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Abstract

In this paper, we study the problem of mining frequent sequences under the rigorous differential 

privacy model. We explore the possibility of designing a differentially private frequent sequence 

mining (FSM) algorithm which can achieve both high data utility and a high degree of privacy. 

We found, in differentially private FSM, the amount of required noise is proportionate to the 

number of candidate sequences. If we could effectively reduce the number of unpromising 

candidate sequences, the utility and privacy tradeoff can be significantly improved. To this end, by 

leveraging a sampling-based candidate pruning technique, we propose a novel differentially 

private FSM algorithm, which is referred to as PFS2. The core of our algorithm is to utilize sample 

databases to further prune the candidate sequences generated based on the downward closure 

property. In particular, we use the noisy local support of candidate sequences in the sample 

databases to estimate which sequences are potentially frequent. To improve the accuracy of such 

private estimations, a sequence shrinking method is proposed to enforce the length constraint on 

the sample databases. Moreover, to decrease the probability of misestimating frequent sequences 

as infrequent, a threshold relaxation method is proposed to relax the user-specified threshold for 

the sample databases. Through formal privacy analysis, we show that our PFS2 algorithm is ε-

differentially private. Extensive experiments on real datasets illustrate that our PFS2 algorithm can 

privately find frequent sequences with high accuracy.

I. Introduction

Frequent sequence mining (FSM) is a fundamental component in a number of important data 

mining tasks with broad applications, ranging from Web usage analysis to location-based 

recommendation system. Despite valuable insights the discovery of frequent sequences 

could potentially provide, if the data is sensitive (e.g., DNA sequences, mobility traces and 

web browsing histories), releasing frequent sequences might pose considerable threats to 

individual's privacy.
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Differential privacy [1] has been proposed as a way to address such problem. Unlike the 

anonymization-based privacy models (e.g., k-anonymity [2] and l-diversity [3]), differential 

privacy provides strongly theoretical guarantees on the privacy of released data without 

making assumptions about the adversary's prior knowledge. By adding a carefully chosen 

amount of noise, differential privacy assures that the output of a computation is insensitive 

to the change in any individual's record. Thus, it restricts privacy leaks through the results.

In this paper, we focus on the design of differentially private FSM algorithms. Given a 

collection of input sequences, FSM is to find all sequences that occur in the input sequences 

more frequently than a given threshold. Although differentially private algorithms exist for 

mining special cases of frequent sequences (e.g., frequent consecutive item sequences [4]), 

we are not aware of any existing study that can support general FSM under differential 

privacy.

To make FSM satisfy differential privacy, a straightforward approach is to leverage the 

downward closure property [5] to generate the candidate sequences (i.e., all possible 

frequent sequences), and add perturbation noise to the support of each candidate sequence. 

However, this approach suffers poor performance. The root cause is the large number of 

generated candidate sequences, which leads to a large amount of perturbation noise. We 

observe, in practice, the number of real frequent sequences is much smaller than the number 

of candidate sequences generated based on the downward closure property. In addition, in 

frequent pattern mining, the frequency of a pattern can be considered as the probability of a 

record containing this pattern. For most patterns, their frequencies in a small part of the 

database are approximately equal to their frequencies in the original database. Thus, it is 

sufficient to estimate which patterns are potentially frequent based on a small part of the 

database [6], [7]. These observations motivate us to design a differentially private FSM 

algorithm which utilizes a small part of the database to further prune candidate sequences 

generated based on the downward closure property, such that the amount of noise required 

by differential privacy is significantly reduced and the utility of the results can be 

considerably improved.

To this end, we propose a novel differentially private FSM algorithm, called PFS2 (i.e., 

differentially Private Frequent Sequence mining via Sampling-based Candidate Pruning). In 

PFS2, we privately discover frequent sequences in order of increasing length. In particular, 

we first generate multiple disjoint sample databases. Then, to discover frequent k-sequences 

(i.e., the frequent sequences containing k items), we utilize frequent (k-1)-sequences to 

generate candidate k-sequences based on the downward closure property. Next, the k-th 

sample database is utilized to further prune the candidate k-sequences. Finally, we compute 

the noisy support of remaining candidate k-sequences in the original database and output the 

candidate k-sequences whose noisy supports exceed the user-specified threshold as frequent 

k-sequences.

The core of our PFS2 algorithm is to effectively prune the candidate sequences. The local 

supports of candidate sequences in the sample database are used to estimate which 

sequences are potentially frequent. Due to the privacy requirement, we have to add noise to 

the local support of each candidate sequence to avoid privacy breach. To estimate which 
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sequences are potentially frequent accurately, it is necessary to reduce the amount of added 

noise. In differentially private frequent itemset mining, enforcing the length constraint on 

itemsets has been proven as an effective method for reducing the amount of added noise [8]. 

However, due to the inherent sequentiality of sequential data, this method cannot be used in 

differentially private FSM. In addition, the sequences in the sample database are randomly 

drawn from the original database. It causes many frequent sequences to become infrequent 

in the sample database. If we simply use the user-specified threshold to estimate which 

sequences are potentially frequent, many frequent sequences will be misestimated as 

infrequent. Thus, how to accurately estimate which candidate sequences are potentially 

frequent while satisfying differential privacy is a challenging task. To address these 

challenges, we propose two effective methods, namely, sequence shrinking and threshold 

relaxation.

For the sequence shrinking method, it consists of three schemes: irrelevant item deletion, 

consecutive patterns compression and sequence reconstruction. In particular, the irrelevant 

item deletion and consecutive patterns compression schemes can effectively shorten 

sequences without losing frequency information. After shortened by these two schemes, if 

some sequences still violate the length constraint, we use the sequence reconstruction 

scheme to construct new sequences which can satisfy the length constraint and preserve 

frequency information as much as possible. By using the sequence shrinking method in the 

sample database, we can effectively reduce the amount of noise added to the support of 

sequences.

In the threshold relaxation method, we theoretically quantify the relationship between the 

decrement of the threshold and the probability of misestimating frequent sequences as 

infrequent. Based on the theoretical results, we relax the threshold for the sample database to 

estimate which candidate sequences are potentially frequent. In doing so, the probability of 

misestimating frequent sequences as infrequent is effectively decreased.

Through formal privacy analysis, we prove our PFS2 algorithm guarantees ε-differential 

privacy. Extensive experimental results on real datasets show that our PFS2 algorithm 

achieves high data utility. Besides, to demonstrate the generality of the sampling-based 

candidate pruning technique, we also extend this technique to frequent itemset mining. 

Preliminary experimental results show the performance of existing algorithm [8] is 

significantly improved by adopting this technique. To summarize, our key contributions are:

1. We introduce the sampling-based candidate pruning technique as an effective 

means of achieving high data utility in the context of differentially private FSM. 

This technique is not only suitable for mining frequent sequences under differential 

privacy, but also can be extended to design other differentially private frequent 

pattern mining algorithms.

2. We develop a novel differentially private FSM algorithm PFS2 by leveraging our 

sampling-based candidate pruning technique. To privately estimate which 

candidate sequences are potentially frequent accurately, we propose two methods, 

namely sequence shrinking and threshold relaxation.
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3. Through formal privacy analysis, we prove our proposed PFS2 algorithm satisfies 

ε-differential privacy. We conduct an extensive experimental study over real 

datasets. The experimental results demonstrate that our PFS2 algorithm can 

privately find frequent sequences with high accuracy.

