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Abstract—Over the years, data management has diversified
and moved into multiple directions, mainly caused by a sig-
nificant growth in the application space with different usage
patterns, a massive change in the underlying hardware char-
acteristics, and–last but not least–growing data volumes to be
processed. A solution matching these constraints has to cope
with a multidimensional problem space including techniques
dealing with a large number of domain-specific data types, data
and consistency models, deployment scenarios, and processing,
storage, and communication infrastructures on a hardware level.
Specialized database engines are available and are positioned
in the market optimizing a particular dimension on the one
hand while relaxing other aspects (e.g. web-scale deployment with
relaxed consistency).
Today it is common sense, that there is no single engine which can
handle all the different dimensions equally well and therefore we
have very good reasons to tackle this problem and optimize the
dimensions with specialized approaches in a first step. However,
we argue for a second step (reflecting in our opinion on the
even harder problem) of a deep integration of individual engines
into a single coherent and consistent data management ecosystem
providing not only shared components but also a common
understanding of the overall business semantics. More specifically,
a data management ecosystem provides common “infrastructure”
for software and data life cycle management, backup/recovery,
replication and high availability, accounting and monitoring,
and many other operational topics, where administrators and
users expect a harmonized experience. More importantly from
an application perspective however, customer experience teaches
us to provide a consistent business view across all different
components and the ability to seamlessly combine different
capabilities. For example, within recent customer-based Internet
of Things scenarios, a huge potential exists in combining graph-
processing functionality with temporal and geospatial information
and keywords extracted from high-throughput twitter streams.
Using SAP HANA as the running example, we want to demon-
strate what moving a set of individual engines and infra-structural
components towards a holistic but also flexible data management
ecosystem could look like. Although there are some solutions for
some problems already visible on the horizon, we encourage the
database research community in general to focus more on the Big
Picture providing a holistic/integrated approach to efficiently deal
with different types of data, with different access methods, and
different consistency requirements–research in this field would
push the envelope far beyond the traditional notion of data
management.

I. INTRODUCTION

The last years of database research and development have
been dominated by some major trends, that shifted the focus of

the academic community as well as the attention of economic
actors and stakeholders of the monetary market onto data
management. Topics like Main Memory Processing, Big Data
analytics, No-SQL, and Internet of Things (IoT)–just to name
the most prominent representatives–sparked a huge number of
activities in an area which was dominated by the traditional
database paradigms (relational data model with ACID consis-
tency) for decades. A huge variety of applications triggered
re-thinking all aspects of the data management problem. For
example, modern applications require specialized support for:

• different data types: This subsumes all variations from
structured via semi- to un-structured data sets with
application specific support for image and video pro-
cessing as well as comprehensive methods for efficient
handling of temporal and geospatial data.

• different consumption patterns: This requirement
ranges from traditional OLTP to massive OLAP
queries over large data sets, more and more as part
of iterations with complex data analysis tasks.

• different data models: A multitude of data models as
alternatives to the classical relational model has been
established by the applications; examples comprise
wide-table, graph-centric, or document-centric models
but go as far as tensor models for scientific applica-
tions.

• different and application-controlled notions of consis-
tency: Again, the full spectrum from ACID to almost
zero DB-related consistency support is required from
a modern application portfolio.

• different application and query language: NoSQL-
query languages allow to express complex analytical
tasks more naturally; Also, more and more domain-
specific languages (DSLs) are required to be directly
supported by the data management layer.

• different levels of scaling: The choice of deployment
options ranges from large scale-up scenarios via mod-
est standard IT center compatible scaling to massive
scale-out scenarios in hosting environments.

• different hardware capabilities: HW trends have a
tremendous impact on storage options (main memory-,
flash-, disk-, or even non-volatile RAM-based) as well
as compute infrastructure (CPU, GPU, FPGAs, ..)
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and high-speed interconnects with opportunities like
remote DMA.

A. Reactions from the DB Community

With this new interest and the possibility to provide busi-
ness value for customers (lower TCO as well as increase of
application opportunities), a plethora of new database engines
has evolved striving to tackle some of the arising challenges.
Especially “NoSQL” approaches try to question the traditional
design decisions in multiple directions, for example by re-
thinking traditional consistency models, by favoring extreme
scale out mechanisms, and providing non-relational data mod-
els like JSON or pure key-value stores. Representatives like
MongoDB, CloudDB, or Cassandra are already quite popular
and are attracting more and more attention of application de-
velopers looking for flexibility beyond the traditional relational
model. Coming from the other end of a priori schemaless
dataset, graph engines distinguish themselves mainly in storing
individual data items (entities with potentially individual entity
types) as nodes in graph structures with edges to represent
individual relationships between the entities. With respect to
consistency and scale out, current graph engines like Neo4j,
Allegrograph, etc. behave like standard relational systems.

