The DBMS - your Big Data Sommelier

Yagiz Kargin Martin Kersten

Stefan Manegold Holger Pirk

Database Architectures Group, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
<first>.<last>Qcwi.nl

Abstract—When addressing the problem of “big” data volume,
preparation costs are one of the key challenges: the high costs for
loading, aggregating and indexing data leads to a long data-to-
insight time. In addition to being a nuisance to the end-user, this
latency prevents real-time analytics on “big” data. Fortunately,
data often comes in semantic chunks such as files that contain
data items that share some characteristics such as acquisition
time or location. A data management system that exploits this
trait can significantly lower the data preparation costs and the
associated data-to-insight time by only investing in the preparation
of the relevant chunks. In this paper, we develop such a system as
an extension of an existing relational DBMS (MonetDB). To this
end, we develop a query processing paradigm and data storage
model that are partial-loading aware. The result is a system that
can make a 1.2 TB dataset (consisting of 4000 chunks) ready for
querying in less than 3 minutes on a single server-class machine
while maintaining good query processing performance.

I. INTRODUCTION

While data is growing bigger and bigger, this growth is
hardly due to manual creation of data items — machine-
generated data is responsible for the lion’s share of today’s data
volume [1]. Fortunately, automatically acquired data is much
more regular than manually created data due to the inherent
correlation of the data items stemming from the same source.
This results in a high degree of spatial locality that can be
exploited when managing such “big” data.

In practice, (“big”) data often comes in semantic chunks:
collections of hundreds or thousands of data items that share
some common characteristics and are co-located when stored
(e.g., in files). A typical example is the position of a camera in
traffic or object monitoring: all data points collected by this
sensor have the same geo co-ordinates, angle, crop, sensor
type and configuration. This data, often called metadata, is
perhaps the most important data because it gives meaning to
the deluge of data [2].

Consequently, many analytical applications start by filtering
their “big” data based on the (relatively small) metadata. In the
light of this insight, it is reasonable to minimize the amount of
preparatory effort spent on data that is likely to be filtered out
based on its metadata. This is particularly important when, like
in case of DBMSs, the mere presence of more data can hurt
system performance through, e.g., reduced locality, growing
index lookup times and less slack space for intermediate
results. Naturally, only the system user knows which data is
relevant to him. However, he expresses this knowledge in the

* Wiktionary: The person at an expensive restaurant who keeps the wine
cellar and advises guests on a choice of wines.

* This publication was supported by the Dutch national program COMMIT.
We thank Milena Ivanova for her helpful advices.

Validate }* Project Index
? ¢ T h BN —

Gather j [Clean] [Store }'"'
$ X ¢ T re ’

| Translate l Merge J

Extract Transform Load

Fig. 1. A Common Data Preparation Pattern: Extract, Transform & Load (ETL)

queries he formulates. In combination with the metadata for
each semantic chunk a system can exploit this knowledge to
partially and adaptively ingest and prepare only the data that
is relevant to the user.

This limits the storage space as well as the data preparation
effort (Figure 1 illustrates the complexity of a typical data
preparation pattern: ETL) to the semantic chunks that are of
actual relevance to the user. However, since data has to be
prepared at query evaluation time, this paradigm has an impact
on all stages of the query evaluation process: plan generation,
optimization, buffer management, catalog management and,
last but not least, the query plan evaluation itself. While there
has been some work on adaptive loading [3], indexing [4],
view maintenance [5], [6], the chunked nature of “big” data
has hitherto not been exploited.

In this work, we set out to develop a system that, like a good
sommelier, stores the bottles (actual data) in the cellar (the file
repository) but keeps the contents of the labels (the metadata)
in his head to give advise and quickly retrieve bottles on
demand. To this end, we make the following contributions:

e« We develop a two-stage query processing model that
distinguishes access paths to internal and external data
when generating, optimizing and evaluating a query plan.

« We integrate the notion of partially loaded data with
DBMS functionality like materialized views by treating
such data structures as “partial” throughout the system.

« We provide a blueprint for the implementation of our ap-
proach in an existing, full-fledged DBMS: a description of
our extensions of MonetDB to make it “partial-loading-
aware”. To show the benefits of this approach, we perform
an extensive evaluation on one of the “biggest” datasets
there is: scientific sensor data.

We structured this paper such that we give a quick overview
of chunked “big” data in Section II. In Section III we il-
lustrate how to exploit the obtained insights to develop an

appropriate query processing model. In Section IV we explain
our partial materialized view design. We describe the system’s
implementation in Section V. We evaluate this implementation
in Section VI, review related work in Section VII, list future
work in Section VIII, and conclude in Section IX.

II. BACKGROUND

In this section, we discuss the characteristics of the data
that is subject to our research, how we interpret the possible
queries accordingly, and introduce an example dataset.

A. Characteristics of Data

Without any knowledge about the input data files, all avail-
able files have to be considered “relevant” for a given query.
Fortunately almost all domains with chunked data have the no-
tion of metadata, because there is simply a reason why the data
is chunked, and metadata keeps that as information. Metadata
is data that describes actual data in chunks and/or provides
insight into the content thereof (e.g. parameters, properties,
and ways of acquisition, summary data etc.) [7], [2]. We use
the phrase actual data for the data other than metadata. The
size of metadata is usually many orders of magnitude smaller
than that of the actual data. Hence, big (actual) data (e.g.
time-series, images, sequences, etc.) is accompanied by (small)
metadata describing it. Although the definition of metadata
might differ according to the domain, file format and use case,
in most of the cases it is relatively straightforward to point out
the metadata. For example, actual data items usually describe
individual data points and come with, e.g., a timestamp and
one (e.g. time-series) or many measured values (e.g. images).
Whereas metadata items usually describe the actual data items
(e.g. through which channel it is produced or mean value, etc.).
Since metadata just describes actual data, there is a common
usage of it. During processing, metadata can be accessed in
order to identify actual data to be analyzed [8], [9], [10]. Hence
metadata shines as a significant common aspect of scientific
datasets, as Jim Gray et al. also concluded in [2].

The costs to acquire metadata does usually depend on
the type of the metadata. There are two types of metadata
in general: given metadata (GMd) and derived metadata
(DMd) [11], [2], [7]. GMd is the describing data that is
already accompanying the actual data (AD). This metadata
exists in the original dataset. It is mostly related to setup and
configuration of the data generation, how the actual data is
produced/generated, and/or in the case of scientific data, how
the observations/experiments are measured etc. For example,
location of the sensor, time interval of measurement, ways
of acquisition, channel information, experimental parameters,
configuration info, etc. DMd is again describing data, but that
does not exist in the original dataset, and is not accompanying
AD, usually because it requires further processing of AD
and/or GMd. It could be, for example, summarizing AD (e.g.
mean value), recognizing properties of AD (e.g. gaps/overlaps)
or assessing its quality (e.g. data availability), etc.

GMd is ready to be used within the dataset. The cost to
acquire such metadata is usually many orders of magnitude

Type of Query Query Refers to
T_1 GMd
T2 DMd
- AD
T3 DMd & GMd
T 4 GMd & AD
- DMd & AD
T_5 DMd & GMd & AD
TABLE I

TYPES OF QUERIES

lower than that of AD. However, for DMd to be used in the
analysis, it has to be derived by acquiring and processing AD
(and/or GMA).

B. Interpretation of Queries

We look at the possible queries from a database point of
view. We can categorize queries according to which types of
data they refer to, to have a better understanding of what users
would want from the database. Table I provides a list of types
of queries and which types of data they refer to.

