
Understanding Computer Usage Evolution

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 14-027

Understanding Computer Usage Evolution

David C. Anastasiu, Al M. Rashid, Andrea Tagarelli, and George

Karypis

October 10, 2014

algorithm. To ensure the segmentation is robust, constraints

on the length and number of segments are utilized.

The main contributions of this paper are as follows:

• We describe a method for the analysis of multi-variate

time series pertaining to resource utilization by users.

Our method performs a cross-user usage segmentation,

describing user sequences though a small number of

protoypical usage patterns (protos), which are shared by

all users.

• We develop a fully unsupervised, dynamic programming

algorithm, named Orion, which jointly detects the op-

timal segmentation and the protos: given the current set

of protos, it identifies the segmentation that best encodes

user sequences by protos, and, given the segmentation, it

identifies the protos that minimize the total error.

• We present results from analyzing a dataset in the PC

utilization domain, consisting of over 28K users whose

usage covers approximately 1M weeks. Our results show

that different groups of users exhibit different usage

patterns, the usage patterns of nearly 50% of the users

change over time, and more than 20% of the users

undergo multiple changes. Moreover, many of the dif-

ferences in the usage patterns and their changes appear

to correlate with various user-specific information such

as their geographic location and/or the type of computer

system they have.

• Orion is versatile and can be applied to diverse multi-

variate time-series domains. We demonstrate this through

a short analysis of purchase habit evolution of nearly 1000

users at a grocery store.

The remainder of the paper is organized in the following

manner. Section II summarizes related work, focusing on

existing approaches to multivariate time series segmentation.

Section III models the problem and introduces notation used

throughout the paper. Section IV details our approach to

characterizing behavior evolution. We describe our evaluation

methodology and analyze experimental results in Section V.

Section VI concludes the paper and also provides pointers for

future research.

II. RELATED WORK

The general problem of time series segmentation1 has

attracted a lot of attention from different research commu-

nities, including signal processing, pattern recognition, ma-

chine learning, and language processing. If no constraints

are imposed between different segments, finding the optimal

segmentation into m segments can be solved in polynomial

time in the order of O(n2m) by using dynamic programming,

where n is the length of the time series. Approximation

algorithms with provable error bounds (i.e., theoretical upper

bounds for the error compared to the optimal error) have been

developed to solve the problem in subquadratic time (e.g., [1]).

Generalizing the time series segmentation to multiple time

series variables adds new challenges, mainly related to the

1Not to be confused with time series summarization or approximation.

definition of segment across the different variables and to scale

issues. Like the univariate case, solutions to the multivariate

time series (MTS) segmentation problem have been developed

for emerging applications in pattern recognition [2]–[5], signal

processing [6], [7], and biological systems [8], [9]. Most

existing approaches to MTS segmentation fall into three main

categories: (i) statistical latent process models, (ii) clustering-

based methods, and (iii) dynamic programming.

Statistical latent models for MTS segmentation treat the

MTS data as belonging to a particular class of random

processes, by which the mutual correlations between MTS

data need to be captured while taking into account the temporal

constraints within the single time series. Hidden Markov mod-

els (HMMs) are widely used in human activity recognition [4],

[5], [10]. In particular, Chamroukhi et al. [5] propose the use

of a multiple regression model incorporating a hidden discrete

logistic process for the recognition of human activity switching

over time. A dedicated expectation-maximization algorithm is

developed to learn the model, where the number of latent

activities is estimated by means of a penalized likelihood

criterion. Discrete-time Poisson counting processes are also

considered, such as in the Astronomy domain. Dobigeon et

al. [7] explore joint segmentation of multiple signals coming

from different Astronomical sensors is performed by applying

a hierarchical Bayesian approach to a piece-wise constant

Poisson rate model. Markov Chain Monte Carlo methods are

used to draw samples according to the posterior distributions.

The approach is non-parametric but requires Gibbs sampling to

jointly estimate the unknown parameters and the hyperparame-

ters of the model, which may introduce limiting computational

time issues.

Clustering-based approaches employ a customized cluster-

ing process that imposes the constraints that the data in a clus-

ter must be contiguous in time and that data within segments

must be homogeneous. These approaches are hybrid, as they

usually combine a clustering algorithm to detect the segment

representatives with maximum likelihood estimation [3], [11]–

[13]. For instance, the fuzzy maximum likelihood clustering

algorithm by Abonyi et al. [3] jointly detects segments based

on a probabilistic PCA model and fuzzy sets that represent

segments in time. Data are modeled as mixtures of multivariate

Gaussian models.