Recently, many projects in the Hadoop ecosystem like
Spark/Splash, Stinger, HBase, Hadapt, Hive and many others
received a lot of attention. These engines either share the
persistency model (HDFS), the runtime environment (MapRe-
duce/TEZ), the resource management services (Yarn) or com-
binations of it. As these systems can partially cooperate and
exchange data on a technical level, common query execution
and semantic operations have to be provided by the application
for example by providing scenario-specific MapReduce jobs.
Although a common technical infrastructure exists, a common
query processing infrastructure (with local as well as global
components) allowing a seamless integration of languages
beyond SQL, a common repository for higher-level business
concepts (again with local derivatives), or even a common
lifecycle management infrastructure allowing to consistently
roll individual software components (application as well as
system software) forward to new releases is missing.

B. SAP HANA Ecosystem

With SAP HANA we take the first steps towards our goal
of an integrated as well as dynamically deployable data man-
agement ecosystem. We strive to combine different engines,
data models, and data processing paradigms and deliver one
solution for the application which logically consists of one
execution runtime, one persistency, one infrastructure and one
administration experience. We carefully separate between a
physical storage model level and a logical data model level. For
the storage model we rely on a flexible interpretation of column
groups as a foundation for different logical data models like the
standard relational model, graph-like or tensor-based models
potentially coming along with individual languages which are
mapped to a common SQL-like internal query language for the
storage layer. While most of the engines deployed within the
SAP HANA ecosystem are based on the main-memory centric
column store of SAP HANA and implicitly take advantage
of its superior performance characteristics, the ecosystem also

comprises external systems like “R” or a native HDFS/YARN-
integration using SAP HANA.

Figure 1 illustrates the impact of novel application domains
like IoT in addition to traditional OLTP/OLAP-style data
processing. While SAP HANA is optimized to run OLTP
and OLAP workloads in extreme speed, data sets coming in
from sensors and other devices may initially be loaded into
Hadoop-based environments and further propagated within a
data refinement process into the In-Memory structures. In the
opposite, transactional data may age and–guided by business
rules–moved to extended storage and potentially into HDFS-
based systems.

Figure 1. Positioning of the SAP HANA Data Management Ecosystem

C. Outline and Goal

In the following we will first give a summary of the
state of SAP HANA with respect to functional extensions
and integration of application context. We will then provide a
detailed outlook on the upcoming massive scale-out extension,
SAP HANA SOE (Scale-Out Extension, codename “Velocity
Engine”) as another specialized engine within the SAP HANA
family. We will also outline the integration of Hadoop into
the HANA ecosystem. The paper will close with an in-depth
look into different real world scenarios, where an efficient
combination of different engines is crucial for the customer
use case.

The overall goal of the paper is to convey the message
that a modern data management system has to tackle at least
three aspects to be successful with respect to modern data
management challenges:

• providing a variety of specialized data structures and
embedded algorithms: Within SAP HANA, we pro-
vide a large number of non-traditional data types with
highly-tuned algorithms. The portfolio ranges from
semantic text analytics to scientific computations on
matrices as outlined in Section II.

• listening to the application: The data management
layer can extremely benefit from application knowl-
edge to improve performance significantly. We will
provide some examples in Section III.
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• orchestrating highly specialized data engines running
in different environments ranging from edge cloud
devices (e.g. mobile devices, base stations of cellu-
lar network to large Hadoop-based installations), see
Section III.

II. SAP HANA: BEYOND RELATIONAL DATA
PROCESSING

As motivated, a modern web-scale data management
ecosystem is based on two pillars. First, the ecosystem has
to provide a rich set of functionality and a tight integration
of application knowledge–the pure relational model with plain
SQL as the query language does no longer satisfy the huge
variety of different use cases and resulting requirements.
Second, the ecosystem requires a high-performing as well
as scalable implementation of this functionality in order to
be useful for Big Data scenarios. Before diving into some
architectural details of the SAP HANA SOE, we list specific
functional extensions already existing in the SAP HANA
system as the foundation for an efficient software stack for
business applications.

In 2010 SAP announced the in memory column store as the
foundation for SAP’s data management and future application
development. SAP HANA is a fully ACID compliant relational
database system with all the state of the art capabilities like
backup, recovery, and HA mechanisms [1], [2]. Figure 2 shows
some core components of the HANA system. As it can be seen,
the system comprises multiple data processing engines to refine
data streams coming from different “raw” execution engines.
The section will highlight some of the non-standard processing
engines like text, graph, or capabilities for processing time
series data efficiently. Figure 2 also gives an impression of
the current execution engines ranging from the main-memory
based engines via the extended storage engine (based on IQ
technology) to a comprehensive federation framework (SDA =
smart data access) in order to reach out to a huge variety of
external data sources.

