries Bounded in Big Graphs

Yang Cao1,2 Wenfei Fan2,1 Jinpeng Huai1 Ruizhe Huang2

1RCBD and SKLSDE Lab, Beihang University,2University of Edinburgh

Abstract—It is cost-prohibitive to find matches Q(G) of a
pattern query Q in a big graph G. We approach this by fetching
a small subgraphGQ of G such that Q(GQ) = Q(G). We show
that many practical patterns are effectively bounded under access
constraints A commonly found in real life, such that GQ can be
identified in time determined by Q and A only, independent of
the size |G| of G. This holds no matter whether pattern queries
are localized (e.g., via subgraph isomorphism) or non-localized
(graph simulation). We provide algorithms to decide whether a
pattern Q is effectively bounded, and if so, to generate a query
plan that computesQ(G) by accessingGQ, in time independent
of |G|. When Q is not effectively bounded, we give an algorithm
to extend access constraints and makeQ bounded in G. Using
real-life data, we experimentally verify the effectiveness of the
approach, e.g., about 60% of queries are effectively bounded
for subgraph isomorphism, and for such queries our approach
outperforms the conventional methods by 4 orders of magnitude.

I. I NTRODUCTION

Given a pattern queryQ and a graphG, graph pattern
matchingis to find the setQ(G) of matches ofQ in G. It is
used in,e.g., social marketing, knowledge discovery, mobile
network analysis, intelligence analysis for identifying terrorist
organizations [25], and the study of adolescent drug use [17].

WhenG is big, graph pattern matching is cost-prohibitive.
Facebook has 1.26 billion nodes and 140 billion links in its
social graph, about 300PB of user data [28]. When the size|G|
of G is 1PB, a linear scan ofG takes 1.9 days using SSD with
scanning speed of 6GB/s. Worse still, graph pattern matching
is intractable if it is defined with subgraph isomorphism [31],
and it takesO((|V |+ |VQ|)(|E|+ |EQ|))-time if we use graph
simulation [20], where|G| = |V |+|E| and|Q| = |VQ|+|EQ|.

Can we still efficiently compute exact answersQ(G) when
G is big while we have constrained resources, such as a
single processor? We approach this bymaking big graphs
small, capitalizing on a setA of access constraints, which
are a combination of indices and simple cardinality constraints
defined on the labels of neighboring nodes ofG. We determine
whetherQ is effectively boundedunderA, i.e., for all graphs
G that satisfyA, there exists a subgraphGQ ⊂ G such that

(a) Q(GQ) = Q(G), and
(b) the size|GQ| of GQ and the time for identifyingGQ are

both determined byA andQ only, independent of|G|.

If Q is effectively bounded, we can generate a query plan
that for all G satisfying A, computesQ(G) by accessing
(visiting and fetching) a smallGQ in time independent of|G|,
no matter how bigG is. Otherwise, we will identify extra
access constraints on an inputG and makeQ bounded inG.

A large number of real-life queries are effectively bounded
under simple access constraints, as illustrated below.
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Fig. 1. Pattern queryQ0 on IMDb

Example 1: ConsiderIMDb [22], a graphG0 in which nodes
represent movies, casts, and awards from 1880 to 2014, and
edges denote various relationships between the nodes. An
example search onIMDb is to find pairs of first-billed actor
and actress (main characters) from the same country who co-
stared in a award-winning film released in 2011-2013.

The search can be represented as a pattern queryQ0 shown
in Fig. 1. Graph pattern matching here is to find the setQ0(G0)
of matches,i.e., subgraphsG′ of G0 that are isomorphic to
Q0; we then extract and return actor-actress pairs from each
matchG′. The challenge is thatG0 is large: theIMDb graph
has 5.1 million nodes and 19.5 million edges. Add to this that
subgraph isomorphism isNP-complete.

Not all is lost. Using simple aggregate queries one can
readily find the followingreal-life cardinality constraints on
the movie dataset from 1880–2014: (1) in each year, every
award is presented to no more than 4 movies (C1); (2) each
movie has at most 30 first-billed actors and actresses (C2), and
each person has only one country of origin (C3); and (3) there
are no more than 135 years (C4,i.e., 1880-2014), 24 major
movie awards (C5) and 196 countries (C6) in total [22]. An
index can be built on the labels and nodes ofG0 for each of
the constraints, yielding a setA0 of 8 access constraints.

UnderA0, patternQ0 is effectively bounded. We can find
Q0(G0) by accessingat most17923 nodes and 35136 edges in
G0, regardless ofthe size ofG0, by the following query plan:

(a) identify a setV1 of 135 year nodes, 24award nodes and
196country nodes, by using the indices for constraints C4-C6;

(b) fetch a setV2 of at most24× 3× 4 = 288 award-winning
movies released in 2011–2013, with no more than288 × 2 =
576 edges connecting movies to awards and years, by using
thoseaward andyear nodes inV1 and the index for C1;

(c) fetch a setV3 of at most(30+30)∗288 = 17280 actors and
actresses with 17280 edges, usingV2 and the index for C2;

(d) connect the actors and actresses inV3 to country nodes in
V1, with at most 17280 edges by using the index for C3. Output
(actor, actress) pairs connected to the samecountry in V1.

The query plan visits at most 135 + 24 + 196 + 288 +
17280 = 17923 nodes, and 576 + 17280 + 17280 = 35136



edges, using the cardinality constraints and indices inA0, as
opposed to tens of millions of nodes and edges inIMDb. 2

This example tells us that graph pattern matching is feasible
in big graphs within constrained resources, by making use of
effectively bounded pattern queries. To develop a practical ap-
proach out of the idea, several questions have to be answered.
(1) Given a pattern queryQ and a setA of access constraints,
can we determine whetherQ is effectively bounded underA?
(2) If Q is effectively bounded, how can we generate a query
plan to computeQ(G) in big G by accessing a boundedGQ?
(3) If Q is not bounded, can we make it “bounded” inG by
adding simple extra constraints? (4) Does the approach work
on both localized queries (e.g., via subgraph isomorphism)
and non-localized queries (via graph simulation)?

Contributions . This paper aims to answer these questions for
graph pattern matching. The main results are as follows.

(1) We introduce effective boundedness for graph pattern
queries (Section II). We formulate access constraints on
graphs, and define effectively bounded pattern queries. We also
show how to find simple access constraints from real-life data.

(2) We characterize effectively boundedsubgraph queriesQ,
i.e., patterns defined by subgraph isomorphism (Section III).
We identify a sufficient and necessarycondition to decide
whetherQ is effectively bounded under a setA of access con-
straints. Using the condition, we develop a decision algorithm
in O(|A||EQ|+||A|||VQ|2) time, where|Q| = |VQ|+|EQ|, and
||A|| is the number of constraints inA. The cost isindependent
of big graphG, and queryQ is typically small in practice.

(3) We provide an algorithm to generate query plans for
effectively bounded subgraph queries (Section IV). AfterQ
is found effectively bounded underA, the algorithm generates
a query plan that, given a graphG that satisfiesA, accesses a
subgraphGQ of size independent of|G|, in O(|VQ||EQ||A|)
time. Moreover, we show that the plan isworst-case-optimal,
i.e., for each inputQ andA, the largestGQ it finds from all
graphsG that satisfyA is theminimumamong all worst-case
GQ identified by all other query plans.

(4) If Q is not bounded underA, we make itinstance-bounded
(Section V). That is, for a given graphG that satisfiesA, we
find an extensionAM of A such that underAM , we can find
GQ ⊂ G in time decided byAM andQ, andQ(GQ) = Q(G).
We show that when the size of indices inAM is predefined, the
problem for deciding the existence ofAM is in low polynomial
time (PTIME), but it is log-APX-hard to find a minimumAM .
WhenAM is unbounded, all query loads can be made instance-
bounded by adding simple access constraints.

(5) We extend the study tosimulation queries, i.e., patterns
interpreted by graph simulation (Section VI). It is more chal-
lenging to cope with thenon-localizedandrecursivenature of
simulation queries. Nonetheless, we provide a characterization
of effectively bounded simulation queries. We also show that
our algorithms for checking effective boundedness, generating
query plans, and for making queries instance-bounded can be
adapted to simulation queries, with the same complexity.

(6) We experimentally evaluate our algorithms using real-life
data (Section VII). We find that our approach is effective for
both localized and non-localized queries: (a) on graphsG of
billions of nodes and edges [1], our query plans outperform the
conventional methods that computesQ(G) directly by4 and 3
orders of magnitudeon average, for subgraph and simulation
queries, respectively, accessing at most0.0032%of the data in
G; (b) 60% (resp. 33%) of subgraph (resp. simulation) queries
are effectively bounded under simple access constraints; and
(c) all queriescan be made instance-bounded inG by extend-
ing constraints and accessing 0.016% of extra data inG; and
95% become instance-bounded by accessing at most 0.009%
extra data. Our algorithms are efficient: they take at most 37ms
to decide whetherQ is effectively bounded and to generate an
optimal query plan for allQ and constraints tested.

