
 
 “© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing this 

material for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works.” 



Scalable Supergraph Search in Large Graph
Databases

Bingqing Lyu�, Lu Qin‡, Xuemin Lin§�, Lijun Chang§, and Jeffrey Xu Yu�

� East China Normal University, China
‡Centre for Quantum Computation & Intelligent Systems, University of Technology, Sydney, Australia

§The University of New South Wales, Australia
�The Chinese University of Hong Kong, China

�lvbingqings@gmail.com; ‡lu.qin@uts.edu.au; §{lxue,ljchang}@cse.unsw.edu.au; �yu@se.cuhk.edu.hk

Abstract—Supergraph search is a fundamental problem in
graph databases that is widely applied in many application
scenarios. Given a graph database and a query-graph, supergraph
search retrieves all data-graphs contained in the query-graph
from the graph database. Most existing solutions for supergraph
search follow the pruning-and-verification framework, which
prunes false answers based on features in the pruning phase and
performs subgraph isomorphism testings on the remaining graphs
in the verification phase. However, they are not scalable to handle
large-sized data-graphs and query-graphs due to three draw-
backs. First, they rely on a frequent subgraph mining algorithm
to select features which is expensive and cannot generate large
features. Second, they require a costly verification phase. Third,
they process features in a fixed order without considering their
relationship to the query-graph. In this paper, we address the
three drawbacks and propose new indexing and query processing
algorithms. In indexing, we select features directly from the
data-graphs without expensive frequent subgraph mining. The
features form a feature-tree that contains all-sized features and
both the cost sharing and pruning power of the features are
considered. In query processing, we propose a verification-free
algorithm, where the order to process features is query-dependent
by considering both the cost sharing and the pruning power.
We explore two optimization strategies to further improve the
algorithm efficiency. The first strategy applies a lightweight graph
compression technique and the second strategy optimizes the
inclusion of answers. Finally, we conduct extensive performance
studies on two real large datasets to demonstrate the high
scalability of our algorithms.

I. INTRODUCTION

Graphs are widely used in numerous application domains,
such as biology, chemistry, image processing, ecology, electri-
cal circuits, computer vision, etc. A fundamental problem in
graph databases is graph containment search, which consists of
subgraph search and supergraph search. Given a query-graph
Q, subgraph search [8, 13, 16, 23, 25, 30] finds all data-graphs
that contain Q in the graph database, while supergraph search
[6, 7, 24, 29, 31] retrieves all data-graphs that are contained
in Q in the graph database. In this paper, we focus on the
supergraph search problem.

Applications. Supergraph search is used in many application
scenarios. For example:

(1) Biology. In biology, protein-protein interaction (PPI)
networks play an important role in understanding the cell as
a system of interacting components and finding how proteins

Lu Qin and Xuemin Lin are the corresponding authors.

in the cell interact with each other [5]. Containment analysis
of PPI networks across species will facilitate researchers to
discover some specific relationships between species.

(2) Chemistry. In chemistry, when a new molecule is dis-
covered, researchers can predict its possible properties by
comparing its topological structure with already known chem-
ical compounds [32]. Supergraph search can be used in this
application that if the new molecule contains some structures
of existing molecules, it is very likely that the new molecule
has similar properties to these existing molecules.

(3) Computer Vision. In image processing and computer
vision, a segmented object is represented by a region adjacency
graph that can be transformed into a spatial entity [18]. In
recognition systems, such classical models allow users to
identify specific objects in images with supergraph search
techniques by taking the images as queries.

More applications can be found in [6, 7, 24, 29, 31].

Existing Solutions. Supergraph search usually involves sub-
graph isomorphism testing which is NP-complete [10]. Exist-
ing solutions for supergraph search are based on two logics,
inclusion logic and exclusion logic, to reduce the number of
subgraph isomorphism testings. Inclusion logic is used in [7],
which first finds a set of data-graphs that are guaranteed to
be answers and then verifies other data-graphs using subgraph
isomorphism testing. Considering that most data-graphs are
not answers in practice, the cost saving based on inclusion
logic is usually limited. Therefore, all other works in the
literature [6, 24, 29, 31] follow the exclusion logic, which
first prunes false answers and then verifies other data-graphs
using subgraph isomorphism testing.

Exclusion logic is first introduced in [6], which computes
a set of features selected from the frequent subgraphs. Given
a query-graph Q, if the feature is not contained in Q, all data-
graphs containing the feature can be pruned. How to mine
better features using query logs for supergraph search is further
studied in [24]. In [29], an algorithm is proposed to improve
[6], that divides the features and data-graphs into partitions,
and considers cost sharing in each partition in the pruning
phase and verification phase. The algorithm is further improved
in [31] by considering the cost sharing between partitions and
the cost sharing between pruning and verification phases. More
details on existing solutions are outlined in Section III.

Motivation. Existing solutions based on exclusion logic face a
scalability problem when handling large-sized data-graphs and



query-graphs for three reasons: (1) The features selected in
existing solutions largely rely on a frequent subgraph mining
algorithm (e.g., gSpan [22]). However, such algorithms are
usually expensive and can only find small-sized subgraphs
which are likely to be included in a large-sized query-graph,
and thus have low pruning power. (2) A verification phase
is required that may involve a large number of subgraph
isomorphism testings. (3) Features are processed in a fixed
order without considering their pruning power regarding to the
query-graph. As a result, when processing a feature with low
pruning power, the algorithm may be trapped in an exponential
search space without pruning any data-graphs.

Contributions. In this paper, we follow exclusion logic and
propose algorithms to address the above drawbacks of existing
solutions. We make the following contributions:

(1) A full-structure index without frequent subgraph mining.
In this paper, we propose an indexing algorithm that selects
features directly from the data-graphs without relying on a
frequent subgraph mining algorithm. We construct a feature-
tree to tackle cost sharing among features. The feature-tree is
constructed by iteratively growing edges on existing features
even if the newly generated features are infrequent, and the
leaf nodes of the feature-tree are exactly the set of data-graphs
in the graph database. In other words, we construct a full-
structure index that tries to consider possible structure sharing
among the features. The edge-growing process is directed
by a score function that considers both pruning power and
cost sharing of each newly generated feature. The number
of features in the feature-tree can be well bounded, and we
can guarantee that no two features in the feature-tree are
isomorphic without graph isomorphism checking.

(2) A verification-free query processing algorithm with dy-
namic feature ordering. Based on the full-structure feature-
tree we constructed, we propose a new algorithm for query
processing. Our algorithm does not require a verification phase
and it handles both small and large features in a progressive
manner. We also consider dynamic feature ordering to process
features according to their scores. The score of the feature is
designed based on consideration of both its cost sharing and
pruning power, and when data-graphs are included or excluded
from the answers, our algorithm updates the scores of the
features adaptively. In this way, we avoid processing useless
features and thus significantly reduce computational cost.

(3) Two optimization strategies to further improve the algo-
rithm efficiency. We explore two novel optimization strategies
to further improve the efficiency of our algorithm. The first
strategy considers the redundant computational cost when
processing symmetric nodes in data-graphs. We propose a
lightweight graph compression technique to contract symmet-
ric nodes in data-graphs and thus save computational cost. In
the second optimization strategy, we propose an inclusion-
aware query processing algorithm, that tries to reduce com-
putational cost when processing a feature that is likely to
include data-graphs in the answers. Instead of expanding all
matches of the feature in the query-graph for pruning, we
partition the matches so that the matches which are more likely
to include answers have a higher priority to be expanded.
Both optimization strategies can be easily embedded in our
algorithm framework.

