
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-820871

Hannes Voigt, Patrick Damme, Wolfgang Lehner

Enjoy FRDM - play with a schema-flexible RDBMS

Erstveröffentlichung in / First published in:

2015 IEEE 31st International Conference on Data Engineering. Seoul, 13.-17.04.2015. IEEE, S.
1460-1463. ISBN 978-1-4799-7964-6.

DOI: http://dx.doi.org/10.1109/ICDE.2015.7113401

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-820871
http://dx.doi.org/10.1109/ICDE.2015.7113401

Enjoy FRDM – Play with a Schema-flexible
RDBMS

Hannes Voigt, Patrick Damme, Wolfgang Lehner

Database Technology Group, Technische Universität Dresden
01062 Dresden

{firstname.lastname}@tu-dresden.de

Abstract—Relational database management systems build on
the closed world assumption requiring upfront modeling of a
usually stable schema. However, a growing number of today’s
database applications are characterized by self-descriptive data.
The schema of self-descriptive data is very dynamic and prone
to frequent changes; a situation which is always troublesome to
handle in relational systems. This demo presents the relational
database management system FRDM. With flexible relational ta-
bles FRDM greatly simplifies the management of self-descriptive
data in a relational database system. Self-descriptive data can
reside directly next to traditionally modeled data and both can
be queried together using SQL. This demo presents the various
features of FRDM and provides first-hand experience of the newly
gained freedom in relational database systems.

I. INTRODUCTION

Traditional relational database management systems re-
quire modeling the mini world that should be represented
before the database can be created and populated. Database
development methods guide developers through the laborious
process of requirement analysis, conceptional modeling, and
physical modeling that yields the overall database schema.
The underlying assumption is that the mini world to be
represented is fairly stable and can be adequately modeled
in a rigid database schema. Unfortunately, a growing number
of application areas do not fulfill this assumption anymore.
Application areas such as investigative analytics, data spaces,
pay-as-you-go data integration are very dynamic and prone
to schema changes. Data such as marketing campaign data,
social data, internet log data, product catalogs data, and
medical examination data are characterized by a very flexible,
descriptive schema rather than an upfront modeled, prescriptive
schema [1]. Such data is hard to model upfront and causes
developers a headache when it has to be stored in relational
databases. The recent boom of the flexible, descriptive data
model JSON in these areas gives evidence of an increasing
need for schema flexibility.

Relational systems are still accounting for 90% of the
information systems in larger enterprises [2]. Their prescriptive
nature makes the managing of data with a flexible schema
a troublesome business. To cope with flexible schemas, de-
velopers use workarounds such as universal tables or vertical
schemas, which require complex, non-standardized, and often
inefficient mapping layers. Another common solution is to
move completely to more flexible data models such as RDF,
XML, or JSON, which leads to polyglot persistence [3] and
complicates data management in general and specifically the
interoperability with existing relational systems. The large

number of projects still taking these extra efforts shows that
there is a real demand for first-class support of self-descriptive
data and flexible schemas in relational database management
systems.

In this demo we present the relational database system
FRDM (speak ["fri:d@m]). FRDM is based on the open source
database system H2 [4]. FRDM offers schema-flexible rela-
tional tables allowing the direct management of self-descriptive
data in a relational database system. In FRDM, self-descriptive
data can reside directly next to traditionally modeled data and
both can be queried together using SQL. Flexible constraints
allow limiting the schema flexibility on a fine-grained level,
so that traditionally modeled data and self-descriptive data can
coexist even within a single entity. With a comprehensive set
of prepared examples, we will walk the visitor through the
different features of FRDM. The visitor can also play freely
with the system to get a first-hand experience and directly
enjoy the newly gained freedom.

The aim of the demo is to convey the idea that flexible
schemas and the relational data model are not contradicting
each other. FRDM demonstrates that the relational data model
can very well be extended and adapted to descriptive data man-
agement including flexible schemas and irregular structured
data. We want to provide the experience of descriptive data
management in relational fashion. Furthermore, we hope to
spark more research in that direction.

II. FRDM

FRDM is a relational database system with standard re-
lational data representation and processing capabilities. How-
ever, three substantial features of FRDM mark the distinction
and turn FRDM into a flexible relational database management
system for self-descriptive data: (1) flexible tables, (2) flexible
entity domains, and (3) flexible constraints. We introduce all
three briefly in the following subsections.

A. Flexible Tables

FRDM’s first striking feature is that it centers data repre-
sentation around tuples rather than around relations or tables.
The flexible tables offered by FRDM are a mere container
for tuples. Flexible tables do not prescribe any schema. For
example assume we want to create a product catalog table
where we cannot nail down the dynamic variety of product
features in advance. In FRDM, we can create such a product
table simply without defining any columns.