This work is the first effort to study effectively bounded
graph queries, from fundamental problems to practical algo-
rithms. It suggests an approach to querying graphs: (1) given
a queryQ, we check whetherQ is effectively bounded under
a setA of access constraints; (2) if so, we generate a query
plan that given a graphG satisfyingA, computesQ(G) by
accessingGQ of size independent of|G|, no matter how big
G grows; (3) if not, we makeQ instance-bounded inG with
extra simple constraints. The approach works forbothlocalized
subgraph queriesand non-localized simulation queries.

Given the prohibitive cost of querying big graphs, this
approach helps even when onlylimited queriesare effectively
bounded. In fact, we find that many queries on real-life datasets
are actually effectively bounded under very simple access
constraints. Moreover, when a finite set of queries is not
effectively bounded, we can make them instance-bounded.

All proofs of the results of the paper can be found in [3].

Related Work. We categorize related works as follows.

Effective boundedness. The study of effective boundedness
traces back to scale independence. The latter was proposed [5]
to approximately answer relational aggregate queries under
certain conditions, for key/value stores. It aims to guarantee
that a bounded amount of work is required to execute
all queries in an application, regardless of the size of the
underlying data. The idea was formalized in [12], along witha
notion of access constraints for relational queries. Recently, the
notion of [12] is revised in [10] by requiring that the amount
of data accessed (i.e.,GQ) can be identified in time determined
by query Q and access constraintsA only, referred to as
effective boundedness; it is characterized forSPC queries [10].

This work differs from the previous work in the following.
(1) We introduce access constraints on graph data, to specify
cardinality constraints on the labels of neighboring nodes, and
guide us to retrieve small subgraphsGQ. (2) Under such
constraints, we formalize and characterize the effective bound-
edness of graph patterns, an issue harder than its counterpart
for relational queries [10], [12]. (3) We propose instance
boundedness for queries that are not effectively bounded.

Resource-bounded and anytime algorithms. Related are also
resource-bounded [16] and anytime algorithms [32]. The
former study reachability queries andpersonalizedpattern
queries, in which some pattern nodes are designated to match
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fixed nodes in a graphG. It is to compute approximate answers
by accessing no more thanα|G| nodes and edges inG, for
α ∈ (0, 1) [16]. Anytime algorithms [32] allow users either
to specify a budget on resources (e.g., running time; known
as contract algorithms [33]), or to terminate the run of the
algorithms at any time and get intermediate answers (known
as interruptible algorithms [19]). Contract anytime algorithms
have been explored for (a) budgeted search such as bounded-
cost planning [4], [29], [30], [32] under a user-specified
budget; and (b) graph search via subgraph isomorphism, to find
intermediate approximate answers within the budget, either by
assigning dynamically maintained budgets and costs to nodes
during the traversal [8], or by deciding search orders basedon
the frequencies of certain features in queries and graphs [27].

This work differs from the prior work as follows. (1) We
aim to computeexact answersfor pattern queries in big graphs,
as opposed to heuristic answers that may not have a provable
accuracy bound. (2) Wecharacterizewhat pattern queries can
be answered exactly within a cost independent of the size of
big graph, based on access constraints; in contrast, the prior
work does not study under what budget accurate answers are
warranted by using the semantics of the data. (3) We study
general pattern queries, which may beeither localized or non-
localized, and maynot bepersonalized [16].

Graph indexing and compression. There are typically two
ways to reduce search space. (1) Graph indexing uses pre-
computed global information ofG to compute distance [11],
shortest paths [18] or substructure matching [26]. (2) Graph
compression computes a summaryGc of a big graphG and
usesGc to answer all queries posed onG [7], [13], [24].

In contrast to the prior work, (1) we computeexact answers
rather than heuristic. (2) Instead of usingthe samegraphGc to
answerall queriesposed onG, we adopt adynamic reduction
schemethat finds a subgraphGQ of G for each queryQ. Since
GQ consists of only the information needed for answeringQ,
it allows us to computeQ(G) by usingGQ much smaller than
Gc and hence, much less resources. (3) WhenQ is effectively
bounded, forall graphsG we can findGQ of sizeindependent
of |G|; in contrast,|Gc| may be proportional to|G|.

Making big graphs small. There have been other techniques
for reducing a big graph into small ones,e.g., distribute
query answering [23], pattern matching using views [15], and
incremental pattern matching [14]. These are complementary
to this work and can be readily combined with ours,e.g.,our
methods can be readily adapted to distributed settings.

II. EFFECTIVELY BOUNDED GRAPH PATTERN QUERIES

In this section we define access schema on graphs and
effectively bounded graph pattern queries. We start with a
review of graphs and patterns. Assume an alphabetΣ of labels.

Graphs. A data graph is a node-labeled directed graphG =
(V, E, f, ν), where (1)V is a finite set of nodes; (2)E ⊆ V ×V
is a set of edges, in which(v, v′) denotes the edge fromv to
v′; (3) f() is a function such that for each nodev in V , f(v)
is a label inΣ, e.g.,year; and (4)ν(v) is the attribute value
of f(v), e.g.,year = 2011.
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Fig. 2. Pattern queryQ1 and data graphG1

We write G as (V, E) or (V, E, f) when it is clear from
the context. Thesizeof G, denoted by|G|, is defined to be the
total number of nodes and edges inG, i.e., |G| = |V | + |E|.

Remark.To simplify the discussion, we do not explicitly define
edge labels. Nonetheless, our techniques can be readily adapted
to edge labels: for each labeled edgee, we can insert a
“dummy” node to represente, carryinge’s label.

Labeled set. For a setS ⊆ Σ of labels, we say thatVS ⊆ V
is aS-labeled setof G if (a) |VS | = |S| and (b) for each label
lS in S, there exists a nodev in VS such thatf(v) = lS . In
particular, whenS = ∅, theS-labeled set inG is ∅.

Common neighbors. A nodev is called aneighborof another
nodev′ in G if either (v, v′) or (v′, v) is an edge inG. We
say thatv is a common neighborof a setVS of nodes inG
if for all nodesv′ in VS , v is a neighbor ofv′. In particular,
whenVS is ∅, all nodes ofG are common neighbors ofVS .

Subgraphs. GraphGs = (Vs, Es, fs, νs) is a subgraphof G
if Vs ⊆ V , Es ⊆ E, and for each(v, v′) ∈ Es, v ∈ Vs and
v′ ∈ Vs, and for eachv ∈ Vs, fs(v) = f(v) andνs(v) = ν(v).

Pattern queries. A pattern queryQ is a directed graph
(VQ, EQ, fQ, gQ), where (1)VQ, EQ and fQ are analogous
to their counterparts in data graphs; and (2) for each nodeu
in VQ, gQ(u) is thepredicateof u, defined as a conjunction of
atomic formulas of the formfQ(u) op c, wherec is a constant,
andop is one of=, >, <, ≤ and≥. For instance, in pattern
Q0 of Fig. 1, gQ(year) = year ≥ 2011 ∧ year ≤ 2013. We
simply write Q as (VQ, EQ) or (VQ, EQ, fQ).

We consider two semantics of graph pattern matching.

Subgraph queries. A match ofQ in G via subgraph isomor-
phism[31] is a subgraphG′(V ′, E′, f ′) of G that is isomorphic
to Q, i.e., there exists abijective functionh from VQ to V ′

such that (a)(u, u′) is in EQ if and only if (h(u), h(u′)) ∈ E′,
and (b) for eachu ∈ VQ, fQ(u) = f ′(h(u)) andgQ(ν(h(u)))
evaluates totrue, wheregQ(ν(h(u))) substitutesν(h(u)) for
fQ(u) in gQ(u). HereQ(G) is the set of all matches ofQ in G.

Simulation queries. A match of Q in G via graph simula-
tion [20] is a binary match relationR ⊆ VQ ×V such that (a)
for each(u, v) ∈ R, fQ(u) = f(v) andgQ(ν(v)) evaluates to
true, wheregQ(ν(v)) substitutesν(v) for fQ(u) in gQ(u); (b)
for each nodeu in VQ, there exists a nodev in V such that
(i) (u, v) ∈ R, and (ii) for any edge(u, u′) in Q, there exists
an edge(v, v′) in G such that(u′, v′) ∈ R.