(4) Extensive performance studies on large real datasets.
We conduct extensive performance studies by using two large

v1 v3 v5

v2 v4 v6

v1 v3 v5

v2 v4 v6

v1 v3 v5

v2 v4 v6

v1 v3

v2 v4 v5

v1 v3 v5

v2 v4 v6

G1 G3

G4 G5 G6

v1 v3 v5

v2 v4 v6
G2

(a) Database Graphs

v1 v3 v5

v2 v4 v6

v7

v8
Q

(b) Query Graph

Fig. 1: An Example of Supergraph Search Problem

real datasets CCD dataset and NCI dataset. The experimental
results demonstrate that our indexing and query processing
algorithms are scalable to handle large-sized data-graphs and
query-graphs. According to our experimental results, our query
processing algorithm is eight times faster than the state-of-the-
art algorithms on average.

II. PROBLEM DEFINITION

A graph G is represented as a tuple G = (V,E), where
V (G) is the set of nodes and E(G) ⊆ V × V is the set of
edges in G. We denote the number of nodes and edges in G
by |V (G)| and |E(G)| respectively. For simplicity, we only
focus on undirected, unlabelled, connected, and simple graphs
in this paper. Here, a simple graph is a graph with no self-
loops and no parallel edges. However, our algorithms can also
be extended to handle other types of graphs. For each node
u ∈ V (G), we use Nbr(u,G) to denote the set of neighbors
of u in G, i.e., Nbr(u,G) = {v|(u, v) ∈ E(G)}. The degree
of a node u ∈ V (G), denoted by d(u,G), is the number of
neighbors of u in G, i.e., d(u,G) = |Nbr(u,G)|.
Definition 2.1: (Subgraph Isomorphism) Given two graphs
G1 and G2, G1 is subgraph isomorphic to G2, denoted as
G1 ⊆ G2, iff there is an injective function f : V (G1) →
V (G2), such that ∀(u, v) ∈ E(G1), (f(u), f(v)) ∈ E(G2).

If G1 is subgraph isomorphic to G2, G1 is called a
subgraph of G2, and G2 is called a supergraph of G1. If
G1 ⊆ G2, we call that G2 contains G1. We use G1 � G2

to denote that G1 is not subgraph isomorphic to G2.

G1 is isomorphic to G2, denoted as G1 = G2, iff G1 ⊆ G2

and G2 ⊆ G1. We use G1 �= G2 to denote that G1 is not
isomorphic to G2. �

Problem Statement. Given a graph database D = {G1, G2,
. . . , Gn} and a graph Q, where each Gi ∈ D is called a
data-graph, and Q is called a query-graph, the problem of
supergraph search is to find all graphs in D, that are subgraph
isomorphic to Q, i.e., supergraph search aims to compute the
answer set A(Q) = {Gi|Gi ∈ D, Gi ⊆ Q}. For simplicity, in
this paper, we assume that no two graphs in D are isomorphic.

Note that the problem of supergraph search is NP-hard.
This is because, given two graphs G and Q, the problem of
deciding whether G is subgraph isomorphic to Q is an NP-
complete problem [10].

Example 2.1: Given a graph database D = {G1, G2, ..., G6}
in Fig. 1(a) and a query-graph Q in Fig. 1(b), supergraph
search finds the answer set A(Q) = {G1, G5, G6}, each of
which is subgraph isomorphic to query Q. �



III. EXISTING SOLUTIONS

In the literature, existing solutions for supergraph search
mainly fall into two categories, namely, feature based approach
and integrated-graph based approach.

A. Feature Based Approach

Algorithm CIndex. CIndex [6] is the first feature based
approach for supergraph search, that adopts the pruning-
and-verification framework. Given a graph database D =
{G1, G2, . . . , Gn}, a feature-based index is built on D for
query processing. The index consists of a set of features F =
{f1, f2, . . . , fk}, that are selected from the (closed) frequent
subgraphs on D mined by a (closed) frequent subgraph mining
algorithm, e.g., gSpan [22]. The feature selection is based on
historical queries in the query logs. For each feature fi ∈ F ,
a set of data-graphs S(fi) = {Gj |Gj ∈ D, fi ⊆ Gj} is
also precomputed. In query processing, given a query-graph
Q, the answer to Q is computed in two phases, pruning
and verification. In the pruning phase, the algorithm applies
an exclusion logic to prune data-graphs, that is, if a feature
fi � Q, any data-graph Gj ∈ S(fi) can be pruned. In
the verification phase, the data-graphs that are not pruned by
any features will be verified against the query-graph Q using
subgraph isomorphism testing. How to mine better features
from the query logs and maintain such features is further
studied in [24]. Note that, we do not consider the optimization
techniques based on query logs in this paper.

Algorithm GPTree. To improve CIndex by (1) reducing re-
dundant computational cost to process common subgraphs of
features and/or data-graphs, and (2) avoiding being largely
dependent on query logs, in [29], a feature based approach
GPTree is proposed under the same pruning-and-verification
framework. In GPTree, after selecting a set of features from
the frequent subgraphs, both the set of features and the set
of data-graphs are partitioned into groups. Graphs in each
feature group or data-graph group share a certain subgraph,
which is denoted as the prefix of the group. The partition is
performed in a way that large-sized prefixes are preferred. In
query processing, for both the pruning and verification phases,
the cost of subgraph isomorphism testing on the prefix part can
be shared among the graphs in the same group, which reduces
redundant computational cost.

Algorithm PrefIndex. To further reduce redundant computa-
tional cost, in [31], a feature based algorithm PrefIndex is
proposed for supergraph search. PrefIndex improves GPTree
in three ways: (1) By assuming each feature to be a prefix of a
certain data-graph group, PrefIndex handles the computational
cost sharing between the pruning and verification phases; (2)
By considering multi-level sharing among features, PrefIndex
handles the computational cost sharing among data-graph
groups; and (3) In the feature selection process, instead of pre-
ferring large-sized features, PrefIndex considers both the size
of the feature and the number of data-graphs containing each
feature, which can further enlarge the cost sharing compared
to GPTree in query processing.

B. Integrated-graph Based Approach

Algorithm IGQuery. Recall that feature based approaches
apply an exclusion logic to prune false answers followed by
verification. The integrated-graph based approach IGQuery,

proposed by Cheng et al. [7], aims to answer supergraph
search queries based on inclusion logic. That is, given a graph
database D and a query Q, instead of pruning false answers,
IGQuery tries to find a set of data-graphs A∗ that each graph
in A∗ is guaranteed to be a subgraph of Q. After computing
A∗, IGQuery further applies a simple feature based algorithm
to prune false answers. Finally, the remaining data-graphs are
verified against Q one by one to arrive at the final answer. To
compute A∗, IGQuery precomputes an index by integrating all
the data-graphs in D into a single graph, namely, the integrated
graph IG. Each graph in D has a unique embedding in IG. For
each edge e in IG, the set of data-graphs containing e in their
embeddings is precomputed and denoted as host(e). In query
processing, given a query Q, the algorithm first computes an
embedding of Q in IG. If there is a such an embedding, by
intersecting host(e) for all edges e in the embedding, the set
A∗ can be obtained.

IV. A NEW VERIFICATION-FREE APPROACH

A. Problem Analysis

Drawbacks of Existing Solutions. Note that in the integrated-
graph based approach, the integrated-graph is used to compute
a subset of answers based on the inclusion logic. However,
only small-sized data-graphs tend to be found by inclusion
logic. Moreover, in a supergraph search, the number of answers
is usually much smaller than the number of data-graphs.
Therefore, the cost saving using integrated-graph is usually
limited. For example, in our experiment, using the database
consisting of 3000 graphs with an average size of 50 obtained
from the CCD dataset, given a query of size 100, the number
of answers is only 13% of the number of data-graphs.

Due to the above inherent limitations of inclusion logic
used in integrated-graph based approach, in this paper, we
aim to improve the feature based approach using exclusion
logic to process supergraph search. The existing feature based
approaches have the following limitations, which make them
unscalable when handling large-sized data-graphs.