Dynamic programming (DP) has been widely used in seg-

mentation problems [14]–[16]. Recently, there has been a

renewed interest in DP approaches to solve MTS segmentation

problems. Guo et al. [17] introduce a threshold autoregressive

model to define the segment error function of the optimization.

However, choosing the ideal value of both segmentation order

and autoregressive order is non-trivial. To address this issue,

the order of autoregression and segmentation can be simulta-

neously determined based on Schwarz’s Bayesian information

criterion. The latter is typically used to estimate the number

of segments in multiple change-points problems and, although

it may work well in practice, no guarantee is given about

the quality of the estimation. Other approaches, such as that

by Omranian et al. [9], formulate the MTS segmentation as

a bi-optimization problem: given the time series length n
and O(n3) positive real values for the network-based similar-

ity/distance values computed over all possible segment pairs,

find the partition with minimum number of segments which

maximize the sum of distances over all consecutive segments.

By transforming the above formulation into a directed acyclic

graph (DAG), the problem is solved by determining (via

dynamic programming) the maximum weight path with the

smallest length in the DAG. The algorithm’s performance can

be improved by requiring that the segment length is above

a given threshold, e.g., adding a breakpoint-penalty for the

inclusion of a new segment (breakpoint) to the optimal path.

Our proposed approach falls into the DP category, although

it is also coupled with a centroid-based partitional clustering

algorithm to produce the proto vectors. As such, Orion does

not suffer from typical issues of statistical latent models,

which generally rely on a model-class assumption of the

data and do not automatically provide information on the

significance of the estimated parameters. Compared to the

DP approaches mentioned above, our work focuses on the

definition of a prototypical usage vector (proto) and on the

development of an algorithm for optimal proto-based cross-

user usage segmentation that were not explored in previous

works. Moreover, Orion remains quadratic in the (average)

time series length, while a network-based approach like [9]

has overall complexity of at least O(n3). Orion works

in Euclidean space (which supports versatility in practice),

while the approach in [9] strongly relies on the local/global

centrality measure used to determine the similarity/distance

values for all segment pairs. Additionally, the vector-space

model we adopt for the representation of the protos does

not incur interpretation issues of the estimated parameters of

any segment to be detected (e.g., autoregressive coefficients

in [17]).

It is worth mentioning that our work is also related to

research in dynamic user behavior analysis, particularly for

behavioral targeting, which has been a prolific area in Web

data mining settings [18]–[20]. The changes in recent users’

interests are modeled for improving effectiveness in audience

targeting, e.g., for advertising campaigns. However, while also

dealing with large amounts of high dimentionality data, and

hence sharing our need to refine and concisely model the

data into user profiles, online behavioral targeting approaches

mostly focus on feature selection/weighting and the predic-

tive capabilities of the profiles. With this purpose in mind,

when collecting the users’ online behavioral history, fine-grain

information on active as well as passive behavioral types

are usually available; by contrast, in our setting, predicting

the application-usage category is a much harder task due to

incomplete information on many executables.

III. MODELING RESOURCE UTILIZATION

Manufacturers at times collect data related to how their

devices or resources are used, with user consent. These data

are often multi-variate in nature, and observed over a given

time span. In the case of PC usage, different users use subsets

of applications for arbitrary amounts of time and intensity.

Given an analysis time period, we split time into m equally-

sized windows, and aggregate (sum up) individual user usage

of applications within each window. Let wj = [a1, . . . , aq] be

a usage vector in the application space, i.e., ak is the amount

of CPU time consumed by application k while the user u used

application k in time window j.

We follow a segmentation based approach in order to char-

acterize computing usage evolution. Let Tu = 〈w1, . . . ,wnu
〉

be the sequence of PC usage vectors for user u, of length

nu. Both the number of usage vectors and the length of each

vector may vary from user to user. Furthermore, wj and wj+1

may not be adjacent in time, only arranged in increasing date

order. A segmentation Su of length mu of user u’s PC usage

sequence is a partitioning of Tu into mu non-overlapping

contiguous segments that span the entire sequence:

Su = [s1, s2 − 1], [s2, s3 − 1], . . . , [smu−1, smu
],

where segment boundaries sl are in [1..nu], with 1 ≤ l < mu.