For anyQ and G, there exists aunique maximummatch
relationRM via graph simulation (possibly empty) [20]. Here
Q(G) is defined to beRM . Simulation queries are widely used
in social community analysis and social marketing [9].
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Data locality. A queryQ is localizedif for any graphG that
matchesQ, any nodeu and neighboru′ of u in Q, and for
any matchv of u in G, there must exist a matchv′ of u′ in
G such thatv′ is a neighbor ofv in G. Subgraph queries are
localized. In contrast, simulation queries arenon-localized.

Example 2: Consider a simulation queryQ1 and graphG1

shown in Fig. 2, whereG1 matchesQ1. Then Q1 is not
localized: u2 matchesv2, . . . , v2n−2 and v2n, but for all
k ∈ [2, n], v2k−2 has no neighbor inG that matches the
neighboru3 of u2 in Q. To decide whetheru2 matchesv2,
we have to inspect all the nodes on an unbounded cycle in
G1. 2

We will study effective boundedness for subgraph queries
in Sections III–V, and then extend the results to non-localized
simulation queries in Section VI. To formalize effectively
bounded patterns, we first define access constraints on graphs.

Access schema on graphs. An access schemaA is a set of
access constraintsof the following form:

S → (l, N),
whereS ⊆ Σ is a (possibly empty) set of labels,l is a label
in Σ, andN is a natural number.

A graphG(V, E, f) satisfiesthe access constraint if

◦ for any S-labeled setVS of nodes inV , there exist at
mostN common neighbors ofVS with label l; and

◦ there exists anindex onS for l such that for anyS-labeled
setVS in G, it finds all common neighbors ofVS labeled
with l in O(N)-time, independent of|G|.

We say thatG satisfiesaccess schemaA, denoted byG |= A,
if G satisfies all the access constraints inA.

An access constraint is a combination of (a)a cardinality
constraintand (b)an indexon the labels of neighboring nodes.
It tells us that for anyS-node labeled setVS , there exist a
bounded number of common neighborsVl labeled withl and
moreover,Vl can be efficiently retrieved with the index.

Two specialtypesof access constraints are as follows:

(1) |S| = 0 (i.e., ∅ → (l, N)): for any G that satisfies the
constraint, there exist at mostN nodes inG labeledl; and

(2) |S| = 1 (i.e., l → (l′, N)): for any G that satisfies the
access constraint and for each nodev labeled withl in G, at
mostN neighbors ofv are labeled withl′.

Intuitively, constraints of type (1) are global cardinality
constraints on all nodes labeledl, and those of type (2) state
cardinality constraints onl′-neighbors of eachl-labeled node.

Example 3: Constraints C1-C6 onIMDb given in Example 1
can be expressed as access constraintsϕi (for i ∈ [1, 6]):

ϕ1: (year, award) → (movie, 4); ϕ4: ∅ → (year, 135);
ϕ2: movie → (actors/actress, 30); ϕ5: ∅ → (award, 24);
ϕ3: actor/actress → (country, 1); ϕ6: ∅ → (country, 196).

Here ϕ2 denotes a pairmovie → (actors, 30) and movie →
(actress, 30) of access constraints; similarly forϕ3. Note that
ϕ4 − ϕ6 are constraints of type (1);ϕ2 − ϕ3 are of type (2);

andϕ1 has the general form: for any pair ofyear andaward
nodes, there are at most 4movie nodes connected to both,i.e.,
an award is given to at most 4 movies each year. We useA0

to denote the set of these access constraints. 2

Effectively bounded patterns. A pattern queryQ is effectively
bounded underan access schemaA if for all graphsG that
satisfyA, there exists a subgraphGQ of G such that

(a) Q(GQ) = Q(G); and
(b) GQ can be identified in time that is determined byQ and

A only, not by |G|.

By (b), |GQ| is also independent ofthe size |G| of G.
Intuitively, Q is effectively bounded underA if for all graphs
G that satisfyA, Q(G) can be computed by accessing a
boundedGQ rather than the entireG, and moreover,GQ can
be efficiently accessed by using access constraints ofA.

For instance, as shown in Example 1, queryQ0 is effec-
tively bounded under the access schemaA0 of Example 3.

Discovering access constraints. From experiments with real-
life data we find that many practical queries are effectively
bounded under simple access constraintsS → (l, N) when
|S| is at most 3. We discover access constraints as follows.

(1) Degree bounds: if each node with labell has degree at most
N , then for any labell′, l → (l′, N) is an access constraint.

(2) Constraints of type (1): such global constraints are quite
common,e.g.,ϕ6 on IMDb: ∅ → (country, 196).

(3) Functional dependencies (FDs): our familiar FDs X → A
are access constraints of the formX → (A, 1), e.g.,movie →
year is an access constraint of type (2):movie → (year, 1).
Such constraints can be discovered by shredding a graph into
relations and then using availableFD discovery tools.

(4) Aggregate queries: such queries allow us to discover the
semantics of the data,e.g.,grouping by (year, country, genre)
we find (year, country, genre) → (movie, 1800), i.e., each
country releases at most 1800 movies per year in each genre.

Maintaining access constraints. The indices in an access
schema can be incrementally andlocally maintained in re-
sponse to changes to the underlying graphG. It suffices to
inspect∆G ∪ NbG(∆G), where∆G is the set of nodes and
edges deleted or inserted, andNbG(∆G) is the set of neighbors
of those nodes in∆G, regardless of how bigG is.

III. E FFECTIVE BOUNDEDNESS OFSUBGRAPH QUERIES

To make practical use of effective boundedness, we first
answer the following question, denoted byEBnd(Q,A):

◦ Input: A pattern queryQ(VQ, EQ), an access schemaA.
◦ Question: IsQ effectively bounded underA?

We start with subgraph queries. The good news is that

(a) there exists a sufficient and necessary condition,i.e., a
characterization, for deciding whether a subgraph query
Q is effectively bounded underA; and better still,

(b) EBnd(Q,A) is decidable in low polynomial time in the
size ofQ andA, independent of any data graph.
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We prove these results in the rest of the section.

A. Characterizing the Effective Boundedness

The effective boundedness of subgraph queries is charac-
terized in terms of a notion ofcoverage, given as follows.

Thenode coverof A on Q, denoted byVCov(Q,A), is the
set of nodes inQ computed inductively as follows:

(a) if ∅ → (l, N) is in A, then for each nodeu in Q with
label l, u ∈ VCov(Q,A); and

(b) if S → (l, N) is in A, then for eachS-labeled setVS in
Q, if VS ⊆ VCov(Q,A), then all common neighbors of
VS in Q that are labeled withl are also inVCov(Q,A).

Intuitively, a nodeu is covered byA if in any graphG sat-
isfying A, there exist a bounded number ofcandidate matches
of u, and the candidates can be retrieved by using indices in
A. Obviously, (a)u is covered if its candidates are bounded
by type (1) constraints. (b) If for someϕ = S → (l, N) in
A, u is labeled withl and is a common neighbor ofVS that
is covered byA, thenu is covered byA, since its candidates
are bounded (byN and the bounds on candidate matches of
VS), and can be retrieved by using the index ofϕ.

Theedge coverof A on Q, denoted byECov(Q,A), is the
set of edges inQ defined as follows:(u1, u2) is in ECov(Q,A)
if and only if there exist an access constraintS → (l, N) in A
and aS-labeled setVS in Q such that (1)u1 (resp.u2) is in VS

andVS ⊆ VCov(Q,A) and (2)fQ(u2) = l (resp.fQ(u1) = l).

Intuitively, (u1, u2) is in ECov(Q,A) if one ofu1 andu2 is
covered byA and the other has a bounded number of candidate
matches byS → (l, N). Thus, we can verify their matches in
a graphG by accessing a bounded number of edges.

Note thatVCov(Q,A) ⊆ VQ andECov(Q,A) ⊆ EQ.

The node and edge covers characterize effectively bounded
subgraph queries (see [3] for a proof, which uses three lemmas
and the data locality of subgraph queries).

Theorem 1: A subgraph queryQ is effectively bounded under
an access schemaA if and only if (iff) VCov(Q,A) = VQ and
ECov(Q,A) = EQ. 2

Example 4:For queryQ0(V0, E0) of Fig. 1 and access schema
A0 of Example 3, one can verify thatVCov(Q0,A0) = V0 and
ECov(Q0,A0) = E0. From this and Theorem 1 it follows that
Q0 is effectively bounded underA0. 2

B. Checking Effectively Bounded Subgraph Queries

Capitalizing on the characterization, we show that whether
Q is effectively bounded underA can be efficiently decided.

Theorem 2: For subgraph queriesQ, EBnd(Q,A) is in

(1) O(|A||EQ| + ||A|||VQ|2) time in general; and
(2) O(|A||EQ| + |VQ|2) time when either

◦ for each node inQ, its parents have distinct labels; or
◦ all access constraints inA are of type (1) or (2).