(L1) Expensive frequent subgraph mining algorithms are used
in indexing. In existing feature based solutions, the features
are selected from the set of frequent subgraphs mined by
an existing frequent subgraph mining algorithm (e.g., gSpan
[22]) or its variants. However, such algorithms are usually
expensive and not scalable to handle large-sized data-graphs.
For example, in our experiment, for the database consisting of
3000 graphs with an average size of 90 obtained from the CCD
dataset, by setting the minimum threshold to be 0.2, over 14
hours are spent mining the frequent subgraphs using gSpan.

(L2) Verification may be expensive on large-sized data-graphs.
In existing feature based approaches, although the cost sharing
when processing common features can be considered in the
verification phase, cost savings are limited when the size
of data-graphs is large, since the features are selected from
frequent subgraphs. This makes the verification costly.

(L3) Features are processed in a query-independent order in
query processing. Existing feature based approaches mainly
focus on how to select a good set of features. In query
processing, the order to process the features is fixed and is
independent of the query-graph. However, it is obvious that a
feature may have different pruning power for different query-
graphs. Therefore, given a query-graph, if we can estimate



the pruning power of each feature w.r.t. the query-graph,
processing the features in decreasing order of their pruning
power may significantly enhance the search efficiency.

Our Approach. The limitations of existing solutions motivate
us to find better indexing and query processing algorithms.
In this paper, we propose a new approach that addresses the
above limitations in the following ways:

(A1) Direct feature selection without frequent subgraph min-
ing. In our approach, features are selected directly from the
data-graphs to avoid generating an exponential number of sub-
graphs followed by selecting features from them. To generate
the features, we construct a feature-tree by incrementally grow-
ing edges on each feature. We consider both the cost sharing
and pruning power for each generated feature. Compared to
frequent subgraph mining, our feature selection process has
two advantages: (1) The total number of features generated
is bounded; and (2) For each newly generated feature, we do
not need to perform isomorphism checking against existing
features, since we can guarantee that no two features generated
are isomorphic to each other. The two advantages make our
feature selection process much more efficient than frequent
subgraph mining.

(A2) Verification-free query processing based on a full-
structure index. In our approach, we allow both small and
large features in our feature generation process. A small feature
usually has limited pruning power but it may be shared by a
large number of data-graphs, while a large feature may have
high pruning power but it is usually shared by a small number
of data-graphs. In our algorithm, the edge-growing process
terminates until the new generated feature becomes a data-
graph. In other words, we consider a full-structure index that
tries to consider possible structure sharing among features,
even if they are not frequent. All data-graphs are preserved
in the index. Based on the full-structure index, our query
processing algorithm is verification-free.

(A3) Query-dependent feature processing during supergraph
search. Since the pruning power of each feature is query-
dependent, during the supergraph search of our approach, we
define a dynamic score function for each feature in the feature-
tree. The score function considers both the pruning power and
cost sharing of the feature and is adaptively adjusted during
the search process when data-graphs are included or excluded
from the answers. The features are processed in a top-down
manner in the feature-tree and once a feature is not contained
in the query-graph, all its descendants are discarded.

B. DGTree: A Full-structure Index

In this subsection, we introduce our indexing technique.
We first define a match of a graph as follows:

Definition 4.1: (Match) Given a graph P with nodes
{u1, u2, . . . , u|V (P )|} and a data-graph G, a match f of P in
G is a mapping from V (P ) to V (G) such that the following
two conditions hold:

• (Conflict-free): For any pair of nodes ui ∈ V (P ) and uj ∈
V (P ) (ui �= uj), f(ui) �= f(uj).

• (Structure-preserved): For any edge (ui, uj) ∈ E(P ),
(f(ui), f(uj)) ∈ E(G).

We use f = [v1, v2, . . . , v|V (P )|] to denote the match f , i.e.,
f(ui) = vi for any 1 ≤ i ≤ |V (P )|. If f(ui) = vi, we have
f−1(vi) = ui. �

Algorithm 1: DGTreeConstruct(database D = {G1, . . . , Gn})
gr ← a new tree-node;1
gr.graph ← a single-edge graph;2
gr.S ← D; gr.S∗ ← D; gr.grow-edge = ∅;3
for Gi ∈ D and (v, v′) ∈ E(Gi) do4

gr.M(Gi) ← gr.M(Gi) ∪ {[v, v′], [v′, v]};5

TreeGrow(gr);6
return gr ;7

Procedure TreeGrow(tree-node g)8
H ← CandidateFeature(g);9
C ← g.S∗;10
while C �= ∅ do11

g+ ← BestFeature(H, C);12
if |g+.S∗| > 1 then13

g+.graph ← a graph by adding g.grow-edge in g.graph;14
TreeGrow(g+);15

else g+.graph ← the graph in g.S∗; g+.S ← g+.S∗;16
g.children ← g.children ∪ {g+};17
C ← C \ g+.S∗;18

As mentioned above, our index is a tree structure which
can preserve all data-graphs with substructure sharing. We call
the index a DGTree, which has the following structure:

DGTree Structure. The DGTree contains a set of tree-nodes.
Each tree-node g consists of the following components:

g.children The set of child tree-nodes of g. A leaf tree-node is a
tree-node g with |g.children| = 0.

g.graph The feature-graph of g. The set of nodes in the feature-
graph is represented by {1, 2, . . . , |V (g.graph)|}.

g.grow-edge The edge added to g.graph from the feature-graph of the
parent tree-node of g.

g.edge-type The type of g.grow-edge, which is CLOSE if no new
node is created in g.graph and OPEN if a new node is
created in g.graph after adding g.grow-edge.

g.S The set of data-graphs containing g.graph, i.e., g.S =
{G|G ∈ D, g.graph ⊆ G}. If g is a leaf tree-node, g.S
contains the data-graph equaling to g.graph, and thus the
union of g.S for all leaf tree-nodes g is D.

g.M(Gi) The set of matches of g.graph in Gi for each Gi ∈ g.S.

g.S∗ g.S∗ ⊆ g.S. If g is the root tree-node, we have g.S∗ =
D. If g is a leaf tree-node, we have |g.S∗| = 1. For a
non-leaf tree-node g, we have:
(1) for any gi ∈ g.children and gj ∈ g.children (gi �=
gj), gi.S∗ ∩ gj .S∗ = ∅; and
(2)

⋃
gi∈g.children gi.S∗ = g.S∗. In other words, gi.S∗

for all gi ∈ g.children form a disjoint cover of g.S∗.

g.score The score of g.graph, which is used to select the best
edge to grow.

Note that the last three components g.M(Gi), g.S∗, and
g.score are only used in DGTree construction and can be
discarded from the DGTree after it is constructed. In the fol-
lowing, we use a tree-node and a feature-graph interchangeably
if the context is obvious.

DGTree Construction. Given a graph database D =
{G1, G2, . . . , Gn}, the algorithm to construct the DGTree is
shown in Algorithm 1. Generally speaking, the algorithm
divides the data-graphs in D into partitions. Each partition
(represented by a tree-node g) consists of the set of data-graphs
g.S∗ containing g.graph. A partition can be further divided
recursively. During the recursive partitioning of D, the DGTree
is constructed. Specifically, the algorithm first creates the root
tree-node gr with a feature-graph of a single edge (line 1-2).