Figure 2. SAP HANA System

A. Main Memory Column Store: Bringing OLAP and OLTP
together

By loading data completely into main memory, applying
multiple compression techniques and optimizing for multi-
core architectures, the HANA system achieves data access and
performance characteristics, which allows to recombine OLTP

and OLAP workloads into one single system. Contrary to pre-
vailing methods, the main memory column store is also used
for heavy transactional load, which has proven to be by far fast
enough in thousands of customer installations. Hasso Plattner
and others have already outlined in [3] that read operations
massively dominates write operations in enterprise business
systems which is becoming even more evident if redundant
system tables are removed. The combination of both workloads
in one system allows to avoid the expensive replication costs
between OLTP and OLAP systems and provides access for all
analytic questions in real time.

B. Data Mining: Next Level of Analytics

We embedded some critical data mining features directly
into the column store engine. Examples are distributed basket
analysis and a variety of forecasting algorithms. In addition,
access to the system R and other data mining providers like
SAS are applicable directly out of the system in order to tap
the sheer amount of algorithms and methods already existing
in the community. Access to R is implemented as a special
operator into the internal data flow graph of the database
engine allowing the optimizer to embrace the call to the
external system. More functionality is integrated as stored
procedure calls into the native SQL model; we therefore can
combine it seamlessly with any kind of other SQL access.

C. Text Engine: Bringing structured and unstructured Data
Together

Analyzing textual data has many facets in a data manage-
ment solution. First, we think of simple text search which
we all know from web search engines. In order to support
customers all over the globe, many languages have to be
supported natively with functionality like stemming, part of
speech tagging, and others. On top of it, sophisticated text
mining and analytical capabilities like text classification, clus-
tering, sentiment analysis, and other text mining operations
can be supported. In addition, we are able to extract entities
(like names, addresses, companies, . . . ) and sentiments from
documents with a rule based approach on top of the natural
language functionality. The extracted entities and sentiments
can be stored as structured data. Since text processing is deeply
integrated into the HANA engine, results of text analytics
can now be combined with structured data already stored in
the relational part of the database. This integration bridges
the gap between different methods of analyzing structured
and unstructured information. The text analysis and feature
extraction process is triggered automatically when new or
changed documents are brought into the data management
system.

D. Planning Extensions: Successful and nevertheless over-
looked

Planning functionality and operators are heavily overlooked
in the research community. Planning applications for sales
planning, financial planning or operations planning are very
attractive for customers as–for example–the commercial suc-
cess of companies like Anaplan1 or others show. Planning, in
this definition, is the process of defining and aligning the sales,

1https://www.anaplan.com/
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financial or other numbers for the foreseeable future (normally
for a 1 year period). The planning process requires heavy
CPU based database functionality like disaggregation or copy
processes, providing logical snapshots or versioning and other
operators. We have integrated these operators directly into the
relational engine and access them with SQL extensions.

E. Graph/Hierarchy Engine: The embedded Graph Story

Many business applications like transport and logistics,
supply chain traceability, business networks, fraud detection,
and others work inherently with graph structures and benefit
directly from explicit graph representations inside the data
management layer. As Paradies et al. have explained in [4],
explicit graph structures help applications to express complex
business logic more explicitly and execute the operations more
effectively. As Finis et al. have discussed in [5] hierarchies
as a special kind of a graph are used in almost all kinds of
business applications. Special support for time dependent and
versioned hierarchies is therefore a crucial functionality in the
database layer for business applications. As the graphs and
hierarchies are not isolated objects in the application context,
graph data has to be combined during modeling but especially
during query execution with other types of data, especially
the structured relational data, but also geospatial and other
data types. Therefore we have decided to embed a graph
engine into the HANA data management leveraging the main
memory column store. This allows to interpret data in columns
(structured relational data) as graph or hierarchy structures by
defining hierarchy or graph views on top of the relational
data. Within these graph structures, state of the art graph
processing functionality (like distance, siblings, shortest path,
and others) is provided. We are currently defining extensions
to SQL in order to integrate most of the operations into the
standard processing model as well as providing a domain-
specific language to fully exploit the graph data model without
the constraints imposed by the relational representation.