2

Algorithm EBChk

Input: A subgraph queryQ and an access schemaA.
Output: “yes” if Q is effectively bounded and “no” otherwise.

1. for each S → (l, N) in A (S 6= ∅) do
2. find all V̄ u

S 7→ (u, N) in Q and add them toΓ; /*f(u) = l*/
3. B := {v ∈ VQ | ∅ → (fQ(v), N) is in A};
4. C := B; /*Initialize VCov(Q,A)*/
5. InitAuxi(L, ct); /*Initialize auxiliary structures*/
6. while B is not emptydo
7. v = B.pop();
8. for each φ in L[v] do
9. Update (ct[φ]); /*Update counterct[φ]*/
10. if ct[φ] = ∅ andu 6∈ C do /*supposeφ: V̄ u

S 7→ (u, N)*/
11. B := B ∪ {u}; C := C ∪ {u};
12. if VQ ⊆ C and all edges inQ are inECov(Q,A) then
13. return “yes”;
14. return “no”;

Fig. 3. AlgorithmEBChk

Here |A| denotes the total length of access constraints in
A, ||A|| is the number of constraints inA, and a nodeu′ is a
parentof u in Q if there exists an edge fromu′ to u in Q.

Algorithm . We prove Theorem 2 by providing a checking
algorithm. The algorithm is denoted byEBChk and shown
in Fig. 3. Given a subgraph queryQ(VQ, EQ) and an access
schemaA, it checks whether (a)VQ ⊆ VCov(Q,A) and (b)
EQ ⊆ ECov(Q,A); it returns “yes” if so, by Theorem 1.

To check these conditions, we actualizeA on Q: for each
S → (l, N) in A (S 6= ∅), and each nodeu in Q with fQ(u) =
l, the actualized constraintis V̄ u

S 7→ (u, N), whereV̄ u
S is the

maximum set of neighbors ofu in Q such that (a) there exists a
S-labeled setVS ⊆ V̄ u

S and (b) for eachu′ in V̄ u
S , fQ(u′) ∈ S.

Actualized constraints help us deduceVCov(Q,A): a node
u of Q is in VCov(Q,A) if and only if either

◦ there exists∅ → (l, N) in A andfQ(u) = l; or
◦ V̄ u

S 7→ (u, N) and there exists aS-labeled set ofQ that
is a subset of̄V u

S ∩ VCov(Q,A).

WhenVCov(Q,A) is in place, we can easily check whether
EQ ⊆ ECov(Q,A) by definition and using the actualized
constraints, without explicitly computingECov(Q,A).

We next present the details of algorithmEBChk.

Auxiliary structures. EBChk uses three auxiliary structures.

(1) It maintains a setB of nodes inQ that are inVCov(Q,A)
but it remains to be checked whether other nodes can be
deduced from them. Initially,B includes nodes whose labels
are covered by type (1) constraints inA (line 3). EBChk uses
B to control thewhile loop (lines 5-10): it terminates when
B = ∅, i.e., all candidates forVCov(Q,A) are found.

(2) For each nodev, EBChk uses an inverted indexL[v] to
store all actualized constraints̄V u

S 7→ (u, N) such thatv ∈ V̄ u
S .

That is,L[v] indexes these constraintsthat can be used onv.

(3) For each actualized constraintφ = V̄ u
S 7→ (u, N), EBChk

maintains a setct[φ] to keep track of those labels ofS that
are not coveredby nodes inV̄ u

S ∩ VCov(Q,A) yet. Initially,
ct[φ] = S. Whenct[φ] is empty,EBChk concludes that there
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is aS-labeled subset of̄V u
S covered byVCov(Q,A), and thus

deduces thatu should also be inVCov(Q,A) (line 10).

Using these,EBChk works in the following two steps.

(1) ComputingΓ. It finds all actualized constraints ofA on Q
and puts them inΓ (lines 1-2). This can be done by scanning all
nodes ofQ and their neighbors for each access constraint inA.
Observe that there are at most||A|||VQ| actualized constraints
in Γ, i.e., Γ is bounded byO(||A|||EQ|).

(2) ComputingVCov(Q,A), stored in a variableC. After
initializing auxiliary structures as described above via proce-
dure InitAuxi (omitted; lines 3-5),EBChk processes nodes in
B one by one (lines 6-11). For eachu ∈ B and each actualized
constraintφ = V̄ v

S 7→ (v, N) in L[u], it updates the setct[φ] by
removing labelfQ(u) by procedureUpdate (omitted; line 9).
When ct[φ] = ∅, i.e., there exists aS-labeled subset in̄V v

S

that is covered byC, EBChk addsu to C andB (lines 10-11).
WhenB is empty,i.e., all nodes have been inspected,EBChk
checks whetherVQ ⊆ VCov(Q,A) and whether all edges are
covered byECov(Q,A). It returns “yes” if so (lines 12-13).

Example 5: Given subgraph queryQ0 of Fig. 1 and access
schemaA0 of Example 3,EBChk first computes the setΓ of
actualized constraints:φ1 = (u1, u2) 7→ (u3, 4), φ2 = u3 7→
(u4/u5, 30), andφ3 = u4/u5 7→ (u6, 1). It then sets bothB
and C to be {u1, u2, u6}, and initializesct[φ1], . . . , ct[φ3]
and listsL[u1], . . . , L[u6] accordingly.EBChk then popsu1

andu2 off from B and finds thatu3 can be deduced. Thus it
addsu3 to B and C. It then popsu3 off from B, processes
u4 and u5, and confirms thatu4 and u5 should be included
in C. At this point, it finds thatC contains all the nodes inQ
and moreover, each edge inQ is also covered by at least one
access constraint inA0. Thus it returns “yes”. 2

Correctness & Complexity. The correctness ofEBChk follows
from Theorem 1 and the properties of actualized constraints
stated above. We next analyze the time complexity ofEBChk.

(1) General case. Observe the following. (a) ComputingΓ is in
O(|A||EQ|) time, since for eachϕ in A, we can find all actu-
alized constraints ofϕ in O(Σv∈VQ

deg(v)|ϕ|) = O(|ϕ||EQ|)
time, wheredeg(v) is the number of neighbors ofv. (b)
ComputingVCov(Q,A) takesO(||A|||VQ|2) time. For eachϕ
in A, the setsct(φ) for all corresponding actualized constraints
φ in Γ are updated in timeO(Σv∈VQ

(deg(v)2)) = O(|VQ|2).
As eachφ in Γ is processed once, the total time is bounded
by O(||A|||VQ|2). (c) The checking of lines 12-13 takes
O(|A||EQ| + |VQ|2) time. Thus,EBChk takesO(|A||EQ| +
||A|||VQ|2 + |VQ|2) = O(|A||EQ| + ||A|||VQ|2) time.

(2) Special cases. We next show thatEBChk can be optimized
to O(|A||EQ|+ |VQ|2) time for each of the two special cases
given in Theorem 2. The idea is to use a countern[φ] instead
of ct[φ] in EBChk such thatn[φ] always equals|ct[φ]|. This
does not hurt the correctness since in the special cases, each
time when we updatect[φ], we remove a distinct label. With
this new auxiliary structure, step (b) in the analysis aboveis
in O(||A|||EQ|) time in total since the counters are updated
O(||A||(Σv∈VQ

deg(v))) = O(||A|||EQ|) times in total, and
each updates takesO(1) time: it just decreasesn[φ] by 1.

IV. GENERATING QUERY PLANS

After a subgraph queryQ(VQ, EQ) is found effectively
bounded under an access schemaA, we need to generate a
“good” query plan forQ that, given any (big) graphG, com-
putesQ(G) by fetching a smallGQ such thatQ(G) = Q(GQ)
and |GQ| is determined byQ andA, independent of|G|.

The main results of this section are as follows:

◦ a notion of worst-case optimality for query plans; and
◦ an algorithm to generate worst-case-optimal query plans

in O(|VQ||EQ||A|) time.

Below we first formalize query plans and define the worst-
case optimality. We then present the algorithm.

Query plans. A query planP for Q underA is a sequence
of node fetchingoperations of the formft(u, VS , ϕ, gQ(u)),
whereu is a l-labeled node inQ, VS denotes aS-labeled set
of Q, ϕ is a constraintϕ = S → (l, N) in A, andgQ(u) is
the predicate ofu (refer to Section II for the definition).

On a graphG, the operation is to retrieve a setcmat(u) of
candidate matchesfor u from G: given VS that was retrieved
from G earlier, it fetches common neighbors ofVS from G
that (i) are labeled withl and (ii) satisfy the predicategQ(u)
of u. These nodes are fetched by using the index ofϕ and are
stored incmat(u). In particular, whenS = ∅, the operation
fetches alll-labeled nodes inG ascmat(u) for u.

