
Differentially Private Frequent Sequence Mining via Sampling-
based Candidate Pruning

Shengzhi Xu#, Sen Su#, Xiang Cheng#, Zhengyi Li#, and Li Xiong†

Shengzhi Xu: dear_shengzhi@bupt.edu.cn; Sen Su: susen@bupt.edu.cn; Xiang Cheng: chengxiang@bupt.edu.cn;
Zhengyi Li: lizhengyi@bupt.edu.cn; Li Xiong: lxiong@mathcs.emory.edu
#State Key Laboratory of Networking and Switching Technology Beijing University of Posts and
Telecommunications, Beijing, China

†Math and Computer Science Department, Emory University, Atlanta, GA

Abstract

In this paper, we study the problem of mining frequent sequences under the rigorous differential

privacy model. We explore the possibility of designing a differentially private frequent sequence

mining (FSM) algorithm which can achieve both high data utility and a high degree of privacy.

We found, in differentially private FSM, the amount of required noise is proportionate to the

number of candidate sequences. If we could effectively reduce the number of unpromising

candidate sequences, the utility and privacy tradeoff can be significantly improved. To this end, by

leveraging a sampling-based candidate pruning technique, we propose a novel differentially

private FSM algorithm, which is referred to as PFS2. The core of our algorithm is to utilize sample

databases to further prune the candidate sequences generated based on the downward closure

property. In particular, we use the noisy local support of candidate sequences in the sample

databases to estimate which sequences are potentially frequent. To improve the accuracy of such

private estimations, a sequence shrinking method is proposed to enforce the length constraint on

the sample databases. Moreover, to decrease the probability of misestimating frequent sequences

as infrequent, a threshold relaxation method is proposed to relax the user-specified threshold for

the sample databases. Through formal privacy analysis, we show that our PFS2 algorithm is ε-

differentially private. Extensive experiments on real datasets illustrate that our PFS2 algorithm can

privately find frequent sequences with high accuracy.

I. Introduction

Frequent sequence mining (FSM) is a fundamental component in a number of important data

mining tasks with broad applications, ranging from Web usage analysis to location-based

recommendation system. Despite valuable insights the discovery of frequent sequences

could potentially provide, if the data is sensitive (e.g., DNA sequences, mobility traces and

web browsing histories), releasing frequent sequences might pose considerable threats to

individual's privacy.

Correspondence to: Sen Su, susen@bupt.edu.cn.

HHS Public Access
Author manuscript
Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

Published in final edited form as:
Proc Int Conf Data Eng. 2015 April ; 2015: 1035–1046. doi:10.1109/ICDE.2015.7113354.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Differential privacy [1] has been proposed as a way to address such problem. Unlike the

anonymization-based privacy models (e.g., k-anonymity [2] and l-diversity [3]), differential

privacy provides strongly theoretical guarantees on the privacy of released data without

making assumptions about the adversary's prior knowledge. By adding a carefully chosen

amount of noise, differential privacy assures that the output of a computation is insensitive

to the change in any individual's record. Thus, it restricts privacy leaks through the results.

In this paper, we focus on the design of differentially private FSM algorithms. Given a

collection of input sequences, FSM is to find all sequences that occur in the input sequences

more frequently than a given threshold. Although differentially private algorithms exist for

mining special cases of frequent sequences (e.g., frequent consecutive item sequences [4]),

we are not aware of any existing study that can support general FSM under differential

privacy.

To make FSM satisfy differential privacy, a straightforward approach is to leverage the

downward closure property [5] to generate the candidate sequences (i.e., all possible

frequent sequences), and add perturbation noise to the support of each candidate sequence.

However, this approach suffers poor performance. The root cause is the large number of

generated candidate sequences, which leads to a large amount of perturbation noise. We

observe, in practice, the number of real frequent sequences is much smaller than the number

of candidate sequences generated based on the downward closure property. In addition, in

frequent pattern mining, the frequency of a pattern can be considered as the probability of a

record containing this pattern. For most patterns, their frequencies in a small part of the

database are approximately equal to their frequencies in the original database. Thus, it is

sufficient to estimate which patterns are potentially frequent based on a small part of the

database [6], [7]. These observations motivate us to design a differentially private FSM

algorithm which utilizes a small part of the database to further prune candidate sequences

generated based on the downward closure property, such that the amount of noise required

by differential privacy is significantly reduced and the utility of the results can be

considerably improved.

To this end, we propose a novel differentially private FSM algorithm, called PFS2 (i.e.,

differentially Private Frequent Sequence mining via Sampling-based Candidate Pruning). In

PFS2, we privately discover frequent sequences in order of increasing length. In particular,

we first generate multiple disjoint sample databases. Then, to discover frequent k-sequences

(i.e., the frequent sequences containing k items), we utilize frequent (k-1)-sequences to

generate candidate k-sequences based on the downward closure property. Next, the k-th

sample database is utilized to further prune the candidate k-sequences. Finally, we compute

the noisy support of remaining candidate k-sequences in the original database and output the

candidate k-sequences whose noisy supports exceed the user-specified threshold as frequent

k-sequences.

The core of our PFS2 algorithm is to effectively prune the candidate sequences. The local

supports of candidate sequences in the sample database are used to estimate which

sequences are potentially frequent. Due to the privacy requirement, we have to add noise to

the local support of each candidate sequence to avoid privacy breach. To estimate which

Xu et al. Page 2

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sequences are potentially frequent accurately, it is necessary to reduce the amount of added

noise. In differentially private frequent itemset mining, enforcing the length constraint on

itemsets has been proven as an effective method for reducing the amount of added noise [8].

However, due to the inherent sequentiality of sequential data, this method cannot be used in

differentially private FSM. In addition, the sequences in the sample database are randomly

drawn from the original database. It causes many frequent sequences to become infrequent

in the sample database. If we simply use the user-specified threshold to estimate which

sequences are potentially frequent, many frequent sequences will be misestimated as

infrequent. Thus, how to accurately estimate which candidate sequences are potentially

frequent while satisfying differential privacy is a challenging task. To address these

challenges, we propose two effective methods, namely, sequence shrinking and threshold

relaxation.

For the sequence shrinking method, it consists of three schemes: irrelevant item deletion,

consecutive patterns compression and sequence reconstruction. In particular, the irrelevant

item deletion and consecutive patterns compression schemes can effectively shorten

sequences without losing frequency information. After shortened by these two schemes, if

some sequences still violate the length constraint, we use the sequence reconstruction

scheme to construct new sequences which can satisfy the length constraint and preserve

frequency information as much as possible. By using the sequence shrinking method in the

sample database, we can effectively reduce the amount of noise added to the support of

sequences.

In the threshold relaxation method, we theoretically quantify the relationship between the

decrement of the threshold and the probability of misestimating frequent sequences as

infrequent. Based on the theoretical results, we relax the threshold for the sample database to

estimate which candidate sequences are potentially frequent. In doing so, the probability of

misestimating frequent sequences as infrequent is effectively decreased.

Through formal privacy analysis, we prove our PFS2 algorithm guarantees ε-differential

privacy. Extensive experimental results on real datasets show that our PFS2 algorithm

achieves high data utility. Besides, to demonstrate the generality of the sampling-based

candidate pruning technique, we also extend this technique to frequent itemset mining.

Preliminary experimental results show the performance of existing algorithm [8] is

significantly improved by adopting this technique. To summarize, our key contributions are:

1. We introduce the sampling-based candidate pruning technique as an effective

means of achieving high data utility in the context of differentially private FSM.

This technique is not only suitable for mining frequent sequences under differential

privacy, but also can be extended to design other differentially private frequent

pattern mining algorithms.

2. We develop a novel differentially private FSM algorithm PFS2 by leveraging our

sampling-based candidate pruning technique. To privately estimate which

candidate sequences are potentially frequent accurately, we propose two methods,

namely sequence shrinking and threshold relaxation.