F. GIS, Time Series: Bringing more semantics to the data

Geospatial and time series are supported as native data
types inside the relational engine. They are built with mech-
anisms of the main memory column store and implement
powerful compression mechanisms, which is especially useful
for sensor data. As operations on both data types provide
results in form of tuples, implementing them as data types
deep in the engine is a natural fit. We extended the SQL syntax
in order to allow the definition of points or polygons, and to
support query operators like WithinDistance, Contains
or Area. Combination with relational data is obvious in areas
like geo-location based analytics, with queries like, e.g., “get
the areas in US with the most revenue” or “get all customers
within a distance of 10 kilometer having payments due”. But
also a combination with graph data for example in routing
algorithms is a common use case. Time series data types are
mainly interesting for the financial sector or Internet of Things
for storing sensor data. Besides providing large compression
factors, they provide functionality like resolution adoption,
comparison functions, correlation, transformations, and others.
Again, integration into the relational world is the key, because
the queries always combine the selection of elected sensor data
with time series functionality.

G. Scientific Engine: Use the full table scan speed for heavy
computation

In [6], Kernert et al. show the significant advantage of
bringing linear algebra operations like eigenvalue calculation
on large matrices into a main memory column store. Beside
the scientific area, many applications in the financial area and
business warehouse optimization benefit from having these
kinds of functionality inside the data management layer. Since
decision-support data is persisted and kept consistently within
the data management ecosystem, no redundant copying from
other data sources to external libraries is needed, reducing
the pain to control consistency and define and monitor data
movement processes. Furthermore, the corresponding metadata
of data sets can be updated synchronously and consistently
with the numerical data. Even more interestingly for database
management research, large matrices are no static objects
in common analytic workflows. As they are manipulated in
an iterative process, the data manipulation capabilities of a
database will meet the analytical demands better than the
tedious maintaining of multiple data files and therefore signifi-
cantly improve the efficiency of the domain expert by relieving
it from organizing large file repositories.

H. NoSQL Extension: Bringing Flexibility into the Relational
World

The “NoSQL world” is often defined by three main criteria:
flexible data structures like the document model or key-value
stores, massive and easy scale out and the freedom and option
to relax consistency. All three topics should also be integrated
into a standard data management system. In HANA, so called
“flexible tables” can be defined where column definition is not
a DDL but implicitly triggered via a DML operation (similar
to the document or key-value store paradigm). A flexible table
can be queried via SQL as it would be the case if they
were standard columns. Technically, metadata about unknown
columns are automatically created as soon as records with
values for new columns are inserted. The number of columns
is not limited (technically there is a 32 bit limit to express
the number of columns). Internal compression methods can
handle also very sparse columns to achieve compression rates.
In addition, we are integrating a document based data model
(similar to JSON format) into HANA by introducing a data
type “document” for a column of a relational table. The content
(the document) is structured in an arbitrary JSON format. The
documents themselves are queried by an XQuery like language
which is embedded into the SQL statement. The outcome of a
“document” query is a set of rows of the table which contains
the document as a cell. Obviously there are multiple options,
how to use this model. For example, users can just store their
JSON documents with the document key as standard columns
in the “parent table”. Additional join keys can be stored in the
parent table as well. Another option is to model a document
structure on top of relational tables for even faster access, for
example, in a header–item–subitem structure we can assume a
1:N cardinality between header-item and item-subitem. If we
additionally can ensure from an application perspective that
corresponding table entries are always inserted/updated/deleted
together and retrieval requests are mainly reading the complete
”object” (which reflects the standard procedure for many
objects in business software like SAP ERP), such an “object”
could be stored in a JSON document as a kind of materialized
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index on top of the relational data. It will be modeled as special
kind of a join index in the database and transparently exploited
by the retrieval process. With such non-standard mechanisms,
even existing applications and data models can benefit from
the document storage.

I. Scale Out: Reconciling the Hadoop and the Relational
World

In recent years there was a clear trend for scale out using
clusters of commodity hardware especially for Hadoop infra-
structures. But also in other analytic workload environments,
the trend towards scale out versus scale up by adding more
resources to a single server is obvious. Very recent research
[7] claims, that the majority of the data volumes we see at
customers could be handled with one or just a few bigger
servers, which provides benefits in performance TCO and
server density. Until now we focused with SAP HANA mainly
on use cases with up to a few hundred Terabytes of data which
can be handled by a modest number of high end commodity
servers. We suggest even to our main customers a model where
hot data will be stored on one single database server and colder
data is distributed on a set of cheaper nodes. With the Big Data
trend especially in connection with the massive amount of data
generated from sensors, we see a high demand of storing and
analyzing data in the high Petabyte range. In addition to storing
large data sets collected from some devices, the need arises
to integrate such data sets with existing databases like ERP
data, master data, logistic data and to run algorithms on top of
such integrated data sets. For example a producer of soap for
washrooms wants to start a route planning for their servicer
team to fill the dispensers, once sensors have detected, that
some are almost empty. They even want to fill them earlier, if
they have notice that a major event will be held in locations
where they have installed dispensers. In addition, the company
wants to direct the service team into the correct direction. For
those requirements a combination of logistic, master data and
planning data is the key. Therefore, we are currently extending
the SAP HANA system with a massive scale out option and
a deep integration with the Hadoop system. We do not argue
to bring our standard applications to a massive scale out data
management system. We still believe in the advantages of a
small setup. But with the new requirements in different areas
and the need of deep integration, we argue that we need both
deeply integrated. In Section IV we describe the low footprint
single processing units, the Scale-out infrastructure, and the
Hadoop integration of our solution.