The operationsft1ft2 · · · ftn in P are executed one by one,
in this order. There may be multiple operations for the same
nodeu in Q, each fetching a setV u

i of candidates foru from
G. We will ensure that forfti andftj for u, V u

j has less nodes
thanV u

i if i < j, and we say thatftj reducescmat(u) fetched
by fti. We denoteV u

k by Vu, whereftk is the last operation
for u in P , i.e., it fetches the smallestcmat(u) for u.

Building GQ. Intuitively, P tells us what nodes to retrieve
from G. From the data fetched byP , a subgraphGQ(VP , EP)
is built and used to computeQ(G). More specifically, (a)
VP =

⋃
u∈Q Vu, i.e., it contains maximally reducedcmat(u)

for each nodeu in Q; and (b)EP consists of the following: for
each node pairs(v, v′) in Vu ×Vu′ , if (u, u′) is an edge inQ,
we check whether(v, v′) is an edge inG and if so, include it in
EP . This is done by accessing a bounded amount of data: we
first find ϕu′ = S → (fQ(u′), N) in A and aS-labeled setVs

such thatv ∈ VS ; we then fetch common neighbors ofVS by
using the index ofϕu′ and check whetherv′ is one of them. As
Q is effectively bounded underA (i.e., ECov(Q, A) = EQ),
if (v, v′) is an edge inG then suchϕu′ andVS exist.

Bounded plans. We say that a query planP for Q underA
is effectively boundedif for all G |= A, it builds a subgraph
GQ of G such that (a)Q(GQ) = Q(G) and (b) the time for
fetching data fromG by all operationsin P depends onA and
Q only. That is,P fetches a bounded amount of data fromG
and buildsGQ from it. By (b), |GQ| is independent of|G|.

Optimality . We naturally want anoptimal plan P that finds
us a minimumGQ, i.e., for each graphG |= A, GQ identified
by P has the smallest size among all subgraphs identified by
any effectively bounded query plans. Unfortunately, the result
below shows that this is impossible (see [3] for a proof).
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Algorithm QPlan

Input: An effectively bounded subgraph queryQ, access schemaA.
Output: A worst-case optimal and effectively bounded query planP .

1. Build actualized graphQΓ(VΓ, EΓ) from Q andΓ;
2. for each u in VΓ do
3. size[u] := +∞; sn[u] := false;
4. if there existsϕ = ∅ → (l, N) in A with fQ(u) = l do
5. appendft(u, nil, ϕ, gQ(u)) to P ;
6. sn[u] := true; size[u] := N ;
7. while there existsu in VΓ such thatcheck(u) = true do
8. (Vu, ϕu, size[u], sn[u]) := ocheck(u);
9. appendft(u, Vu, ϕu, gQ(u)) to P ;
10. return P ;

Fig. 4. AlgorithmQPlan

Theorem 3: There exists no query plan that is both effectively
bounded and optimal for all graphsG |= A. 2

This motivates us to introduce worst-case optimality. An
effectively-bounded query planP for Q underA is worst-
case optimalif for any other effectively bounded query plan
P ′ for Q underA, max

G|=A
|GQ| ≤ max

G|=A
|G′

Q|, whereGQ and

G′
Q are subgraphs identified byP andP ′, respectively.

That is, given anyQ andA, for all G |= A, thelargestsub-
graphGQ identified byP is no larger than the worst-case sub-
graphs identified by any other effectively bounded query plans.

Worst-case optimal query plans are within reach in practice.

Theorem 4: There exists an algorithm that, given any effec-
tively bounded subgraph queryQ under an access schemaA,
finds a query plan that is both effectively bounded and worst-
case optimal forQ underA, in O(|VQ||EQ||A|) time. 2

Algorithm . We prove Theorem 4 by giving such an algorithm,
denoted byQPlan and shown in Fig. 4. The algorithm inspects
each nodeu of Q, finds an access constraintϕ in A such that
its index can help us retrieve candidatescmat(u) for u from
an input graphG, generates a fetching operation accordingly,
and stores it in a listP . It then iteratively reducescmat(u) for
eachu in Q to optimizeP , until P cannot be further improved.

The algorithm uses the following structures.

(1) An actualized graphQΓ(VΓ, EΓ), which is a directed graph
constructed fromQ and the setΓ of all actualized constraints
of A on Q (see Section III). Here (a)VΓ = VQ; and (b) for
any two nodesu1 and u2 in VΓ, (u1, u2) is in EΓ iff there
exists a constraint̄VS 7→ (u2, N) in Γ such thatu1 is in V̄S .
Intuitively, QΓ represents deduction relations for nodes inVQ,
and guides us to extract candidate matches forQ.

(2) For each nodeu in Q, a countersize[u] to store the
cardinality of cmat(u), and a Boolean flagsn[u] to indicate
whether the fetching operations in currentP can findcmat(u).

With these structures, algorithmQPlan works as follows. It
first builds actualized graphQΓ (line 1), and initializessize[u]
= +∞ andsn[u] = false for all the nodesu in QΓ (lines 2-3).
It then finds nodesu0 for which cmat(u) can be retrieved by
using the index specified in some type (1) constraints∅ →
(l, N) in A (lines 4-6). For eachu0, QPlan adds a fetching
operation toP and setssn[u0] = true and size[u0] = N .

After the initialization,QPlan recursively processes nodes
u of Q to retrieve or reduce theircmat(u) (lines 7-9), starting
from those nodesu0 identified in line 4. It picks the next
nodeu by a functioncheck (omitted). Herecheck(u) does the
following: it (i) finds the setV p

u of parents ofu in QΓ such
that sn[v] = true for all v ∈ V p

u , (ii) selects a subsetVu of
V p

u such thatVu forms aS-labeled set for some constraintϕu

= S → (fQ(u), N) in A, and moreover,N ∗ Πv∈Vu
size[v] is

minimum among all suchS-labeled sets ofu; and (iii) returns
true if N ∗Πv∈Vu

size[v] < size[u]. If check(u) = true, QPlan
setssize[u] = N ∗ Πv∈Vu

size[v] and sn(u) = true by function
ocheck (omitted), and adds a fetching operation toP for u
usingϕu andVu. It proceeds until for nou in Q, check(u) =
true (line 7). At this point,QPlan returnsP (line 10).

Example 6: Given queryQ0 of Fig. 1 and access schemaA0

of Example 3,QPlan findsP as follows. Using the actualized
constraintsΓ of A0 on Q0 (see Example 5), it first buildsQΓ,
which is the same asQ0 except the directions of the edges
(u3, u1) and (u3, u2) are reversed. Using type (1) constraints
in A0, QPlan addsft1(u1, nil, ϕ5, true), ft2(u2, nil, ϕ4, year ≥
2011 ∧ year ≤ 2013) and ft3(u6, nil, ϕ6, true) to P . In the
while loop, it findscheck(u3) = trueand addsft4(u3, {u1, u2},
ϕ1, true) to P . As a consequence offt4, it finds thatcheck(u4)
and check(u5) becometrue and thus addsft5(u4, {u3}, ϕ2,
true) and ft6(u5, {u4}, ϕ2, true) to P . Now P cannot be
further improved, and it returnsP with 6 fetching operations,

We next show how thisP identifiesGQ from the IMDb
graphG0 of Example 1 forQ0. (a) It executes its fetching
operations one by one, and retrievescmat(u) from G0 for u
ranging overu1–u6, with at most 24, 3, 288, 8640, 8640 and
196 nodes, respectively. These are treated as the nodes ofGQ,
no more than 17791 in total. (b) It then adds edges toGQ.
For each(v3, v1) ∈ cmat(u3) × cmat(u1), it checks whether
(v3, v1) is an edge inG0 by usingcmat(u1), cmat(u2) and
cmat(u3), and the index ofϕ1 of A0, as suggested by fetching
operationft4 for u3 given above. If so,(v3, v1) is included in
GQ. This checks24×3×4 neighbors ofcmat(u3) in the worst
case. Similarly, it examines at most 288, 8640, 8640, 8640 and
8640 candidates matches inG0 for edges(u3, u2), (u3, u4),
(u3, u5), (u4, u6) and(u4, u6) in Q0, respectively. This yields
at most 34848 edges inGQ in total. Note that query planP is
exactly the one described in Example 1, and accesses at most
17923 nodes and 35136 edges in total. Onlypart of the data
accessed byP is included inGQ for answeringQ. 2

Correctness & Complexity. For the correctness ofQPlan, ob-
serve the following about the query planP generated forQ and
A. (1) P is effectively bounded: indeed, (a) the total amount
of data fetched byP is decided byA and Q sinceP only
uses indices inA to retrieve data; and (b)Q(GQ) = Q(G)
since GQ includes all candidate matches fromG for nodes
and edges inQ. By the data locality of subgraph queries, if
a nodev in G matches a nodeu in Q, then for any neighbor
u′ of u in Q, matches ofu′ must be neighbors ofv in G.
That is why cmat(u) collects candidate node matches from
neighbors; similarly for edges. (2)P is worst-case optimal:
since thewhile loop reduces|cmat(u)| to be the minimum.