Xu et al. Page 3

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3. Through formal privacy analysis, we prove our proposed PFS2 algorithm satisfies

ε-differential privacy. We conduct an extensive experimental study over real

datasets. The experimental results demonstrate that our PFS2 algorithm can

privately find frequent sequences with high accuracy.

II. Related Work

Differentially Private Frequent Pattern Mining

We coarsely categorize previous differentially private frequent pattern mining studies into

three groups according to the type of pattern being mined.

Sequence—Xiong et al. [4] propose a two-phase differentially private algorithm for

mining frequent consecutive item sequences. They first utilize a prefix tree to find candidate

sequences, and then leverage a database transformation technique to refine the support of

candidate sequences. Compared with this work, we focus on a more general case of FSM,

which aims to find all combinations of items that frequently appear in input sequences but

not necessarily consecutively.

Several studies have been proposed to address the issue of publishing sequence databases

under differential privacy [9], [10]. In particular, Chen et al. [9] propose a differentially

private sequence database publishing algorithm based on a prefix tree. In [10], the authors

employ a variable-length n-gram model to extract the necessary information of the sequence

databases, and utilize an exploration tree to reduce the amount of added noise. These two

studies differ from ours in the following aspects. First, they focus on the publication of

sequence databases, while our work aims at the release of frequent sequences. Moreover,

these two studies utilize the tree structure to group input sequences (grams) to mitigate the

impact of added noise. In contrast, we leverage the tree structure to group candidate

sequences, so that we can efficiently find the candidate sequences contained in a sequence.

Itemset—Several algorithms have been proposed to tackle the problem of differentially

private frequent itemset mining (FIM) [11], [12], [8]. In particular, Bhaskar et al. [11]

propose two differentially private FIM algorithms, which adapt the Laplace mechanism [13]

and the exponential mechanism [14] respectively. To meet the challenge of high

dimensionality of transaction database, Li et al. [12] introduce the PrivBasis algorithm

which projects the input high dimensional database onto lower dimensions. In [8], Zeng et

al. improve the utility-privacy tradeoff by limiting the length of transactions. They propose a

differentially private FIM algorithm which truncates transactions in the original database to

improve the quality of the results. Different from [8], to improve the utility-privacy tradeoff,

we prune candidate sequences by leveraging the sampling-based candidate pruning

technique. Moreover, we shrink sequences in the sample databases, such that we can prune

the unpromising candidate sequences more accurately. For the above differentially private

FIM algorithms, they are shown to be effective in some scenarios. However, differences

between the itemset and the sequence make these algorithms not applicable for differentially

private FSM.

Xu et al. Page 4

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Two studies [15], [16] have been proposed to tackle the problem of publishing transaction

databases under differential privacy. Chen et al. [15] propose a probabilistic top-down

partitioning algorithm which employs context free taxonomy trees. Zhang et al. [16] present

an algorithm which uses an item-free taxonomy tree and an update bounded mechanism to

privately publish databases on an incremental scenario.

Graph—Shen et al. [17] address the problem of frequent graph mining under differential

privacy. They integrate the process of frequent graph mining and the privacy protection into

a Markov Chain Monte Carlo framework.

Other Studies

There is a series of studies on publishing aggregate statistics about data streams under

differential privacy. In particular, Fan et al. [18] propose a framework to release real-time

aggregate statistics by using adaptive sampling and filtering. Cao et al. [19] present two

solutions to answer a set of sliding window count queries. Very recently, Kellaris et al. [20]

propose ω-event privacy to protect the event sequences occurring within any window of ω

timestamps.

Differential privacy has also been investigated in the context of machine learning. Zhang et

al. [21] present a functional mechanism to enforce differential privacy in regression analysis.

In [22], the authors propose a differentially private model fitting solution based on genetic

algorithms. Very recently, Zhang et al. [23] utilize Bayesian networks to effectively publish

high-dimensional data.

III. Preliminaries

A. Differential Privacy

Differential privacy [1] has become a de-facto standard privacy notion in private data

analysis. Differential privacy requires the outputs of algorithms to be approximately same

even if any individual's record in the database is arbitrarily changed. Thus, the presence or

absence of any individual's record has a statistically negligible effect on the outputs.

Formally, differential privacy is defined as follows.

Definition 1: (ε-differential privacy). A private algorithm satisfies ε-differential privacy

iff for any databases D and D′ which differ by at most one record, and for any subset of

outputs S ⊆ Range(),

where the probability is taken over the randomness of .

A fundamental concept for guaranteeing differential privacy is the sensitivity. It is used to

measure the maximum change in the outputs of a function when any individual's record in

the database is changed.

Xu et al. Page 5

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 2: (Sensitivity). Given any function f: D → ℝn, for any database D1, D2 which

differ by at most one record, the sensitivity of function f is:

Dwork et al. [13] propose the Laplace mechanism to achieve differential privacy. For a

function whose outputs are real, they prove that differential privacy can be achieved by

adding noise drawn randomly from Laplace distribution. The Laplace distribution with

magnitude λ, i.e., Lap(λ), follows probability density function ,

where is determined by the desired privacy budget ε and the sensitivity Δf of the

function.

Theorem 1: For any function f : D → ℝn with sensitivity Δf, the algorithm

satisfies ε-differential privacy, where Lapi(λ) is drawn i.i.d from a Laplace distribution with

scale Δf/ε.

For a function whose outputs are integer, Ghosh et al. [24] propose the Geometric

mechanism. The magnitude of the added noise conforms to a two-sided geometric

distribution G(α) with the probability mass function ,

where α > 0.

Theorem 2: Let f : D → ℝn be a function which outputs integer values, and its sensitivity is

Δf. The algorithm

guarantees ε-differential privacy, where Gi(λ) i.i.d samples from a geometric distribution

G(ε/Δf).

To support multiple differentially private computations, the composability [13] theorems

guarantee the overall privacy.

Theorem 3: (Sequential Composition [13]) Let 1, …, k be k algorithms, each provides

εi-differential privacy. A sequence of algorithms i(D) over database D provides (Σεi)-

differential privacy.

Xu et al. Page 6

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Theorem 4: (Parallel Composition [13]) Let 1, …, k be k algorithms, each provides εi-

differential privacy. A sequence of algorithms i(Di) over disjoint databases Di provides

max(εi)-differential privacy.

B. Frequent Sequence Mining

Suppose the alphabet is I = {i1, …, i|I|}. A sequence S is an ordered list of items. We use S =

s1s2…s|S| to denote a sequence of length |S|. A sequence S is called a k-sequence if it

contains k items. Sequence S = s1s2…s|S| is contained in another sequence T = t1t2…t|T| if

there exist integers w1 < w2 < … < w|S| such that s1 = Tw1, s2 = Tw2, …, s|S| = Tw|S|. If S is

contained in T, we say that S is a subsequence of T and T is a supersequence of S, denoted S

⊆ T. For example, if S = acd and T = abcdeg, then S ⊆ T.

A sequence database D is a multiset of input sequences, where each input sequence

represents an individual's record. The support (frequency) of sequence S is the number

(percentage) of input sequences containing S. Our measure of support corresponds to the

concept of document frequency in text mining. The minimum support threshold is a number

of input sequences, while the relative threshold is a percentage of input sequences. Given the

user-specified minimum support (relative) threshold, a sequence is called frequent if its

support (frequency) is no less than this threshold. In the rest of this paper, we use

“threshold” as shorthand for “minimum support threshold”. The FSM problem considered in

the paper is as follows: Given a sequence database and a threshold, find the set of all

frequent sequences in the sequence database and also compute the support of each frequent

sequence.

IV. A Straightforward Approach

In this section, we present a straightforward approach to find frequent sequences under

differential privacy. The main idea is to add noise to the support of all possible frequent

sequences and determine which sequences are frequent based on their noisy supports. In

particular, we find frequent sequences in order of increasing length. During the mining

process, the downward closure property [5] is utilized. The downward closure property

states that a sequence is frequent iff all of its subsequences are frequent. Thus, for mining

frequent k-sequences, we only need to compute the noisy support of the k-sequences whose

(k-1)-subsequences are all frequent. We call such k-sequences candidate k-sequences. For

the candidate k-sequences whose noisy supports exceed the user-specified threshold, we

output them as frequent k-sequences.