II. Related Work

Differentially Private Frequent Pattern Mining

We coarsely categorize previous differentially private frequent pattern mining studies into 

three groups according to the type of pattern being mined.

Sequence—Xiong et al. [4] propose a two-phase differentially private algorithm for 

mining frequent consecutive item sequences. They first utilize a prefix tree to find candidate 

sequences, and then leverage a database transformation technique to refine the support of 

candidate sequences. Compared with this work, we focus on a more general case of FSM, 

which aims to find all combinations of items that frequently appear in input sequences but 

not necessarily consecutively.

Several studies have been proposed to address the issue of publishing sequence databases 

under differential privacy [9], [10]. In particular, Chen et al. [9] propose a differentially 

private sequence database publishing algorithm based on a prefix tree. In [10], the authors 

employ a variable-length n-gram model to extract the necessary information of the sequence 

databases, and utilize an exploration tree to reduce the amount of added noise. These two 

studies differ from ours in the following aspects. First, they focus on the publication of 

sequence databases, while our work aims at the release of frequent sequences. Moreover, 

these two studies utilize the tree structure to group input sequences (grams) to mitigate the 

impact of added noise. In contrast, we leverage the tree structure to group candidate 

sequences, so that we can efficiently find the candidate sequences contained in a sequence.

Itemset—Several algorithms have been proposed to tackle the problem of differentially 

private frequent itemset mining (FIM) [11], [12], [8]. In particular, Bhaskar et al. [11] 

propose two differentially private FIM algorithms, which adapt the Laplace mechanism [13] 

and the exponential mechanism [14] respectively. To meet the challenge of high 

dimensionality of transaction database, Li et al. [12] introduce the PrivBasis algorithm 

which projects the input high dimensional database onto lower dimensions. In [8], Zeng et 

al. improve the utility-privacy tradeoff by limiting the length of transactions. They propose a 

differentially private FIM algorithm which truncates transactions in the original database to 

improve the quality of the results. Different from [8], to improve the utility-privacy tradeoff, 

we prune candidate sequences by leveraging the sampling-based candidate pruning 

technique. Moreover, we shrink sequences in the sample databases, such that we can prune 

the unpromising candidate sequences more accurately. For the above differentially private 

FIM algorithms, they are shown to be effective in some scenarios. However, differences 

between the itemset and the sequence make these algorithms not applicable for differentially 

private FSM.
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Two studies [15], [16] have been proposed to tackle the problem of publishing transaction 

databases under differential privacy. Chen et al. [15] propose a probabilistic top-down 

partitioning algorithm which employs context free taxonomy trees. Zhang et al. [16] present 

an algorithm which uses an item-free taxonomy tree and an update bounded mechanism to 

privately publish databases on an incremental scenario.

Graph—Shen et al. [17] address the problem of frequent graph mining under differential 

privacy. They integrate the process of frequent graph mining and the privacy protection into 

a Markov Chain Monte Carlo framework.

Other Studies

There is a series of studies on publishing aggregate statistics about data streams under 

differential privacy. In particular, Fan et al. [18] propose a framework to release real-time 

aggregate statistics by using adaptive sampling and filtering. Cao et al. [19] present two 

solutions to answer a set of sliding window count queries. Very recently, Kellaris et al. [20] 

propose ω-event privacy to protect the event sequences occurring within any window of ω 

timestamps.

Differential privacy has also been investigated in the context of machine learning. Zhang et 

al. [21] present a functional mechanism to enforce differential privacy in regression analysis. 

In [22], the authors propose a differentially private model fitting solution based on genetic 

algorithms. Very recently, Zhang et al. [23] utilize Bayesian networks to effectively publish 

high-dimensional data.

III. Preliminaries

A. Differential Privacy

Differential privacy [1] has become a de-facto standard privacy notion in private data 

analysis. Differential privacy requires the outputs of algorithms to be approximately same 

even if any individual's record in the database is arbitrarily changed. Thus, the presence or 

absence of any individual's record has a statistically negligible effect on the outputs. 

Formally, differential privacy is defined as follows.

Definition 1: (ε-differential privacy). A private algorithm  satisfies ε-differential privacy 

iff for any databases D and D′ which differ by at most one record, and for any subset of 

outputs S ⊆ Range( ),

where the probability is taken over the randomness of .

A fundamental concept for guaranteeing differential privacy is the sensitivity. It is used to 

measure the maximum change in the outputs of a function when any individual's record in 

the database is changed.
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Definition 2: (Sensitivity). Given any function f: D → ℝn, for any database D1, D2 which 

differ by at most one record, the sensitivity of function f is:

Dwork et al. [13] propose the Laplace mechanism to achieve differential privacy. For a 

function whose outputs are real, they prove that differential privacy can be achieved by 

adding noise drawn randomly from Laplace distribution. The Laplace distribution with 

magnitude λ, i.e., Lap(λ), follows probability density function , 

where  is determined by the desired privacy budget ε and the sensitivity Δf of the 

function.

Theorem 1: For any function f : D → ℝn with sensitivity Δf, the algorithm

satisfies ε-differential privacy, where Lapi(λ) is drawn i.i.d from a Laplace distribution with 

scale Δf/ε.

For a function whose outputs are integer, Ghosh et al. [24] propose the Geometric 

mechanism. The magnitude of the added noise conforms to a two-sided geometric 

distribution G(α) with the probability mass function , 

where α > 0.

Theorem 2: Let f : D → ℝn be a function which outputs integer values, and its sensitivity is 

Δf. The algorithm

guarantees ε-differential privacy, where Gi(λ) i.i.d samples from a geometric distribution 

G(ε/Δf).

To support multiple differentially private computations, the composability [13] theorems 

guarantee the overall privacy.

Theorem 3: (Sequential Composition [13]) Let 1, …, k be k algorithms, each provides 

εi-differential privacy. A sequence of algorithms i(D) over database D provides (Σεi)-

differential privacy.
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Theorem 4: (Parallel Composition [13]) Let 1, …, k be k algorithms, each provides εi-

differential privacy. A sequence of algorithms i(Di) over disjoint databases Di provides 

max(εi)-differential privacy.

B. Frequent Sequence Mining

Suppose the alphabet is I = {i1, …, i|I|}. A sequence S is an ordered list of items. We use S = 

s1s2…s|S| to denote a sequence of length |S|. A sequence S is called a k-sequence if it 

contains k items. Sequence S = s1s2…s|S| is contained in another sequence T = t1t2…t|T| if 

there exist integers w1 < w2 < … < w|S| such that s1 = Tw1, s2 = Tw2, …, s|S| = Tw|S|. If S is 

contained in T, we say that S is a subsequence of T and T is a supersequence of S, denoted S 

⊆ T. For example, if S = acd and T = abcdeg, then S ⊆ T.

A sequence database D is a multiset of input sequences, where each input sequence 

represents an individual's record. The support (frequency) of sequence S is the number 

(percentage) of input sequences containing S. Our measure of support corresponds to the 

concept of document frequency in text mining. The minimum support threshold is a number 

of input sequences, while the relative threshold is a percentage of input sequences. Given the 

user-specified minimum support (relative) threshold, a sequence is called frequent if its 

support (frequency) is no less than this threshold. In the rest of this paper, we use 

“threshold” as shorthand for “minimum support threshold”. The FSM problem considered in 

the paper is as follows: Given a sequence database and a threshold, find the set of all 

frequent sequences in the sequence database and also compute the support of each frequent 

sequence.