Algorithm 2: CandidateFeature(tree-node g)

H ← ∅;1
for data-graph G ∈ g.S∗ and match f ∈ g.M(G) do2

for ui ← 1 to |f | and v ∈ Nbr(f(ui), G) do3
if v ∈ f then uj ← f−1(v); t ← CLOSE;4
else uj ← |f |+ 1; t ← OPEN;5
if uj > ui and (ui, uj) /∈ E(g) then6

g+ ← H.Find((ui, uj));7
if g+ = ∅ then8

g+ ← a new tree-node;9
g+.grow-edge ← (ui, uj);10
g+.S∗ ← {G}; g+.score ← 0;11
g+.edge-type ← t;12
H.Push(g+);13

else g+.S∗ ← g+.S∗ ∪ {G};14

for data-graph G ∈ g.S and match f ∈ g.M(G) do15
for ui ← 1 to |f | and v ∈ Nbr(f(ui), G) do16

if v ∈ f then uj ← f−1(v);17
else uj ← |f |+ 1;18
if uj > ui and (ui, uj) /∈ E(g) then19

g+ ← H.Find((ui, uj));20
if g+ �= ∅ then21

g+.S ← g+.S ∪ {G};22
if g+.edge-type = OPEN then23

g+.M(G) ← g+.M(G) ∪ {[f, v]};24

else g+.M(G) ← g+.M(G) ∪ {f};25

for g+ ∈ H do26
compute g+.score; H.Update(g+);27

return H;28

Other components of gr are initialized accordingly (line 3-5).
After creating gr, the algorithm constructs the DGTree in a
top-down manner starting from gr using TreeGrow(gr) and
returns gr as the root entry of the DGTree.

The tree-growing process TreeGrow(g) is shown in line 8-
18 of Algorithm 1. We first generate a set of candidate grow
feature-graphs and put them into a heap H (line 9). We will
introduce how to compute H using CandidateFeature(g) later.
Each entry g+ ∈ H represents a candidate feature-graph by
growing a certain edge on the feature-graph of g. Here, we
use either a feature-graph or an edge to represent an entry in
H since each feature-graph in H can be uniquely identified
by a growing edge. In line 10, we use C to maintain the set
of uncovered data-graphs in g.S∗. In line 11-18, we iteratively
generate the child tree-nodes of g until all data-graphs in g.S∗
have been covered.

In each iteration (line 12-18), we generate a new feature-
graph by adding an edge in g.graph. We find the candidate g+

with the highest g+.score in H by invoking BestFeature(H, C),
which will be introduced later. After obtaining g+, we consider
two cases. First, when |g+.S∗| > 1 (line 13), we create the
feature-graph of g+ by adding the edge g+.grow-edge on
the feature-graph of g (line 14), and we recursively invoke
TreeGrow(g+) to generate the subtree of g+. Second, when
|g+.S∗| = 1, g+ is a leaf tree-node with the feature-graph
being the data-graph in g+.S∗, and we set g+.S as g+.S∗
(line 16). Here, if g+.S∗ contains a data-graph equaling to
g+.graph in the first case, we create a leaf node for this data-
graph under g+ as in line 16. Finally, we add g+ to be a child
tree-node of g (line 17) and remove the covered data-graphs
g+.S∗ from C (line 18).

• Procedure CandidateFeature. The procedure to compute the

Algorithm 3: BestFeature(heap H, uncovered graphs C)
g+ ← H.Pop();1
while g+.S∗ � C do2

g+.S∗ ← g+.S∗ ∩ C;3
if g+.S∗ �= ∅ then {compute g+.score; H.Push(g+)};4
g+ ← H.Pop();5

return g+;6

candidate feature-graphs grown from the feature-graph of g is
shown in Algorithm 2. The procedure consists of two phases.
In phase 1 (line 2-14), we compute all the candidates g+ ∈ H
as well as the set g+.S∗, which contains the data-graphs that
g+ covers. In phase 2 (line 15-25), we compute g+.S and
g+.M(G) for each G ∈ g.S .

In phase 1 (line 2-14), we enumerate all matches f ∈
g.M(G) for each data-graph G ∈ g.S∗ to find all possible
edges that can grow on the feature-graph of g (line 2). For
each match f and each node ui in the feature-graph of g,
we traverse all the neighbors v of f(ui) in the data-graph
G (line 3). If v has been matched to node uj in f , the
edge (ui, uj) indicates a new CLOSE edge to grow (line 4);
Otherwise, we set uj to be |f | + 1, indicating that (ui, uj)
is a new OPEN edge to grow (line 5). In line 6, we ensure
uj > ui to guarantee that each undirected edge is uniquely
represented, and we also ensure that (ui, uj) does not exist
in E(g). If the candidate g+ corresponding to edge (ui, uj)
does not exist in H (line 8), we create a new candidate g+

(line 9), set the corresponding components (line 10-12), and
push it into H (line 13); Otherwise, we add G into g+.S∗,
indicating that after adding edge (ui, uj) in the feature-graph
of g, G still covers the new feature-graph.

In phase 2 (line 15-25), we follow a similar procedure
to enumerate all possible edges (ui, uj) to be added by
enumerating matches f of graphs G in the set g.S rather than
g.S∗ (line 15-20). For each such (ui, uj), if the corresponding
candidate g+ exists in H (line 21), we add G into g+.S
(line 22) and add a new match in g+.M(G). Here, if (ui, uj)
is an OPEN edge (line 23), the new match to be added is
[f, v] (line 24) where v is the newly matched node of uj

in G; Otherwise, the new match to be added is f (line 25).
Note that in our implementation, to save computational cost,
we do not actually compute g+.M(G) for all g+ ∈ H.
Instead, we only count |g+.M(G)| to be used in feature score
computation. However, we still need to compute g+.M(G)
for each selected candidate feature-graph before recursively
invoking TreeGrow(g+), i.e. after line 14 in Algorithm 1. In
addition, if G /∈ g+.S∗, we control the size of g+.M(G) for
efficiency consideration, which will not affect the correctness
of query processing.

Finally, after computing all components of entries g+ in
H, we compute g+.score and update g+ in H using the new
score. We will introduce how to compute g+.score later.

• Procedure BestFeature. The procedure to get the candidate
feature-graph with the highest score is shown in Algorithm 3.
Note that when a new feature-graph is generated by growing
an edge on the feature-graph of g, g+.S∗ for some other entries
g+ in H may change by removing those covered data-graphs,
which will decrease g+.score. In our algorithm, instead of
maintaining g+.S∗ for all g+ in H each time a new feature-
graph is generated, we compute g+.S∗ in a lazy manner after
it is popped from H. In order to do so, after we pop a new



candidate g+ from H (line 1 and line 5), we check whether
g+.S∗ is up-to-date, i.e., g+.S∗ ⊆ C, if so, we return g+

(line 6) as the best candidate. Otherwise, we update g+.S∗ by
removing those covered data-graphs (line 3). If g+.S∗ is not
∅, we recompute g+.score and push it back into H (line 4).
The process stops when g+.S∗ is up-to-date.

Feature Score Computation. We discuss how to compute
g.score for each candidate g. Intuitively, to share computational
cost in query processing, g should be selected to maximize the
number of data-graphs containing g.graph, i.e., to maximize
|g.S|. However, by using |g.S| as the score function, we may
generate redundant feature-graphs, e.g., two similar feature-
graphs that cover almost the same set of data-graphs. There-
fore, we consider to maximize |g.S∗|, since g.S∗ is the set of
data-graphs covered by g after excluding the already covered
data-graphs. Our first score function is defined as:

g.score1 = |g.S∗| (1)

Eq. 1 considers both the cost sharing and the feature
diversity when selecting candidate feature-graphs. However,
it does not consider the pruning power of the feature-graph.
Intuitively, if the average number of matches for a feature-
graph in the data-graphs is small, it is not likely to be contained
in a query-graph, and thus the pruning power of such a
feature-graph is high. Here the average number of matches for
a feature-graph is

∑
G∈g.S |g.M(G)|/|g.S|. Combined with

Eq. 1, our second score function is defined as:

g.score2 =
|g.S∗| × |g.S|∑
G∈g.S |g.M(G)| (2)