Final edited form was published in "2015 IEEE 31st International Conference on Data Engineering. Seoul 2015", S. 1460-1463, ISBN 978-1-4799-7964-6
http://dx.doi.org/10.1109/ICDE.2015.7113401

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

TABLE I. PRODUCT TABLE AFTER SOME INSERTS.

NAME RESOLUTION APERTURE SCREEN CAPACITY

Sony DSC-RX10 20.0 2.8 n/e n/e
Samsung Galaxy S4 13 n/e 4.3 n/e
LG 60LA7408 Full HD n/e 60 n/e
Sandisk Cruzer n/e n/e n/e 32GB

CREATE FLEXIBLE TABLE Products;

Columns come to a flexible table as data is inserted into the
table. We can insert data with a regular SQL INSERT statement,
additionally we have to declare the columns the new tuple
instantiates. For instance, the statement

INSERT INTO Products

VALUE DOMAINS (name, resolution, aperture)

VALUES ('Sony DSC-RX10', 20.0, 2.8);

adds a tuple (Sony DSC-RX10, 20.0, 2.8) with the schema
(NAME, RESOLUTION, APERTURE) to the table. FRDM deter-
mines the technical type of the value from the literal in the
DML statement. Alternatively, the user can explicitly declare
the type after the column name in VALUE DOMAINS clause –
analogously to a column definition in the traditional CREATE

TABLE statement. In any case, FRDM allows polyglot technical
typing, i.e., values with a different technical type in the same
column.

The schema of a flexible table automatically evolves with
INSERT and UPDATE statements and remains purely descriptive.
We can add more tuples regardless of these tuples having a
similar or completely different schema. Consider the following
two statements.

INSERT INTO Products

VALUE DOMAINS (name, resolution, screen)

VALUES ('Samsung Galaxy S4', 13, 4.3),

('LG 60LA7408', 'Full HD', 60);

INSERT INTO Products

VALUE DOMAINS (name, capacity)

VALUES ('Sandisk Cruzer', '32GB');

Both statements are valid in FRDM and add data to the
table. Along the way, FRDM automatically adds the columns
SCREEN and CAPACITY to the table.

We can also add columns by updating individual tuples.
To add a weight to the product Sony DSC-RX10, we issue the
statement

UPDATE Products SET weight = 813

WHERE name = 'Sony DSC-RX10';

Again, FRDM automatically adds the column WEIGHT to the
table. In similar fashion, we can remove individual values
easily by updating them as not existing.

UPDATE Products SET weight = NOT_EXISTING

WHERE name = 'Sony DSC-RX10';

Note that FRDM does not automatically remove a column
from a table since this would require checking whether any of
tuples instantiates the column. Of course, the user can remove

columns manually with an ALTER TABLE ... REMOVE VALUE

DOMAIN statement.

Flexible tables can be queried as traditional tables with
standard SQL. The query SELECT * FROM Products yields the
result set shown in Figure I. Columns that are not part of
a tuple’s schema simply do not exist for that tuple (marked
as n/e). It is important to understand that not existing columns
carry a different semantic than NULL values. A NULL indicates
an instantiated column where the value is currently unknown.
FRDM strictly distinguishes between both cases.

On top of standard SQL, FRDM offers a set of additional
expressions that help exploiting and dealing with the schema
irregularity that flexible tables allow. As tuples may vary
in the schema they instantiate, queries can filter for tuples
instantiating certain columns. For instance, the query

SELECT * FROM Products WHERE screen IS EXISTING;

selects all tuples that instantiate the column SCREEN. IS

EXISTING is a special predicate that evaluates to false if the
column does not exist for a tuple. The fact of a not existing
column propagates through all standard SQL expressions.
Where a predicate results in non-existence, the evaluated tuple
is not further processed. Where a projection expression results
in non-existence, the resulting tuple will not instantiate the
projected column. As an example consider the query

SELECT name || ' has a ' || screen || 'inch

screen' FROM Products WHERE aperture < 3;

which results in an empty result set. All tuples but the Sony
camera have no APERTURE column and do not qualify for the
predicate. In turn, the Sony camera has no SCREEN column,
so that the projection results in a tuple not instantiating any
column. Such empty tuples are excluded from any further
processing.