Privacy Analysis

Let Qk denote the support computations of the candidate k-sequences. The magnitude of

noise added to the support of candidate k-sequences depends on the allocated privacy budget

and the sensitivity of Qk. Suppose the maximal length of frequent sequences is Lf. We

uniformly assign Qk a privacy budget ε/Lf. Moreover, since adding (removing) an input

sequence can, in the worst case, affect the support of all candidate sequences by one, the

sensitivity of Qk (i.e., Δk) is the number of candidate k-sequences. Thus, adding geometric

Xu et al. Page 7

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

noise in Qk satisfies -differential privacy. The process of mining frequent

sequences can be considered as a series of computations Q = 〈Q1, …, QLf〉. Based on the

sequential composition property [13], this approach as a whole maintains ε-differential

privacy.

Limitations

The approach discussed above, however, produces poor results. The root cause of the poor

performance is the large number of candidate sequences. It results in the sensitivity of the

support computations being prohibitively high. For example, if there are 103 candidate 2-

sequences, the sensitivity of computing the support of candidate 2-sequences is Δ = 103. It

indicates, even if the privacy level is low (e.g. ε = 5), the support of candidate 2-sequences

has to be perturbed by very large amounts of noise, which drastically reduces the utility of

the results.

V. Sampling-based Candidate Pruning

As discussed in Sec. IV, the amount of noise required by differential privacy in FSM is

proportionate to the number of candidate sequences. In practice, we found the number of

real frequent sequences is much smaller than the number of candidate sequences which are

generated based on the downward closure property. For example, in database MSNBC,

given the relative threshold θ = 0.02, the number of frequent 2-sequences is 32 while the

number of generated candidate 2-sequences is 225. As another example, in database BIBLE,

given the relative threshold θ = 0.15, the number of frequent 2-sequences is 21 while the

number of generated candidate 2-sequences is 254. Thus, if we could further prune the

candidate sequences generated based on the downward closure property, the amount of noise

required by differential privacy can be significantly reduced, which considerably improves

the utility of the results.

In FSM, for most sequences, it is sufficient to estimate if they are frequent based on a small

part of the database. This is because, the frequency of a sequence can be considered as the

probability of an input sequence containing it, such that the frequency of a sequence in a

small part of the database is approximately equal to its frequency in the original database.

Therefore, by utilizing a small part of the database, we can further prune the candidate

sequences generated based on the downward closure property.

To this end, we propose a sampling-based candidate sequences pruning approach. Given the

candidate k-sequences and a small sample database randomly drawn from the original

database, we use the local support of candidate sequences in the sample database to estimate

which candidate k-sequences are potentially frequent. Due to the privacy requirement, we

have to add noise to the local support of candidate sequences. To estimate which candidate

sequences are potentially frequent accurately, we propose a sequence shrinking method to

effectively reduce the amount of added noise. The sequence shrinking method consists of

three novel schemes, which can enforce the length constraint on sequences while preserving

frequency information as much as possible (See Sec. V-A). Moreover, to decrease the

probability of misestimating frequent sequences as infrequent, we propose a threshold

Xu et al. Page 8

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

relaxation method. We theoretically quantify the relationship between the decrement of the

threshold and the probability of misestimating frequent sequences as infrequent. By using

the threshold relaxation method, we relax the user-specified threshold for the sample

database to estimate which candidate sequences are potentially frequent (See Sec. V-B).

Algorithm 1 Sampling-based Candidate Pruning

Input:

Candidate k-Sequences Ck; Sample Database dbk; Privacy Budget ε4;

Threshold θ; Maximal Length Constraint lmax;

Output:

Potentially Frequent k-Sequences PF;

1:

 ← Transform sample database dbk; \\ see Sec. V-A

2: θ′ ←- Relax threshold θ; \\ see Sec. V-B

3:

PF ← discover_potentially_frequent_sequences (Ck, , ε4, θ′);

4: return PF;

Algorithm 1 shows the steps of our sampling-based candidate pruning approach.

Specifically, given a sample database, we first transform the sample database to enforce the

length constraint (line 1). For the sequences whose lengths violate the length constraint, we

shrink them by using our sequence shrinking method. Then, we relax the threshold for the

sample database to estimate which candidate sequences are potentially frequent (line 2). For

each candidate sequence, if its noisy support on the transformed database exceeds the new

threshold, we regard it as a potentially frequent sequence (line 3).

A. Sequence Shrinking

In the sample database, we use the local support of sequences to estimate which sequences

are potentially frequent. Due to the privacy requirement, we have to add noise to the local

support of each sequence to guarantee differential privacy. To make the estimation more

accurate, the added noise should be as little as possible.

In differentially private frequent itemset mining, enforcing the length constraint on

transactions has been proposed as an effective way for reducing the amount of added noise.

By limiting the length of transactions, even if a transaction is arbitrarily changed, the

number of affected itemsets is restricted, and thus the sensitivity of computing the support of

itemsets can be reduced. However, existing method for limiting the length of transactions [8]

is designed for itemsets. It cannot be applied to limit the length of sequences.

To this end, we introduce our sequence shrinking method. For the estimation of frequent k-

sequences, the candidate k-sequences contained in each sequence S can be considered as the

frequency information in S. Ideally, when we shrink S, we want to get a new sequence which

meets the length constraint and preserves as much frequency information as possible. To get

some insight into potential approaches, consider the following example.

Xu et al. Page 9

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 5.1: For a sequence A = abcbbce and candidate 2-sequences ab, be, bb and ae, we

can see sequences A1 = abbbe and A2 = abbe contain the same candidate sequences as A.

Obviously, A2 appears to be preferable to A and A1 as it contains fewer items.

Based on the observation of above example, we propose two schemes that are useful in

shrinking sequences: irrelevant item deletion and consecutive patterns compression. These

two schemes can effectively shorten the sequences without causing any frequency

information loss.

Irrelevant Item Deletion—Given a sequence, it is clear that the items not contained in

any candidate sequence do not contribute to the frequencies of the candidate sequences. We

call such items irrelevant items. Deleting irrelevant items from sequences does not incur

frequency information loss. For instance, in Example 5.1, item c is irrelevant. We can see

that A = abcbbce contains the same candidate sequences as A1 = abbbe, which is obtained by

removing item c from A. The following lemma asserts that we can simply delete all

irrelevant items at once to obtain a new sequence.

Lemma 1: (Irrelevant Item Deletion) Let S = s1…s|S| and I be the set of items which are not

contained in any candidate k-sequence. Sequence S−I is obtained by deleting the items in I

from S. Then,

where Containk(T) is the set of candidate k-sequences in T.

Based on the downward closure property, if an item is irrelevant for candidate k-sequences,

it will be also irrelevant for candidate sequences of length larger than k. Thus, irrelevant

item deletion is very effective in shrinking sequences when we estimate the support of long

candidate sequences.

Consecutive Patterns Compression—A sequence might contain a certain pattern

which appears consecutively. The pattern ab, for example, appears consecutively in

sequence ababab. Lemma 2 ensures that, for the estimation of potentially frequent k-

sequences, we can compress consecutive j patterns into consecutive k patterns without

causing any frequency information loss (j > k).

Lemma 2: (Consecutive Patterns Compression) Let pk denote pattern p appearing

consecutively k times, and T1|T2|T3 denote a sequence which is the concatenation of

sequences T1, T2 and T3. Let Containk(T) be the set of candidate k-sequences contained in

sequence T. Then, for sequences T1|pj|T2 and T1|pk|T2, where j > k, we have:

Xu et al. Page 10

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Clearly, the k items in a candidate k-sequence come from at most k patterns. Thus, for

consecutive j patterns (j>k), we can safely compress them into consecutive k patterns.