IV. A Straightforward Approach

In this section, we present a straightforward approach to find frequent sequences under 

differential privacy. The main idea is to add noise to the support of all possible frequent 

sequences and determine which sequences are frequent based on their noisy supports. In 

particular, we find frequent sequences in order of increasing length. During the mining 

process, the downward closure property [5] is utilized. The downward closure property 

states that a sequence is frequent iff all of its subsequences are frequent. Thus, for mining 

frequent k-sequences, we only need to compute the noisy support of the k-sequences whose 

(k-1)-subsequences are all frequent. We call such k-sequences candidate k-sequences. For 

the candidate k-sequences whose noisy supports exceed the user-specified threshold, we 

output them as frequent k-sequences.

Privacy Analysis

Let Qk denote the support computations of the candidate k-sequences. The magnitude of 

noise added to the support of candidate k-sequences depends on the allocated privacy budget 

and the sensitivity of Qk. Suppose the maximal length of frequent sequences is Lf. We 

uniformly assign Qk a privacy budget ε/Lf. Moreover, since adding (removing) an input 

sequence can, in the worst case, affect the support of all candidate sequences by one, the 

sensitivity of Qk (i.e., Δk) is the number of candidate k-sequences. Thus, adding geometric 
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noise  in Qk satisfies -differential privacy. The process of mining frequent 

sequences can be considered as a series of computations Q = 〈Q1, …, QLf〉. Based on the 

sequential composition property [13], this approach as a whole maintains ε-differential 

privacy.

Limitations

The approach discussed above, however, produces poor results. The root cause of the poor 

performance is the large number of candidate sequences. It results in the sensitivity of the 

support computations being prohibitively high. For example, if there are 103 candidate 2-

sequences, the sensitivity of computing the support of candidate 2-sequences is Δ = 103. It 

indicates, even if the privacy level is low (e.g. ε = 5), the support of candidate 2-sequences 

has to be perturbed by very large amounts of noise, which drastically reduces the utility of 

the results.

V. Sampling-based Candidate Pruning

As discussed in Sec. IV, the amount of noise required by differential privacy in FSM is 

proportionate to the number of candidate sequences. In practice, we found the number of 

real frequent sequences is much smaller than the number of candidate sequences which are 

generated based on the downward closure property. For example, in database MSNBC, 

given the relative threshold θ = 0.02, the number of frequent 2-sequences is 32 while the 

number of generated candidate 2-sequences is 225. As another example, in database BIBLE, 

given the relative threshold θ = 0.15, the number of frequent 2-sequences is 21 while the 

number of generated candidate 2-sequences is 254. Thus, if we could further prune the 

candidate sequences generated based on the downward closure property, the amount of noise 

required by differential privacy can be significantly reduced, which considerably improves 

the utility of the results.

In FSM, for most sequences, it is sufficient to estimate if they are frequent based on a small 

part of the database. This is because, the frequency of a sequence can be considered as the 

probability of an input sequence containing it, such that the frequency of a sequence in a 

small part of the database is approximately equal to its frequency in the original database. 

Therefore, by utilizing a small part of the database, we can further prune the candidate 

sequences generated based on the downward closure property.

To this end, we propose a sampling-based candidate sequences pruning approach. Given the 

candidate k-sequences and a small sample database randomly drawn from the original 

database, we use the local support of candidate sequences in the sample database to estimate 

which candidate k-sequences are potentially frequent. Due to the privacy requirement, we 

have to add noise to the local support of candidate sequences. To estimate which candidate 

sequences are potentially frequent accurately, we propose a sequence shrinking method to 

effectively reduce the amount of added noise. The sequence shrinking method consists of 

three novel schemes, which can enforce the length constraint on sequences while preserving 

frequency information as much as possible (See Sec. V-A). Moreover, to decrease the 

probability of misestimating frequent sequences as infrequent, we propose a threshold 
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relaxation method. We theoretically quantify the relationship between the decrement of the 

threshold and the probability of misestimating frequent sequences as infrequent. By using 

the threshold relaxation method, we relax the user-specified threshold for the sample 

database to estimate which candidate sequences are potentially frequent (See Sec. V-B).

Algorithm 1 Sampling-based Candidate Pruning

Input:

Candidate k-Sequences Ck; Sample Database dbk; Privacy Budget ε4;

Threshold θ; Maximal Length Constraint lmax;

Output:

Potentially Frequent k-Sequences PF;

1:

 ← Transform sample database dbk; \\ see Sec. V-A

2: θ′ ←- Relax threshold θ; \\ see Sec. V-B

3:

PF ← discover_potentially_frequent_sequences (Ck, , ε4, θ′);

4: return PF;

Algorithm 1 shows the steps of our sampling-based candidate pruning approach. 

Specifically, given a sample database, we first transform the sample database to enforce the 

length constraint (line 1). For the sequences whose lengths violate the length constraint, we 

shrink them by using our sequence shrinking method. Then, we relax the threshold for the 

sample database to estimate which candidate sequences are potentially frequent (line 2). For 

each candidate sequence, if its noisy support on the transformed database exceeds the new 

threshold, we regard it as a potentially frequent sequence (line 3).

A. Sequence Shrinking

In the sample database, we use the local support of sequences to estimate which sequences 

are potentially frequent. Due to the privacy requirement, we have to add noise to the local 

support of each sequence to guarantee differential privacy. To make the estimation more 

accurate, the added noise should be as little as possible.

In differentially private frequent itemset mining, enforcing the length constraint on 

transactions has been proposed as an effective way for reducing the amount of added noise. 

By limiting the length of transactions, even if a transaction is arbitrarily changed, the 

number of affected itemsets is restricted, and thus the sensitivity of computing the support of 

itemsets can be reduced. However, existing method for limiting the length of transactions [8] 

is designed for itemsets. It cannot be applied to limit the length of sequences.

To this end, we introduce our sequence shrinking method. For the estimation of frequent k-

sequences, the candidate k-sequences contained in each sequence S can be considered as the 

frequency information in S. Ideally, when we shrink S, we want to get a new sequence which 

meets the length constraint and preserves as much frequency information as possible. To get 

some insight into potential approaches, consider the following example.
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Example 5.1: For a sequence A = abcbbce and candidate 2-sequences ab, be, bb and ae, we 

can see sequences A1 = abbbe and A2 = abbe contain the same candidate sequences as A. 

Obviously, A2 appears to be preferable to A and A1 as it contains fewer items.

Based on the observation of above example, we propose two schemes that are useful in 

shrinking sequences: irrelevant item deletion and consecutive patterns compression. These 

two schemes can effectively shorten the sequences without causing any frequency 

information loss.

Irrelevant Item Deletion—Given a sequence, it is clear that the items not contained in 

any candidate sequence do not contribute to the frequencies of the candidate sequences. We 

call such items irrelevant items. Deleting irrelevant items from sequences does not incur 

frequency information loss. For instance, in Example 5.1, item c is irrelevant. We can see 

that A = abcbbce contains the same candidate sequences as A1 = abbbe, which is obtained by 

removing item c from A. The following lemma asserts that we can simply delete all 

irrelevant items at once to obtain a new sequence.

Lemma 1: (Irrelevant Item Deletion) Let S = s1…s|S| and I be the set of items which are not 

contained in any candidate k-sequence. Sequence S−I is obtained by deleting the items in I 

from S. Then,

where Containk(T) is the set of candidate k-sequences in T.