We do not focus on the “only AD” or “DMd & AD” type
of query. For the latter, the DMd does not have to align with
the chunks as GMd do. For example, a DMd item might be
common in one small sub-chunk of every chunk. This happens
if DMd items are computed regardless of the chunked nature
of the data (i.e. computed without referring to GMd). Our
approach does not benefit from such DMd for the queries
directly referring to AD. So, our approach assumes DMd is
computed from AD regarding the GMd. Hence for us, if the
query is directly referring to AD, it has to refer to the GMd.
For the former, it does not make much sense to query only
AD directly without using any given meta-information, when
GMd is able to help identify the actual data of interest. If not
even a single metadata item is available for a chunked dataset,
then it is the same case as having all data in one chunk. If
there exists some metadata, we did not observe much of AD-
only querying examples in real life scenarios, either. It might
happen only when the user wants to process the entire set
of AD regardless of whether metadata exists or not. In this
case, there is no alternative to paying the price for loading /
accessing all AD, anyway. Since such cases are not the focus
of the work we present here, we assume in this paper that AD
is always referred to with GMd.

C. Example

For easiness of understanding, we provide an example of
data in chunks: scientific data. We use it as a running example
as much as we can in the rest of the paper. Our example
domain is seismology.

In seismology, SEED [12] is the most widely used standard
file format to exchange waveform data among seismograph
networks. A SEED volume mainly consists of the waveform
time series, which are highly compressed. For example, a
SEED repository might require orders of magnitude more than
the original storage size when loaded into a database [13]

SELECT AVG(D.sample_value)

FROM dataview

WHERE F.station = ’ISK’ AND F.channel = ’'BHE’
AND D.sample_time > 72010-01-12T22:15:00.000"
AND D.sample_time < 72010-01-12T22:15:02.000";

Fig. 2. Query 1

(see also Table II in Section VI). Moreover, they use domain-
specific compression algorithms [12]. Additionally, a SEED
volume has several ASCII control headers. The control headers
contain the metadata. Here, we use the Mini-SEED (mSEED)
variant, which reduces the SEED metadata to the most widely
used subset. The sizes of an mSEED file commonly vary
from 4KB to several MBs. Millions of them are stored in
remote file repositories with direct FTP access. An mSEED
repository is an example of chunked data, where each chunk
is a file in the repository. While this is a common case also in
other disciplines, there are other cases, like BAM files used in
genome sequencing, where huge files are internally chunked.

Each mSEED file contains multiple mSEED records. An
mSEED record represents the sensor readings over a consec-
utive time interval, i.e., a time series. The normalized data
warehouse schema, as proposed in [13], includes three tables,
that are straightforwardly derived from the mSEED format.
Two tables F and S hold metadata per mSEED file and mSEED
segment, respectively. Whereas table D stores all the actual
data points (i.e. tuples of sample time and sample value from
all files and segments). Each mSEED file is identified by its
URI, and contains the metadata describing the sensor that
collected the data (network, station, location, channel)
as well as some technical data characteristics (data quality,
encoding, byte_order). Each segment is identified by its
(segment) identifier (unique per file), and holds metadata such
as start_time of the segment, sampling rate (frequency),
and number of data samples (sample_count). The identi-
fiers form also the foreign key relations between the three
tables. For easy querying, we define a (non-materialized) view
dataview that joins all three tables, F, S, D, into a (de-
normalized) “universal table”.

Seismic data analysis contains tasks that help hunt for
interesting seismic events. Such tasks include finding extreme
values over Short Term Averaging (typically over an interval
of 2 seconds) and Long Term Averaging (typically over an
interval of 15 seconds), retrieving the data of an entire record
for visual analysis, etc. Query 1 (Figure 2), computes the short
term average over the data generated at Kandilli Observatory
in Istanbul (ISK) via a specific channel (BHE).

Seismologists also compute some properties, patterns, or
parameters through analysis to develop better understanding of
the data. Later they often even (re)use them in order to filter
out or not to re-touch some actual data. These are typical
examples of what we call derived metadata. Seismologists
typically derive, for a specific time period, quality control
parameters, power spectral density values, and/or summary
metadata, etc. A typical reuse example is that they refer to
quality control parameters later in order to skip low-quality
data or take into account only very high-quality data. This is

SELECT D.sample_time, D.sample_value

FROM windowdataview

WHERE F.station = 'FIAM’
AND F.channel = ’HHZ'
AND H.window_start_ts >= 72010-04-20T23:00:00.000’
AND H.window_start_ts < "2010-04-21T02:00:00.000"
AND H.window_max_val > 10000
AND H.window_std_dev > 10

Fig. 3. Query 2
actually materialized views in the database terms.

For this example, we use summary metadata that is
derived based on hourly windows. Table H holds this
derived metadata and serves as a materialized view. In a
simple and typical setting this kind of derived metadata
contains maximum value, minimum value, mean value,
and standard deviation of the actual data points that are
generated in each station, through each channel, and per each
non-overlapping window of one hour. The attributes of H
are window_station, window_channel, window_start_ts
(ts: timestamp), window_max_val, window_min_val,
window_mean_val, window_std_dev, respectively. Since H
materializes summary metadata for each (station, channel,
hour) triple, the first three attributes form the primary key of
H. Again for easy querying, we define a (non-materialized)
view windowdataview that joins all four tables, F, S, D, H,
into another (de-normalized) “universal table”. !

While hunting for interesting patterns, an example query for
the use of this derived metadata occurs, whenever the scientist
would like to retrieve waveform data where volatility is very
high in high amplitude value levels. As a concrete example,
Query 2 (Figure 3) brings the waveform data from station
FIAM and channel HHZ of the hours in a given time interval,
where maximum amplitude in that hour and standard deviation
in that hour are greater than 10000 and 10, respectively.

We use Query 1 and Query 2, which are T_4 and T_5
queries respectively, as our running examples through the rest
of the paper. For more detailed information about the data,
schema, and queries; please refer to [13].

ITII. TWO-STAGE QUERY EXECUTION

Recall that our starting point is a file repository of auto-
matically acquired naturally chunked “big” data, accompanied
with some metadata that identifies and describes the chunks.

Our goal is to enable users to instantly use the conveniences
of data management systems for their interactive exploratory
data analysis, without the need to first ingest all their data into
a DBMS. Instead of “eagerly” loading all actual data before
being able to run the first query, we propose to exploit the
metadata (both, given and derived) during query processing to
“lazily” load only the required actual data transparently just-
in-time during query evaluation.

The size of metadata is much smaller than the actual data
and can thus rather quickly be loaded eagerly into the database
once a file repository becomes available. We will discuss in

'While the non-materialized views dataview and windowdataview relieve
the users from having to express these joins in each of their queries, the DBMS
has to calculate the respective joins when evaluating queries over these views.

Section IV, under which circumstances we can assume that
also derived metadata is readily available in the database.

To be able to exploit the metadata, we break the query
execution into two stages. Since we do not change the querying
front-end, we still use a single query plan for a single query.
In a nutshell, in the first stage, the part of the query that
uses only metadata (given or derived) is evaluated in order
to determine the chunks (i.e. files) of actual data that need
to be loaded to answer the entire query. In the second stage,
these chunks of actual data are loaded — unless they have
already been ingested earlier and are still in the cache — and
the remainder of the query is evaluated. For now, we assume
that all derived metadata is also computed and available in
the database like the given metadata. In Section IV, we will
justify this assumption by introducing an approach to make
the derived metadata needed by the query available in the
database. The remainder of this section provides a sketch of
the concepts and design elements to realize this approach in
any relational database.

Schema. Every relational database requires a schema before
any other operation. A scientific relational database schema
contains a set of relations/tables 7. It consists of a set of
metadata tables M (i.e. database tables that keep metadata)
and a set of actual data tables A (i.e. database tables that keep
actual data). Thus, T = M UA.

Example. F' and S are our given metadata tables, D is the
only actual data table. In our approach, only F' and § are loaded
eagerly, while D remains initially empty. Actual data is loaded
into D only partially as required during query execution.