Continuing from Example 5.1, sequence A1=abbbe contains the same candidate 2-sequences

as A2=abbe, which is generated by using two consecutive patterns b to replace bbb.

In consecutive patterns compression, when estimating potentially short frequent sequences,

we can use a small number of patterns to replace the original consecutive patterns. Thus,

consecutive patterns compression is particularly effective in shrinking sequences when we

estimate short frequent sequences. Besides, since it is computationally expensive to discover

consecutive patterns of all possible lengths, we only compress the consecutive patterns

where each pattern contains no more than 3 items. In our experiments, we found such setting

has already lead to a good compression for the sequences.

Sequence Reconstruction—The irrelevant item deletion and consecutive patterns

compression can effectively shrink sequences without incurring any frequency information

loss. However, after applying these two schemes, some sequences might still violate the

length constraint. We have to delete some items from the sequences until they meet the

constraint. Clearly, if we randomly delete items, much frequency information in the

sequences will be lost, which leads to inaccurate estimations of potentially frequent

sequences.

Intuitively, when shrinking a sequence, we want to preserve as many candidate sequences as

possible. Formally, suppose the maximal length constraint is lmax. Given the candidate k-

sequences and a sequence S (|S| > lmax), we aim to construct a new sequence Ŝ(|Ŝ| = lmax),

such that the number of common candidate k-sequences contained in both S and Ŝ is

maximized. A naive approach is to enumerate all possible sequences whose length is lmax

and find the sequence which contains the maximum number of common candidate

sequences with S. However, this approach suffers from exponential time complexity. If there

are |I| items, for example, we have to enumerate |I|lmax sequences, which is computationally

infeasible in practice.

To this end, we put forward our sequence reconstruction scheme. Given an input sequence,

to efficiently find its contained candidate sequences, we propose a candidate sequence tree,

called CS-tree. It groups candidate sequences with identical prefix into the same branch. The

height of the CS-tree is equal to the length of candidate sequences. Each node in the CS-tree

is labeled by an item and associated with a sequence of items from the root to it. Figure 1

illustrates the CS-tree of the candidate 3-sequence set {abc, bcd, bda, bdb}.

For a CS-tree constructed based on candidate k-sequences, the nodes at level k are associated

with candidate k-sequences. We call the nodes at level k c-nodes, In addition, every node at

level k-1 is associated with a (k-1)-sequence which can generate a candidate k-sequence by

appending an item to its end. We call the nodes at level k-1 g-nodes, and call their associated

sequences generating sequences.

The details of our sequence reconstruction scheme are shown in Algorithm 2, which has a

time complexity of O(lmax · k · |Ck|2). Given a sequence S and the CS-tree CT constructed

Xu et al. Page 11

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

based on candidate k-sequences Ck, we first find the candidate k-sequences C̃
k contained in S

and then use Ck̃ to build a new CS-tree denoted by subCT (line 1). Tree subCT is a subtree

of CT. In the following, we show how to construct a new sequence Ŝ by using tree subCT.

The main idea is to iteratively append items which can introduce the maximum number of

candidate sequences in C̃
k into Ŝ until Ŝ reaches the length constraint.

In particular, we first append a candidate sequence in C̃
k to Ŝ. We show how to select such

candidate sequence as follows. For each candidate sequence cs in C̃
k, the set of (k-1)-

subsequences of cs might contain several generating sequences of other candidate sequences

in C̃
k. These generating sequences correspond to a set of g-nodes in subCT. For each child

node of these g-nodes, its associated candidate sequence can be introduced into cs by

appending its labeled item to cs. The more child nodes these g-nodes have, the more

candidate k-sequences can utilize the (k-1)-subsequences of cs as their prefixes. Thus, for

each candidate sequence in C̃
k, we find the g-nodes whose associated generating sequences

are (k-1)-subsequences of this candidate sequence, and use the number of the child nodes of

these g-nodes as its score (line 4). We refer to such score as c-score. We select the candidate

sequence with highest c-score and append it to Ŝ (line 6). If multiple candidate sequences

have the same c-score, the one containing more different items will be appended. This is

because such sequence can produce more different subsequences, and thus has chances to

generate more candidate sequences. Moreover, to differentiate the candidate sequences not

contained in Ŝ, we remove the c-node corresponding to the appended candidate sequence

from subCT (line 7).

Algorithm 2 Sequence Reconstruction

Input:

Sequence S; CS-tree CT constructed based on candidate k-sequences Ck;

Maximal Length Constraint lmax;

Output:

Sequence Ŝ;

1: subCT ← build_CSTree (CT, S);

2: for each candidate sequence cs in S do

3: cs.GN ← find_GNodes (cs, subCT);

4: cs.score ← sum_childNodes (cs.GN);

5: end for

6: s ← Select a candidate sequence;

7: insert (Ŝ, s); update_tree(subCT, s);

8: while |Ŝ| < lmax do

9: GN ← find_GNodes (Ŝ, subCT);

10: if GN.childNodeNum() ≠ 0 then

11: for each g-node gn in GN do

12: Item_GNode_Map ← map_item_g-node (gn);

13: end for

14: item i ← find_item (Item_GNode_Map);

15: insert (Ŝ, i); update_Tree (subCT, i, Item_GNode_Map);

Xu et al. Page 12

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

16: else

17: for each c-node cn in subCT do

18: cs ← cn's associated sequence;

19: cs.GN ← find_GNodes (cs, subCT);

20: cs.score ← sum_childNodes (cs.GN);

21: end for

22: s ← Select a candidate sequence;

23: insert (Ŝ, s); update_Tree(subCT, s);

24: end if

25: end while

26: return Ŝ;

Next, we use subCT to find the generating sequences which are (k-1)-subsequences of Ŝ. Let

GN denote the set of g-nodes corresponding to these generating sequences (line 9).

Depending on whether the g-nodes in GN have child nodes, we append items to Ŝ in the

following manners.

On the one hand, if the g-nodes in GN have child nodes, we will append an item to Ŝ. For

each child node of the g-nodes in GN, its associated candidate sequence can be introduced

into Ŝ by appending its labeled item. If multiple child nodes are labeled by the same item, by

appending this item, their associated candidate sequences can be introduced into Ŝ
simultaneously. Therefore, to introduce the maximum number of candidate sequences into Ŝ,

we append the item, which appears in the most child nodes, to Ŝ (line 14). After that, we also

remove the child nodes labeled by this item from subCT (line 15).

On the other hand, if the g-nodes in GN do not have any child node, no candidate sequence

can be introduced into Ŝ by appending only one item. Instead, we will select and append a

candidate k-sequence which is in C̃
k but not contained in Ŝ. Recall that, when a candidate

sequence is introduced into Ŝ, its corresponding c-node is removed from subCT. Hence, the

candidate sequences not contained in Ŝ are the associated sequences of the c-nodes

remaining in subCT. For each candidate sequence in C̃
k but not contained in Ŝ, we compute

its c-score (line 20). We select the candidate sequence with highest c-score and append this

candidate sequence to Ŝ (line 22). If multiple candidate sequences have the same c-score, we

append the candidate sequence containing more different items. After that, we remove the c-

node corresponding to the appended candidate sequence from subCT (line 23).

Sequence Shrinking Method: To summarize, given the candidate k-sequences and a

sequence S whose length exceeds the length constraint, we shrink S by the following steps.

We first delete the irrelevant items from S. Then, we iteratively compress consecutive

patterns in S in order of increasing pattern length. The irrelevant items deletion and

consecutive patterns compression schemes do not cause the decrease of the support of

candidate k-sequences. At last, if the length of S still violates the length constraint, we use

the sequence reconstruction scheme to construct a new sequence, which might cause some

frequency information loss.