Based on the downward closure property, if an item is irrelevant for candidate k-sequences, 

it will be also irrelevant for candidate sequences of length larger than k. Thus, irrelevant 

item deletion is very effective in shrinking sequences when we estimate the support of long 

candidate sequences.

Consecutive Patterns Compression—A sequence might contain a certain pattern 

which appears consecutively. The pattern ab, for example, appears consecutively in 

sequence ababab. Lemma 2 ensures that, for the estimation of potentially frequent k-

sequences, we can compress consecutive j patterns into consecutive k patterns without 

causing any frequency information loss (j > k).

Lemma 2: (Consecutive Patterns Compression) Let pk denote pattern p appearing 

consecutively k times, and T1|T2|T3 denote a sequence which is the concatenation of 

sequences T1, T2 and T3. Let Containk(T) be the set of candidate k-sequences contained in 

sequence T. Then, for sequences T1|pj|T2 and T1|pk|T2, where j > k, we have:
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Clearly, the k items in a candidate k-sequence come from at most k patterns. Thus, for 

consecutive j patterns (j>k), we can safely compress them into consecutive k patterns. 

Continuing from Example 5.1, sequence A1=abbbe contains the same candidate 2-sequences 

as A2=abbe, which is generated by using two consecutive patterns b to replace bbb.

In consecutive patterns compression, when estimating potentially short frequent sequences, 

we can use a small number of patterns to replace the original consecutive patterns. Thus, 

consecutive patterns compression is particularly effective in shrinking sequences when we 

estimate short frequent sequences. Besides, since it is computationally expensive to discover 

consecutive patterns of all possible lengths, we only compress the consecutive patterns 

where each pattern contains no more than 3 items. In our experiments, we found such setting 

has already lead to a good compression for the sequences.

Sequence Reconstruction—The irrelevant item deletion and consecutive patterns 

compression can effectively shrink sequences without incurring any frequency information 

loss. However, after applying these two schemes, some sequences might still violate the 

length constraint. We have to delete some items from the sequences until they meet the 

constraint. Clearly, if we randomly delete items, much frequency information in the 

sequences will be lost, which leads to inaccurate estimations of potentially frequent 

sequences.

Intuitively, when shrinking a sequence, we want to preserve as many candidate sequences as 

possible. Formally, suppose the maximal length constraint is lmax. Given the candidate k-

sequences and a sequence S (|S| > lmax), we aim to construct a new sequence Ŝ(|Ŝ| = lmax), 

such that the number of common candidate k-sequences contained in both S and Ŝ is 

maximized. A naive approach is to enumerate all possible sequences whose length is lmax 

and find the sequence which contains the maximum number of common candidate 

sequences with S. However, this approach suffers from exponential time complexity. If there 

are |I| items, for example, we have to enumerate |I|lmax sequences, which is computationally 

infeasible in practice.

To this end, we put forward our sequence reconstruction scheme. Given an input sequence, 

to efficiently find its contained candidate sequences, we propose a candidate sequence tree, 

called CS-tree. It groups candidate sequences with identical prefix into the same branch. The 

height of the CS-tree is equal to the length of candidate sequences. Each node in the CS-tree 

is labeled by an item and associated with a sequence of items from the root to it. Figure 1 

illustrates the CS-tree of the candidate 3-sequence set {abc, bcd, bda, bdb}.

For a CS-tree constructed based on candidate k-sequences, the nodes at level k are associated 

with candidate k-sequences. We call the nodes at level k c-nodes, In addition, every node at 

level k-1 is associated with a (k-1)-sequence which can generate a candidate k-sequence by 

appending an item to its end. We call the nodes at level k-1 g-nodes, and call their associated 

sequences generating sequences.

The details of our sequence reconstruction scheme are shown in Algorithm 2, which has a 

time complexity of O(lmax · k · |Ck|2). Given a sequence S and the CS-tree CT constructed 
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based on candidate k-sequences Ck, we first find the candidate k-sequences C̃
k contained in S 

and then use Ck̃ to build a new CS-tree denoted by subCT (line 1). Tree subCT is a subtree 

of CT. In the following, we show how to construct a new sequence Ŝ by using tree subCT. 

The main idea is to iteratively append items which can introduce the maximum number of 

candidate sequences in C̃
k into Ŝ until Ŝ reaches the length constraint.

In particular, we first append a candidate sequence in C̃
k to Ŝ. We show how to select such 

candidate sequence as follows. For each candidate sequence cs in C̃
k, the set of (k-1)-

subsequences of cs might contain several generating sequences of other candidate sequences 

in C̃
k. These generating sequences correspond to a set of g-nodes in subCT. For each child 

node of these g-nodes, its associated candidate sequence can be introduced into cs by 

appending its labeled item to cs. The more child nodes these g-nodes have, the more 

candidate k-sequences can utilize the (k-1)-subsequences of cs as their prefixes. Thus, for 

each candidate sequence in C̃
k, we find the g-nodes whose associated generating sequences 

are (k-1)-subsequences of this candidate sequence, and use the number of the child nodes of 

these g-nodes as its score (line 4). We refer to such score as c-score. We select the candidate 

sequence with highest c-score and append it to Ŝ (line 6). If multiple candidate sequences 

have the same c-score, the one containing more different items will be appended. This is 

because such sequence can produce more different subsequences, and thus has chances to 

generate more candidate sequences. Moreover, to differentiate the candidate sequences not 

contained in Ŝ, we remove the c-node corresponding to the appended candidate sequence 

from subCT (line 7).

Algorithm 2 Sequence Reconstruction

Input:

Sequence S; CS-tree CT constructed based on candidate k-sequences Ck;

Maximal Length Constraint lmax;

Output:

Sequence Ŝ;

1: subCT ← build_CSTree (CT, S);

2: for each candidate sequence cs in S do

3:  cs.GN ← find_GNodes (cs, subCT);

4:  cs.score ← sum_childNodes (cs.GN);

5: end for

6: s ← Select a candidate sequence;

7: insert (Ŝ, s); update_tree(subCT, s);

8: while |Ŝ| < lmax do

9:  GN ← find_GNodes (Ŝ, subCT);

10:  if GN.childNodeNum() ≠ 0 then

11:   for each g-node gn in GN do

12:    Item_GNode_Map ← map_item_g-node (gn);

13:   end for

14:   item i ← find_item (Item_GNode_Map);

15:   insert (Ŝ, i); update_Tree (subCT, i, Item_GNode_Map);
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16:  else

17:   for each c-node cn in subCT do

18:    cs ← cn's associated sequence;

19:    cs.GN ← find_GNodes (cs, subCT);

20:    cs.score ← sum_childNodes (cs.GN);

21:   end for

22:   s ← Select a candidate sequence;

23:   insert (Ŝ, s); update_Tree(subCT, s);

24:  end if

25: end while

26: return Ŝ;

Next, we use subCT to find the generating sequences which are (k-1)-subsequences of Ŝ. Let 

GN denote the set of g-nodes corresponding to these generating sequences (line 9). 

Depending on whether the g-nodes in GN have child nodes, we append items to Ŝ in the 

following manners.