III. BRIDGING THE GAP BETWEEN APPLICATIONS AND
DATA MANAGEMENT

With more than 100.000 customers for its different business
solutions (ERP, Analytics, HCM, networks, and others) SAP
has gained a lot of experience in application development.
Almost all applications are built on top of a relational database
engine. A huge variety of tools, libraries, and services have
been created in the application layer in order to support
the efficiency of application developers. Many of these tools
reuse components logically belonging to the data layer, but
are implemented in the application layer in order to achieve
independence from the underlying database. The problem of
this approach manifests in conducting many data centric calcu-
lations within the application layer and not within the database

layer as close as possible to the original data sets. This implies
that a significant amount of data has to be transferred from
the database into the sphere of the application, which usually
comes with severe performance impact. The two following
examples demonstrate this effect: if currency conversion2 is
implemented on application level, analytic queries have include
the currency field in the ”group by” list in order to retrieve the
currency information. Depending on the currency distribution,
this can multiply the data to be transferred between the
layers. An even harder problems consists in dealing with
hierarchical data structures. Since many database systems are
not providing core support for hierarchies, complex hierarchy
resolution algorithms are implemented at application layers.
For counting the transitive child nodes of a given node for
example, the whole subtree of the respective hierarchy has
to be moved from the database to the application. With
appropriate hierarchy functionality in the database system, only
the number of nodes needs to be communicated to the calling
application. Further examples among others are unit conver-
sion, manufacturing calendar support, financial planning and
optimizations in combination with comprehensive simulations.
With HANA we started to systematically push functionality
down into the database and build business application specific
libraries/extensions in the DB layer with significant positive
impact for the runtime. We argue, that these kinds of extensions
are needed for other application types as well.

Other optimizations of the application/database interface
are not adding novel functionality but allow better use of
application knowledge in the database layer. One quite simple
example is the maintenance of dictionaries of table columns.
Domain or dictionary encoding is a common technique to
compress the columns: For a string column, all distinct values
are inserted into a sorted dictionary and the column itself
just stores the references to the dictionary. One of the major
challenges in this context is to efficiently keep the dictionary
sorted in the case of inserts and deletes. In HANA this is
guaranteed by having a buffer structure called delta store which
records all changes. A merge phase incorporates these data
sets into the main column. In order to maintain the sorting
of the dictionary within this merge process, the dictionary
must potentially be resorted which forces the references within
the main columns to be updated accordingly [8]. On the
application level, large tables with obviously high-cardinality
key columns are created from a vast amount of transactional
data, which is mainly created outside of the system. Very often,
the keys are generated by concatenating some information
from application context plus an incremental counter to achieve
uniqueness. By knowing the mechanism of how the keys
are generated, the dictionary maintenance and merging can
be done much simpler and more efficiently. Incorporating
application knowledge, a stable sort order without resorting can
be achieved in some situations, improving the merge process.

An even more important integration topic is data aging:
There are multiple ways of implementing data aging, which are
purely based on database statistics. By letting the application
define the aging rules and storing them in the metadata of the
database, the aging mechanism acquires a semantic meaning
which allows for much better partition pruning than any

2Currency conversion is a highly complex business process and consists of
100s of lines of code.
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approach purely based on access statistics. Statistical methods
can be used to propose new application rules to the application
developer or system administrator. Consider an example with
orders and invoices, two independent objects in a business
application. The sales order aging rule could be defined as “age
a sales order, if it is closed and closing date is older than 3
months and the sales order is not from this year”. For invoices,
the aging rule could be defined as “if the invoice is paid for
at least 3 months and the invoice is not from this year”. When
asking for all open invoices of the last 3 months, it is clear,
that the older (already aged) partitions of the invoice object can
be pruned. A more interesting case is, if somebody wants to
see all open orders and the corresponding invoices–a standard
query in this context. Given the independent aging rules of
the objects, the join has to be calculated between the “non
aged” orders and the complete invoice table. When analyzing
the aging rules, the query could be split into two parts, one
specifies that all open sales orders from the current year have
to be joined with the “non aged” invoice partition, the second
one requests that open orders from the previous years must be
joined with the complete invoice object table. Assuming that
there are hopefully no open orders from the previous year, that
optimization could be beneficial. We could extend the given
aging rules by “. . . and if the corresponding sales order is in
the aging set”. This rule would enforce that an invoice can
only be aged, if the corresponding sales order is also aged.
Applying this additional rule would mean that the join can
be executed only on the “non aged” partitions. Logically, a
dependency graph for aging is created. There must be rules
and checks, which ensure that despite of the dependencies
still many objects can be aged, and there is no cycle in the
dependency graph.