Xu et al. Page 13

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B. Threshold Relaxation

In the sample database, the noisy local supports of candidate sequences are used to estimate

which candidate sequences are potentially frequent. However, the sample database is drawn

randomly from the original database, which might cause many frequent sequences to

become infrequent in the sample database. Moreover, the local supports of sequences are

also affected by the noise added to guarantee differential privacy and the information loss

caused by limiting the length of sequences. Therefore, if we simply use the user-specified

threshold to estimate which candidate sequences are potentially frequent, it might lead to

many misestimations.

Due to the downward closure property, if a frequent sequence is misestimated as infrequent,

its supersequences are all regarded as infrequent sequences without even computing their

supports. It drastically reduces the utility of the results. Thus, the threshold should be

relaxed to avoid this problem. However, it is hard to quantify how much the threshold

should be decreased. In particular, if the threshold is decreased too little, many frequent

sequences might still be misestimated as infrequent; if the threshold is decreased too much,

only a few candidate sequences can be pruned.

To this end, we theoretically quantify the relationship between the decrement of the

threshold and the probability of misestimating frequent sequences as infrequent. To quantify

such relationship, we start from the following problem: given a candidate k-sequence t, what

is the relationship between its noisy support in the sample database db and its actual

support in the original database D?

Let supt, be the actual support of t in D, db respectively. Suppose D contains |D| input

sequences. If we randomly choose an input sequence from D, the probability of this input

sequence containing t can be regarded as ft = supt/|D|. Since the sequences in db are drawn

randomly and independently from D, we can approximately think the probability of each

sequence in db containing t is essentially constant and equal to ft. Then, follows a

binomial distribution:

It is known that, if the number of trials is large, the binomial distribution is approximately

equal to the normal distribution. We assume the number of sequences in db is large enough,

and can be approximated by a normal distribution:

Due to the privacy requirement, in the sample database, we add noise to the local support of

candidate sequences to avoid privacy breach. As discussed in Sec. V-A, we enforce the

length constraint on the sample database to reduce such noise. It might lead to a decrease in

Xu et al. Page 14

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the support of some candidate sequences. In our experiments, however, we found our

irrelevant item deletion and consecutive patterns compression schemes can effectively

shorten the length of sequences, and only a few sequences need to be transformed by our

sequence reconstruction scheme. It means our sequence shrinking method does not

introduce many errors. Thus, in the analysis of the relationship between t's actual support in

D and t's noisy support in db, we assume our sequence shrinking method does not incur

frequency information loss.

In our PFS2 algorithm, we employ the Laplace mechanism to perturb the support of

sequences. Suppose the sensitivity of computing the local support of candidate k-sequences

in db is Δ and the privacy budget assigned to this computation is ε. Then, the noise added to

the local support of each candidate k-sequence in db is chosen independently at random

from a Laplace distribution with scaling parameter ω = Δ/ε. Let ξ denote the amount of noise

added to . Then, ξ follows a Laplace distribution:

The noisy support of t in db, n-supt, can be regarded as the linear combination . Since

the support of a candidate sequence is irrelevant to the amount of added noise, and ξ are

two random variables distributed independently of each other. In [25], it proves that, if X

and Y are independent random variables having Normal(μ, σ2) and Laplace(λ, φ)

distributions respectively, the cumulative distribution function (i.e., cdf) of Z = X + Y can be

expressed as:

where erfc is the complementary error function:

Therefore, given the actual support of t in D, by setting its corresponding parameters μ, σ, λ

and φ, we can obtain the cdf of t's noisy support in db.

After deriving the relationship between the noisy support of a sequence in the sample

database and its actual support in the original database, we compare the probabilities of

estimating candidate sequences with different supports as infrequent.

Theorem 5: Let t1 and t2 be two candidate k-sequences. Suppose, in the original database D,

t1's actual support sup1 is smaller than t2's actual support sup2. Then, in the sample database

Xu et al. Page 15

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

db, the probability of estimating t1 as infrequent is larger than the probability of estimating

t2 as infrequent.

Proof: Since sup1 is smaller than sup2, t1's frequency f1 = sup1/|D| is smaller than t2's

frequency f2 = sup2/|D|. Let n-sup1 and n-sup2 denote the noisy support of t1 and t2 in the

sample database db, respectively. By setting parameters μ1, σ1, λ1 and φ1 based on f1, we

can get the cdf F1 of n-sup1. Similarly, by setting parameters μ2, σ2, λ2 and φ2 based on f2,

we can get the cdf F2 of n-sup2.

To compare probabilities of estimating t1 as infrequent and estimating t2 as infrequent, we

utilize the characters of the distribution curve of the sum of independent normal and Laplace

random variables. As shown in [25], for independent random normal variable X∼N(μ, σ2)

and Laplace variable Y∼Laplace(λ, φ), the curve of the probability density function of Z=X

+Y is a characteristic symmetric shape that has equal sized tails and quickly falls off towards

zero. The distribution curve is very similar to the normal distribution. In particular, the

location of the curve is mainly determined by μ/σ and λ/φ. When μ/σ or λ/φ increases, the

curve is shifted right. In addition, the spread of the curve is primarily controlled by φ/σ.

When φ/σ increases, the curve becomes narrower.

In the sample database db, for sequences t1 and t2, the amount of noise added to their

supports is chosen independently from the same Laplace distribution. Thus, we have φ1 = φ2

and λ1 = λ2. Moreover, since μ1 = f1|db|, and μ2 = f2|db|,

, we have:

As λ1/φ1 = λ2/φ2 and μ1/σ1 < μ2/σ2, the distribution curve of n-sup2 is shifted right

compared with that of n-sup1.

For , its value is increasing in the f interval of [0, 0.5] while decreasing in

the f interval of [0.5, 1]. Thus, we cannot determine whether φ1/σ1 is larger or smaller than

φ2/σ2, or theoretically analyze if the distribution curve of n-sup2 is narrower or wider

compared with that of n-sup1. In our experiments, however, we found, when the support of a

sequence in the original database increases, the distribution curve is shifted right

significantly while the spread of the distribution curve does not obviously change. Thus, we

approximately think the spreads of the distribution curves of n-sup1 and n-sup2 are the same.

Suppose the threshold used in the sample database is θ′. Since sup2 is larger than sup1, the

distribution curve of n-sup2 is shifted right compared with that of n-sup1. Thus, F2(θ′)

should be smaller than F1(θ′). It indicates, the probability of estimating t2 as infrequent is

smaller than the probability of estimating t1 as infrequent.

Based on the above analysis, we can derive the relationship between the decrement of the

threshold in the sample database and the probability of misestimating frequent sequences as

Xu et al. Page 16

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

infrequent. Let tθ be a k-sequence whose actual support in the original database is equal to

the user-specified threshold θ. We first compute the cdf Ftθ of the noisy support of tθ in the

sample database db. Suppose, after relaxation, the threshold used in db is θ′. Then, the

probability of estimating tθ as infrequent (i.e., the probability of tθ's noisy support in db

smaller than θ′) is Ftθ(θ′). Since the actual support of any frequent k-sequence is not smaller

than θ, based on the analysis above, we can see the probability of misestimating a frequent

k-sequence as infrequent is not larger than Ftθ(θ′).

Threshold Relaxation Method—Given the sample database dbk and the candidate k-

sequences Ck, we first assume there is a k-sequence tk whose actual support in the original

database is the user-specified threshold. Then, we compute the cdf Ftk of the noisy support

of tk in dbk. We set Ftk(θ′) = ζ and compute the corresponding θ′. In the sample database dbk,

we use θ′ to estimate which candidate sequences are potentially frequent. We refer to ζ as

relaxation parameter. In our experiments, we find, when ζ is set to be 0.3, it typically

obtains good results (see Sec. VII-E).