On the one hand, if the g-nodes in GN have child nodes, we will append an item to Ŝ. For 

each child node of the g-nodes in GN, its associated candidate sequence can be introduced 

into Ŝ by appending its labeled item. If multiple child nodes are labeled by the same item, by 

appending this item, their associated candidate sequences can be introduced into Ŝ 
simultaneously. Therefore, to introduce the maximum number of candidate sequences into Ŝ, 

we append the item, which appears in the most child nodes, to Ŝ (line 14). After that, we also 

remove the child nodes labeled by this item from subCT (line 15).

On the other hand, if the g-nodes in GN do not have any child node, no candidate sequence 

can be introduced into Ŝ by appending only one item. Instead, we will select and append a 

candidate k-sequence which is in C̃
k but not contained in Ŝ. Recall that, when a candidate 

sequence is introduced into Ŝ, its corresponding c-node is removed from subCT. Hence, the 

candidate sequences not contained in Ŝ are the associated sequences of the c-nodes 

remaining in subCT. For each candidate sequence in C̃
k but not contained in Ŝ, we compute 

its c-score (line 20). We select the candidate sequence with highest c-score and append this 

candidate sequence to Ŝ (line 22). If multiple candidate sequences have the same c-score, we 

append the candidate sequence containing more different items. After that, we remove the c-

node corresponding to the appended candidate sequence from subCT (line 23).

Sequence Shrinking Method: To summarize, given the candidate k-sequences and a 

sequence S whose length exceeds the length constraint, we shrink S by the following steps. 

We first delete the irrelevant items from S. Then, we iteratively compress consecutive 

patterns in S in order of increasing pattern length. The irrelevant items deletion and 

consecutive patterns compression schemes do not cause the decrease of the support of 

candidate k-sequences. At last, if the length of S still violates the length constraint, we use 

the sequence reconstruction scheme to construct a new sequence, which might cause some 

frequency information loss.
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B. Threshold Relaxation

In the sample database, the noisy local supports of candidate sequences are used to estimate 

which candidate sequences are potentially frequent. However, the sample database is drawn 

randomly from the original database, which might cause many frequent sequences to 

become infrequent in the sample database. Moreover, the local supports of sequences are 

also affected by the noise added to guarantee differential privacy and the information loss 

caused by limiting the length of sequences. Therefore, if we simply use the user-specified 

threshold to estimate which candidate sequences are potentially frequent, it might lead to 

many misestimations.

Due to the downward closure property, if a frequent sequence is misestimated as infrequent, 

its supersequences are all regarded as infrequent sequences without even computing their 

supports. It drastically reduces the utility of the results. Thus, the threshold should be 

relaxed to avoid this problem. However, it is hard to quantify how much the threshold 

should be decreased. In particular, if the threshold is decreased too little, many frequent 

sequences might still be misestimated as infrequent; if the threshold is decreased too much, 

only a few candidate sequences can be pruned.

To this end, we theoretically quantify the relationship between the decrement of the 

threshold and the probability of misestimating frequent sequences as infrequent. To quantify 

such relationship, we start from the following problem: given a candidate k-sequence t, what 

is the relationship between its noisy support in the sample database db and its actual 

support in the original database D?

Let supt,  be the actual support of t in D, db respectively. Suppose D contains |D| input 

sequences. If we randomly choose an input sequence from D, the probability of this input 

sequence containing t can be regarded as ft = supt/|D|. Since the sequences in db are drawn 

randomly and independently from D, we can approximately think the probability of each 

sequence in db containing t is essentially constant and equal to ft. Then,  follows a 

binomial distribution:

It is known that, if the number of trials is large, the binomial distribution is approximately 

equal to the normal distribution. We assume the number of sequences in db is large enough, 

and  can be approximated by a normal distribution:

Due to the privacy requirement, in the sample database, we add noise to the local support of 

candidate sequences to avoid privacy breach. As discussed in Sec. V-A, we enforce the 

length constraint on the sample database to reduce such noise. It might lead to a decrease in 
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the support of some candidate sequences. In our experiments, however, we found our 

irrelevant item deletion and consecutive patterns compression schemes can effectively 

shorten the length of sequences, and only a few sequences need to be transformed by our 

sequence reconstruction scheme. It means our sequence shrinking method does not 

introduce many errors. Thus, in the analysis of the relationship between t's actual support in 

D and t's noisy support in db, we assume our sequence shrinking method does not incur 

frequency information loss.

In our PFS2 algorithm, we employ the Laplace mechanism to perturb the support of 

sequences. Suppose the sensitivity of computing the local support of candidate k-sequences 

in db is Δ and the privacy budget assigned to this computation is ε. Then, the noise added to 

the local support of each candidate k-sequence in db is chosen independently at random 

from a Laplace distribution with scaling parameter ω = Δ/ε. Let ξ denote the amount of noise 

added to . Then, ξ follows a Laplace distribution:

The noisy support of t in db, n-supt, can be regarded as the linear combination . Since 

the support of a candidate sequence is irrelevant to the amount of added noise,  and ξ are 

two random variables distributed independently of each other. In [25], it proves that, if X 

and Y are independent random variables having Normal(μ, σ2) and Laplace(λ, φ) 

distributions respectively, the cumulative distribution function (i.e., cdf) of Z = X + Y can be 

expressed as:

where erfc is the complementary error function:

Therefore, given the actual support of t in D, by setting its corresponding parameters μ, σ, λ 

and φ, we can obtain the cdf of t's noisy support in db.

After deriving the relationship between the noisy support of a sequence in the sample 

database and its actual support in the original database, we compare the probabilities of 

estimating candidate sequences with different supports as infrequent.

Theorem 5: Let t1 and t2 be two candidate k-sequences. Suppose, in the original database D, 

t1's actual support sup1 is smaller than t2's actual support sup2. Then, in the sample database 
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db, the probability of estimating t1 as infrequent is larger than the probability of estimating 

t2 as infrequent.

Proof: Since sup1 is smaller than sup2, t1's frequency f1 = sup1/|D| is smaller than t2's 

frequency f2 = sup2/|D|. Let n-sup1 and n-sup2 denote the noisy support of t1 and t2 in the 

sample database db, respectively. By setting parameters μ1, σ1, λ1 and φ1 based on f1, we 

can get the cdf F1 of n-sup1. Similarly, by setting parameters μ2, σ2, λ2 and φ2 based on f2, 

we can get the cdf F2 of n-sup2.

To compare probabilities of estimating t1 as infrequent and estimating t2 as infrequent, we 

utilize the characters of the distribution curve of the sum of independent normal and Laplace 

random variables. As shown in [25], for independent random normal variable X∼N(μ, σ2) 

and Laplace variable Y∼Laplace(λ, φ), the curve of the probability density function of Z=X

+Y is a characteristic symmetric shape that has equal sized tails and quickly falls off towards 

zero. The distribution curve is very similar to the normal distribution. In particular, the 

location of the curve is mainly determined by μ/σ and λ/φ. When μ/σ or λ/φ increases, the 

curve is shifted right. In addition, the spread of the curve is primarily controlled by φ/σ. 

When φ/σ increases, the curve becomes narrower.

In the sample database db, for sequences t1 and t2, the amount of noise added to their 

supports is chosen independently from the same Laplace distribution. Thus, we have φ1 = φ2 

and λ1 = λ2. Moreover, since μ1 = f1|db|,  and μ2 = f2|db|, 

, we have:

As λ1/φ1 = λ2/φ2 and μ1/σ1 < μ2/σ2, the distribution curve of n-sup2 is shifted right 

compared with that of n-sup1.