Logical Query Plan. An SQL query is translated into a
relational query plan Q (typically taking the shape of a tree or
directed acyclic graph). The relational query plan is optimized
using a set of rewrite rules. Since we need to process metadata
before any actual data, we have some plan requirements. We
add some extra rules that make query optimizers produce the
kind of plans our paradigm requires. To that end, we logically
decompose the relational query plan into two parts,

Q:=QrAQy

such that Qy is always evaluated before Q;, where Qy is the
highest branch in the relational algebra tree that has only
metadata tables as its leaves (i.e. metadata branch), and Q;
is the rest of the query plan Q. Figure 4(b) exemplifies a
decomposed plan where the red sub-plan is QO and the rest of
the plan is Q. The reason here is to make use of the metadata
as much as possible to filter out actual data. Subsequently, we
work on the required actual data in Q. Thus we do not have
to load the actual data we never require, unlike the eagerly
loaded database. To achieve this, we need to have specific
join orders.

Example. Query 1 (see Figure 2) expresses the short term
averaging task performed by seismologists while hunting for
interesting seismic events in a seismic file repository. After the
query is turned into a plan, usual compile-time optimizations
(e.g. pushing down selections and projections, etc.) are per-
formed. Join order is also determined. For this example, we

/I><1\ a m, m, /pq\ /pq\ m
m, a, m,_m, m, m,
(@ (b)

ma
123456 123

(@) (d)

Fig. 5. Applying extended rule set on the given join graph (a). R1 transforms
(a) to (b), R2 transforms (b) to (c), R3 & R4 transform (c) to (d).

assume a simple join order optimizer that takes only selections
into account. Hence, it first joins ' and D, the two tables with
selection predicates. After optimization, the initial query plan
might look like this:

§pa (0, (F) 246, (D))

’YAVG(D.sample_value) (

where p; and p; represent the conjunction of selection pred-
icates on tables F and D respectively, and projections are
ignored, for readability reasons.

Join Order. In general, traditional query optimizers might
end up with any kind of join order between each metadata
table m and each actual data table a. However, since we need
to guarantee that we process all metadata first, metadata tables
should be pushed down into one sub-tree (i.e. Qf) of the
relational query plan tree. Since the rest of the plan tree (i.e.
Qy) should only be executed after Oy completely evaluates,
we do not allow bushy plan trees in Qs. Figure 4(a) shows
an example initial query plan. Whereas Figure 4(b) shows an
example final plan we could end up with.

The arrangement of the join order is done by the join order
optimizer. It takes an initial relational query plan, a set of rules
to apply, a query graph [14] to know about join possibilities.
As a result it produces a query plan tree which is optimized
according to the given rules. Designing a join order algorithm
from scratch is not the main point of this work and is also
not necessary. We only extend the set of rules by classifying
edges and vertices of the query graph. For that we distinguish
between metadata tables and actual data tables (i.e. vertices)
and join predicates connecting them (i.e. edges). For simplicity

we use a coloring scheme. We color any vertex representing
a metadata table red, and all others black. Then we color any
edge between two red vertices red, any edge between two
black vertices black, and any edge between a red vertex and
a black vertex blue. Figure 5(a) shows a possible query graph
for the initial query plan shown in Figure 4(a).

We add the following rules to the optimizer’s set of rules:
R1) Join on red edges first before anything else.
R2) Only if necessary, use cross-products to join all red

vertices into one, before using any blue or black edges.

R3) Do not allow bushy plans containing black vertices.
R4) Join on black edges only if all other edges are used.

Figure 5 illustrates how the given query graph would
be transformed by applying the new rules. If a join order
optimizer is run with above extensions, it might produce a
join tree as in Figure 4(b). The red sub-tree of the plan could
be in any join order (here depicted as bushy). The black sub-
tree is in any linear join order (here depicted as right-deep).
Our rule-set was motivated by the need to avoid the worst
case, i.e., having to load all data for each query. The given set
of rules is minimal in the sense that for each rule there is a
query that requires this rule to avoid loading unnecessary data.
For example, R2 prevents the access to a; without exploiting
the metadata in ms.

Example. We reorder the joins to form Q. After applying
the set of rules, the logical query plan for Query 1 looks like
(G, (D) > (§>a.6p, (F)))

Y AVG(D.sample_value)

as all metadata tables are joined deeper than actual data tables
in the tree. Finally, we mark the tree branch Qf (here depicted
in bold face), so that we know where to break the execution.
The non-bold plan represents Q.

Physical Query Plan. After the logical plan optimization,
we also do optimizations on the physical query plan. For that,
we come up with new access paths. Access paths represent
ways to retrieve tuples from a table. In a relational database,
an access path is either a scan or an index-scan. We enrich
this set by adding three more access paths, namely result-
scan, cache-scan and chunk-access. The result-scan operator
accesses the result set of a query (sub-)plan. The cache-scan
operator accesses the data that was ingested from an external
file and kept in the cache. The chunk-access operator is
responsible for lazy loading of chunks. It extracts, transforms
(to comply with the database schema) and ingests actual data
from individual external chunks. We prefer the name “chunk-
access” for this operation because any one-chunk (e.g. one-
file) access strategy can be employed (e.g. full load or in-situ
access). Moreover we might decide to cache the results of
the chunk-access operator, to be accessed with the cache-scan
operator later. We integrated a recycler [6] approach into our
system as the caching mechanism for the lazily loaded chunks.

Example. To switch to the physical query plan, we place the
access paths. For this example, we use the base access path,
scan. Then the physical query plan looks like

’YAVG(D.sample_value) (GPZ (Scan (D)) > (Scan(S) > Gpl (Scan(F))))

where again the sub-plan in bold face depicts Q.

Run-time Query Optimization. To provide the “lazy”
loading functionality, for each actual data table a in A, we
also apply additional rewrite rules such as,

if feC,
chunk-access(f), otherwise
)
where C is the set of chunks that are cached in the database,
and each f is a chunk of interest. Data of the lazily loaded
chunks might be cached depending on the cache policy. By this
rewrite rule, our approach minimizes the number of chunks to
be loaded into the database. If found beneficial, further query
optimizations can be conducted by using rewrite rules such as
pushing down selections or groupings into unions, e.g.

cache-scan(f),
scan(a) - Ufe result-scan(Q) {

6y (cache-scan(f)),
if fec,

Gp (scan(a)) - Ufe result-scan(Qr) . (chunk access(f))
p -)

otherwise.

Moreover, if an in-situ access path is preferred (like
NoDB [15]) as the one-file access path, selections can even
be pushed down into the chunk-accesses and/or cache-scans.
They could also be designed as another access path that
the system has, in which case they can then be employed
if they are found beneficial by the usual query optimizers.
Furthermore, since these rewrite rules require the result of
Qy to be computed, we apply them between the first and
the second stage of execution, leading to this run-time query
optimization phase.

Example. In the first stage of query execution, only Qy is
executed. At the end of this stage, the files of interest are
identified, and collected as a list of file URIs. Say, there are
three of them for Query 1, denoted by fi, f>, and f3, of which
f3 is in the cache. During run-time query optimization we can
make use of the insight we gained in the first stage of the
query execution. To fully benefit from lazy loading, rewrite
rule 1 is applied by default. The resulting plan looks like

chunk-access(fi) U chunk-access(f2)
U cache-scan(f3)) >1Qf)

where result-scan(Qy) = {f1, f», f3}

The part of the plan that has already been executed, is
depicted in bold face. The non-bold plan now represents the
rewritten Q. In the second stage of query execution the
paused execution continues with Q;. First, non-cached required
chunks are loaded. Then the remaining operators are executed.
The query result is returned as usual.