VI. PFS2 Algorithm

A. PFS2 Algorithm Description

Our PFS2 algorithm is shown in Algorithm 3. It consists of two phases. In particular, in the

pre-mining phase, we extract some statistical information from the database. Then, in the

mining phase, we privately find frequent sequences in order of increasing length. The

sampling-based candidate pruning technique (i.e., sequence shrinking and threshold

relaxation methods) is used in this phase. Besides, we divide the total privacy budget ε into

five portions ε1, …, ε5. Specifically, ε1, ε2 and ε3 are used in the pre-mining phase, ε4 is

used in the sample databases to prune candidate sequences and ε5 is used for the support

computations in the original database. In the rest of this subsection, we present the details of

our algorithm.

Algorithm 3 PFS2 Algorithm

Input:

Original database D; Threshold θ; Maximal length constraint upper bound l1;

Percentage η; Privacy budgets ε1, …, ε5.

Output:

Frequent Sequences FS;

1: /**** Pre-Mining Phase ****/

2: |D| ← get the noisy number of total input sequences using ε1;

3: for l2 = 1; p < η; l2 ++ do

4: αl2 = get the noisy number of input sequences with length l2 using ε2;

5:

 ;

6: end for

7: lmax ← min{l1, l2};

8: β ← get noisy maximal support of sequences of length from 1 to lmax using ε3;

Xu et al. Page 17

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

9: Lf ← estimate_max_frequent_sequence_length (θ, β);

10: /**** Mining Phase ****/

11: FS ← ø;

12: dbSet ← randomly_partition_database (D, Lf);

13: ε′ ← ε5/Lf;

14: for k from 1 to Lf do

15: if k == 1 then

16: Candidate Set Ck ← all items in the alphabet;

17: else

18: Candidate Set Ck ← generate_candidates (FSk—1);

19: end if

20:

 ← Sampling_based_Candidate_Pruning(Ck, dbk, ε4, θ, lmax); /**** See Algorithm 1 ****/

21:

 FSk ← discover_frequent_sequences (, D, ε′, θ);

22: FS += FSk;

23: end for

24: return FS;

Pre-Mining Phase—In the pre-mining phase, we first compute the maximal length

constraint lmax in the sample databases. Like [8], [4], we determine lmax in a heuristic way

by setting lmax=min{l1, l2}. In particular, the parameter l1 represents an upper bound on the

length of input sequences. It determines a maximum value of the error introduced by the

noise in support computations. Instead, the parameter l2 is computed from the database. Let |

D| be the number of total input sequences and αi be the number of input sequences with

length i. Starting from l2=1, we incrementally compute the percentage

until p is at least η (line 3-6). Due to the privacy requirement, we add geometric noise G(ε1)

to |D| and add noise G(ε2) to each αi (1 ≤ i ≤ l2).

To better utilize the privacy budget, we also estimate the maximal length of frequent

sequences Lf. Since we enforce the length constraint lmax on the sample databases, Lf should

not be larger than lmax. To estimate Lf, we first compute β = {β1, …, βlmax}, where βi is the

maximal support of i-sequences. Then we add noise G(ε2/ ⎾loglmax⏋) to each βi (line 8). We

set Lf to be the integer y such that βy is the smallest value exceeding threshold θ (line 9).

Mining Phase—In the mining phase, we first randomly partition the original database D

into Lf disjoint databases dbSet, each of which contains approximately |D|/Lf sequences (line

12). We use these generated disjoint databases as the sample databases to prune candidate

sequences.

In the following, we privately find frequent sequences in order of increasing length. In

particular, for mining frequent k-sequences, we first generate the candidate k-sequences Ck.

If k=1, the candidate sequences are all items. If k>1, the candidate sequences are generated

based on the frequent (k-1)-sequences by using the downward closure property. Then, given

the k-th sample database dbk, we utilize algorithm Sampling-based_Candidate_Pruning (i.e.,

Xu et al. Page 18

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1) to prune unpromising candidate k-sequences (See Sec. V). After that, we

compute the noisy support of remaining candidate k-sequences on the original database

D. Notice that, we do not limit the length of input sequences in the original database. For

each candidate k-sequence in we add Laplace noise to its support in D,

where ε′=ε5/Lf. The candidate k-sequences whose noisy supports on D exceed threshold θ

are output as frequent k-sequences. This process continues until all frequent sequences of

lengths from 1 to Lf are found.

B. Privacy Analysis of PFS2 Algorithm

In this subsection, we give the privacy analysis of our PFS2 algorithm. Since the key step in

our algorithm is pruning the candidate sequences based on the sample databases, we first

prove our pruning technique satisfies ε4-differential privacy.

Theorem 6: The sampling-based candidate pruning technique (i.e., Algorithm 1) guarantees

ε4-differential privacy.

Proof: Given the candidate k-sequences Ck and the k-th generated sample database dbk, we

use the noisy local support of Ck in dbk to estimate which candidate k-sequences are

potentially frequent. To reduce the amount of added noise, we use our sequence shrinking

method to enforce the length constraint lmax on dbk. Since a sequence of length lmax can

contain at most different k-sequences, adding (removing) a sequence in the

transformed sample database can increase (decrease) the support of at most

 candidate k-sequences by 1. It means the sensitivity of computing the

support of Ck in is . Thus, adding Laplace noise Lap(Δk/ε4) to

the local support of Ck satisfies ε4-differential privacy in .

In our sequence shrinking method, to shrink a sequence, our three schemes do not use any

other sequences but only relying on Ck and lmax (see Sec. V-A). As shown in Theorem 7,

lmax is differentially private. Ck also does not breach the privacy because it is generated

based on frequent (k-1)-sequences, and frequent (k-1)-sequences are determined by the noisy

supports. Thus, our sequence shrinking method is a local transformation (see Def. 7 in [8]).

Based on Theorem 7 in [8] and Theorem 5 in [4], as long as the transformation is local,

applying an ε4-differentially private algorithm on also guarantees ε4-differential privacy

for dbk.

For our threshold relaxation method, only using the number of sequences in the sample

database has privacy implications (see Sec. V-B). We approximately think each sample

database contains |D|/Lf sequences, where |D| is the number of total input sequences and Lf is

the number of sample databases (i.e., the maximal length of frequent sequences). As shown

in Theorem 7, |D| and Lf are differentially private. Thus, our threshold relaxation method

does not breach the privacy. In summary, our sampling-based candidate pruning technique

(i.e., Algorithm 1) satisfies ε4-differential privacy.

Xu et al. Page 19

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the following, we prove that the PFS2 algorithm overall guarantees ε-differential privacy.

Theorem 7: The PFS2 algorithm (i.e., Algorithm 3) satisfies ε-differential privacy.

Proof: In the pre-mining phase of our algorithm, for the computation of |D| (i.e., the number

of total input sequences), as adding (removing) an input sequence only affects |D| by 1, the

sensitivity of this computation is 1. Thus, adding geometric noise G(ε1) in computing |D|

satisfies ε1-differential privacy. Similarly, the sensitivity of computing αi (i.e., the number

of i-sequences) is 1. We add noise G(ε2) in computing αi, which satisfies ε2-differential

privacy. In the pre-mining phase, we compute α1, …, αl2, such that is

larger than the input parameter η. Since a single input sequence can affect only one element

among α1, …, αl2 (i.e., the sets of input sequences with different lengths are disjoint), based

on the parallel composition property [13], the privacy budgets used in computing α1, …, αl2
do not need to accumulate. In addition, for the maximal length constraint lmax, as it is

estimated based on |D| and α1, …, αl2, we can safely use lmax. Besides, in the pre-mining

phase, we also compute β = {β1, …, βlmax}, where βi is the maximal support of i-sequences.

Since the elements in β are non-increasing, as shown in [8], adding noise G(ε3/⎾loglmax⏋) in

computing β is ε3-differentially private. For the maximal length of frequent sequences Lf,

since it is estimated based on β, we can safely use Lf.