IV. SAP HANA SCALE-OUT OPTION

In addition to the core HANA system, we outline the SAP
HANA Scale-Out Extension. The core idea of SAP HANA
SOE is to extend the “big” Scale-up oriented SAP HANA
system with massive scale-out capabilities. In this section,
we briefly sketch the general approach, the scale-out archi-
tecture, and integration into Hadoop-based data management
infrastructures.

A. Goals and Architectural Principles

Over the next few years, we will see hardware improve-
ments which will massively change the way database systems
are built and used. Hardware transactional memory, which got
and will get global availability with Intel’s integration into
its Haswell systems, helps to develop scalable algorithms and
data structures. In particular, Neumann et al. [9] have shown
that transactional systems can significantly benefit on executing
global database transactions by splitting them into multiple
hardware transactions and getting rid of explicit locks. With the
upcoming non-volatile memory there are many new options to
optimize the design of data management systems. Oukid et al.
showed in [10] how recovery of a database can be accelerated
by a careful design of the underlying data structures and an
optimized redo/undo log design. With new network fabrics
we expect a significant improvement of network latency and
bandwidth, which allows a new software design of scale-out
systems. Another trend is the move to mobile devices with new

energy efficient processors, which build an immense network
of calculation power. This network will get even larger with
the billions of sensors and collectors which are to be expected
in the near future. All these changes create new opportunities
and challenges for data management systems, which are of
massive scale, have small and flexible single servers, provide
energy efficient execution, having a main memory based design
and the deep integration with a backend system which provides
data and services of already existing and consolidated data.

In this context we developed an extension to HANA with
low footprint , extreme performance and designed for high
scalability (in the range of thousands of nodes). The SAP
HANA SOE sticks to the HANA storage model paradigm
which is based on a main memory column store. Some of the
compression requirements are relaxed to allow more energy
efficient calculation. This is for example true for compressing
the references and for resorting the tables during merge.
In addition, during runtime the engine compiles the SQL
statement into C code and translates it into an executable
binary format. As Dees and Sanders described in [11] there
are significant performance advantages with this approach. The
compiler framework LLVM with Clang does the compilation
from C code into native code. A similar approach is followed
in [12], however, we generate C code instead of LLVM byte
code in order to support more sophisticated maintenance and
debugging functionalities. On the operator level we use many
algorithms and features which are already optimized in the
HANA backend engine. In the current version the engine is
heavily optimized for read requests with an intensive use of
join indexes. Additionally, we generate plans for a distributed
landscape. These plans can lead to strong speedup results
compared to single machine execution as shown in [13] if
the plans are specifically tailored for a clustered execution in
combination with efficient communication algorithms. A first
version of SAP HANA SOE was delivered to customers at the
end of 2014 as part of SAP’s analytic solution (Lumira Desktop
and Lumira Teamserver). As a next step, the engine will obtain
the capabilities described above, like GIS, text search, graph
support, etc., which allows to use these functionalities in an
extreme scale-out landscape.

B. System Components and Relationships

Our distributed transaction mechanism favors availability
at the expense of consistency (e.g. CAP theorem [14]). As
already outlined, SAP HANA SOE is composed of a set of
services, packed into executables, and deployed on a cluster
of nodes. Figure 3 shows the different system components as
well as their relationship in some detail. At the core is the
SAP HANA SOE local query processing executable (v2lqp)
which contains a query and a data service. The query service is
a wrapper around the core engine and operates on horizontal
table partitions which are created during data import. These
prepackaged partitions allow for a fast distribution of the data
when scaling out or for data recovery. A data service takes
care of retrieving and storing the horizontal table partitions.

The execution of distributed queries is controlled by a
distributed query coordinator service (v2dqp) which translates
each query to a directed acyclic graph of tasks. The tasks
are being sent to the query service instances where they are
compiled and executed. A transaction broker service executes,
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serializes, and persists transactions to a distributed shared log
(v2transact). Similar to the Corfu approach described in
[15], the log stores all changes in a transactional consistent
way. We introduced several changes and optimizations to the
original proposal including information on how we distribute
the log across multiple locations and how we update the
different database nodes.