Although not the case in Query 1, if a query browses only
metadata (i.e. does not refer to actual data, so T_1, 2, and 3),
then the first stage of execution is naturally enough and the
query is answered without any actual data ingestion.

This part of the work which provides “lazy” loading can also
be considered as further realization of the concept of just-in-
time access to data of interest, envisioned in [16] and [17].

’YAVG(DJampIe_value) (GFQ (

IV. INCREMENTAL METADATA DERIVATION

In the previous section we assumed that the derived meta-
data needed by the query is already available in the database.
However, eager loading of derived metadata actually means
eager computation of derived metadata (DMd) from given
metadata (GMd) and actual data (AD). This is actually ma-
terializing a view over the entire data. However, a part of
the actual data might not even be touched by the user. This
is actually similar to the reason of why we load actual data
lazily. Hence, similarly, we address this problem by computing
DMd lazily on-the-fly and incrementally materializing it. That
is, whichever DMd item we need, we compute them whenever
we need and save it in the database. This is because we can
further use it to filter out more chunks of actual data during
query processing. This actually, translates into incrementally
materialized views. There is already related work on partially
materialized views: [18], [19]. In this part of our work, we
integrate partially materialized views (by [18]) into our
system, so that it makes use of lazy loading (i.e. partial-
loading-aware), and it is exploited by the two-stage query
model in order to filter out chunks. Since [18] (and also
[19]) does not provide partial reuse capability, we sketch an
algorithm to provide that later in this section.

When a DMd table is created, the user specifies the DMd
attributes and describes how to compute them. We make use
of the primary key attributes of the DMd table to keep track
of which DMd items are already available in the DMd table
(e.g. window_station, window_channel, window_start_ts
values for our running example). We compute the required
DMd before running the query. Then the query is able to run
with two-stage query execution and benefit lazy loading. We
explain how to do this in this section.

When a query comes into the system, we apply Algorithm 1
to answer the query and also realize on-the-fly metadata
derivation, lazily. The algorithm consists of 7 steps. We explain
it while running on the Query 2.

First of all, we find out the type of ¢, according to the
types listed in Table L. If it is one of the types that does not
refer to any DMd table, then g does not require any DMd.
Thus, ¢q is ready for execution (Step 7). If g refers to at least
a DMd table, then we detect the predicates referring to the
primary key attributes of the DMd table in Step 2. We do this
by going through the predicates g has in the WHERE clause. If
we look at Query 2, we notice that it is a T_5 query, because
it uses windowdataview and also refers to the DMd table H.
Hence, we identify the predicates in Step 2:
H.window_station = 'FIAM’ AND
H.window_channel = ’'HHZ’ AND
H.window_start_ts >= 72010-04-20T23:00:00.000" AND
H.window_start_ts < 72010-04-21T02:00:00.000"

Note that the other two predicates on H are left out because
they are not predicates on a primary key. Thus, the result of
Step 2 defines a primary key space. In Step 3, we enumerate
all possible values in that primary key space (i.e. primary key
set referred by the query ¢, PSq). PSq becomes the pointer

Algorithm 1 On-the-fly Metadata Derivation
1: current query: g
@ Find out the type of q.
if it is not type 2, 3, or 5 then
Jump to Step @

AN

@ Find out the predicates referring to the primary key attributes
of the DMd table in g.

: @ Enumerate the PSq.

6

7: @ PSm is already materialized.
8: if PSq is covered by PSm then
9: Jump to Step .

10: (5) Find out the PSu.
11: PSu <~ PSq — PSm.

12: @ Compute the unavailable required DMd that is pointed by
PSu and insert into DMd table via a T_2 query.

13: @ Proceed with the execution of g.

to the DMd required by g. The PSq for Query 2 is:

window_station

window_channel

window_start_ts

FIAM

HHZ

2010-04-20T23:00:00.000

FIAM

HHZ

2010-04-21700:00:00.000

FIAM

HHZ

2010-04-21T01:00:00.000

There is also the queried primary key set that is already
materialized in the DMd table (PSm). PSm is the pointer to
the already available DMd predicates of Step 2 applied. For
the example, let’s assume one of the previous queries already
required DMd of the day 2010-04-20. Since DMd of that
day is already in the DMd table, the PSm for the example is:
window_station |window_channel |window_start_ts

FIAM HHZ 2010-04-20T23:00:00.000
In Step 4 we check if PSm covers PSq. If true, then g does
not require any DMd to be computed. Thus, ¢ is ready for
execution (Step 7). However, if false, we need to find out
what subset of PSq is not covered by PSm (Step 5). That
subset of PSq is the primary key set on which the unavailable
required DMd is dependent (PSu). That is the pointer to the
unavailable required DMd. Then the PSu for the example

becomes:

window_station | window_channel |window_start_ts

FIAM HHZ 2010-04-21T00:00:00.000
FIAM HHZ 2010-04-21T01:00:00.000

In Step 6 we compute what PSu points to and insert that
computed unavailable required DMd into the DMd table
referred. This requires us run a T_2 query, which use the
two stage query execution, and insert its results into the
DMd table. This might require to employ lazy loading as
well. After that, we proceed with the execution of g (Step 7),
because the required DMd for ¢ is in DMd table.

Since touching actual data might require lazy loading,
this might make lazy loading dominate the cost of DMd
computation. Kinds of DMd — which are not much costly to
derive — where that is the case are derived as extra together
with the required DMd. Thus, if we derive some metadata
for a specific window, then we derive all possible metadata
for that window. If the user do not want this, then he could
separate the part of DMd which he does not want to derive,

into other DMd tables. So, they could be only derived if those
other DMd tables are queried.

V. SYSTEM REALIZATION

We realized our ideas in MonetDB [20]. MonetDB is an an-
alytical memory-optimized DBMS based on columnar storage
that maps logical relation algebra (SQL) to its internal physical
column algebra MAL (“MonetDB Assembly Language”). In
addition to a rule-based relational query optimizer, MonetDB
also provides an optimizer infrastructure to rewrite MAL plans
both statically during query translation. We enabled dynamic
rewrite of MAL plans during query evaluation as well in
the MAL interpreter. This can be envisioned as similar to
self-modifying programs. Moreover, MonetDB has a layered
modular and extensible software architecture that facilitates
the extension of both the runtime functionality as well as the
optimizer functionality by adding new modules.

To realize our ideas for a two-stage query execution includ-
ing lazy loading, we extended MonetDB with three modules.
The Registrar handles eager loading of given metadata, while
the Compile-time Optimizer and Run-time Optimizer provide
the two-stage query execution including lazy ingestion of
actual data. While we introduced our paradigm generically on
the relational algebra level in Section III, the “natural” place
to realize it in MonetDB is it physical MAL algebra level and
related extensible optimizer framework.

1) Registrar: When a new file repository is registered with
the DBMS, the Registrar module iterates over all files in the
repository, extract the given metadata and (bulk-)loads it into
the respective tables (F & S in our seismology example).
Exploiting MonetDB’s multi-threaded architecture and multi-
core support, multiple files can be handled in parallel.

2) Compile-time Optimizer: The Compile-time Optimizer
takes care of splitting the query plan in two phases and creating
the required join order by implementing the 4 additional
rules introduced in Section III. Since MonetDB only considers
linear join plans, rule R3 is given by default. The remaining
rules could be realized by adjusting the scoring function of
MonetDB’s join-order optimizer. In addition, this optimizer
also ingests a call to the Run-time Optimizer into the generated
MAL query plan right between the two phases (Qr & Q). The
call receives the set of required actual data files as calculated
by phase Qf as argument (i.e. result-scan(Qy)).