Finally, note that in query processing, given a query Q, we
may need to compute the matches of the new feature-graph in
Q. For a candidate g, if g.edge-type is OPEN, the number
of matches of g.graph in Q may increase exponentially;
otherwise if g.edge-type is CLOSE, the number of matches of
g.graph in Q will always decrease. Therefore, adding a CLOSE
edge to the feature-graph will make the feature-graph more
selective without introducing much extra cost in online query
processing. In addition, a CLOSE edge will not increase the
number of nodes in a feature-graph, and thus can better bound
the size of the feature-graph. Based on such properties, when
selecting edges to grow, we give higher priority to CLOSE
edges than OPEN edges. Let MAX be a large constant, e.g.,
MAX = |D|, our final score function is defined as:

g.score =

{
g.score2 if g.edge-type = OPEN

g.score2 +MAX if g.edge-type = CLOSE
(3)

Algorithm Analysis. Compared to the frequent subgraph
mining algorithm (e.g., gSpan [22]) used in the indexing
of existing approaches for supergraph search, our indexing
method based on DGTree has the following advantages:

• The number of feature-graphs is bounded. While existing
frequent subgraph mining algorithm may generate exponential
number of subgraphs, the feature-graphs generated in our
algorithm can be bounded based on the following lemma:

Lemma 4.1: Given a graph database D, the number of feature-
graphs in the DGTree is no larger than

∑
G∈D |E(G)|. �

Proof: Note that each leaf tree-node of the DGTree represents
a certain data-graph G ∈ D with depth no larger than |E(G)|,
and no two leaf tree-nodes represent the same data-graph. It

is easy to prove that the total number of feature-graphs in the
DGTree is no larger than

∑
G∈D |E(G)|. �

• No isomorphism checking is required. In frequent sub-
graph mining, when a new subgraph is generated, it needs
to be checked against existing subgraphs to see whether an
isomorphic subgraph has been generated. Such an operation is
usually costly. In our DGTree construction algorithm, based
on the following lemma, we do not need to perform such
isomorphism checking operation for each new feature-graph.

Lemma 4.2: For any two tree-nodes g1 and g2 in the DGTree,
the feature-graphs of g1 and g2 are not isomorphic. �

Proof: In Algorithm 1, after the first child tree-node g+ of
the root tree-node gr is generated, D is divided into two
disjoint parts D1 and D2, where D1 consists of the data-graphs
containing the feature-graph of g+ and D2 consists of the data-
graphs not containing the feature-graph of g+. D1 and D2 are
further divided recursively. Note that for any tree-node g1 that
is directly/indirectly generated from D1, the feature-graph of
g1 contains the feature-graph of g+; and for any tree-node g2
that is directly/indirectly generated from D2, the feature-graph
of g2 does not contain the feature-graph of g+. Therefore,
g1 and g2 cannot be isomorphic. By applying this rule to all
branches of the DGTree, it is easy to conclude that, for any two
tree-nodes g1 and g2, if g1 is not an ancestor / decedent of g2,
the feature-graphs of g1 and g2 are not isomorphic. Otherwise,
g1 is an ancestor / decedent of g2. In this case, the feature-
graphs of g1 and g2 are still not isomorphic since they contain
different number of edges. �

• Infrequent feature-graphs are allowed. Due to the above
two advantages, we can allow both frequent and infrequent
subgraphs as feature-graphs. Because of the high selectivity,
infrequent feature-graphs usually have a high pruning power
and therefore are useful in query processing.

G2 G4G1 G5 G6

G1,G2,G3,G4,G5,G6

G1,G2,G3,G4

G1,G2,G3 G2,G4 G1,G2,G3,G4,G5,G6

G1,G2,G3,G4,G5,G6

3

2 1

3

2 1

3

2 1 4

3

2 1

5

4

3

2 1

5

4

3

2 1

5

4

G3
Fig. 2: An Example of DGTree

Example 4.1: Fig. 2 shows a partial DGTree of the graph
database D in Fig. 1(a), with each tree-node g in the dashed
box. Here, we omit the single-edge root node gr and the one-
edge-grow child nodes of g1 for simplicity. We generate g1
from g0 first since g1 has a CLOSE edge. Then growing from
g1, we have candidate feature-graphs g2 and g3. By computing
score(g2) = 3

4 and score(g3) = 2
3 , we choose g2 and index

G1, G2 and G3 under g2. After refining g3.S∗, we index G4

under g3. The remaining construction steps are similar, and we
stop generating child tree-nodes when only one graph is left
in current g.S∗, which is regarded as a leaf node. Compared
with PrefIndex, we consider both the cost sharing and pruning
power of all feature-graphs even if it is not frequent (e.g. g3),
while PrefIndex will not take advantage of such features. �



C. Query-dependent Supergraph Search

In this subsection, we introduce our query processing
algorithm, which computes the set of subgraphs A(Q) for a
query-graph Q based on the constructed DGTree.

The Query Processing Algorithm. Given a query-graph Q,
our query processing algorithm is shown in Algorithm 4. The
input includes the query-graph Q and the root of the DGTree
gr. We use A(Q) to maintain the set of answers, and use C
to maintain the set of candidate data-graphs that are neither in
A(Q) nor pruned by any feature-graphs. We also use a heap
H to maintain the set of feature-graphs to be processed. Each
feature-graph entry q in H represents a feature-graph and it
contains the following four components:

q.tree-node The corresponding tree-node of q in the DGTree. Here,
we call the feature-graph of q.tree-node the feature-
graph of q for simplicity, and denote it as q.graph, i.e.,
q.graph = q.tree-node.graph

q.S∗ The set of candidate data-graphs that contain the feature-
graph of q.

q.M(Q) The set of matches of the feature-graph of q in Q.

q.score the score of the feature-graph of q.

In Algorithm 4, we initialize C to be those data-graphs
with size no larger than Q (line 1). Here we can also use
some other trivial techniques, e.g., using degree sequence, to
further reduce the number of data-graphs in C. In line 2, we
initialize H and A(Q) to be ∅. Then we create the first entry
q in H (line 3). We initialize q.tree-node to be gr, q.S∗ to be
C, and q.M(Q) to be all matched edges in Q (line 4-5). In
line 6, we compute the score of q and push it into H. We will
discuss how to compute the score of q later. In line 7-14, we
process features iteratively in the DGTree until C = ∅.

In each iteration (line 8-14), we compute the best entry in
H by invoking BestFeature(H, C) which will be introduced
later (line 8). Let g be the tree-node of q. We traverse all
child nodes g+ of g to find new feature-graphs to be processed
(line 9). We consider two cases. First, if g+ is a leaf tree-
node (line 10), the feature-graph of g+ is a data-graph. In
this situation, we try to find a match f of g+.graph in Q by
directly extending the existing matches in q.M(Q) (line 11).
If such a match exists, we add the corresponding data-graph
into A(Q) (line 12). The data-graph is removed from C no
matter whether f exists or not (line 13). Second, if g+ is not
a leaf tree-node, we create a corresponding new entry in H
by invoking FeatureExpansion(Q, q, g+,H, C) which will be
introduced later (line 14). Finally, after C becomes ∅, we return
A(Q) as the answer for query Q (line 15).

• Procedure BestFeature. The procedure to find the best
feature-graph entry in H is shown in line 16-22 of Algorithm 4.
Since after processing a feature-graph entry in H, some graphs
may be removed from C, which may decrease the scores of
some other entries in H. Instead of updating all such scores
after a new feature-graph is processed, in BestFeature, we
handle the updates in a lazy manner. The process is similar
to the process of finding the best candidate edge to grow in
Algorithm 3, which iteratively updates the score of the top
element of H (line 20) until it is up-to-date (line 18).