For , its value is increasing in the f interval of [0, 0.5] while decreasing in 

the f interval of [0.5, 1]. Thus, we cannot determine whether φ1/σ1 is larger or smaller than 

φ2/σ2, or theoretically analyze if the distribution curve of n-sup2 is narrower or wider 

compared with that of n-sup1. In our experiments, however, we found, when the support of a 

sequence in the original database increases, the distribution curve is shifted right 

significantly while the spread of the distribution curve does not obviously change. Thus, we 

approximately think the spreads of the distribution curves of n-sup1 and n-sup2 are the same. 

Suppose the threshold used in the sample database is θ′. Since sup2 is larger than sup1, the 

distribution curve of n-sup2 is shifted right compared with that of n-sup1. Thus, F2(θ′) 

should be smaller than F1(θ′). It indicates, the probability of estimating t2 as infrequent is 

smaller than the probability of estimating t1 as infrequent.

Based on the above analysis, we can derive the relationship between the decrement of the 

threshold in the sample database and the probability of misestimating frequent sequences as 
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infrequent. Let tθ be a k-sequence whose actual support in the original database is equal to 

the user-specified threshold θ. We first compute the cdf Ftθ of the noisy support of tθ in the 

sample database db. Suppose, after relaxation, the threshold used in db is θ′. Then, the 

probability of estimating tθ as infrequent (i.e., the probability of tθ's noisy support in db 

smaller than θ′) is Ftθ(θ′). Since the actual support of any frequent k-sequence is not smaller 

than θ, based on the analysis above, we can see the probability of misestimating a frequent 

k-sequence as infrequent is not larger than Ftθ(θ′).

Threshold Relaxation Method—Given the sample database dbk and the candidate k-

sequences Ck, we first assume there is a k-sequence tk whose actual support in the original 

database is the user-specified threshold. Then, we compute the cdf Ftk of the noisy support 

of tk in dbk. We set Ftk(θ′) = ζ and compute the corresponding θ′. In the sample database dbk, 

we use θ′ to estimate which candidate sequences are potentially frequent. We refer to ζ as 

relaxation parameter. In our experiments, we find, when ζ is set to be 0.3, it typically 

obtains good results (see Sec. VII-E).

VI. PFS2 Algorithm

A. PFS2 Algorithm Description

Our PFS2 algorithm is shown in Algorithm 3. It consists of two phases. In particular, in the 

pre-mining phase, we extract some statistical information from the database. Then, in the 

mining phase, we privately find frequent sequences in order of increasing length. The 

sampling-based candidate pruning technique (i.e., sequence shrinking and threshold 

relaxation methods) is used in this phase. Besides, we divide the total privacy budget ε into 

five portions ε1, …, ε5. Specifically, ε1, ε2 and ε3 are used in the pre-mining phase, ε4 is 

used in the sample databases to prune candidate sequences and ε5 is used for the support 

computations in the original database. In the rest of this subsection, we present the details of 

our algorithm.

Algorithm 3 PFS2 Algorithm

Input:

Original database D; Threshold θ; Maximal length constraint upper bound l1;

Percentage η; Privacy budgets ε1, …, ε5.

Output:

Frequent Sequences FS;

1: /**** Pre-Mining Phase ****/

2: |D| ← get the noisy number of total input sequences using ε1;

3: for l2 = 1; p < η; l2 ++ do

4:  αl2 = get the noisy number of input sequences with length l2 using ε2;

5:

  ;

6: end for

7: lmax ← min{l1, l2};

8: β ← get noisy maximal support of sequences of length from 1 to lmax using ε3;
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9: Lf ← estimate_max_frequent_sequence_length (θ, β);

10: /**** Mining Phase ****/

11: FS ← ø;

12: dbSet ← randomly_partition_database (D, Lf);

13: ε′ ← ε5/Lf;

14: for k from 1 to Lf do

15:  if k == 1 then

16:   Candidate Set Ck ← all items in the alphabet;

17:  else

18:   Candidate Set Ck ← generate_candidates (FSk—1);

19:  end if

20:

   ← Sampling_based_Candidate_Pruning(Ck, dbk, ε4, θ, lmax); /**** See Algorithm 1 ****/

21:

 FSk ← discover_frequent_sequences ( , D, ε′, θ);

22:  FS += FSk;

23: end for

24: return FS;

Pre-Mining Phase—In the pre-mining phase, we first compute the maximal length 

constraint lmax in the sample databases. Like [8], [4], we determine lmax in a heuristic way 

by setting lmax=min{l1, l2}. In particular, the parameter l1 represents an upper bound on the 

length of input sequences. It determines a maximum value of the error introduced by the 

noise in support computations. Instead, the parameter l2 is computed from the database. Let |

D| be the number of total input sequences and αi be the number of input sequences with 

length i. Starting from l2=1, we incrementally compute the percentage 

until p is at least η (line 3-6). Due to the privacy requirement, we add geometric noise G(ε1) 

to |D| and add noise G(ε2) to each αi (1 ≤ i ≤ l2).

To better utilize the privacy budget, we also estimate the maximal length of frequent 

sequences Lf. Since we enforce the length constraint lmax on the sample databases, Lf should 

not be larger than lmax. To estimate Lf, we first compute β = {β1, …, βlmax}, where βi is the 

maximal support of i-sequences. Then we add noise G(ε2/ ⎾loglmax⏋) to each βi (line 8). We 

set Lf to be the integer y such that βy is the smallest value exceeding threshold θ (line 9).

Mining Phase—In the mining phase, we first randomly partition the original database D 

into Lf disjoint databases dbSet, each of which contains approximately |D|/Lf sequences (line 

12). We use these generated disjoint databases as the sample databases to prune candidate 

sequences.

In the following, we privately find frequent sequences in order of increasing length. In 

particular, for mining frequent k-sequences, we first generate the candidate k-sequences Ck. 

If k=1, the candidate sequences are all items. If k>1, the candidate sequences are generated 

based on the frequent (k-1)-sequences by using the downward closure property. Then, given 

the k-th sample database dbk, we utilize algorithm Sampling-based_Candidate_Pruning (i.e., 
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Algorithm 1) to prune unpromising candidate k-sequences (See Sec. V). After that, we 

compute the noisy support of remaining candidate k-sequences  on the original database 

D. Notice that, we do not limit the length of input sequences in the original database. For 

each candidate k-sequence in  we add Laplace noise  to its support in D, 

where ε′=ε5/Lf. The candidate k-sequences whose noisy supports on D exceed threshold θ 

are output as frequent k-sequences. This process continues until all frequent sequences of 

lengths from 1 to Lf are found.

B. Privacy Analysis of PFS2 Algorithm

In this subsection, we give the privacy analysis of our PFS2 algorithm. Since the key step in 

our algorithm is pruning the candidate sequences based on the sample databases, we first 

prove our pruning technique satisfies ε4-differential privacy.

Theorem 6: The sampling-based candidate pruning technique (i.e., Algorithm 1) guarantees 

ε4-differential privacy.

Proof: Given the candidate k-sequences Ck and the k-th generated sample database dbk, we 

use the noisy local support of Ck in dbk to estimate which candidate k-sequences are 

potentially frequent. To reduce the amount of added noise, we use our sequence shrinking 

method to enforce the length constraint lmax on dbk. Since a sequence of length lmax can 

contain at most  different k-sequences, adding (removing) a sequence in the 

transformed sample database  can increase (decrease) the support of at most 

 candidate k-sequences by 1. It means the sensitivity of computing the 

support of Ck in  is . Thus, adding Laplace noise Lap(Δk/ε4) to 

the local support of Ck satisfies ε4-differential privacy in .