We seek to find a segmentation such that usage in each

segment remains fairly consistent. Usage vectors in a segment

can then be approximated by a prototypical usage vector

(proto). Given a small number of protos shared among all

users, a proto-based segmentation of a user’s sequence is

one that minimizes the error associated with modeling the

segments by the protos. It optimizes a function of the form

min
s∗,pl

mu
∑

l=1

sl+1−1
∑

j=sl

||wj − pl||
2,

where pl is the proto associated with segment l, and ||·|| is the

vector ℓ2-norm. The vector pl captures the consistent usage

during 〈wsl , . . . ,wsl+1−1〉.
Given segmentations found for all users, the protos that best

approximate original data minimize the total error,

min
s∗,m∗,p∗

n
∑

i=1

mi
∑

l=1

si,l+1−1
∑

j=si,l

||wi,j − pi,l||
2.

Overall, the unknowns in our model are p proto vectors, and,

for each user, their segmentation Su and its length mu.

Table I provides a reference for symbols used throughout

the paper. While our discussion focuses on computer usage,

note that the method is not restricted to this domain. Vectors

wi can describe other kinds of multi-variate usage time series.

In the purchase habit evolution experiment we describe in

Section V-E, e.g., ak represents the overall price paid by a

customer u for product k in grocery order j.

IV. ORION

We model each user’s computer usage as a sequence of

prototypical usage vectors (protos). Given a small number of

protos, Orion performs a cross-user usage segmentation, i.e.,

a segmentation of the sequences of all users such that the error

associated with modeling each segment by one of the protos

is minimized. We find the cross-user usage segmentation in

an iterative manner. In the segmentation phase, we compute

TABLE I
SYMBOLS USED THROUGHOUT THE PAPER

Symbol Description

n number of sequences/users
p number of protos
q number of features, e.g., PC applications
Tu sequence of observation vectors for user u
wj j’th observation vector in a sequence
wj,i j’th observation vector in user i’s sequence
ak element of observation vector, e.g., application CPU time
nu number of observation vectors for user u
Su segmentation of Tu

sl segment l in a segmentation
si,l segment l in user i’s segmentation
mu number of segments in Su

pl proto encoding segment l
pi,l proto encoding segment l in user i’s segmentation

Dpl
(x, y) proto pl’s approximation error for segment [x, y]

D(x, y) best approximation error for segment [x, y]
1D(x,y) proto with best approximation error for segment [x, y]
Φ(j) optimum segmentation error for sequence ending at j
α minimum segment length during segmentation
β cost for creating a new segment

an optimal proto-based encoding of the user’s multi-variate

sequence via a dynamic programming algorithm. In turn, in

the update phase, protos are informed by the usage vectors

in the segments they model within all user sequences. The

process iterates until the reduction in error is small enough or

a user-defined number of iterations has been reached.

A. Segmentation

A segment is well approximated by a proto when the sum

of the (squared) Euclidean distance between the proto and

each of the usage vectors within the segment is small. Initial

protos are determined as the centroids of a K-means clustering

of all usage vectors across all users. Then, at each iteration,

given the current set of protos, we use a dynamic programming

algorithm to identify the optimal segmentation minimizing the

sum of those segment errors. To ensure robustness of the result,

we enforce a minimum length constraint α on each segment

and assign a penalty β associated with the creation of each

additional segment within a user’s sequence. In other words,

a segment is allowed to be created if it meets a minimum

length constraint and leads to a user-specified reduction in the

approximation error.

Let Dpl
(x, y), x ≤ y, be the approximation error between

proto pl and the usage vectors in the subsequence of Tu

〈wx, . . . ,wy〉:

Dpl
(x, y) =

y
∑

j=x

||wj − pl||
2.

The best approximation error for the sequence, D(x, y), is

achieved for some proto ph such that

D(x, y) = Dph
(x, y) = min

1≤l≤p
Dpl

(x, y),

where p is the number of protos. We denote by 1D(x,y)

the function that identifies the proto which achieves the best

approximation error for the sequence; 1D(x,y) = h in the

example above. Let E(j) denote the error of the optimum

segmentation for sequence 〈w1, . . . ,wj〉, with j ≤ nu. Then,

the optimum segmentation for the sequence ending at wy is

described by the recurrence relation,

Φ(y) = min
2α≤x≤y
y≥x+α

(D(x, y)+ β +Φ(x− 1)),

with the following initial conditions,

{

Φ(x) = 0 1 ≤ x <α,

Φ(x) = D(1, x) α≤ x < 2 α .