To see thatQPlan is in O(|VQ||EQ||A|) time, observe the
following. (1) Line 1 is inO(|A||EQ|) time. (2) Thefor loop
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(lines 2-6) is inO(|VQ|) time by using the inverted indices.
(3) The while loop (lines 7-9) iterates|VQ|2 times, since for
each nodeu in Q, (a) cmat(u) is reduced only ifcmat(u′) is
reduced for its “ancestors”u′ in QΓ, |VQ|−1 times at most, by
the definition ofsize[u] andcheck (i.e., size[u] remains larger
thansize[u′]), and (b) each reduction tocmat(u′) requires us to
check once whethercmat(u) is also reduced as a consequence.
In each iteration,check(u) andocheck(u) takeO(deg(u)|A|)
time. As O(|VQ| ∗ Σu∈VQ

deg(u)|A|) = O(|VQ||EQ||A|), the
while loop takesO(|VQ||EQ||A|) time in total.

V. M AKING QUERIES INSTANCE BOUNDED

Consider a frequent query loadQ, such as afinite set of
parameterized queries as found in recommendation systems.
If some queriesQ in Q are not effectively bounded under an
access schemaA, can we still computeQ(G) in a big graph
G? The main conclusion of this section is positive: one can
often make all queries inQ instance-bounded inG and answer
them inG by accessing a bounded amount of data.

Extending access schemas. The idea is to extendA such
that its indices suffice to help us fetch bounded subgraphs of
G for answeringQ. Consider aconstantM . An M -bounded
extensionAM of A includes all access constraints inA and ad-
ditional access constraints of types (1) and (2) (see Section II):

Type (1):∅ → (l′, N) Type (2): l → (l′, N)

such thatN ≤ M . Note thatAM is also an access schema.

Instance-bounded patterns. ConsiderG |= AM . A setQ of
pattern queries isinstance-bounded inG underAM if for all
Q ∈ Q, there exists a subgraphGQ of G such that

(a) Q(GQ) = Q(G); and
(b) GQ can be found in time determined byAM andQ only.

As a result of (b) and the use of constantM , |GQ| is a function
of A, Q andM . As opposed to effective boundedness, instance
boundedness aims to processa finite setQ of queries ona
particular instanceG by accessing a bounded amount of data.

Given these, we answerQ in a big G as follows. If some
queries inQ are not effectively bounded underA, we extend
A to AM by adding simplest access constraints such that all
queries inQ are instance-bounded inG underAM .

Proposition 5: For any finite setQ of subgraph queries, access
schemaA and graphG |=A, there existM and anM -bounded
extensionAM under whichQ is instance-bounded inG. 2

That is, additional access constraints of types (1) and (2)
suffice to makeQ instance-bounded inG. We show in [3] that
AM extendsA with at mostLQ(LQ+1)

2 additional constraints,
whereLQ is the total number of labels inQ.

Resource-bounded extensions. Proposition 5 always holds
whenM is sufficiently large. WhenM is a small predefined
bound indicating our constrained resources, we have to answer
the following question, denoted byEEP(Q,A, M, G):

◦ Input: A finite set Q of subgraph queries, an access
schemaA, a natural numberM , and a graphG |= A.

◦ Question: Does there exist aM -bounded extensionAM

of A such thatQ is instance-bounded inG underAM ?

This problem is decidable inPTIME.

Theorem 6:EEP(Q,A, M, G) is in O(|G|+(|A|+|Q|)|EQ|+
(||A|| + |Q|)|VQ|

2) time, where|G| = |V | + |E|, |EQ| =∑
Q∈Q |EQ|, |VQ| =

∑
Q∈Q |VQ| and |Q| = |EQ|+ |VQ|. 2

For a frequent query loadQ, we identifyAM ; if AM exists,
we build additional indices onG and makeG |= AM , as
preprocessingoffline. We can then repeatedly instantiate and
process query templates ofQ by accessing a bounded amount
of data inG, and incrementally maintainindices in response
to changes toG. Note that real-life queries are typically small.

We prove Theorem 6 by giving a checking algorithm. The
algorithm, denoted byEEChk, consists of two steps.

Step (1) (MaximumM -bounded extension): Find all types (1)
and (2) constraints∅ → (l′, N) and l → (l′, N) on G for all
labelsl and(l, l′) that are inbothQ andG, such thatN ≤ M
andG satisfies their corresponding cardinality constraints. Let
AM include all these constraints and all those inA.

Step (2) (Checking): Check whetherQ is instance-bounded in
G underAM by using a mild revision ofEBChk(Q,AM ) (see
Section III) for eachQ ∈ Q; return “yes” if EBChk(Q,AM )
returns “yes” for allQ in Q, and “no” otherwise.

Example 7: Consider a given boundM = 150, theIMDb graph
G0 of Example 1, a setQ with only Q0 of Fig. 1, and an access
schemaA consisting of all constraints inA0 of Example 3
exceptϕ4 and ϕ5. Given these,EEChk finds a M -bounded
extensionAM of A. (1) It finds, among others, thatG satisfies
the cardinality constraints of two type 1 access constraints ϕ4

= ∅ → (year, 135) andϕ5 = ∅ → (award, 24), and135 < M
and24 < M . It extendsA by includingϕ4 andϕ5, yielding
AM . (2) It then invokesEBChk(Q,AM ) and confirms thatQ
is instance-bounded inG underAM . 2

Correctness & Complexity. The correctness ofEEChk is en-
sured by the following. (1) If there existsA′

M such thatQ is
instance-bounded inG underA′

M , thenQ is instance-bounded
in G underAM for A′

M ⊆ AM ; hence it suffices to consider
the maximumM -bounded extensionAM of A. (2) Checking
instance boundedness is a mild revision ofEBChk(Q,AM ),
with the same complexity stated in Theorem 2.

For the complexity, observe that Step (1) ofEEChk is in
O(|G|) time, |AM | and ||AM || are bounded by|A|+ |Q| and
||A|| + |Q|, respectively. Step (2) takesO((|A| + |Q|)|EQ| +
(||A|| + |Q|)|VQ|2) time by the complexity ofEBChk.

Remark. One might want to find aminimumM -extensionAM

of A such thatQ is instance-bounded underAM , andAM has
the least number of access constraints among allM -extensions
of A that makeQ instance-bounded inG. Unfortunately, it
is log APX-hard to find such a minimumM -extension for
givenQ, A, M andG. Here log APX-hard problems areNP
optimization problems for which noPTIME algorithms have
approximation ratio belowc log n, wherec is some constant
andn is the input size (cf. [6]; see [3] for a proof of this).
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VI. EFFECTIVELY BOUNDED SIMULATION QUERIES

We have seen that effective boundedness helps us answer
subgraph queries in big graphs within constrained resources.
A natural question asks whether the same idea works for
simulation queries, which are non-localized and recursive.

This section settles this question in positive. For effectively
bounded simulation queries, we provide (1) a characterization
(Section VI-A); (2) a checking algorithm (Section VI-B); and
(3) an algorithm for generating effectively bounded and worst-
case optimal query plans (Section VI-C), all with the same
complexity as their counterparts for subgraph queries. We also
give (4) an algorithm for making a finite set of unbounded
simulation queries instance-bounded (Section VI-D). We
contend that the effective-boundedness approach is generic: it
works on general pattern queries, localized or non-localized.

A. Characterization for Simulation Queries

Simulation queries introduce challenges to the analysis.

Example 8: Consider the simulation queryQ1(V1, E2) of
Example 2, and an access schemaA1 with ϕA = B → (A, 2),
ϕB = CD → (B, 2), ϕC = ∅ → (C, 1), andϕD = ∅ → (D, 1).
One can verify thatVCov(Q1,A1) = V1 andECov(Q1,A1) =
E1. However,Q1 is not effectively bounded. Indeed,G1 of
Fig. 2 matchesQ1, and the maximum match relationQ1(G1)
“covers” a cycle inG1 with length proportional to|G1|. That
is, while A1 constrains the neighbors of each node inQ1, it
does not suffice: as shown in Example 2, to check whether
v1 of G1 matchesu1 of Q1, we need to inspect nodes ofG1

far beyond the neighbors ofv1, due to the non-localized and
recursive nature of simulation queries. 2

This suggests a stronger notion of node covers. Thenode
coverof an access schemaA on a simulation queryQ, denoted
by sVCov(Q,A), is the set of nodes inQ computed as follows:

(a) if a type (1) constraint∅ → (l, N) is in A, then for each
nodeu in Q with label l, u ∈ sVCov(Q,A); and

(b) if S → (l, N) is in A, then for eachS-labeled setVS in
Q, a common neighboru of VS in Q is in sVCov(Q,A)
if (i) u is labeled withl, (ii) VS ⊆ sVCov(Q,A) and (iii)
for each nodeuS in VS , (u, uS) is an edge ofQ.