In our sequence shrinking method, to shrink a sequence, our three schemes do not use any 

other sequences but only relying on Ck and lmax (see Sec. V-A). As shown in Theorem 7, 

lmax is differentially private. Ck also does not breach the privacy because it is generated 

based on frequent (k-1)-sequences, and frequent (k-1)-sequences are determined by the noisy 

supports. Thus, our sequence shrinking method is a local transformation (see Def. 7 in [8]). 

Based on Theorem 7 in [8] and Theorem 5 in [4], as long as the transformation is local, 

applying an ε4-differentially private algorithm on  also guarantees ε4-differential privacy 

for dbk.

For our threshold relaxation method, only using the number of sequences in the sample 

database has privacy implications (see Sec. V-B). We approximately think each sample 

database contains |D|/Lf sequences, where |D| is the number of total input sequences and Lf is 

the number of sample databases (i.e., the maximal length of frequent sequences). As shown 

in Theorem 7, |D| and Lf are differentially private. Thus, our threshold relaxation method 

does not breach the privacy. In summary, our sampling-based candidate pruning technique 

(i.e., Algorithm 1) satisfies ε4-differential privacy.
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In the following, we prove that the PFS2 algorithm overall guarantees ε-differential privacy.

Theorem 7: The PFS2 algorithm (i.e., Algorithm 3) satisfies ε-differential privacy.

Proof: In the pre-mining phase of our algorithm, for the computation of |D| (i.e., the number 

of total input sequences), as adding (removing) an input sequence only affects |D| by 1, the 

sensitivity of this computation is 1. Thus, adding geometric noise G(ε1) in computing |D| 

satisfies ε1-differential privacy. Similarly, the sensitivity of computing αi (i.e., the number 

of i-sequences) is 1. We add noise G(ε2) in computing αi, which satisfies ε2-differential 

privacy. In the pre-mining phase, we compute α1, …, αl2, such that  is 

larger than the input parameter η. Since a single input sequence can affect only one element 

among α1, …, αl2 (i.e., the sets of input sequences with different lengths are disjoint), based 

on the parallel composition property [13], the privacy budgets used in computing α1, …, αl2 
do not need to accumulate. In addition, for the maximal length constraint lmax, as it is 

estimated based on |D| and α1, …, αl2, we can safely use lmax. Besides, in the pre-mining 

phase, we also compute β = {β1, …, βlmax}, where βi is the maximal support of i-sequences. 

Since the elements in β are non-increasing, as shown in [8], adding noise G(ε3/⎾loglmax⏋) in 

computing β is ε3-differentially private. For the maximal length of frequent sequences Lf, 

since it is estimated based on β, we can safely use Lf.

In the mining phase, we first randomly partition the original database into Lf disjoint sample 

databases. Then, given the candidate k-sequences, we use the k-th sample database to prune 

them. Theorem 6 proves our pruning technique is ε4-differentially private. After pruning, we 

compute the noisy support of remaining candidate k-sequences  in the original database 

D. Notice that, we do not limit the length of input sequences in the original database. Since 

adding (removing) one sequence without length constraint can at most affect the support of 

all  by 1, the sensitivity of computing the support of  in D is . In addition, we 

uniformly divide ε5 into Lf portions and allocate ε′ = ε5/Lf to the support computations of 

in D. Thus, adding Laplace noisy  to the support of  in D satisfies ε′-

differential privacy.

Since all sample databases are disjoint, due to the parallel composition property [13], the 

privacy budget used in sample databases can be summed separately. In summary, based on 

the sequential composition property [13], we can conclude that our PFS2 algorithm satisfies 

(ε1 + ε2 + ε3 + ε4 + Lf × ε′) = ε-differential privacy.

VII. Experiments

A. Experiment Setup

As the PFS2 algorithm is the first algorithm that supports general FSM under differential 

privacy, we compare the PFS2 algorithm with two differentially private sequence database 

publishing algorithms. The first is the algorithm proposed in [10] which utilizes variable 

length n-grams (referred to as n-gram). The second is the algorithm proposed in [9] which 

utilizes a prefix tree structure (referred to as Prefix). For algorithms n-gram and Prefix, to 
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privately find frequent sequences, we first run them on the original sequence databases to 

generate anonymized databases, and then run the non-private FSM algorithm GSP [26] over 

the anonymized databases.

We implement all algorithms in JAVA. The code of n-gram is provided by its authors and 

Prefix is implemented as described in [9]. We conduct all experiments on a PC with Intel 

Core2 Duo E8400 CPU (3.0GHz) and 4GB RAM. Because the algorithms involve 

randomization, we run each algorithm ten times and report its average results. In the 

experiments, we use the relative threshold. Since n-gram and Prefix generate new sequence 

datasets, the number of sequences in the original dataset might be different from the number 

of sequences in the new datasets. For n-gram and Prefix, we use the relative threshold with 

respect to the original dataset.

In PFS2, we allocate the privacy budget ε as follows: ε1 = 0.025ε, ε2 = 0.025ε, ε3 = 0.05ε, ε4 

= 0.45ε and ε5 = 0.45ε. Like [8], [4], the parameter η used in the pre-mining phase of PFS2 

is set to be 0.85. We set the privacy budget ε to be 1.0 and the relaxation parameter ζ to be 

0.3. We also show the experiment results under varying ε in Sec. VII-C and illustrate the 

experiment results under varying ζ in Sec. VII-E.

Datasets—In the experiments, we use three publicly available real sequence datasets. 

Since the original data in dataset House_Power appears as time-series, like [4], we discretize 

these values and successively construct a sequence from every 50 samples. A summary of 

the characteristics of these three datasets is shown in Table I.

Utility Measures—To evaluate the performance of the three algorithms, we follow the 

widely used standard metrics: F-score [8], [4] and Relative Error (RE) [12]. In particular, 

we employ the F-score to measure the utility of generated frequent sequences. Moreover, we 

employ the RE to measure the error with respect to the actual supports of sequences.

B. Frequent Sequence Mining

We first compare the performance of algorithms PFS2, n-gram and Prefix with different 

values of threshold on three datasets. We do not show the performance of Prefix in BIBLE 

as Prefix does not scale to handle datasets with large number of items. In BIBLE, it contains 

13905 items. It is hard for Prefix to construct a prefix tree for BIBLE. For PFS2, the 

statistical information (i.e., the maximal length constraint lmax enforced on the sample 

databases and the estimated maximal length of frequent sequences Lf under different values 

of threshold θ) is shown in Tab. II.

From Fig. 2, we can see PFS2 substantially outperforms n-gram and Prefix. In particular, n-

gram and Prefix also limit the length of input sequences. However, they directly delete items 

exceeding the limit. which loses much information. In contrast, we utilize sample databases 

to prune candidate sequences. We enforce the length constraint on the sample databases by 

using our sequence shrinking method, which can effectively preserve the frequency 

information and significantly improve the utility of the results. Another interesting 

phenomenon is Prefix obtains good performance in MSNBC while not producing reasonable 

results in House_Power. One reason for that phenomenon is Prefix uses the prefixes of input 
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sequences, usually less than 20 items, to construct a prefix tree. If the average length of 

input sequences is long (e.g., in House_Power), the prefix tree cannot preserve enough 

frequency information, which inevitably leads to poor performance.