The first initial condition is due to the fact that we require

all segments to have minimum length α. The second follows

from the same requirement, as a sequence of length less than

2 α cannot be segmented.

The dynamic programming algorithm for finding the opti-

mum segmentation then follows, as described in Algorithm 1.

The array E stores, for each sequence index y, the error

associated with the optimum segmentation of a sequence up to

index y. Arrays I and S store the identity of the proto which

achieved the least error at index y and the starting position for

the segment which led to that least error, respectively.

Algorithm 1 Optimum segmentation for sequence Tu given

the set of protos P and constraints α and β

1: function SEGMENTSEQUENCE(Tu, P, α, β)
2: for each 1 ≤ x, y ≤ nu, x ≤ y do
3: Compute D(x, y)
4: end for
5: E[y]← 0, I[y]← ∅, S[y]← ∅, for 1 ≤ y <α
6: E[y]← D(1, y), I[y]← 1D(1,y), S[y]← 1, for

α≤ y < 2 α
7: for each y = 2 α, . . . , nu do
8: E[y]← min

x, y≥x+α
(D(x, y)+ β +E[x− 1])

9: I[y]← 1D(x,y) for minimizing x above
10: S[y]← x
11: end for
12: return E[nu]

We trace back through the segmentation pointer arrays I
and S to identify the segments induced by the optimum

segmentation, as shown in Algorithm 2. We use the marker

array Mu to store, for each of user u’s computer usage

vectors, the proto which best approximates it according to

the optimal segmentation. We say that this proto encodes the

usage vector. The user’s sequence could then be replaced by a

sequence of encoding protos, described in sparse form as 〈ps1
:

N1, . . . ,psmu
: Nmu

〉, where mu is the number of identified

segments for user u, Nl are the lengths of those segments, for

1 ≤ l ≤ mu, and psl
are the encoding protos.

B. Update

In the segmentation phase, we found, for each user, an

optimal proto-based encoding of their multi-variate computer

usage sequence. Given these segmentations, in the update

Algorithm 2 Segment identification for Tu

1: function IDENTIFYSEGMENTS(u, y, I, S)
2: if y > 1 then
3: x← S[y]
4: for each x ≤ j ≤ y do
5: Mu[j]← I[y]
6: end for
7: IdentifySegments(u, x− 1, I, S)
8: end if

phase, Orion identifies protos that minimize the total error,

min
s∗,m∗,p∗

n
∑

i=1

mi
∑

l=1

si,l+1−1
∑

j=si,l

||wi,j − pi,l||
2.

These vectors are none other than the mean of the usage

vectors spanned by the protos. Their computation is described

in Algorithm 3, where M is the set of all user marker arrays,

M = {M1, . . . ,Mn}.

Algorithm 3 Update proto l given latest segmentations

1: function UPDATEPROTO(l, M, P)
2: pl ← 0
3: c← 0
4: for each 1 ≤ i ≤ n do
5: for each 1 ≤ j ≤ ni do
6: if Mi[j] = l then
7: pl ← pl +wi,j

8: c← c+ 1
9: end if

10: end for
11: end for
12: pl ← pl/c
13: return pl

C. Analysis

The model described in Orion makes several assumptions.

First of all, we assume that different users exhibit a rather

small number of prototypical usage behaviors, which are

captured by the protos. Secondly, we assume that the usage

behavior of users remains consistent over a certain period of

time. Finally, we assume that the usage behavior of users can

change from one prototypical behavior to another. As we have

discovered, which we will further show in section V, these

assumptions are not far-fetched. In many cases, user sequences

were able to be described by 2-4 protos, as shown in sparse

form in the example below.

User 1: 〈p1 : 15, p5 : 11〉

User 2: 〈p2 : 5, p3 : 10, p2 : 7, p5 : 22〉

User 3: 〈p1 : 11, p4 : 15, p5 : 40〉

User 4: 〈p1 : 13, p5 : 25〉

Orion’s runtime is dominated by the segmentation step,

which leads to a complexity of O(n×p×µ2), where µ is the

average user sequence length, µ = (1/n)
∑

u nu. In practice,

we have observed the algorithm converges quickly and only a

small number of segmentation-update iterations are necessary,

typically less than 20.