The distributed log is initially designed to work on top
of Non-Volatile Memory, but multiple implementation variants
will be provided (also on top of HDFS). With the distributed
log approach we decouple the transaction mechanism from
the query processing which allows easier scale and provides
a clear system design. Updates in the log are incrementally
communicated to the different data services. If the resulting
isolation level is not sufficient for a given query, the distributed
query coordinator service can ask the transaction broker ser-
vice directly for additional updates to be considered. Therefore
we are able to achieve different transactional behaviors by dis-
tinguishing two types of database nodes. On the one hand, an
OLAP node updates itself in a transactionally consistent way
but not necessarily synchronously to the update request coming
from the application. The updates can either be incorporated
by regularly polling the log or by retrieving the latest snapshot
of the data hosted by a particular node. On the other hand,
OLTP nodes allow real time transactional update of the data
by incorporating the log during the update transaction.

We use different MVCC implementations to optimize
multiple workloads. A coordinator service accepts queries
from a user or application and coordinates distributed query
processing. The cluster manager provides cluster services like
statistics, monitoring and orchestration. The discovery service
keeps track of all available components in the landscape.
All these services (including global transaction blocker and
database services) can be isolated by a container infrastructure
like Docker3. As part of the HANA system the scale-out
extension supports multi-level horizontal partitioning (range
and hash), with the capability to handle huge of amount of
partitions. High availability is achieved by supporting multiple
replicas with the log replication mechanism described above.
By defining OLAP or OLTP database nodes, different levels
of consistency are supported.

The overall supervision and configuration of the cluster
is done by a cluster management service (v2clustermgr).
This service can dynamically start and stop other query
processing services as well as orchestrate data movement.
It can access statistical information about the current cluster
usage in order to identify hotspots or to monitor performance
goals. An authorization and a cluster discovery service are
bundled together (v2disc&auth) to store cluster access
rights and keep track of availability of services across the
cluster. A catalog service stores and provides schema and
metadata information, a data discovery service keeps track of
the location of the corresponding horizontal table partitions
(v2catalog).

C. Hadoop Integration

With the growing importance of the Hadoop ecosystem,
databases and other engines have to provide versions which

3http://www.docker.com/

will run natively inside the Hadoop ecosystem [16]. With
HANA backend/scale-out combination we are currently build-
ing a deep Hadoop integration, which allows to read Hadoop
data with standard HANA SQL and Hadoop mechanisms and
combine them with data in HANA like SAP ERP data. The
most simple way of integration is a federated approach which
is pushing down SQL statements from HANA into Hive or
similar frameworks. The queries on HDFS data are executed
on Hadoop and the results are combined in the HANA layer.
While this combination is already delivered with SAP HANA,
the scale-out option provides a significantly deeper integration
into the overall database system stack. First, we allow to install
the low footprint SAP HANA SOE on each Hadoop node.
As standard we provide a file-based connector for the SAP
HANA SOE, which allows to combine SAP HANA SOE data
processing with standard MapReduce jobs. Figure 4 shows the
bigger picture of the integrated SAP HANA data management
ecosystem comprising the HANA in-memory system, the SAP
HANA SOE (shown as codename “Velocity”) running within
YARN stack as well as streaming (ESP) and dynamic tiering
for cold data. In order to also play the role of a central
integration hub to other data sources, SDA (“Smart Data
Access”) enables federation to a huge variety of different data
sources.

Figure 4. SAP HANA Ecosystem

With this approach, any kind of SAP data can be accessed
via SQL or MapReduce-style frameworks. In addition data
from local HDFS nodes can be loaded into the local SAP
HANA SOE nodes. Rules can be defined which data should
be loaded and how the update mechanism is configured.
There are three ways to integrate these data: First–as already
outlined–data can be loaded via a standard file reader. Second,
integration is performed into the Spark framework as RDD
objects by utilizing SAP HANA SOE for relevant operations
like join, filters, aggregation etc. By wrapping SAP HANA
SOE in RDD objects customers can still use all Spark func-
tionality such as Spark SQL or MLib. Therefore, customers
can combine the capabilities of the Spark framework with the
speed and data integration capabilities of HANA. The third
integration is planned by using the database scale out features
of the HANA scale out option. Distributed SQL statements
can be sent to HANA, which creates one single execution
plan for querying HDFS and SAP HANA data in one database
execution mechanism including one optimizer.

With SAP HANA SOE all the capabilities which are
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Figure 3. Architectur Components of the SAP HANA SOE

described above can be used on HDFS data and can be
combined in a flexible way. Data can be stored on HDFS
in three different ways: the first one is by standard HDFS
mechanisms as it is used today. Secondly HDFS is used as an
aging store for HANA, where aged data (for aging see III) is
stored on a cheap storage mechanism. The third one is that
HDFS is used as a log persistence it is stored as a log for the
SAP HANA SOE. As previously described we implement one
version of the distributed log on top of HDFS. The data of
this log can either be consumed by SAP HANA SOE API, the
distributed log API or the HDFS file reader.