• Procedure FeatureExpansion. The procedure to compute
the feature-graph entry for a new tree-node g+ is shown in

Algorithm 4: SuperGraphSearch(query Q, DGTree with root gr)

C ← {G|G ∈ gr.S, |E(G)| ≤ |E(Q)|, |V (G)| ≤ |V (Q)|};1
H ← ∅; A(Q) ← ∅;2
q ← a new entry;3
q.tree-node ← gr ; q.S∗ ← C; q.M(Q) ← ∅;4
for (v, v′) ∈ E(Q) do q.M(Q) ← q.M(Q) ∪ {[v, v′], [v′, v]};5
compute q.score; H.Push(q);6
while C �= ∅ do7

q ← BestFeature(H, C); g ← q.tree-node;8
for g+ ∈ g.children do9

if |g+.children| = 0 then10
search a match f of g+.graph by extending q.M(Q);11
if f �= ∅ then A(Q) ← A(Q) ∪ g+.S;12
C ← C \ g+.S;13

else FeatureExpansion(Q, q, g+,H, C);14

return A(Q);15

Procedure BestFeature(heap H, candidate data-graph set C)16
q ← H.Pop();17
while q.S∗ � C do18

q.S∗ ← q.S∗ ∩ C;19
if q.S∗ �= ∅ then {compute q.score; H.Push(q)};20
q ← H.Pop();21

return q;22

Algorithm 5: FeatureExpansion(query-graph Q, entry q, tree-node

g+, heap H, candidate data-graph set C)
q+ ← a new entry;1
q+.tree-node ← g+; q+.S∗ ← g+.S ∩ C; q+.M(Q) ← ∅;2
(ui, uj) ← g+.grow-edge;3
for match f ∈ q.M(Q) do4

if g+.edge-type = OPEN then5
for v ∈ Nbr(f(ui), Q) do6

if v /∈ f then q+.M(Q) ← q+.M(Q) ∪ {[f, v]};7

else if (f(ui), f(uj)) ∈ E(Q) then8
q+.M(Q) ← q+.M(Q) ∪ {f};9

if q+.M(Q) �= ∅ then10
compute q+.score; H.Push(q+);11

else C ← C \ q+.S∗;12

Algorithm 5. In line 1-2, we initialize the components of q+.
Here, q+.S∗ is initialized to be the set of data-graphs in both
g+.S and C. Suppose the feature-graph of g+ is obtained by
growing the edge (ui, uj) on the feature-graph of the parent
tree-node of g+ (line 3). In line 4-9, we compute q+.M(Q)
by extending every match f in q.M(Q). Here q is the feature-
graph entry for the parent of g+. For each match f , we consider
two cases. First, edge (ui, uj) is an OPEN edge (line 5). In this
case, we traverse the neighbors v of node f(ui) in Q (line 6).
If v /∈ f , (f(ui), v) can match (ui, uj) and thus we add a new
match [f, v] into q+.M(Q) (line 7). Second, edge (ui, uj)
is a CLOSE edge. In this case, if (f(ui), f(uj)) ∈ E(Q),
f is a match of the feature-graph of q+, and thus we add a
new match f into q+.M(Q) (line 8-9). After q+.M(Q) is
computed, if q+.M(Q) �= ∅ (line 10), q+ needs to be further
expanded and thus we compute the score of q+ and push it
into H (line 11); Otherwise, all the data-graphs in q+.S∗ can
be pruned (line 12).

Query-dependent Feature Score. We discuss how to compute
the score of a feature-graph entry q. First, if the feature-graph
of q is contained in a large number of candidate data-graphs,
the cost sharing to process q is maximized. Therefore, the first



score of q can be defined as:

q.score1 = |q.S∗| (4)

Second, the feature-graph that has a small number of
matches in Q will have a high pruning power. Therefore, the
second score of q can be defined as:

q.score2 = 1/|q.M(Q)| (5)

Finally, by considering both computational cost sharing and
pruning power, our final score for q is defined as:

q.score = q.score1 × q.score2 (6)

Algorithm Analysis. Compared to existing feature based
approaches for supergraph search, our query processing algo-
rithm has the following advantages:

• Verification-free query processing. In existing feature based
approaches, although cost sharing can be considered in the
verification phase, the sharing is based on frequent subgraphs
and thus the cost-saving is usually limited. In our approach, we
create a full-structure index, and no verification is needed. The
following lemma guarantees the correctness of our algorithm.

Lemma 4.3: Algorithm 4 correctly computes A(Q). �

Proof: First, each leaf tree-node in the DGTree represents
a data-graph. Therefore, no false-positive exists in A(Q).
Second, each data-graph is represented by a leaf tree-node in
the DGTree. Therefore, no false-negative exists in A(Q). �

• Adaptive online feature-graph selection. Existing feature
based approaches process features in a fixed order. As a
result, when processing a feature with low pruning power, it
is possible for the algorithm to be trapped in an exponential
search space until all matches of the feature in the query-
graph are found. In our algorithm, we consider dynamic feature
processing, in which the score function for each feature-graph
is query-dependent and it considers both the computational
cost sharing and the pruning power of the feature. In addition,
when data-graphs are included or excluded from answers in
the process of query processing, our algorithm can update the
scores for each feature-graph adaptively. In this way, features
with low pruning power have a low opportunity to be processed
and therefore the computational cost can be largely saved.

Example 4.2: Suppose we process supergraph search of query-
graph Q shown in Fig. 1(b) based on the DGTree in Fig. 2.
After matching g0, we compute matches for its children g1 and
g4 and then push them into H. Since score(g1) > score(g4), we
pop g1 first and process the descendants of g1 in a similar way.
By following such a dynamical selection, we include G1 as an
answer-graph and prune G2, G3, and G4 via the descendants of
g1, since the dynamically computed scores of them are larger
than g4. Thus, only two candidate graphs are left in C when we
deal with g4, i.e., the adaptive online feature-graph selection
technique can filter candidates as early as possible. �

V. OPTIMIZATION STRATEGIES

In this section, we introduce two optimization strategies
to further improve our algorithm. The first strategy aims to
save computational cost by compressing the data-graphs while
preserving the structural information. The second strategy aims
to optimize the query processing algorithm by considering both
inclusion and exclusion of answers instead of only exclusion
of answers using an adaptive node splitting technique.

A. Cost-saving by Graph Compression

Given a graph database D, for a certain data-graph G ∈ D,
there may exist several nodes in V (G) that are symmetrical.
Given a query-graph Q, by applying Algorithm 4, finding all
matches for the symmetric nodes in the query-graph Q may
result in large redundant computations. This is because given
any match of G in Q, each permutation of the symmetric
nodes will result in a new match. In this subsection, we aim to
compress each data-graph to reduce the number of its symmet-
ric nodes and therefore reduce redundant computational cost.
The following two conditions should be satisfied after graph
compression:

(C1): The structural information of each graph is preserved
in the corresponding compressed graph. Here, by structure
preservation, we mean that the original graph can be easily
recovered from the compressed graph.

(C2): After compression, Algorithm 1 and Algorithm 4 can be
easily adapted for indexing and query processing.

Considering the above two conditions, in this paper, we
adopt a lightweight graph-compression scheme as follows:

Graph Compression. We consider a simple case of node
symmetry, namely, node equivalence, which is defined as:

Definition 5.1: (Node Equivalence) Given any graph G and
a pair of nodes u and v in G, u and v are equivalent iff
Nbr(u,G) = Nbr(v,G). �

For each data-graph G ∈ D, we use Gc to denote the
compressed graph of G. Gc is constructed by contracting each
set of equivalent nodes in G into a node C in Gc. For a node
v ∈ G, we use Cv to denote the corresponding contracted
node in Gc. For any pair of nodes Cv and Cv′ in V (Gc),
(Cv, Cv′) ∈ E(Gc) iff (v, v′) ∈ E(G). We use v ∈ C to
denote that C is a contracted node for v, and we use |C| to
denote the number of equivalent nodes in G represented by C.