V. EXPERIMENTAL EVALUATION

Orion was designed to describe user behavior evolu-

tion, which we evaluate in two domains. We focus most of

the discussion on user PC usage, and then further demon-

strate Orion’s utility through an analysis of customer pur-

chase behavior changes at a grocery store.

A. Data Processing

The PC usage data we analyze in this paper are generated

from an anonymous data collection project run jointly by

Intel and its PC OEM partners. The project aims to un-

derstand user experience and issues (including performance),

user needs, and how users use their computers, with a goal

of improving product design. Anonymous behavioral data is

collected from the user systems where the owners explicitly

opt in. No personally identifiable information, such as email

addresses, names, system serial numbers, or MAC addresses

are collected. As of this writing, about 15M systems world-

wide have been sending structured data, amounting to about

30TB in relational databases. Captured information includes

system type, geolocation (at the country level), CPU type,

temperature, battery, on-off behavior, application usage, etc.

However, these usage data cannot be tied back to a particular

user, unless, for example, the user provides some generated

identifier during a customer service call. We will refer to the

dataset derived from this project as the PC behavioral dataset

(PCB).

Each user’s data in the PCB dataset is in the form of

a daily application usage summary. For each application it

describes, the summary shows execution start and end time,

CPU time (broken as user and system process times), number

of page faults, etc. We focused our analysis on application

CPU time, which we computed as the sum of system and user

level process times. Data is not necessarily received each day

for each user, due to a number of factors such as network

transmission errors, the user’s computer being turned off, or

the client-side data collector being offline. As a result, user

sequences are sparse and may be missing data for days or

weeks at a time. We focus our analysis on weekly aggregated

application CPU time usage information for each user.

The PCB dataset contains usage data for a random subset

of 250K users, spanning 100 weeks, and resulting in an initial

7.52B utilization records. A utilization record shows the CPU

time used by application a on user u’s computer within one

day. We aggregate data at the week level, using calendar weeks

as a reference. Figure 2 shows the reduction in the number

of records after the weekly application utilization aggregation.

The deep valeys show weeks when data was received for fewer

users.

For the purpose of our analysis, the actual week when

data was received for a user is unimportant, as we focus

on behavioral changes in the user’s utilization sequence. We

therefore concatenate each user’s sequence of observations,

P13 (35K, 557)

Gaming

P7 (22K, 384)

Asian media

downloads

P8 (31K, 204)

Asian

messenger

P2 (32K, 211)

Media creation P4 (106K, 364)

Business

communication

P3 (31K, 231)

Email & office

P9 (83K, 239)

Writer

P10 (105K, 249)

Office

P1 (83K, 238)

File transfers

P5 (48K, 242)

Media

downloads

P0 (37K, 356)

Communicate

& watch

P6 (105K, 85)

Media player

P12 (115K, 195)

Skype

P14 (71K, 296)

Facebook

Messenger

P11 (72K, 243)

iTunes

Fig. 4. Protos discovered by Orion: work/productivity protos (left), media & social protos (middle), gaming and Asian media & social protos (right). For
each proto, we display its identifier, the number of time slices (weeks) the proto has encoded across all users, its intensity score, a given name, and important
features. For example, “P2 (32K, 211) Media creation” refers to proto ID P2, which encoded at least 32K weeks and has an intensity score of 211.

for PCs.

• P9. Writer. winword (Microsoft Word) is the predom-

inant application in this proto, joined by several other

productivity applications. wmplayer (Windows Media

Player) has a fairly high score, showing some people

likely listen to music while composing documents.

• P10. Office. While P3 is more indicative of a home office

setup, this proto descries a business office, communicat-

ing via outlook, using Office applications heavily (win-

word, excel, powerpoint), along with other productivity

software.

Media & social behaviors.

• P0. Communicate & watch. Utilization in proto P0 is

dominated by skype, a communication application, and

vlc (VideoLAN VLC), a popular media player. Other

media applications such as wmplayer and itunes (Apple

iTunes) also play a significant role. While users with this

behavior pattern also tend to use peer-to-peer sharing

programs like utorrent, productivity apps like winword

are seldom used.

• P1. File transfers. Almost half the activity in P1 is peer-

to-peer sharing through utorrent (uTorrent), with a mix

of media playing applications coming second in usage

intensity.

• P5. Media downloads. Media playback (vlc, wmplayer,

itunes) is the focus of this proto, though downloads,

many probably media related, also play an important role

through utorrent and bittorrent (BitTorrent).