3) Run-time Optimizer: Evaluation of the plan as produced
by the Compile-time Optimizer starts with phase Q that
evaluates the query parts that access metadata and produces a
set of required files. Once phase Qf is finished, the plan call
the Run-time Optimizer as described above. When called, the
Run-time Optimizer modifies the remainder of the query plan
as follows to load the required actual data. For each required
file, it inserts a statement into the MAL plan to load its actual
data into table D. In fact, we do not load all data into a single
table, but rather into a separate (temporary) table per file.
In this way, we can exploit MonetDB’s existing multi-core
support that (data-)parallelizes entire (sub-)plans rather than

individual operators. In this case, rather than slicing a large
base table, each file is a slice of table D.

Once done with all plan modifications, the Run-time Op-
timizer hands the control back to the MAL interpreter to
finish the query evaluation, starting with executing the inserted
statements to load the required actual data.

To achieve the caching of loaded actual data, we exploit
MonetDB’s existing intermediate caching component (the Re-
cycler [6], i.e., no extra implementation is required.

Note that, while this approach nicely follows the bulk
processing paradigm, it also inherits one of the drawbacks: the
parallelization strategy is static. In our implementation, the de-
gree of parallelization is determined by the number of semantic
chunks that are selected in the loading phase. Therefore, a low
number of selected chunks or skew among them can lead to
underutilization of the machines CPU cores. This problem can
be addressed by introducing the bulk processing version of a
volcano-style exchange operator [21] to mediate the different
degrees of parallelism in the loading and processing phases.
However, this either requires a vector-wise exchange operator
at runtime or a blocking, bulk-wise repartition operator. Since
both of these come with different trade-offs, we consider a
detailed, comparative study future work.

VI. EVALUATION

To evaluate our approach that is designed for big data in
chunks, we have chosen a scientific dataset, that contains (real)
seismic sensor data.

A. Experimental Setup

Our experimentation platform consists of a server machine
equipped with two 2.0 GHz 8-core Intel Xeon E5-2650 CPUs
with hyper-threading enabled (i.e., 32 hardware threads in to-
tal), 20 MB L3 cache per CPU, 256 GB RAM, and 5.4 TB disk
storage (3x SW RAIDO). The machine runs a 64-bit Fedora
20 (Heisenbug) operating system (Linux kernel 3.12.10). We
use MonetDB Feb-2012 version. All performance results are
average of 3 runs.

sf data of records per table
‘ files | segments | data
sf-1 | 40 days 160 2009 | 1,273,454,901
sf-3 | 4 months 484 7802 | 3,929,151,193
sf-9 1 year 1464 12566 | 11,912,163,036
sf-27 3 years 4384 74526 | 33,683,711,338
TABLE II

INGV DATASET

Datasets. We have taken our datasets from a repository of
mSEED files which are collected from the Italian National
Institute of Geophysics and Volcanology (INGV). We had
access to a repository that contains 3-years of data from 4
stations (INGV has 15-years of data from 450 stations).
We create 4 different datasets out of our INGV dataset with
different scale factors in order to see the scalability of our
approach. Table II shows characteristics of the datasets. They
reside on HDD. The extraction of (meta)data from mSEED
files is realized with the libmseed library [22]. That is, the

chunk-access operator is realized through a full-scan of a
chunk using the domain library.

Loading approaches. We compare the following 5 loading
approaches. Eager_plain refers to just plain loading of mSEED
files into the DBMS server directly. We extended MonetDB
with the required functionality to read mSEED files directly.
Eager_plain eagerly reads and loads the data from all given
mSEED files before querying can begin. Eager_index refers
to plain data loading plus indexing. In order to analyze the
costs and benefits of creating and using primary and foreign
key constraints, we consider constructing foreign key indices,
which serve as join indices. Eager_index creates the respective
indices after data loading. Eager_dmd refers to plain data
loading plus indexing, and plus eager DMd computation (i.e.
materializing a view). Since there are (actually 3 out of 5)
query types referring to DMd, it could be beneficial to compute
them as an initial investment. Lazy refers to our new 2-stage
query execution approach that does lazy loading. Initially,
the database server only extracts the metadata from all given
mSEED files and loads it into tables F and S. Only during
query evaluation in the beginning of the second stage of
execution the actual time series data (only if not already
cached) is extracted and loaded into a temporary data table
and required records are taken. Then it is cached using the
recycler cache. The granularity of the loading depends on the
strategy chosen for loading of a single chunk. In this case
the granularity is a file since we use the libmseed library to
extract data from each file. Moreover, Lazy does not create any
index on actual data. In addition, primary keys are all defined
with all loading variants. Generally, we rely on the DBMS’s
standard mechanisms to verify and enforce constraints. With
Lazy, we omit the foreign key constraints between the data
table and the metadata tables, to avoid constraint verification
whenever data is loaded (with each query). We consider this
”safe”, since all foreign key constraints in our framework are
purely on system-generated keys, and thus enforced by design.

Queries. We use queries that are for the seismological tasks
explained in Section II. We use 5 different queries, one for
each query type listed in Table I. Our T_1 query joins GMd
tables and has a selection predicate on station. Our T_2
query refers to the DMd table with selection predicates on
station, window_start_ts. Our T_3 query is the same as
the T_2 query except that it joins the DMd table with the GMd
tables. Our T_4 query computes some aggregate function on
the actual data values that are joined with GMd tables, with
a selection on both GMd and AD. Finally, our T_5 query
computes some aggregate function on the actual data values
that are joined with GMd and DMd tables, with a selection on
both GMd and DMd. We have 2 queries (T_4 and T_5) that
directly refer to the actual data table (T_2 and T_3 queries
only refer to AD indirectly through DMd). To see the effect
of having a selection predicate on the actual data, we provide
a selection on AD in the T_4 query, but not in the T_5 query.
As a side note, direct AD-AD joins are also possible in our
system using plain MonetDB query processing on top of our
lazy-evaluation framework. However, it happened to be that

Scale factors
sf 1 sf3 sf9 sf27 -
T T T T T T T T

1194°

T T T

DMd derlvanon Se—
indexing

MSEED to DB s

CSV {0 DB s
mSEED to CSV

100000 |-

79893.167

80000

60000

— 3G 464 | 784

Time in seconds

40000

m— 37917.987

25351.626

20000

w——] 6091.434

-1339..047
+1831.424
>1226.200
4709.561

= 6998.811
[24.425
-3910A328

90:

_11140.0 4

%, F79.098

0 L L1
N 55
K o &’/ e§° & X 5}» \@@ S \q@ & 9\0 Qe’ < \\ & S F LS
S sS g (S0 S e @v@v $ 8’ S S
ng S 5 éz,% S5 Q?q S & S e”’% S5 & oS

Loading approaches

Fig. 6. Loading

they did not appear in our real life scenario.

B. Loading

Table III shows the size characteristics of the datasets: The
size of the original mSEED files, the CSV files generated
by Eager_csv (which writes mSEED data into CSV files and
loads the CSV files with COPY INTO statement of MonetDB),
the size after plain loading into MonetDB, the additional
storage required for the primary and foreign key indexes,
and the size of the loaded metadata only in the Lazy case.
Due to decompression, explicit materialization of timestamps,
the CSV files are much larger than the mSEED files. An
interesting point is that our approach is more space-efficient
than eager approaches. The amount of total data stored in the
data sources and in the database is significantly less for the
lazy case than that of the eager cases.

Figure 6 breaks down the initial investment costs into
extracting data from mSEED files to CSV files, bulk loading
data from CSV files into the DBMS, loading the data directly
from mSEED files into the DBMS, creating primary and
foreign key indexes, and computing and saving all DMd (i.e.
as a materialized view).