Indexing. Given a graph database D, with the graph com-
pression technique, we modify our DGTree index as follows:
First, we compress each graph G ∈ D into Gc and create
a compressed graph database Dc. Second, we construct the
DGTree on Dc as our index using a simple modification of
Algorithm 1: We allow each feature-graph in the DGTree to
contain contracted nodes, and we modify the match computa-
tion in Algorithm 1 by adding a size constraint. Specifically,
given a tree-node g, for each contracted node Cu in the feature-
graph of g, when we compute g.M(Gc) for a certain Gc ∈ Dc,
Cu can match a node Cv ∈ V (Gc) only if |Cu| ≤ |Cv|.
Query Processing. Given a query-graph Q and the modified
DGTree constructed on Dc, in our modified query processing
algorithm, for each entry q in the heap H, each node C in
the feature-graph of q should be matched to |C| nodes in Q.
This can be achieved by modifying Algorithm 5 as follows:
In line 6 of Algorithm 5, instead of enumerating nodes in
Nbr(f(ui), Q), we enumerate all permutations of |uj | common
neighbors of f(ui) in Q. Here, ui, f(ui), and uj may contain
multiple nodes. In line 7, if a permutation does not overlap f ,
we add a corresponding new match into q+.M(Q). Each such
new match corresponds to |uj |! matches of the original feature-
graph in Q. In line 8, since f(ui) and f(uj) may contain
multiple nodes, we need to check whether every node in f(ui)



v1 v3 v5

v2 v4 v6
G6

v2 v4 v6

v1 v3 v5

v8

v7
Q

C1 C3

C2 C4
Gc6

Fig. 3: An Example of Graph Compression

has an edge with every node in f(uj). Finally, we modify Eq. 5
for each entry q to compute a new q.score2 as follows:

q.score2 =
1

|q.M(Q)| ×∏
C∈V (q.graph) |C|! (7)

Here, q.graph is the feature-graph of q.

The new query processing algorithm using graph com-
pression improves Algorithm 4 by utilizing the symmetry
information of the nodes in the data-graphs. Specifically, for
each set of k symmetric nodes in the feature-graph (extracted
from the data-graphs), we can use a match of k nodes in
the query-graph to represent k! matches. This saves redundant
computational cost when matching the k symmetric nodes.

Example 5.1: Fig. 3 shows an example of graph compression.
We compress G6 (Fig. 1(a)) into Gc

6 by contracting v4, v5,
and v6 into C4. During query processing, in a certain match
of Gc

6 in Q, C4 can be matched to the set {v5, v7, v8} in Q .
This match can represent 3! matches of G6 in Q. �

B. Inclusion-aware Query Processing

Motivation. Given a query-graph Q, Algorithm 4 uses exclu-
sion logic to prune graphs that are not subgraphs of Q using
the DGTree. The algorithm iteratively selects the entry with
the highest score from the heap H of candidate feature-graphs
for pruning. However, after processing all entries with high
pruning power in H, the unpruned data-graphs in q.S∗ for the
entry q in heap H tend to be included in the answer set rather
than be pruned by the entry. Here, the pruning power of an
entry q in H is specified in Eq. 5 which is used to compute
q.score (Eq. 6). In this case, we may generate a large number
of useless matches for an entry q in the heap.

Solution Overview. In this subsection, to reduce the number of
useless matches when processing an entry q with low pruning
power, we introduce an inclusion based method to handle q.
Specifically, we allow two types of entries in the heap, namely,
inclusion-entry and exclusion-entry. We use q.type, which is
either INCLUSION or EXCLUSION, to differentiate the two
types of entries. Initially, all entries in the heap are exclusion-
entries. When q.score (Eq. 6) for a certain entry q is smaller
than a certain threshold δ, we switch to process q according to
an inclusion based method using an adaptive node-splitting al-
gorithm. The algorithm splits matches in q.M(Q) and handles
these matches with different priorities. Intuitively, a match that
is more likely to be expanded to include answers in A(Q) has a
higher priority to be processed. For each match f ∈ q.M(Q),
we use f.score to specify the score of f . A match with a
higher score has a higher priority to be processed. Next we
will introduce how to split a node and how to compute the
score of a match.

Adaptive Node-splitting. The algorithm to split an entry q in
H is shown in Algorithm 6. In line 1-2, we sort all matches in
q.M(Q) in a non-increasing order of their scores and put them
in M. In line 3-9, we iteratively split q by dividing matches in
M into different partitions, each of which forms a new entry.

Algorithm 6: NodeSplit(query-graph Q, entry q, heap H)

M ← q.M(Q);1
sort matches f ∈ M in non-increasing order of f.score;2
while |M| > 0 do3

q′ ← a new entry;4
q′.M(Q) ← the last 	|M|/2
 matches in M;5
q′.type ← INCLUSION;6
q′.tree-node ← q.tree-node; q′.S∗ ← q.S∗;7
compute q′.score; H.Push(q′);8
M ← M\ q′.M(Q);9

For each iteration (line 4-9), we create a new entry q′
(line 4) and put the last �|M|/2	 matches with lowest scores
into q′.M(Q). By iteratively applying this on M, we guar-
antee that matches with higher scores are put into an entry
q′ with lower |q′.M(Q)| and thus the entry q′ has a higher
priority to be processed according to Eq. 6. For instance, if
|q.M(Q)| = 14, q.M(Q) is divided into 4 partitions with 7,
4, 2, and 1 matches, and the match f with the highest f.score
belongs to the last partition. In line 6, we assign the type of
q′ to be INCLUSION. In line 7, we set q′.tree-node and q′.S∗
to be those in q. Then, we compute q′.score using Eq. 6 based
on the new q′.M(Q) and push it into heap H (line 8). Finally,
in line 9, we update M by removing q′.M(Q) since M will
be used in the next iteration.

Based on the above node-splitting algorithm, we modify
our query processing algorithm as follows: First, the root entry
is an exclusion-entry, and each newly expanded entry inherits
the type of its parent entry when it is created in line 1 of
Algorithm 5. Second, after line 8 of Algorithm 4, for the entry
q, we first check whether q.score < δ. If not, we process line 9-
14; Otherwise, we invoke Algorithm 6 to split q. Finally, in
line 12 of Algorithm 5 and line 13 of Algorithm 4, if q+ is an
inclusion-entry, we will not remove q+.S∗ from C only if the
data-graphs are included in A(Q), since an inclusion-entry q+

cannot be used to prune data-graphs in q+.S∗. In this case, it
is possible that some data-graphs in C, which are not answers,
will not be pruned by any entry, so we modify the condition
of the while loop in line 7 of Algorithm 4 to H �= ∅. Such
data-graphs will be kept in C and be discarded eventually.

Inclusion-aware Match Score. Given a match f ∈ q.M(Q)
for an entry q, we discuss how to compute f.score. Intuitively,
if the match f appears in a denser region of Q, it is more
likely to be expanded to include a certain data-graph in q.S∗.
We can use the degrees of nodes in f to model the density of
the corresponding matched region. Based on this intuition, we
define f.score as follows:

f.score =
∑
v∈f

d(v,Q) (8)

Here, d(v,Q) is the degree of node v in Q.

VI. PERFORMANCE STUDIES

In this section, we present our experimental results by
comparing our algorithm, denoted as DGTree, with two state-
of-the-art supergraph search algorithms PrefIndex [31] and
IGQuery [7]. The codes for PrefIndex and IGQuery are ob-
tained from the authors. We evaluate our algorithms in several
aspects: (1) the effectiveness of feature score functions and
optimization strategies used in DGTree, (2) the efficiency of
query processing by comparing DGTree with PrefIndex and
IGQuery, and (3) the efficiency of indexing by comparing
DGTree with PrefIndex (IGQuery is not compared since its
indexing time can be omitted). All of our experiments are



TABLE I: PARAMETERS

Parameter Range Default
graph database size 1000, 3000, 5000, 7000, 9000 3000
avg. node # of data-graph 10, 30, 50, 70, 90 50
avg. node # of query-graph 60, 80, 100, 120, 140 100
data-graph density group DG1, DG2, DG3, DG4, DG5 –
query-graph density group DQ1, DQ2, DQ3, DQ4, DQ5 –

conducted on a machine with an Intel Core i5 3.1GHz CPU
and 8GB main memory running Windows 7.