From Fig. 2, we can also see PFS2 obtains good performance in term of RE (usually less 

than 5%). The reasons are explained as follows. For metric RE, it focuses on the supports of 

released sequences. In PFS2, thanks to the sampling-based candidate pruning technique, the 

number of candidate sequences computed in the original database is significantly reduced. It 

means the amount of noise added to the support of each released frequent sequence is small. 

Moreover, we do not enforce the length constraint on the original database, and thus the 

support of released frequent sequences is not affected by the transformation of the database. 

Hence, PFS2 is able to achieve a surprisingly good performance in term of RE.

We also show the precision and recall on House_Power in Fig. 2(g)-2(h). We observe the 

precision of PFS2 is very good but the recall decreases a little. This is mainly because, in the 

sample databases, although our irrelevant item deletion and consecutive patterns 

compression schemes can effectively shorten sequences, some long sequences still need to 

be transformed by the sequence reconstruction scheme. It leads to frequency information 

loss. As a result, some frequent sequences are not identified from the sample databases and 

the recall is decreased. In Fig. 5, we show the precision, recall and F-score of PFS2 for 

frequent sequences with different lengths on House_Power. We set the relative threshold to 

be 0.36. We can see PFS2 achieves good performance in term of precision, but recall drops 

for frequent sequences of length 7 and 8. This is mainly due to the small number of frequent 

sequences of length 7 and 8. Even though only a few frequent sequences are missed, the 

recall will be significantly decreased.

C. Effect of Privacy Budget

Fig. 3 shows the performance of PFS2, n-gram and Prefix under varying privacy budget on 

MSNBC (for relative threshold θ=0.015) and on House_Power (for relative threshold 

θ=0.34). Obviously, PFS2 constantly achieves better performance at the same level of 

privacy. We observe all algorithms behave in a similar way: the quality of the results is 

improved as ε increases. This is because, as ε increases, a lower degree of privacy is 

guaranteed and a lower magnitude of noise is added. We also observe the quality of the 

results is more stable on MSNBC. This can be explained by the high supports of sequences 

in MSNBC, which are more resistant to the noise.

D. Effect of Sequence Shrinking and Threshold Relaxation

Fig. 4 shows how the sequence shrinking and threshold relaxation methods affect the 

performance of PFS2 on datasets BIBLE and House Power. Let RR denote the algorithm 

which randomly deletes items to enforce the length constraint on the sample datasets and 

does not relax the user-specified threshold. Let SR denote the algorithm which uses our 

sequence shrinking method to limit the length of sequences in the sample datasets but does 

not relax the user-specified threshold.
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Form Fig. 4, we can see, without using sequence shrinking and threshold relaxation 

methods, RR does not produce reasonable results. We also observe both the sequence 

shrinking and threshold relaxation methods are very effective at improving the performance 

of PFS2 in term of F-score. For metric RE, all these algorithms achieve good performance, 

although it slightly decreases after we use the two methods. This is because, by using these 

two methods, we identify more real frequent sequences from the sample datasets. The 

increase of remaining candidate sequences slightly raises the amount of noise added to the 

support of released frequent sequences.

E. Effect of Relaxation Parameter

In Fig. 6, we show the performance of PFS2 by varying the relaxation parameter ζ (used in 

our threshold relaxation method). We set relative threshold θ=0.05 on MSNBC, θ=0.1 on 

BIBLE, and θ=0.3 on House_Power. We can see, when ζ is set to be 0.3, PFS2 typically 

obtains good results.

F. Benefit of Sampling-based Candidate Pruning

In this subsection, we study the benefit of our sampling-based candidate pruning technique. 

We compare PFS2 to a differentially private FSM algorithm via enforcing the length 

constraint on the original database. Let PL denote this algorithm. In particular, given the 

candidate k-sequences, PL utilizes our sequence shrinking method to transform the original 

dataset and determines which sequences are frequent based on their noisy supports on the 

transformed dataset.

From Fig. 7, we can see PFS2 achieves better performance. This is because, compared with 

PL, PFS2 uses sample datasets to prune candidate sequences, which effectively reduces the 

sensitivity of computing the support of candidate sequences. In contrast, PL limits the length 

of sequences in the original database to reduce such sensitivity. However, it introduces a 

new source of error by discarding items from sequences. Due to the privacy requirement, it 

is hard to precisely compensate such information loss. Thus, PL introduces more errors.

To better understand the benefit of the sampling-based candidate pruning technique, we 

apply it to frequent itemset mining by extending the algorithm proposed in [8] (which is 

referred to as TT). Specifically, for mining frequent k-itemsets, given a sample dataset, we 

use TT's smart truncating method to transform it and use our threshold relaxation method to 

relax the user-specified threshold. Then, we utilize the transformed sample dataset to prune 

candidate k-itemsets generated based on the downward closure property. For the remaining 

candidate k-itemsets, we compute their noisy supports on the original dataset. The candidate 

k-itemsets whose noisy supports in the original database exceed the user-specified threshold 

are output as frequent. We use two transaction datasets in this experiment: POS and Pumsb-

star. Their characteristics are illustrated in Tab. III. We show the experiment results in Fig. 

8. It is not surprising that the performance of TT is significantly improved by utilizing our 

sampling-based candidate pruning technique.
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VIII. Conclusion

In this paper, we investigate the problem of designing a differentially private FSM 

algorithm. We observe the amount of required noise in differentially private FSM is 

proportionate to the number of candidate sequences. We introduce a sampling-based 

candidate pruning technique as an effective means of reducing the number of candidate 

sequences, which can significantly improve the utility and privacy tradeoff. By leveraging 

the sampling-based candidate pruning technique, we design our differentially private FSM 

algorithm PFS2. In particular, given the candidate sequences, we use their noisy local 

supports in a sample database to estimate which sequences are potentially frequent. To 

improve the accuracy of such private estimations, we propose a sequence shrinking method 

which can enforce the length constraint on the sample database while effectively preserving 

the frequency information. Moreover, we propose a threshold relaxation method, which 

relaxes the user-specified threshold for the sample database to estimate which candidate 

sequences are potentially frequent. Formal privacy analysis and the results of extensive 

experiments on real datasets show that our PFS2 algorithm can achieve a high degree of 

privacy and high data utility.
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Fig. 1. A Simple Candidate Sequence Tree
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Fig. 2. Frequent Sequence Mining
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Fig. 3. Effect of Privacy Budget
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Fig. 4. Effect of Sequence Shrinking and Threshold Relaxation Methods
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Fig. 5. Frequent Sequences in House_Power

Xu et al. Page 30

Proc Int Conf Data Eng. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Effect of Relaxation Parameter
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Fig. 7. Effect of Sampling on Frequent Sequence Mining
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Fig. 8. Effect of Sampling on Frequent Itemset Mining
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Table I
Sequence Dataset Characteristics

Dataset #Sequences #Items Max.length Avg.length

MSNBC 989818 17 14795 4.75

BIBLE 36369 13905 100 21.64

House Power 40986 21 50 50
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Table III
Transaction Dataset Characteristics

Dataset #Transactions #Items Max.length Avg.length

POS 515597 1657 164 6.5

Pumsb-star 49046 2088 63 50.5
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