As opposed toVCov for subgraph queries, a nodeu is in
sVCov(Q,A) if in any graphG |= A, the number of candidate
matches ofu is bounded inG, no matter whetherthese
nodes are in the same neighborhoodor not. We includeu in
sVCov(Q,A) only if some of its children are covered byA and
they bound the candidate matches ofu by an access constraint.
When we enforceVQ = sVCov(Q,A) (see Theorem 9 below),
this ensures thatall children of u have a bounded number
of candidates inG. This rules out unbounded matches when
retrieving maximum matches by using the indices ofA.

The edge coverof A on Q, denoted bysECov(Q,A), is
defined in the same way asECov(Q,A) for subgraph queries
(Section III), usingsVCov(Q,A) instead ofVCov(Q,A).

Covers for simulation queries are more restrictive than
their counterparts for subgraph queries:sVCov(Q,A) ⊆
VCov(Q,A) ⊆ VQ and sECov(Q,A) ⊆ ECov(Q,A) ⊆ EQ.

Analogous to Theorem 1, one can verify the following
(see [3] for a proof, which does not use data locality).

Theorem 7: A simulation queryQ(VQ, EQ) is effectively
bounded under an access schemaA if and only if VQ =
sVCov(Q,A) and EQ = sECov(Q,A). 2

Example 9: Recall Q1 and A1 from Example 8. One can
verify that neitheru1 nor u2 in Q1 is in sVCov(Q1,A1) and
hence,Q1 is not effectively bounded underA1 by Theorem 7.
This is consistent with the observation of Example 8.

Now define Q2(V2, E2) by reversing the directions of
(u3, u2) and (u4, u2) in Q1. Then sVCov(Q2,A1) = V2

and sECov(Q2,A1) = E2. Hence,Q2 is effectively bounded
underA1 by Theorem 7. GivenG1 of Fig. 2, we can find
Q2(G1) = ∅ without fetching the unbounded cycle ofG1. 2

B. Deciding Effective Boundedness of Simulation Queries

We now revisitEBnd(Q,A) (Section III): given a simula-
tion queryQ and an access schemaA, it is to decide whetherQ
is effectively bounded underA. We show that graph simulation
does not increase the complexity ofEBnd(Q,A).

Theorem 8: For simulation queriesQ, EBnd(Q,A) has the
same complexity as for subgraph queries, in both the general
case and the two special cases stated in Theorem 2. 2

To prove Theorem 8 we give a checking algorithm, denoted
by sEBChk, which is the same asEBChk of Fig. 3 except that
it uses a revised notion of actualized constraints. For each
S → (l, N) in A with S 6= ∅, and each nodeu in Q with
fQ(u) = l, its actualized constraint for simulationis V̄ u

S 7→
(u, N), whereV̄ u

S is the maximum set of neighbors ofu in Q
such that (a) there exists aS-labeled setVS ⊆ V̄ u

S , and (b) for
eachu′ ∈ V̄ u

S , (i) fQ(u′) ∈ S; and (ii) (u, u′) is an edge ofQ.
In contrast to its counterpart defined in Section III, this notion
further requires condition (ii) to cope withsVCov(Q,A).

Example 10: GivenQ2(V2, E2) andA1 considered in Exam-
ple 9,sEBChk first computes the setΓ of actualized constraints
for A1 on Q2: φ1 = (u3, u4) 7→ (u2, 2), φ2 = u2 7→ (u1, 2).
It then initializes bothB andC to be{u3, u4}, setsct[φ1] = 2,
ct[φ2] = 1, and initializes listsL[u1], . . . , L[u4] accordingly
(see Fig. 3). As in Example 5, it finds thatV2 ⊆ C and that
each edge ofE2 is covered by some constraint inA1. Thus it
returns “yes”,i.e., Q2 is effectively bounded underA1. 2

The correctness ofsEBChk follows from the characteri-
zation of Theorem 7. Along the same lines as the analysis of
EBChk, the proof uses the following property ofsVCov(Q,A):
a nodeu of Q is in sVCov(Q,A) if and only if either

◦ there exists∅ → (l, N) in A andfQ(u) = l; or
◦ V̄ u

S 7→ (u, N) and there exists aS-labeled set ofQ that
is a subset of̄V u

S ∩ sVCov(Q,A).

Algorithm sEBChk has the same complexity asEBChk:
sEBChk is the same asEBChk except the computation of the
setΓ of all actualized constraints (lines 1-2 of Fig. 3), which
remains inO(|A||EQ|) time, the same as for subgraph queries.
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C. Generating Effectively Bounded Query Plans

We next show that for effectively-bounded simulation
queriesQ under an access schemaA, we can generate query
plans P such that in any graphG, P computesQ(G) by
accessing a bounded subgraphGQ of Q, leveraging the indices
of A, such thatQ(G) = Q(GQ). Indeed, Theorem 4, the result
for subgraph queries, carries over to simulation queries.

Theorem 9: There exists an algorithm that, given any effec-
tively bounded simulation queryQ under an access schema
A, generates an effectively bounded and worst-case optimal
query plan inO(|VQ||EQ||A|) time. 2

We show that a minor revisionsQPlan of algorithmQPlan
(Fig. 4) suffices to do these, retaining the same complexity
as QPlan. The only difference is that we use actualized
constraints for simulation given above, and the stronger notion
of node covers instead of data locality. Due to the space
constraint we defer the proof and analysis to [3].

Example 11: Given Q2(V2, E2) of Example 9 andA1 of
Example 8,sQPlan generates a query planP . Using the setΓ
of actualized constraints ofA1 onQ2 (see Example 10),QPlan
buildsQΓ(VΓ, EΓ), whereVΓ = V2, andEΓ contains(u3, u2),
(u4, u2) and(u2, u1). Initially, it addsft(u3, nil, ϕC , true) and
ft(u4, nil, ϕD, true) to P . It then finds thatu2 and u1 can
be deduced fromu3 and u4 by using QΓ, and thus adds
ft(u2, {u3, u4}, ϕB, true) and ft(u1, {u2}, ϕA, true) to P .

For any graphG |= A1, we computeQ2(G) by usingP . It
retrieves 8 candidate matches for nodes inQ2, i.e., 4 for u1, 2
for u2, 1 for each ofu3 andu4. It then finds at most 12 edges
between these candidates that are possible edge matches by
using the indices ofA1: 4 for each of(u1, u2) and (u2, u1),
and 2 for each of(u2, u3) and (u2, u4). That is,P fetches a
subgraphGQ2

of Q2, by accessing 8 nodes and 12 edges.2

D. Making Simulation Queries Instance Bounded

Finally, we study finite setsQ of simulation queries when
they are not effectively bounded under an access schemaA. We
show that Proposition 5 also holds here: for any graphG |= A,
there exists anM -bounded extensionAM of A under which
Q is instance-bounded inG for some boundM (see Section V
for M -bounded extensions, and [3] for a proof).

For a predefined and smallM , we revisitEEP(Q,A, M, G)
to decide whether there exists anM -bounded extensionAM

of A that makesQ instance-bounded inG (see Section V). We
show that Theorem 6 remains intact on simulation queries.

Theorem 10: For simulation queries,EEP(Q,A, M, G) is in
O(|G| + (|A| + |Q|)|EQ| + (||A|| + |Q|)|VQ|2) time. 2

As a proof, we show that a minor revisionsEEChk of
EEChk (Section V) can checkEEP for simulation queries, with
the same complexity asEEChk (see [3] for a proof).

VII. E XPERIMENTAL STUDY

Using real-life data, we conducted three sets of experiments
to evaluate (1) the effectiveness of our query evaluation ap-
proach based on effective boundedness, (2) the effectiveness of
instance boundedness and (3) the efficiency of our algorithms.

Experimental setting. We used three real-life datasets.

Internet Movie Data Graph(IMDbG) was generated from the
Internet Movie Database (IMDb) [22], with 5.1 million nodes,
19.5 million edges and 168 labels inIMDbG.

Knowledge graph(DBpediaG) was taken from DBpedia 3.9
[2], with 4.1 million nodes, 19.5 million edges and 1434 labels.