The results confirm that although Lazy extracts metadata
from all provided mSEED files, extracting only the metadata
is orders of magnitude faster than extracting and loading all
data. Also, Eager_plain is significantly faster than Eager_csv,
mainly due to avoiding expensive serialization to and parsing
from a textual (CSV) representation. Finally, creating primary
and foreign key indexes more than doubles the preparation
times for the Eager variants.

st size
‘ mSEED || CSV | MonetDB | +keys || Lazy
sf-1 1.3GB || 455GB 23.7GB | 189GB || 1.3MB
st-3 4.1GB || 139GB 73.1GB | 58.5GB || 1.7MB
st-9 || 12.3GB || 429GB 222GB | 176GB || 2.1 MB
sf-27 || 36.0GB 1.2TB 627GB | 502GB || 6.3MB
TABLE III

INGYV DATASET SIZES

C. Domain Query Performance

We provide an upper and lower bound for single query
(taken from domain experts) running times by providing

results for both “cold” (right after restarting the server with
all buffers flushed) and “hot” (with all buffers pre-loaded by
running the same query multiple times after another) runs,
respectively. For these experiments, we use the queries as they
are typically used by seismologists. So, each type of query
selects (the same) 2 days of data from (the same) one station,
except T_1 query, which only selects GMd of one station and
computes an aggregate. We experiment query performance of
all types of queries with different scale factors on data loaded
with different loading approaches. Figures 7a, 7b, 7c, 7d, 7e
show the running time of each type of query, respective to
their type number. T_1 query performance is in the same
ballpark for all loading approaches and all scale factors,
because there is just the (small) metadata being processed. For
that reason plus the space limitation, we will omit results of
the T_1 for next experiments. T_2 and T_3 queries running on
Eager_dmd outperform Lazy by orders of magnitude. Query
performance on Eager_dmd is in the order of milliseconds for
those queries, which just returns values from the DMd view
already materialized. This also helps Eager_dmd outperform
querying on Eager_index for T_5 query for all scale factors.
T_3 query give the same insight as T_2 query. It runs only a
bit slower than the T_2 query in all scale factors, just because
there is an additional join with GMd tables, which are rather
small in size. For T_4 queries Eager_index and Eager_dmd
perform similarly because the query does not refer to DMd.
T_4 query performance on Lazy come to same ballpark with
that of Eager_dmd, after being outperformed for T_2 and T_3
queries. For T_5 queries Lazy finally provide better query
performance than Eager_dmd, because it filters out actual data
in most of the files before the joins between metadata tables
and actual data table.

The benefit of exploiting foreign key indexes during query
processing is visible. Eager_index always perform better than
Eager_plain because all queries have joins. It pays off in a
couple of queries, since constructing the join index is actually
computing the join itself. However, the benefit is rather small
for T_4 query, such that the investment pays off only after
many queries, because T_4 query has a selection on actual
data which limits the amount of data to be processed.

For sf-1 and sf-3, dataset plus the index completely fit in
the main memory. For sf-9 either dataset or the index hardly
fit in main memory. This makes Eager_plain and Eager_index
querying roughly 10 times slower while scaling from sf-3 to
sf-9 (though scale factor is 3 times greater) in running times
of queries from T_2 to T_5 except T_4. This is again because
T_4 query has a selection predicate on actual data. T_2 and
T_3 queries even does not refer to actual data in the first place,
although they have to process it to compute the DMd they refer
to. For scaling from sf-9 to sf-27 it even gets worse for T_2,
T_3, T_5 queries getting roughly 25 times slower. The reason
is that neither the dataset nor the index fit in the main memory
for sf-27, which degrades the benefit of the index significantly.

In contrast, lazy does not get affected by the scale factor.
That is because each query is the same for all scale factors
here. Thus, it has to load lazily the same amount of external

=)

e

o
2

time in seconds (logscale)

10000

1000

100

=}
S
T

time in seconds (logscale)
o
T

e
T

o
o

10000

1000

100

10

1

time in seconds (logscale)

0.

0.0

10000

1000

time in seconds (logscale)
° - 3
- - o o

o
2

100000

10000

time in seconds (logscale)
o
T

S
T

Fig. 7.
mance

1000

=}
S
T

T
COLD:
eager_plain
k- eager_index
eager_dmd s
Lazy we—

HOT:
eager_plain —
eager_index e

eager_dmd s

Lazy e

1 I

L
||\I|||
sf-1

(Aaws
sf-3
scale factor

(a) T_L

sf-9 sf-27

T
COLD:
eager_plain
eager_index
eager_dmd s
Lazy e

0 |

0 |

0

HOT:

eager_plain me—
eager_index e

eager_dmd s
Lazy wesss

T

sf-3

L
sf-9 st-27

scale factor

(b) T_2

T
COLD:
eager_plain
eager_index
eager_dmd s
Lazy e

0 |

0 |

0

HOT:

eager_plain s—
eager_index e
eager_dmd s

—

“Laz

0 |

0k

1k

1k

1I‘I

sf-1

sf-3

L
sf-9 sf-27

scale factor

(c) T_3

T
COLD:
eager_plain
F eager_index
eager_dmd s
Lazy e

HOT:
eager_plain m—

eager_index e
eager_dmd s
Lazy s

sf-1

sf-3

scale factor

(d) T_4

L
sf-9 sf-27

T
COLD:
eager_plain
eager_index
eager_dmd s
Lazy we—

HOT:

eager_plain s—
eager_index e
eager_dmd s

—

“Laz)

T

Representative Upper and Lower Bounds for Single Query Perfor-

sf-3

L
sf-27

scale factor

() T_5

data. Since queries ask for 2 days of data from one station,
Lazy has to load only 2 mSEED files lazily. Then it only has to
process data of 2 mSEED files during the joins and afterwards.
In conclusion together with the loading, up-front preparation
time for the database is reduced by orders of magnitude,
while query performance is not affected by this. What can
affect performance of queries on Lazy is the selectivity of the
queries, the effect of which we measure in the next subsection.

D. Data-to-insight Time

To vary the selectivity of the queries on the entire data
space and get proportional amounts of data being selected
for various selectivity levels, one need to have data that is
uniformly distributed over different values of the metadata
attributes. This might not be usually the case with a real
dataset, as it is not with the INGV dataset. Not every station
has uniformly distributed data over a specific time period.
However after some digging into we have seen that one of
the stations called “FIAM” has somewhat equally distributed
data over its associated files. Thus, we have created another
dataset (to be called FIAM dataset) which is roughly quarter
of the size of the original dataset (i.e. it spans 3 years again
but contains data from one station only). We still preserve the
scale factoring (i.e. the entire FIAM dataset is sf-27). We use
this dataset throughout the rest of the experiments.

We remove all selection predicates and projections from the
queries, except the range predicate on the time for each query,
which we will vary to change query selectivity over data space.

Figure 8 shows the data-to-insight time over 4 different
loading approaches for sf-1 and sf-27 varying the query
selectivity for running T_4 and T_5 queries. Queries are run
as the first query after the preparatory effort (i.e. data-to-
insight time). Apparently, results for 0% selectivity is the time
spent during the preparation of different loading approaches.
Additionally, T_2 and T_3 queries show similar patterns to
T_5 query, so we omitted their graphs for space limitations.

The T_4 query performance with Eager_index and Ea-
ger_dmd show the same pattern with difference of index
building time, whereas the curves completely align for T_5
query — except at the point of 0% as expected. This is because
T_5 query on Eager_index has to compute the DMd as extra.
Similarly T_5 on Eager_plain has to compute the DMd too,
but without making use of the foreign key indexes. That’s
why, it takes a much longer running time. Eager_plain curves
lying always under the Eager_dmd curves apparently show us
computing DMd without the indexes is faster than constructing
indexes plus computing DMd. But, of course Eager_dmd
would easily benefit if we have more number of queries.