In the mining phase, we first randomly partition the original database into Lf disjoint sample

databases. Then, given the candidate k-sequences, we use the k-th sample database to prune

them. Theorem 6 proves our pruning technique is ε4-differentially private. After pruning, we

compute the noisy support of remaining candidate k-sequences in the original database

D. Notice that, we do not limit the length of input sequences in the original database. Since

adding (removing) one sequence without length constraint can at most affect the support of

all by 1, the sensitivity of computing the support of in D is . In addition, we

uniformly divide ε5 into Lf portions and allocate ε′ = ε5/Lf to the support computations of

in D. Thus, adding Laplace noisy to the support of in D satisfies ε′-

differential privacy.

Since all sample databases are disjoint, due to the parallel composition property [13], the

privacy budget used in sample databases can be summed separately. In summary, based on

the sequential composition property [13], we can conclude that our PFS2 algorithm satisfies

(ε1 + ε2 + ε3 + ε4 + Lf × ε′) = ε-differential privacy.

VII. Experiments

A. Experiment Setup

As the PFS2 algorithm is the first algorithm that supports general FSM under differential

privacy, we compare the PFS2 algorithm with two differentially private sequence database

publishing algorithms. The first is the algorithm proposed in [10] which utilizes variable

length n-grams (referred to as n-gram). The second is the algorithm proposed in [9] which

utilizes a prefix tree structure (referred to as Prefix). For algorithms n-gram and Prefix, to

Xu et al. Page 20

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

privately find frequent sequences, we first run them on the original sequence databases to

generate anonymized databases, and then run the non-private FSM algorithm GSP [26] over

the anonymized databases.

We implement all algorithms in JAVA. The code of n-gram is provided by its authors and

Prefix is implemented as described in [9]. We conduct all experiments on a PC with Intel

Core2 Duo E8400 CPU (3.0GHz) and 4GB RAM. Because the algorithms involve

randomization, we run each algorithm ten times and report its average results. In the

experiments, we use the relative threshold. Since n-gram and Prefix generate new sequence

datasets, the number of sequences in the original dataset might be different from the number

of sequences in the new datasets. For n-gram and Prefix, we use the relative threshold with

respect to the original dataset.

In PFS2, we allocate the privacy budget ε as follows: ε1 = 0.025ε, ε2 = 0.025ε, ε3 = 0.05ε, ε4

= 0.45ε and ε5 = 0.45ε. Like [8], [4], the parameter η used in the pre-mining phase of PFS2

is set to be 0.85. We set the privacy budget ε to be 1.0 and the relaxation parameter ζ to be

0.3. We also show the experiment results under varying ε in Sec. VII-C and illustrate the

experiment results under varying ζ in Sec. VII-E.

Datasets—In the experiments, we use three publicly available real sequence datasets.

Since the original data in dataset House_Power appears as time-series, like [4], we discretize

these values and successively construct a sequence from every 50 samples. A summary of

the characteristics of these three datasets is shown in Table I.

Utility Measures—To evaluate the performance of the three algorithms, we follow the

widely used standard metrics: F-score [8], [4] and Relative Error (RE) [12]. In particular,

we employ the F-score to measure the utility of generated frequent sequences. Moreover, we

employ the RE to measure the error with respect to the actual supports of sequences.

B. Frequent Sequence Mining

We first compare the performance of algorithms PFS2, n-gram and Prefix with different

values of threshold on three datasets. We do not show the performance of Prefix in BIBLE

as Prefix does not scale to handle datasets with large number of items. In BIBLE, it contains

13905 items. It is hard for Prefix to construct a prefix tree for BIBLE. For PFS2, the

statistical information (i.e., the maximal length constraint lmax enforced on the sample

databases and the estimated maximal length of frequent sequences Lf under different values

of threshold θ) is shown in Tab. II.

From Fig. 2, we can see PFS2 substantially outperforms n-gram and Prefix. In particular, n-

gram and Prefix also limit the length of input sequences. However, they directly delete items

exceeding the limit. which loses much information. In contrast, we utilize sample databases

to prune candidate sequences. We enforce the length constraint on the sample databases by

using our sequence shrinking method, which can effectively preserve the frequency

information and significantly improve the utility of the results. Another interesting

phenomenon is Prefix obtains good performance in MSNBC while not producing reasonable

results in House_Power. One reason for that phenomenon is Prefix uses the prefixes of input

Xu et al. Page 21

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sequences, usually less than 20 items, to construct a prefix tree. If the average length of

input sequences is long (e.g., in House_Power), the prefix tree cannot preserve enough

frequency information, which inevitably leads to poor performance.

From Fig. 2, we can also see PFS2 obtains good performance in term of RE (usually less

than 5%). The reasons are explained as follows. For metric RE, it focuses on the supports of

released sequences. In PFS2, thanks to the sampling-based candidate pruning technique, the

number of candidate sequences computed in the original database is significantly reduced. It

means the amount of noise added to the support of each released frequent sequence is small.

Moreover, we do not enforce the length constraint on the original database, and thus the

support of released frequent sequences is not affected by the transformation of the database.

Hence, PFS2 is able to achieve a surprisingly good performance in term of RE.

We also show the precision and recall on House_Power in Fig. 2(g)-2(h). We observe the

precision of PFS2 is very good but the recall decreases a little. This is mainly because, in the

sample databases, although our irrelevant item deletion and consecutive patterns

compression schemes can effectively shorten sequences, some long sequences still need to

be transformed by the sequence reconstruction scheme. It leads to frequency information

loss. As a result, some frequent sequences are not identified from the sample databases and

the recall is decreased. In Fig. 5, we show the precision, recall and F-score of PFS2 for

frequent sequences with different lengths on House_Power. We set the relative threshold to

be 0.36. We can see PFS2 achieves good performance in term of precision, but recall drops

for frequent sequences of length 7 and 8. This is mainly due to the small number of frequent

sequences of length 7 and 8. Even though only a few frequent sequences are missed, the

recall will be significantly decreased.

C. Effect of Privacy Budget

Fig. 3 shows the performance of PFS2, n-gram and Prefix under varying privacy budget on

MSNBC (for relative threshold θ=0.015) and on House_Power (for relative threshold

θ=0.34). Obviously, PFS2 constantly achieves better performance at the same level of

privacy. We observe all algorithms behave in a similar way: the quality of the results is

improved as ε increases. This is because, as ε increases, a lower degree of privacy is

guaranteed and a lower magnitude of noise is added. We also observe the quality of the

results is more stable on MSNBC. This can be explained by the high supports of sequences

in MSNBC, which are more resistant to the noise.

D. Effect of Sequence Shrinking and Threshold Relaxation

Fig. 4 shows how the sequence shrinking and threshold relaxation methods affect the

performance of PFS2 on datasets BIBLE and House Power. Let RR denote the algorithm

which randomly deletes items to enforce the length constraint on the sample datasets and

does not relax the user-specified threshold. Let SR denote the algorithm which uses our

sequence shrinking method to limit the length of sequences in the sample datasets but does

not relax the user-specified threshold.

Xu et al. Page 22

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Form Fig. 4, we can see, without using sequence shrinking and threshold relaxation

methods, RR does not produce reasonable results. We also observe both the sequence

shrinking and threshold relaxation methods are very effective at improving the performance

of PFS2 in term of F-score. For metric RE, all these algorithms achieve good performance,

although it slightly decreases after we use the two methods. This is because, by using these

two methods, we identify more real frequent sequences from the sample datasets. The

increase of remaining candidate sequences slightly raises the amount of noise added to the

support of released frequent sequences.

E. Effect of Relaxation Parameter

In Fig. 6, we show the performance of PFS2 by varying the relaxation parameter ζ (used in

our threshold relaxation method). We set relative threshold θ=0.05 on MSNBC, θ=0.1 on

BIBLE, and θ=0.3 on House_Power. We can see, when ζ is set to be 0.3, PFS2 typically

obtains good results.

F. Benefit of Sampling-based Candidate Pruning

In this subsection, we study the benefit of our sampling-based candidate pruning technique.

We compare PFS2 to a differentially private FSM algorithm via enforcing the length

constraint on the original database. Let PL denote this algorithm. In particular, given the

candidate k-sequences, PL utilizes our sequence shrinking method to transform the original

dataset and determines which sequences are frequent based on their noisy supports on the

transformed dataset.