• P6. Media player. While wmplayer and related services

account for half the magnitude in this proto, the remain-

ing applications are less task-focused. The low intensity

score achieved by this proto is a further indication that

users do not use their PCs heavily while in this state.

• P11. iTunes. The popular media player itunes (iTunes)

is the focus of this proto. High magnitude for wmpnetwk

(Windows Media Player Network Sharing Service), com-

bined with fairly low magnitude for wmplayer, seems to

indicate users in this state stream Windows media content

through iTunes rather than Media Player.

• P12. Skype. In this state, communication program skype

is key, overshadowing all other PC usage.

• P14. Facebook Messenger. With both a high score

and a fairly large week frequency count, this proto is

indicative of users who often communicate via Facebook

Messenger.

Asian media & social behaviors.

• P7. Asian media downloads. funshion (Funshion), a

peer-to-peer streaming video player and downloader for

East Asia users, and its associated service, dominate

this proto. Additional usage is consumed by qvodplayer

(Nora QvodPlayer), a video-on-demand and overall me-

dia player, ppstream (PPStream), a Chinese peer-to-peer

streaming video network software targetting television

content, and their associated services.

• P8. Asian messenger. qq (Trencent QQ) is an instant

messaging software service popular among Asian users.

Asian peer-to-peer media streaming services round up

prominent programs in this proto.

Gaming.

• P13. Gaming. league (League of Legends), a multiplayer

online game, and its clients (lolclient, lollauncher), head

up utilization, joined by the gaming platform steam

(GameSpy Steam). While it does not show up in as many

TABLE III
ORION EXECUTION TIMES FOR INCREASING NUMBERS OF PROTOS

dataset / p 10 20 30 40 50

PCB 63.87 118.66 173.51 229.33 283.85
grocery 7.66 14.58 21.27 28.10 34.95

purchase habit transitions.

F. Efficiency

Orion was designed to be very efficient. It incrimentally

computes the squared error between protos and sequence vec-

tors and is thus able to scale linearly in the number of protos.

Below, for the two datasets we have experimented with, we

present Orion execution times for p ∈ {10, 20, . . . , 50}. We

use the same β and α parameters as are used in our previous

experiments for each dataset, respecitvely. Experiments were

executed on an Intel i7 desktop computer, with 8Gb RAM,

using a single core.

VI. CONCLUSION AND FUTURE WORK

In this work, we formulated the problem of characterizing

resource usage evolution as a cross-usage multi-variate time

series segmentation and developed a dynamic programming

algorithm to find the optimal solution. Our proposed algorithm,

Orion, iterates between finding an optimal segmentation

of user sequences via dynamic programming and deriving

prototipical usage vectors (protos) from the segmentation.

Orion was primarily developed for and evaluated on

the task of understanding and characterizing computer usage

evolution. This has represented a challenging test bed, due

to the very high dimensionality of the application space,

along with incomplete and sometimes innacurate classification

of application executables. Nevertheless, Orion was shown

effective both in detecting usage patterns shared by many users

and tracking the behavioral evolution of users through time.

The discovered usage behaviors were generally found to be

coherent with side information about the users’ systems and

locations. Furthermore, we demonstrated Orion’s versatility

through a study on the evolution of purchase patterns at an

online grocery store.

There are several possible future directions for this work.

From a data preparation and representation perspective, it

would be beneficial for our analysis if all executables that

are running in the context of a single application on a user’s

system were mapped to a unique application ID. In the absence

of a solution for this problem, Orion could be extended

to model sub-application categories, by using dimensionality

reduction techniques to generate rich yet more concise protos.

Our method could also be extended by generalizing some of

the assumptions we placed on the segment’s properties; par-

ticularly, instead of assuming that the usage in each segment

is constant, we may investigate if the usage can be predicted

based on previous within-segment behavior.

Acknowledgment: This work was supported in part by the

Intel Software and Services Group, NSF (IOS-0820730, IIS-

0905220, OCI-1048018, CNS-1162405, and IIS-1247632) and

the Digital Technology Center at the University of Minnesota.

Access to research and computing facilities was provided by

the Digital Technology Center and the Minnesota Supercom-

puting Institute.

REFERENCES

[1] E. Terzi and P. Tsaparas, “Efficient algorithms for sequence segmen-
tation,” in Proc. SIAM Int. Conf. on Data Mining (SDM), 2006, pp.
314–325.