The running time of a query loaded sf-27 database with
Lazy approach goes up more steeply towards the high selec-
tivity levels. These are due to the fact that the main memory
is becoming the bottleneck with the high selectivity because
the entire dataset has to be loaded lazily during the query
execution. Moreover, independent of the scale factor, the entire
dataset is processed without any join indexes on Lazy (unlike
the Eager_index and like the Eager_plain). This explains why

700

eagér_dmd —-— e‘ager_p\a‘in - 800 | eagér_dmd —-— e‘ager_p\a‘in -
600 [eager_index == lazy - eager_index == Iaiy/‘
2500 %700
|5 €600 [=
§ 400 8500 .
£300 008/
o o
Eono | 4 200
f 200 | 4
100 100 %
0 ’ L L L 0 L L L L
0 20 40 60 80 100 0 20 40 60 80 100

query selectivity (%) query selectivity (%)

(a) T_4 query, sf-1 (b) T_S5 query, sf-1

30000 T T T T
eager_dmd ==

T T
. eager_plain ==
25000] 50000 eager_index =ii= lazy
8 ___—=—1 g4o000
2 20000 2
o o
2 | eager_dmd == eager_plain == @ 30000 | -
E 15000 eager_index == lazy E
£ 10000 4 220000y]
5000 / 10000
f———
0 N I I 0 1 I I I
0 20 40 60 80 100 0 20 40 60 80 100

query selectivity (%)

(c) T_4 query, sf-27

query selectivity (%)
(d) T_5 query, sf-27

Fig. 8. First query performance for various query selectivity levels. All
experiments use the FIAM dataset.

Lazy curve end up nearly at the same running time with that
of Eager_plain. So, Lazy behaves similar to Eager_plain for
high selectivity levels. This justifies that our approach is not
designed for high selectivity levels.

The interesting point is, even firing a first query with 100%
selectivity, Lazy still provides a shorter data-to-insight time
than Eager_index and Eager_dmd approaches. With the rest of
the selectivity levels, it has even shorter data-to-insight time.
However, since the actual first query running time is shorter
for Eager_index and Eager_dmd, this gives them advantage
over a workload of queries, the effect of which we measure
in the next subsection.

E. Workload of Queries

We use the same queries from previous experiments with
a fixed selectivity of 2.5%. We vary the workload selectivity
(i.e. data space covered by workload divided by data space)
between 0 and 100%. Workloads has 100 and 200 queries, to
see how number of queries affect the cumulative performance
as well. The workload queries are randomly distributed over
the workload space and we make sure that the workload
space is fully covered. As previous experiments, the workload
is run after the preparation effort. Therefore, 0% selectivity
represents the time spent in preparation. Figure 9 shows total
workload execution times over 2 different loading approaches
(Lazy and the best of 3 eager approaches depending on the
query type) for sf-1 and sf-27 for running T_3 and T_4 queries.
T_5 and T_2 query has a similar pattern as T_3, so we present
T_3 query for these experiments. Furthermore, we limit the
size of the recycler cache holding the lazily loaded files to the
size of main memory.

The eager approach has very similar workload performance
over various workload selectivity. For T_3 query it just returns
an item from the materialized view already computed. For
T_4 query, it takes advantage of the selection predicate on

@
=3
15}

NI
S 9
& o

cumulative workload time in seconds

(X
S
S

n
=1
S

w
eager_dmd-200q ==

cumulative workload time in seconds

300 [lazy-200q ==
eager_dmd-100q == 200 lazy-100q
100 lazy-200q == | 100 eager_index-200q ==
lazy-100q eager_index-100q ==
0 - L L N 0 P L ! N
0 10 20 40 60 80 100 0 10 20 40 60 80 100

workload selectivity (%) workload selectivity (%)

(a) T_3 query, sf-1 (b) T_4 query, sf-1

w

25000

25000 —T T T T

y e = = =

eager_dmd-200q ==
20000 [~ eager_dmd-100q == . .
lazy-200q ==
lazy-100q A k

20000

eager_index-200q ==
eager_index-100q == T
lazy-200q ==
lazy-100g

15000 15000

10000

5000

o) - L L L
0 10 20 40 60 80 100
workload selectivity (%)

(c) T_3 query, sf-27

10000

5000

O 1 1 1 1 1
0 10 20 40 60 80 100
workload selectivity (%)

(d) T_4 query, sf-27

cumulative workload time in second:
cumulative workload time in seconds

Fig. 9. Workload performance for various workload selectivity levels. All
experiments use the FIAM dataset.

the actual data to keep a low cumulative workload time.
Whereas our approach provide significantly better workload
performance for low workload selectivities (roughly 5 times
faster for 20% on sf-27).

As we have observed on results in Figure 8 that com-
puting DMd without the indexes is faster than constructing
indexes plus computing DMd. However, here we see that T_3
query running on sf-1 with Lazy loading approach, for 100%
workload selectivity, the cumulative workload time is greater
than Eager_dmd loading time (~500s). This is due to the
parallelization strategy being static, as mentioned in Section V.
If we increase the scale factor to sf-27, for 100% workload
selectivity, the Lazy approach cumulative workload time is
a lot smaller than Eager_dmd loading time. This is because
with the sf-27 queries having the same query selectivity with
sf-1 queries, we load much more number of mSEED files
during the query execution of Lazy. Hence this leads to a
better parallelization over files. The same reason also causes
the cumulative workload time of T_4 queries on sf-1 database
with Lazy approach to quickly get closer to and even over
the Eager_index workload times towards a higher workload
selectivity. This is through running time of each individual
query being increased in the workload. At the same time,
this explains why Lazy already loses advantage with only 200
queries. As a result Lazy does not help much with smaller
scale factors, unless the static parallelization strategy is left.

The interesting point is that, with data getting bigger
our approach becomes more advantageous, even with 100%
workload selectivity. As expected, increasing the number of
queries benefit the eager approach. However, the benefit de-
grades towards a higher scale factor. For T_4 query on sf-27
database, the number of queries per workload can be increased
orders of magnitude, while Lazy still having better workload
performance than Eager_index.

In general, our approach provides better performance with
smaller query and workload selectivity levels. Query selectiv-
ity has a bigger effect on the overall performance. Keeping the
query selectivity lower in most of the queries provides a better
workload performance, even with 100% workload selectivity.

VII. RELATED WORK

To the best of our knowledge, we have not seen any work
targeting the “chunked data” to reduce the data preparation
costs — though, there is chunked/blocked indexing structures
(e.g. zone maps, min-max indices, etc.), however they add
up to the data preparation effort. In general, the problem of
exploring external data and data ingestion in particular, has
received significant attention from the database community.

Data exploration typically involves a lengthy sequence of
queries which dynamically adapts based on how the scientist
interprets the data [23]. Although not all work on data explo-
ration focuses on data-to-insight time (e.g. [24]), it is one of
the key points of interactive data exploration. Beginning with
this motivation, several in-situ processing papers have come
out [15], [25], [26], [27] to provide dynamic and selective
load of data from a file with zero initialization overhead
and performance benefits for subsequent queries. However,
external tables and the provided in-situ processing techniques
are for single file accesses and/or does not exploit the chunked
nature of the data if any, whereas we work on the level
of file repositories (or in general chunked data). Hence, the
approaches are orthogonal and even complementary (e.g., a
NoDB-like in-situ processing approach can be incorporated
into our system as an accessor for a single chunk, in order to
provide sub-chunk access granularity).

Instant loading [28] is a CSV loading approach that al-
lows scalable loading at wire speed. This is achieved by
a synchronization-free task-parallelization (through chunking)
and data-parallelization (through SIMD instructions) of pars-
ing, deserialization, and input validation. The addressed prob-
lem is fundamentally different. Since we do not touch the
internal mechanisms of actual physical loading process, but
only change the timing of it, we still need to do parsing,
deserialization and input validation.