Webbase-2001(WebBG) recorded Web pages produced in
2001 [1], in which nodes are URLs, edges are directed links
between them, and labels are domain names of the URLs. It
has 118 million nodes, 1 billion edges and 0.18 million labels.

Access schema. We extracted 168, 315 and 204 access con-
straints fromIMDbG, DBpediaG andWebBG, respectively, by
using degree bounds, label frequencies and data semantics.For
example, (actress, year) → (feature film, 104) is a constraint
on IMDbG, stating that each actress starred in no more
than 104 feature films per year. We found it easy to extract
access constraints from real-life data. There are many more
constraints for our datasets, which we did not use in our tests.

For each constraintS → (l, N), we built index by (a)
creating a table in which each tuple encodes an actualized
constraintVS 7→ (u, N); and (b) building an index on the
attributes forVS in the new table, usingMySQL 5.5.35.

Pattern queries. For each dataset, we randomly generated 100
pattern queries using its labels, controlled by#n, #e and#p,
the number of nodes, edges and match predicates in the ranges
[3, 7], [#n-1, 1.5*#n ] and [2, 8], respectively. We did not use
big patterns to favor conventional methodsVF2 and optVF2
(see below), which do not work on large queries.

Algorithms. We implemented the following algorithms in C++:
(1) EBChk, QPlan, EEChk for subgraph queries, andsEBChk,
sQPlan, sEEChk for simulation queries; (2) pattern match-
ing algorithmsbVF2 and bSim for subgraph and simulation
queries, by using query plans generated byQPlan andsQPlan,
respectively; (3) conventional matching algorithmsgsim [21]
andVF2 (using C++ Boost Graph Library) for simulation and
subgraph queries, respectively, and their optimized versions
optgsim andoptVF2 by using indices in the access constraints.

The experiments were conducted on an Amazon EC2
memory optimized instance r3.4xlarge with 122GB memory
and 52 EC2 compute units. All the experiments were run 3
times. The average is reported here.

Experimental results. We next report our findings.

Exp-1: Effectiveness of effective boundedness.

(1) Percentage of effectively bounded queries. We checked the
randomly generated queries using algorithmsEBChk and
sEBChk, and found the following: (1) 61%, 67% and 58%
of subgraph queries onIMDbG, DBpediaG and WebBG are
effectively bounded under the access constraints described
above, and (2) 32%, 41% and 33% for simulation queries,
respectively. These tell us that (a) by using a small number
of simple access constraints, many subgraph and simulation
queries are effectively bounded; and (b) more subgraph queries
are bounded than simulation queries under the same con-
straints, due to their locality (Section II), as expected.
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Fig. 5. Effectiveness of effectively bounded query evaluation

(2) Effectiveness of bounded queries. To evaluate the impact
of effectively bounded queries, we compared their running
time bybVF2 andbSim (with query plans generated byQPlan
and sQPlan) vs. the conventional methodsVF2, optVF2 and
gsim, optgsim. As VF2 andoptVF2 are slow, we only report
their performance when they ran to completion. Unless stated
otherwise, we used all access constraints and full-size datasets.

(a) Impact of|G|. Varying the size|G| by using scale factors
from 0.1 to 1, we report the results on the three datasets in Fig-
ures 5(a), 5(e) and 5(i). Observe the following. (1) The evalua-
tion time of effectively bounded queries isindependent of|G|.
Indeed,bVF2 andbSim consistently took 4.45s, 2.02s, 5.8s and
0.25s, 0.23s, 0.34s on all subgraphs ofIMDbG, DBpediaG and
WebBG, respectively. (2)VF2 and optVF2 could not run to
completion within 40000s on all subgraphs ofWebBG, and on
subgraphs ofIMDbG and DBpediaG with scale factor above
0.3. On the full-sizeWebBG, bVF2 took 0.9s as opposed
to 25729s byoptVF2 for queries thatoptVF2 could process
within reasonable time, at least28587 times faster. (3) Algo-
rithmsoptgsim andgsim are sensitive to|G| (note the logarith-
mic scale of they-axis), and are much slower thanbSim. For
instance, on the full-sizeWebBG, bSim took 0.34s vs. 1630s
by optgsim, 4793 times faster. The improvement ofbVF2 over
optVF2 is bigger than that ofbSim over optgsim as optVF2
has a higher complexity and thus, is more sensitive to|G|.

(b) Impact ofQ. To evaluate the impact of patterns, we varied
#n of Q from 3 to 7. The results, as shown in Figures 5(b), 5(f)
and 5(j), tell us the following. (1) The smallerQ is, the faster
all the algorithms are, as expected. (2) For all queries,bVF2
andbSim are efficient: they return answers within 12.7s on all

three datasets. (3) AlgorithmsVF2 and optVF2 do not scale
with Q. When#n > 4, none of them could run to completion
within 40000s, on all three datasets. (4) Algorithmsgsim and
optgsim are much slower thanbSim for all queries.

(c) Impact of||A||. To evaluate the impact of access constraints
on bVF2 and bSim, we varied ||A|| from 12 to 20 and
processed effectively bounded queries using the varied indices
in A. As shown in Figures 5(c), 5(g) and 5(k), more access
constraints helpQPlan and sQPlan get better query plans, as
expected. For example, onWebBG, when 20 access constraints
were used,bSim andbVF2 took 0.36s and 5.6s, respectively,
while they were 9.3s and 75.1s when||A|| = 12.

(3) Size of accessed data. In the same setting as Exp-1(2)(b)
above, we examined the size of data accessed bybVF2 and
bSim. For each effectively bounded queryQ, we examined (a)
|accessedQ|, the size of data accessed, and (b)|indexQ|, the
size of indices in those access constraints used, bybVF2 and
bSim for answeringQ. We report the average in Figures 5(d),
5(h) and 5(l). The results tell us that the query plans accessed
no more than 0.13% of|G| for all subgraph and simulation
queries on all datasets, with indices less than 8% of|G|. This
further confirms the effectiveness of our approach.

Exp-2: Effectiveness of instance boundedness. Varying x,
we examined the minimumM that makesx% of queries
instance-bounded underM -bounded extensions onIMDbG,
DBpediaG andWebBG, via EEChk and sEEChk. As Figures
6(a) and 6(b) show, a smallM (compared to|G|) suffices to
make a large percentage of the queries instance-bounded. For
instance, whenM is 14113, 25218 and 70916 (resp. 77873,
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Fig. 6. Effectiveness of instance boundedness

89068, 101134), over 95% of all subgraph (resp. simulation)
queries randomly generated are instance-bounded inIMDbG,
DBpediaG and WebBG, respectively; that is,M is 0.057%,
0.107% and 0.006% of|G| (resp. 0.32%, 0.38% and 0.009%).
When M is 181448 (0.016% ofWebBG), all subgraph and
simulation queries become instance-bounded in all datasets.

Expt-3: Efficiency. Finally, we evaluated the efficiency of our
algorithms. We found thatEBChk, QPlan, sEBChk andsQPlan
took at most 7ms, 37ms, 6ms and 32ms, respectively, for all
queries on three datasets with all the access constraints.

Summary. From the experiments we find the following. (1)
The approach by effective boundedness is practical for pattern
queries on large graphs. (a) It is easy to find access constraints
from real-life datasets. (b) About 60% (resp. 33%) subgraph
(resp. simulation) queries are effectively bounded under asmall
number of access constraints. (c) Effectively bounded queries
scale well with big graphs: their evaluation time isindependent
of |G|. (2) The approach is effective for both localized and
non-localized queries:bVF2 and bSim outperform optVF2
and optgsim by 4 and 3 orders of magnitude on average on
WebBG, respectively. (3) A smallM suffices to make queries
instance-bounded: 0.006% (resp. 0.009%) of|G| for 95% of
subgraph (resp. simulation) queries onWebBG, and 0.013%
(resp. 0.016%) to boundall queries. (4) Our algorithms are
efficient: they take no more than 37ms in all cases.

VIII. C ONCLUSION

We propose to answer graph pattern queries in big graphs
by making use of effective boundedness. We have devel-
oped techniques underlying the approach: access constraints
on graphs, effectively bounded pattern queries, characteriza-
tions and algorithms for deciding whether pattern queries are
effectively bounded, algorithms for generating (worst-case)
optimal query plans if so, and otherwise, algorithms for making
queries instance-bounded. We have verified, analytically and
experimentally, the effectiveness of the approach: it works for
both localized queries and non-localized queries.

One topic for future work is to develop a systematic method
for discovering access constraints on graphs. Another topic is
to study incrementalboundedness: Given an access schema
A, a graphG and a pattern queryQ, it is to incrementally
computeQ(G⊕∆G) in response to all changes∆G to G, by
accessing a bounded amount of data fromG underA.
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