[2] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmäki, and H. Toivonen,
“Time Series Segmentation for Context Recognition in Mobile Devices,”
in Proc. IEEE Int. Conf. on Data Mining (ICDM), 2001, pp. 203–210.

[3] J. Abonyi, B. Feil, S. Nemeth, and P. Arva, “Modified Gath-Geva
clustering for fuzzy segmentation of multivariate time-series,” Fuzzy Sets

and Systems, vol. 149, pp. 39–56, 2005.
[4] D. Kulic and Y. Nakamura, “Scaffolding on-line segmentation of full

body human motion patterns,” in IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2008, pp. 2860–2866.
[5] F. Chamroukhi, S. Mohammed, D. Trabelsi, L. Oukhellou, and Y. Ami-

rat, “Joint segmentation of multivariate time series with hidden process
regression for human activity recognition,” Neurocomputing, vol. 120,
pp. 633–644, 2013.

[6] E. Lebarbier, “Detecting multiple change-points in the mean of Gaussian
process by model selection,” Signal Processing, vol. 85, no. 4, pp. 717–
736, 2005.

[7] N. Dobigeon, J.-Y. Tourneret, and J. D. Scargle, “Joint Segmentation
of Multivariate Astronomical Time Series: Bayesian Sampling With a
Hierarchical Model,” IEEE Trans. on Signal Processing, vol. 55, no. 2,
pp. 414–423, 2007.

[8] F. Duchene, C. Garbay, and V. Rialle, “Learning recurrent behaviors
from heterogeneous multivariate time-series,” Artificial Intelligence in

Medicine, vol. 39, pp. 25–47, 2007.
[9] N. Omranian, S. Klie, B. Mueller-Roeber, and Z. Nikoloski, “Network-

based segmentation of biological multivariate time series,” PLoS ONE,
vol. 8, no. 5, p. e62974, 2013.

[10] D. Trabelsi, S. Mohammed, F. Chamrouki, L. Oukhellou, and Y. Amirat,
“Activity recognition using Hidden Markov Models,” in Proc. Workshop

on New and Emerging Technologies in Assistive Robotics, in conj. with

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2011.
[11] M. Ramoni, F. Sebastiani, and P. Cohen, “Bayesian clustering by

dynamics,” Machine Learning, vol. 47, pp. 91–121, 2002.
[12] K. Yang and C. Shahabi, “An efficient k-nearest-neighbor search for

multivariate time series,” Information and Computation, vol. 205, pp.
65–98, 2007.

[13] N. Wang, X. Liu, and J. Yin, “Improved gath-geva clustering for fuzzy
segmentation of hydrometeorological time series,” Stochastic Environ-

mental Research and Risk Assessment, vol. 26, pp. 139–155, 2012.
[14] R. Bellman and R. Roth, “Curve fitting by segmented straight lines,”

Journal of the American Statistical Society, vol. 64, pp. 1079–1084,
1969.

[15] I. Auger and C. Lawrence, “Algorithms for the optimal identification
of segment neighborhoods,” Bull. of Math. Biology, vol. 51, pp. 39–54,
1989.

[16] B. Jackson, J. D. Scargle, D. Barnes, S. Arabhi, A. Alt, P. Gioumousis,
E. Gwin, P. Sangtrakulcharoen, L. Tan, and T. T. Tsai, “An algorithm
for optimal partitioning of data on an interval,” IEEE Signal Processing

Letters, vol. 12, pp. 105–108, 2005.
[17] H. Guo, X. Liu, and L. Song, “Dynamic programming approach for

segmentation of multivariate series,” Stochastic Environmental Research

and Risk Assessment, pp. DOI: 10.1007/s00 477–014–0897–0, 2014.
[18] S. K. Tyler, S. Pandey, E. Gabrilovich, and V. Josifovski, “Retrieval

models for audience selection in display advertising,” in Proc. ACM

Conf. on Information and Knowledge Management (CIKM), 2011, pp.
593–598.

[19] M. Aly, A. O. Hatch, V. Josifovski, and V. K. Narayanan, “Web-scale
user modeling for targeting,” in Proc. ACM Conf. on World Wide Web

(WWW), 2012, pp. 3–12.
[20] M. Aly, S. Pandey, V. Josifovski, and K. Punera, “Towards a Robust

Modeling of Temporal Interest Change Patterns for Behavioral Target-
ing,” in Proc. ACM Conf. on World Wide Web (WWW), 2013, pp. 71–81.