Abouzied et al in [29] present a system that fills a database
with external data in an access-driven fashion. As users’
Hadoop jobs access and parse the data for processing, they
piggyback on Hadoop jobs and load the data incrementally
that is being accessed. However, the user, after copying into
HDFS, has to manually specify in the Hadoop job the part or
chunks of the dataset he wants to process, because no metadata
is taken into account and exploited.

Our approach looks attractive for distributed setups. In
principle, our approach could be merged with the MapReduce
paradigm and can be implemented in a system like Hive [30]
or other SQL-on-Hadoop systems. Firstly, such systems might
assume a common-format but no chunking of data, which is
not always appropriate for our target domains (e.g. scientific
data processing). Secondly, we believe that this problem is

orthogonal since any kind of scale-out can happen on top of
single nodes that apply our approach.

Scientific middleware solutions, where databases are used
only for metadata querying and then middleware application
finds and opens the resulting files for further analysis, came
onto stage to help with standardization of file structures and
the metadata management (e.g., [8], [9], [10]). Although they
exploit metadata by querying it explicitly, they do not offer
in-database processing of the actual data. SciQL [31] on
MonetDB and SciDB [32] are for processing of array data.
Query processing and optimization exploit array semantics.
However, loading of external data is an up-front step.

VIII. FUTURE WORK

While our prototype is functional, useful and available in
open source, there is still potential for improvement. Let us,
therefore, discuss future work before concluding.

Other Sources. We designed our system to be extensible
to other kinds of data sources (e.g. image and video datasets,
datasets of other scientific domain like astronomy, life sci-
ences, etc.). As future work, we can go further, since much
“big” data is not available in files but behind other kinds of
interfaces. A particularly interesting interface is HTTP which
could open up document-oriented databases such as Redis or
web-based APIs like Flickr. Another useful interface is HDFS
which holds much of today’s “big” data.

Smarter Caching. To provide good performance for repeti-
tive accesses to a data chunk, we strongly rely on MonetDB’s
existing intermediate caching component (the Recycler [6]).
However, this component implements a plain LRU replace-
ment policy and only indexes cached results when they are
used for (hash-)joins. By extending the Recycler with a more
sophisticated cost model, replacement and indexing decisions
could be driven by loading costs as well as usage statistics.

Approximative Query Answering. One of the negative as-
pects of the lazy loading is that it shifts costs from preparation
time to query time. When many chunks are selected, this can
lead to unacceptable waiting times: a user might be willing to
accept eight hours of preparation during the night rather than
15 minutes while waiting for a query result. To mitigate this
problem, our approach can be combined with techniques of
approximative query answering such as sampling.

IX. SUMMARY AND CONCLUSIONS

With the increasing volume of “big” datasets, data prepa-
ration (storage, integration, indexing, ...) is becoming increas-
ingly costly. To address this problem, we developed a data
management system that limits the preparation to the data
deemed relevant by the user. We use the user’s queries to
determine which data items are relevant and the metadata
about semantic chunks of data to load chunks that contain data
items of interest on-demand. To create the illusion of a fully
populated database, we make each of the components of an
existing data management system (MonetDB) partial-loading
aware: we extended the query plan generator, the optimizers
as well as the kernel itself. The result is a system that

provides a unified view on internal as well external data and
exploits the characteristics of the access paths where possible.
While this approach still leaves potential for improvement
using orthogonal techniques such as sophisticated cost-models
or parallelization strategies, we achieve orders of magnitude
lower data preparation times at competitive query evaluation
times for a real-life scientific data management application.

REFERENCES

[11 J. P. Dijcks, “Oracle: Big data for the enterprise,” White Paper, 2012.

[2] J. Gray et al., “Scientific Data Management in the Coming Decade,”
SIGMOD Record, vol. 34, no. 4, 2005.

[3] T. Jorg and S. DeBloch, “Towards generating etl processes for incre-
mental loading,” in IDEAS 2008. ACM, pp. 101-110.

[4] S. Idreos, M. L. Kersten, and S. Manegold, “Database Cracking,” in
Proc. CIDR, Asilomar, CA, USA, January 2007.

[5] J. Zhou, P--A. Larson, J. Goldstein, and L. Ding, “Dynamic materialized
views,” in ICDE, 2007, pp. 526-535.

[6] M. Ivanova, M. Kersten, N. Nes, and R. Gongalves, “An Architecture
for Recycling Intermediates in a Column-store,” in SIGMOD, 2009.

[71 A. Ailamaki, V. Kantere, and D. Dash, “Managing scientific data,”
Commun. ACM, vol. 53, no. 6, pp. 68-78, Jun. 2010.

[8] E. Stolte et al., “Scientific data repositories: Designing for a moving
target,” in SIGMOD 2003.

[9] P. Baumann et al., “The multidimensional database system RasDaMan,”

SIGMOD Rec., vol. 27, no. 2, pp. 575-577, 1998.

V. Megler et al., “Finding haystacks with needles: ranked search for

data using geospatial and temporal characteristics,” in SSDBM 2011.

A. Shoshani et al., “Characteristics of scientific databases,” in VLDB.

Morgan Kaufmann Publishers Inc., 1984, pp. 147-160.

Standard for the Exchange of Earthquake Data. IRIS, February 1988.

Y. Kargin, H. Pirk, M. Ivanova, S. Manegold, and M. Kersten, “Instant-

On Scientific Data Warehouses — Lazy ETL for Data-Intensive Re-

search,” in BIRTE, 2012.

J. D. Ullman, Principles of database systems, 1985.

I. Alagiannis et al., “NoDB: Efficient Query Execution on Raw Data

Files,” in SIGMOD, 2012.

M. Ivanova, M. Kersten, and S. Manegold, “Data vaults: A symbiosis

between database technology and scientific file repositories,” in SSDBM

2012.

M. Ivanova, M. Kersten, S. Manegold, and Y. Kargin, “Data vaults:

Database technology for scientific file repositories,” CiSE, vol. 15, no. 3,

pp. 3242, 2013.

J. Zhou, P.-A. Larson, J. Goldstein, and L. Ding, “Dynamic materialized

views,” in ICDE 2007. 1EEE.

G. Luo, “Partial materialized views,” in ICDE 2007. 1EEE.

(2015) MonetDB, Column-store Pioneers. www.monetdb.org.

G. Graefe, Encapsulation of parallelism in the Volcano query processing

system. ACM, 1990, vol. 19, no. 2.

“The Mini-SEED Software Library, libmseed.” 2015.

S. Idreos et al., “Here are my data files. here are my queries. where are

my results?” in CIDR 2011.

T. Sellam et al., “Meet charles, big data query advisor,” CIDR 2013.

S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, “Parallel data

analysis directly on scientific file formats,” in SIGMOD 2014.

Y. Cheng and R. Florin, “Parallel in-situ data processing with speculative

loading.” SIGMOD, 2014.

M. Karpathiotakis et al., “Adaptive query processing on raw data,” in

VLDB, 2014.

T. Miihlbauer, W. Rodiger, R. Seilbeck, A. Reiser, A. Kemper, and

T. Neumann, “Instant loading for main memory databases,” VLDB, 2013.

A. Abouzied et al., “Invisible loading: Access-driven data transfer from

raw files into database systems,” ser. EDBT *13.

A. Thusoo, J. S. Sarma et al., “Hive: a warehousing solution over a

map-reduce framework,” VLDB, 2009.

Y. Zhang et al., “SciQL: bridging the gap between science and relational

DBMS,” in IDEAS '11. ACM.

M. Stonebraker er al., “Requirements for Science Data Bases and

SciDB,” in CIDR, 2009.

[10]
(11]
[12]
[13]
[14]
[15]

(16]

[17]

(18]
[19]
[20]
[21]

[22]
[23]

[24]
[25]

[26]
(27]
[28]
[29]
[30]
(31]

[32]