FRDM features also expressions to handle different techni-
cal types in a column. Next to standard cast functions, FRDM
offers the TYPENAME(<exp>) function to retrieve the type, the
<exp> HASTYPE <typename> predicate to check for a type, and
the CASETYPE clause to formulate type-sensitive expressions.
Here is an example of a CASETYPE expression:

CASETYPE x WHEN INT THEN x+1

WHEN VARCHAR THEN x || ' plus one'

ELSE x END

B. Flexible Entity Domains

FRDM’s second striking feature is the possibility to tag
tuples with entity domains. This allows marking tuples with
the concepts they belong to or the sources they come from.
The tagging is done with DML statements. For instance, we
can use the statement

UPDATE Products

CHANGE ENTITY DOMAINS ADD (Cameras, GPSs, Phones)

WHERE name = 'Samsung Galaxy S4';

Final edited form was published in "2015 IEEE 31st International Conference on Data Engineering. Seoul 2015", S. 1460-1463, ISBN 978-1-4799-7964-6
http://dx.doi.org/10.1109/ICDE.2015.7113401

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

TABLE II. PRODUCTS TAGGED WITH ENTITY DOMAINS.

CAMERAS GPSS PHONES TVS

Sony DSC-RX10 3
Samsung Galaxy S4 3 3 3
LG 60LA7408 3
Sandisk Cruzer
Canon EOS 6D 3 3
Garmin Dakota 20 3
Nokia 108 3 3

to tag the product Samsung Galaxy S4 with entity domains
CAMERAS, GPSS, and PHONES. We can also tag tuples during
inserts. The statement

INSERT INTO Products

ENTITY DOMAINS (Cameras, GPSs)

VALUE DOMAINS (name, resolution)

VALUES ('Canon EOS 6D', 20);

inserts the product Canon EOS 6D and tags it with CAMERAS
and GPSS. For the following, assume we have added more
tuples and have tagged all tuples as shown in Table II.

FRDM allows to use tags in the FROM clause to directly
address subsets of tuples in a flexible table. The statement

SELECT * FROM Cameras;

queries all cameras from the PRODUCTS table. Each entity
domain belongs to one flexible table. FRDM automatically
resolves the table for the entity domain CAMERAS. In case of
name collisions, an entity domain has to be prefixed with the
table name, e.g., Products.Cameras. To query combinations
of entity domains, FRDM offers set operations directly within
the FROM clause. For instance, the query

SELECT *
FROM Cameras INTERSECT GPSs MINUS Phones TRIM;

yields all non-phone cameras with GPS as shown in Table III.
The TRIM clause at the end of the query removes all not
instantiated columns in the result set. The complement of an
entity domain in the whole flexible table can also be expressed
easily, e.g., all non-camera products:

SELECT name FROM Products MINUS Cameras;

For the result of this query see Table IV.

Flexible tables and entity domains are completely interop-
erable with traditional tables. Assume we use a traditional table
to store suppliers of the items in the Products table. We can
then easily join this Suppliers table with the entity domain
Cameras to get all camera suppliers:

SELECT DISTINCT s.name, s.address

FROM Suppliers s

INNER JOIN SuppProd sp ON s.id = sp.suppId

INNER JOIN Cameras c ON sp.productId = c.id;

TABLE III. NON-PHONE CAMERAS
WITH GPS

NAME RESOLUTION

Canon EOS 6D 20

TABLE IV. NON-CAMERAS
PRODUCTS

NAME

LG 60LA7408
Sandisk Cruzer
Garmin Dakota 20

C. Flexible Constraints

As its third distinguishing feature, FRDM offers flexible
constraints. Where traditional constraints epitomize the pre-
scriptive nature of relational database management systems,
flexible constraints adapt the descriptive nature of FRDM.
Most importantly, flexible constraints can vary in their effect.
While traditional constraints are always prohibitive, FRDM’s
flexible constraints can also be informative, warning, and
hiding. For instance, the constraint

ALTER TABLE Products ADD CONSTRAINT

negativePrices

CHECK price >= 0 EFFECT WARNING;

issues a warning on every operation that manipulates prices
to negative values; but the constraint does not forbid such an
operation. The same constraint with the effect HIDING also
permits all operations but additionally hides product tuples
with a negative price from regular queries. Consequently, a
query on price < 0 returns an empty result set. However,
hidden tuples can be queried or manipulated explicitly by using
the constraint in the WHERE clause. We can use the query

SELECT * FROM Products

WHERE Products VIOLATES negativePrices;

to find all products with a negative price. Analogously, the
DML statement

UPDATE Cameras SET price = price * -1

WHERE Products VIOLATES negativePrices;

makes all negative prices positive and these cameras become
visible again to regular queries.

Entity domains and columns can be used to restrict to
which tuples a constraint applies. As an example, the constraint

ALTER TABLE Products ADD CONSTRAINT

negativeScreen

ENTITY DOMAIN (Cameras UNION Phones)

CHECK screen > 0 EFFECT PROHIBITING;

prohibits a negative screen size for all cameras and phones that
instantiate the screen column.