From Fig. 7, we can see PFS2 achieves better performance. This is because, compared with

PL, PFS2 uses sample datasets to prune candidate sequences, which effectively reduces the

sensitivity of computing the support of candidate sequences. In contrast, PL limits the length

of sequences in the original database to reduce such sensitivity. However, it introduces a

new source of error by discarding items from sequences. Due to the privacy requirement, it

is hard to precisely compensate such information loss. Thus, PL introduces more errors.

To better understand the benefit of the sampling-based candidate pruning technique, we

apply it to frequent itemset mining by extending the algorithm proposed in [8] (which is

referred to as TT). Specifically, for mining frequent k-itemsets, given a sample dataset, we

use TT's smart truncating method to transform it and use our threshold relaxation method to

relax the user-specified threshold. Then, we utilize the transformed sample dataset to prune

candidate k-itemsets generated based on the downward closure property. For the remaining

candidate k-itemsets, we compute their noisy supports on the original dataset. The candidate

k-itemsets whose noisy supports in the original database exceed the user-specified threshold

are output as frequent. We use two transaction datasets in this experiment: POS and Pumsb-

star. Their characteristics are illustrated in Tab. III. We show the experiment results in Fig.

8. It is not surprising that the performance of TT is significantly improved by utilizing our

sampling-based candidate pruning technique.

Xu et al. Page 23

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

VIII. Conclusion

In this paper, we investigate the problem of designing a differentially private FSM

algorithm. We observe the amount of required noise in differentially private FSM is

proportionate to the number of candidate sequences. We introduce a sampling-based

candidate pruning technique as an effective means of reducing the number of candidate

sequences, which can significantly improve the utility and privacy tradeoff. By leveraging

the sampling-based candidate pruning technique, we design our differentially private FSM

algorithm PFS2. In particular, given the candidate sequences, we use their noisy local

supports in a sample database to estimate which sequences are potentially frequent. To

improve the accuracy of such private estimations, we propose a sequence shrinking method

which can enforce the length constraint on the sample database while effectively preserving

the frequency information. Moreover, we propose a threshold relaxation method, which

relaxes the user-specified threshold for the sample database to estimate which candidate

sequences are potentially frequent. Formal privacy analysis and the results of extensive

experiments on real datasets show that our PFS2 algorithm can achieve a high degree of

privacy and high data utility.

Acknowledgments

We thank the reviewers for their valuable comments which significantly improved the final version of this paper.
The work was supported in part by the following funding agencies of China: National Natural Science Foundation
under grant 61170274, National Key Basic Research Program (973 Program) under grant 2011CB302506,
Fundamental Research Funds for the Central Universities under grant 2014RC1103. This work is also supported in
part by the National Science Foundation under Grant No. 1117763.

References

1. Dwork C. Differential privacy. ICALP. 2006

2. Sweeney L. k-anonymity: A model for protecting privacy. Int J Uncertain Fuzziness Knowl -Base
Syst. 2002

3. Machanavajjhala A, Gehrke J, Kifer D, Venkitasubramaniam M. l-diversity: Privacy beyond k-
anonymity. ICDE. 2006

4. Bonomi L, Xiong L. A two-phase algorithm for mining sequential patterns with differential privacy.
CIKM. 2013

5. Agrawal R, Srikant R. Fast algorithms for mining association rules. VLDB. 1994

6. Toivonen H. Sampling large databases for association rules. VLDB. 1996

7. Zaki MJ, Parthasarathy S, Li W, Ogihara M. Evaluation of sampling for data mining of association
rules. Proc of the 7th Intl Workshop on Research Issues in Data Engineering. 1997

8. Zeng C, Naughton JF, Cai JY. On differentially private frequent itemset mining. VLDB. 2012

9. Chen R, Fung BCM, Desai BC. Differentially private transit data publication: A case study on the
montreal transportation system. KDD. 2012

10. Chen R, Acs G, Castelluccia C. Differentially private sequential data publication via variable-
length n-grams. CCS. 2012

11. Bhaskar R, Laxman S, Smith A, Thakurta A. Discovering frequent patterns in sensitive data. KDD.
2010

12. Li N, Qardaji W, Su D, Cao J. Privbasis: frequent itemset mining with differential privacy. VLDB.
2012

13. Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis.
TCC. 2006

14. McSherry F, Talwar K. Mechanism design via differential privacy. FOCS. 2007

Xu et al. Page 24

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

15. Chen R, Mohammed N, Fung BCM, Desai BC, Xiong L. Publishing set-valued data via differential
privacy. VLDB. 2011

16. Zhang X, Meng X, Chen R. Differentially private set-valued data release against incremental
updates. DASFAA. 2013

17. Shen E, Yu T. Mining frequent graph patterns with differential privacy. KDD. 2013

18. Fan LXL. An adaptive approach to real-time aggregate monitoring with differential privacy.
TKDE. 2013

19. Cao J, Xiao Q, Ghinita G, Li N, Bertino E, Tan K. Efficient and accurate strategies for
differentially-private sliding window queries. EDBT. 2013

20. Kellaris G, Papadopoulos S, Xiao X, Papadias D. Differentially private event sequences over
infinite streams. VLDB. 2014

21. Zhang J, Zhang Z, Xiao X, Yang Y, Winslett M. Functional mechanism: Regression analysis under
differential privacy. VLDB. 2012

22. Zhang J, Xiao X, Yang Y, Zhang Z, Winslett M. Privgene: differentially private model fitting
using genetic algorithms. SIGMOD. 2013

23. Zhang J, Cormode G, Procopiuc C, Srivastava D, Xiao X. Privbayes: private data release via
bayesian networks. SIGMOD. 2014

24. Ghosh A, Roughgarden T, Sundararajan M. Universally utility-maximizing privacy mechanisms.
SIAM Journal on Computing. 2012

25. Dłaz-Francs E, Montoya J. Correction to “on the linear combination of normal and laplace random
variables”, by nadarajah, s., computational statistics, 2006, 21, 63c71. Computational Statistics.
2008

26. Srikant R, Agrawal R. Mining sequential patterns: Generalizations and performance
improvements. EDBT. 1996

Xu et al. Page 25

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1. A Simple Candidate Sequence Tree

Xu et al. Page 26

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2. Frequent Sequence Mining

Xu et al. Page 27

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3. Effect of Privacy Budget

Xu et al. Page 28

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4. Effect of Sequence Shrinking and Threshold Relaxation Methods

Xu et al. Page 29

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5. Frequent Sequences in House_Power

Xu et al. Page 30

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6. Effect of Relaxation Parameter

Xu et al. Page 31

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7. Effect of Sampling on Frequent Sequence Mining

Xu et al. Page 32

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8. Effect of Sampling on Frequent Itemset Mining

Xu et al. Page 33

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 34

Table I
Sequence Dataset Characteristics

Dataset #Sequences #Items Max.length Avg.length

MSNBC 989818 17 14795 4.75

BIBLE 36369 13905 100 21.64

House Power 40986 21 50 50

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 35

T
ab

le
 II

St
at

is
ti

c
In

fo
rm

at
io

n
in

 P
F

S2

D
at

as
et

l m
ax

L
f/θ

L
f/θ

L
f/θ

L
f/θ

L
f/θ

M
SN

B
C

8
8/

0.
00

5
8/

0.
01

8/
0.

01
5

8/
0.

02
7/

0.
02

5

B
IB

L
E

32
5/

0.
1

5/
0.

12
4/

0.
14

4/
0.

16
4/

0.
18

H
ou

se
_P

ow
er

30
10

/0
.3

9/
0.

32
9/

0.
34

8/
0.

36
7/

0.
38

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 36

Table III
Transaction Dataset Characteristics

Dataset #Transactions #Items Max.length Avg.length

POS 515597 1657 164 6.5

Pumsb-star 49046 2088 63 50.5

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