V. SCENARIOS FOR A DATA MANAGEMENT ECOSYSTEM

To complete the bigger picture of the intended SAP HANA
data management ecosystem, we describe some real world use
cases and scenarios to motivate our statements and architec-
tural decisions above. In a nutshell, we see a clear demand for
polyphonic data management infrastructures. More and more,
data management landscapes will comprise multiple systems
with highly specialized systems. The added-values of SAP’s
ecosystem is to (a) cover the full spectrum reaching from tradi-
tional ACID-compliant via streaming systems to massive scale-
out systems supporting a huge variety of functionality beyond
the relational model. From a non-functional perspective, the
SAP HANA data management ecosystem strives (b) to provide
one single and coherent operational environment: one central
repository for business objects with consistent deployment
procedures into all SAP systems, seamless migration from
development via test to active systems, single interface for
a central administration of all components. As shown below,
the functional depth as well as the non-functional breath is
required to cope with future data management challenges in
real-world business scenarios.

1) Combination of database data with numerical alge-
bra systems: In business environments, data analysts
often load data from a relational database into a
numerical algebra system to perform their analysis by
means of complex computations using linear algebra
methods. For example, financial analysts storing stock
price data within a RDBMS require on the one hand
the business context of stock values, e.g., an excerpt
for recent news or complete history of economical
figures of the different companies. On the other hand,
the analysts use statistical algorithms for example to
identify correlations of stocks and derivatives.
As a consequence, the ecosystem has to provide
a transparent integration of external systems and
orchestrate a distributed query processing taking the
burden of explicit data exchange between the systems
from the user.

2) A customer institution collects massive sensor data
within a large Hadoop installation by measuring
a large number of parameters of huge production
infrastructures. In addition, the ERP system of the
customer shows the state of the current production as
well as production problems (i.e. unexpected degra-
dation of output). The overall challenge now is to
correlate the sensor data with events in the production
process in order to analyze and predict machine
failures or trigger pro-actively maintenance activities.
As a consequence, the ecosystem has to provide a
seamless integration of Hadoop infrastructures and
traditional ERP application systems.

3) A producer of soap for washrooms wants to plan the
routes for their service teams to fill the dispensers.
Sensors in each dispenser measure the fill grade
and indicate the need for a refill. In addition, the
company wants to pro-actively fill them even without
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an immediate need, if they have notice (gathered
from different websites) of a big event in the specific
location. Routing comprises to identify optimal paths
to different locations as well as to give directions
within huge locations in order to find the correct
washrooms. Based in washroom usage patterns, the
company now offers a service for the local facility
teams to automatically locking (and opening) some
washrooms, if the number of people visiting a wash-
room for an event is significantly lower or higher than
expected in order to reduce the maintenance costs.
Again, sensor data are stored in a Hadoop system,
location data is stored in GIS information system.
The ERP system holds the company’s master data,
and performs the resource planning, route planning
as well as billing and other business functionality.
Different data sets as well as business service in-
vocations to optimize routes and compute models
predicting the use of washrooms have to be combined
within a single perspective to the application.

4) An insurance company wants to calculate their in-
surance rates based on probabilities of hurricanes
and the route of hurricanes. They have stored the
huge amount of data about the past hurricanes on
a Hadoop like storage. Their current customers and
their current rates are stored in their ERP system and
the locations of the customers are kept in a geospatial
storage. The goal is to generate a prediction model of
future hurricanes and to map it to the locations of the
customers to generate a risk profile for the different
locations. Computed models have to go back to the
ERP for consumption.

5) A customer is responsible of a gas pipeline which
is stored as a huge graph. In addition to the logical
perspective of the pipeline, the location information
for the graph is stored. One out of many use cases for
the customer is the development of an evacuation plan
in real time if a leak in the gas pipeline is detected.

As can be seen, many installations of modern data-intensive
applications require to transparently merge traditional ERP
systems and classical relational data sets with graph-structured,
geospatial or time-series potentially residing in different sys-
tems with different performance and TCO requirements. Mov-
ing logic to data which reside in a specifically designed engine
and transparently fusing results sets is a core capability of a
data management ecosystem.

VI. SUMMARY

Within the paper, we have outlined the fundamental pillars
of a web-scale data management ecosystem. We argue that
such an environment will (1) exhibit a rich set of specific
functionality represented in specialized data structures with
sophisticated algorithms potentially residing in specific data
management engines. Furthermore, (2) we see huge potential
in communicated application knowledge to the data man-
agement layer. The more the database system knows about
opportunities and/or constraints, the better executions plans
can be generated and more efficient data structures can be
used. Finally, we argue that (3) a powerful orchestration is

needed to provide a single point of entry as well as a single
semantic understanding for modern business applications. The
SAP HANA data management ecosystem strives to achieve
exactly these requirements.
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