Next to standard check and key conditions, flexible con-
straints can also express structural conditions on the data. For
instance, if we want to be warned about phones that are not
cameras but have an aperture, we can create the constraint:

ALTER TABLE Products ADD CONSTRAINT noAperture

ENTITY DOMAIN (Phones MINUS Cameras)

CHECK Products NOT INSTANTIATES aperture

EFFECT WARNING;

Final edited form was published in "2015 IEEE 31st International Conference on Data Engineering. Seoul 2015", S. 1460-1463, ISBN 978-1-4799-7964-6
http://dx.doi.org/10.1109/ICDE.2015.7113401

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 1. Screenshot of the FRDM web interface.

The constraint ”phones instantiating the column ostype also
must instantiate the column osversion” is enforced by:

ALTER TABLE Products ADD CONSTRAINT osTypeVersion

ENTITY DOMAIN (Phones) VALUE DOMAIN (ostype)

CHECK Products INSTANTIATES osversion

EFFECT PROHIBITING;

Beyond the aspects discussed here, FRDM smoothly in-
tegrates flexible tables, flexible entity domains, and flexible
constraints also with other fundamental database technologies
such as transaction handling, indexing, and views.

III. FRDM DEMO

The demo is based on the FRDM web interface, shown in
Figure 1. It allows to connect to a FRDM database and submit
DQL as well as DDL and DML statements. Statements are
entered in the text area at the top; results are displayed on
the canvas below the text area. Any changes to the schema of
the database, e.g., new columns added to a flexible table by a
DML operation, are reflected in the schema tree on the left.
The right frame lists statements that we have prepared for the
demo.

The prepared storyline of the demo takes the visitor through
a database workflow of an online electronics dealer, who
is maintaining a product catalog while the products rapidly
evolve and the dealer is expanding its business. In the first
half of the storyline, we set up a database consisting of regular
tables for order and supplier information and flexible tables for
the product information. Then, the product catalog is populated
gradually with products. The product range evolves constantly
and so does the schema of the product catalog. Concurrently,
the database is queried for product information and order
processing. Going through all these steps, the visitor will
experience how FRDM simplifies the management of schema-
flexible data by avoiding complex mapping layers or polyglot
persistence.

While our dealer embraces the schema flexibility, it is also
important to the dealer to keep the data in order while its

business grows. In the second half of the storyline, we start
to organize the products into entity domains. For each entity
domain we set up flexible constraints that demand a minimum
set of attributes to allow for a better online presentation
of product features. This demonstrates that the approach of
FRDM is not purely descriptive but has the flexibility to range
anywhere between purely descriptive and purely prescriptive.

We plan to conduct the demo very interactively. The
prepared storyline serves merely as the starting point for the
demo. It allows us to quickly introduce the visitor to the
various features of FRDM and demonstrate their benefits. We
run the storyline adaptively as the discussion with the visitor
evolves. At any time it is possible to deviate from the storyline,
change statements or draw up completely new scenarios. The
visitor can play freely with the system, as well. For very
specific questions, we additionally have a very long list of
detailed examples, which we used to test the system. Further,
we are open to discuss with the visitor how we implemented
the various features and are eager to hear the visitor’s opinion
in that regard. To foster such a discussion, we prepared also a
handful of examples demonstrating the performance challenges
that come with implementing such functionality.

With FRDM we want to show the feasibility of flexible
schema data management in RDBMs and SQL while avoiding
complicated mapping layers and polyglot persistence. More
generally, we hope to demonstrate the benefits of integrating
the advantages of descriptive and prescriptive data manage-
ment in a single system.

REFERENCES

[1] C. Monash, “Data model churn,” DBMS2 Blog: http://www.dbms2.com/
2013/08/04/data-model-churn/, Aug. 2013.

[2] M. L. Brodie and J. T. Liu, “OTM’10 Keynote: The Power and Limits
of Relational Technology In the Age of Information Ecosystems,” in
OTM’10, vol. 6426, 2010.

[3] M. Fowler and P. Sadalage, “NoSQL Database and Polyglot Persistence,”
Personal Website: http://martinfowler.com/articles/nosql-intro-original.
pdf, Feb. 2012.

[4] T. Mueller, “H2 Database,” http://www.h2database.com, 2012.

Final edited form was published in "2015 IEEE 31st International Conference on Data Engineering. Seoul 2015", S. 1460-1463, ISBN 978-1-4799-7964-6
http://dx.doi.org/10.1109/ICDE.2015.7113401

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPBEF0.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Hannes Voigt, Patrick Damme, Wolfgang Lehner