Datasets. We evaluate the performance of the algorithms on
two real datasets: CCD and NCI.

• CCD dataset contains chemical compound structures, which
is downloaded from the PubChem website. The average node
number of the graphs in CCD is 40.75.

• NCI dataset is downloaded from the National Cancer
Institute Open Database website. The average node number
of the graphs in NCI is 40.48.

We show the parameters and default values used in our
experiments in Table I. If not specified, the values of all
parameters are set to their default values. For each testing
in query processing, we randomly select 20 queries and take
the average processing time. To evaluate the performance
by varying data-graph density, we sort the CCD and NCI
datasets in an increasing order of graph density and divide
them into five groups, and then extract 3000 data-graphs with
average node number of 50 from each group, denoted as
DG1, DG2, DG3, DG4 and DG5 respectively. Similarly, to
test the effect of query-graph density, we extract five sets of
query-graphs with average node number of 100, donated as
DQ1, DQ2, DQ3, DQ4 and DQ5 respectively.

A. Score Functions and Optimization Strategies

 10

 20

 30

 40

 50

 60

 70

 80

 90

I1 +Q
3

I2 +Q
3

I3 +Q
1

I3 +Q
2

I3 +Q
3

O
PT

1

O
PT

2

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

(a) Query Time of CCD

 10

 20

 30

 40

 50

 60

 70

I1 +Q
3

I2 +Q
3

I3 +Q
1

I3 +Q
2

I3 +Q
3

O
PT

1

O
PT

2

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

(b) Query Time of NCI

Fig. 4: Score Functions and Optimization Strategies

We first test the effect of the proposed score functions on
feature-graph selection during indexing and query processing.
We also compare the basic algorithms with the optimized
versions to show the effectiveness of the graph compression
strategy and inclusion-aware query processing strategy. The
results are shown in Fig. 4. We use I1, I2, and I3 to denote
the three score functions Eq. 1, Eq. 2 and Eq. 3 in DGTree
construction respectively, and use Q1, Q2, and Q3 to denote
the three score functions Eq. 4, Eq. 5, and Eq. 6 in query
processing respectively. For example, I1 + Q3 denotes the
algorithm using Eq. 1 and Eq. 6 as the score functions for
DGTree construction and query processing respectively. We
use OPT1 to denote the algorithm with the graph compression
strategy based on I3 + Q3, and use OPT2 to denote the
algorithm with the inclusion-aware query processing strategy
based on OPT1. In OPT2, we set δ = 0.001. For score

https://pubchem.ncbi.nlm.nih.gov/

http://cactus.nci.nih.gov/download/nci/index.html

functions in indexing, Fig. 4 shows that I3 + Q3 improves
I1+Q3 and I2+Q3 by 30% and 15% respectively. It is worth
mentioning that the index construction of I3 is about three
times faster than I2 and seven times faster than I1. For score
functions in query processing, Fig. 4 shows that I3 + Q3 is
about 10% faster than both I3 +Q1 and I3 +Q2. Comparing
I3 + Q3 with the optimized algorithms, we see that graph
compression (OPT1) accelerates query processing by around
30%, and inclusion-aware query processing (OPT2) further
improves the efficiency by 17%. When comparing with other
algorithms in the following experiments, we apply the best
score functions with all optimization techniques in DGTree.

B. Query Processing: DGTree, IGQuery, and PrefIndex

In this subsection, we evaluate the performance of query
processing algorithms, by comparing DGTree with IGQuery
and PrefIndex. We conduct extensive experiments to evaluate
the query processing time by varying database size, data-graph
size, data-graph density, query-graph size and query-graph
density, so as to show the efficiency and scalability of DGTree.

101

102

103

1000 3000 5000 7000 9000

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Graph Database Size

DGTree
IGquery

PrefIndex

(a) Query Time of CCD

101

102

103

1000 3000 5000 7000 9000

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Graph Database Size

DGTree
IGquery

PrefIndex

(b) Query Time of NCI

Fig. 5: Varying Database Size on Query Processing

Varying Database Size. In this experiment, we evaluate the
scalability of query processing by varying database size from
1k to 9k. Fig. 5 reports the query processing time on CCD
and NCI datasets. It shows that when the database is scaled
up, the query processing time of all algorithms increases. We
can see that DGTree is scalable when the database becomes
larger. When the database size is larger than 5000, DGTree is
over an order of magnitude faster than PrefIndex and IGQuery.

100

101

102

103

10 30 50 70 90

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Avg. Data Graph Size

DGTree
IGquery

PrefIndex

(a) Query Time of CCD

100

101

102

103

10 30 50 70 90

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Avg. Data Graph Size

DGTree
IGquery

PrefIndex

(b) Query Time of NCI

Fig. 6: Varying Data Graph Size on Query Processing

Varying Data Graph Size. We vary the average data-graph
size to study the performance of query processing. The results
are shown in Fig. 6. When data-graph is small-sized, e.g., no
larger than 30, PrefIndex and IGQuery outperforms DGTree by
several seconds. However, when the data-graph size increases,
the computational cost of PrefIndex and IGQuery increases
rapidly due to their defects in scalability. The reason is that,
for PrefIndex, the cost saving by common prefix is limited
for large-sized data-graphs, and for IGQuery, the number of
directly included answers is small for large-sized data-graphs.
DGTree, however, costs most when the data-graph size is 30,
since the answer set is relatively large. But when the data-
graph size increases, the computational cost is saved by the



high pruning power of dynamically selected feature-graphs.
DGTree is over an order of magnitude faster than the other
two algorithms when the data-graph size is larger than 70.

100

101

102

103

DG1 DG2 DG3 DG4 DG5

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Data Graph Density Group

DGTree
IGquery

PrefIndex

(a) Query Time of CCD

100

101

102

103

DG1 DG2 DG3 DG4 DG5

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Data Graph Density Group

DGTree
IGquery

PrefIndex

(b) Query Time of NCI

Fig. 7: Varying Data Graph Density on Query Processing

Varying Data Graph Density. We vary data-graph density to
show the efficiency of the algorithms and report the results
in Fig. 7. It shows that when the data-graphs become denser,
the query processing cost decreases. The reason is that denser
data-graphs result in denser feature-graphs, that are effective
for pruning in query processing for all three algorithms.
However, in PrefIndex, the problem of heavy verification costs
still exists, and in IGQuery, the answers obtained by direct
inclusion is rather limited, so the performance of PrefIndex
and IGQuery is degraded, as shown in Fig. 7.

100

101

102

103

 60  80  100  120  140

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Avg. Query Graph Size

DGTree
IGquery

PrefIndex

(a) Query Time of CCD

100

101

102

103

 60  80  100  120  140

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Avg. Query Graph Size

DGTree
IGquery

PrefIndex

(b) Query Time of NCI

Fig. 8: Varying Query Graph Size on Query Processing

Varying Query Graph Size. To evaluate the effect of query-
graph size on query processing, we obtain five sets of query-
graphs, with average node numbers of 60, 80, 100, 120 and 140
respectively. We conduct experiments on databases of 3000
data-graphs with average size of 50 in the CCD and NCI
datasets. The results are shown in Fig. 8. We can see that when
the query-graph grows larger, the processing time of all algo-
rithms increases since it costs more for graph matching during
query processing. By taking advantage of graph compression
and inclusion-aware strategies, DGTree is scalable for large-
sized query-graphs. Fig. 8 shows that DGTree is slower than
IGQuery by several seconds when the query-graph is small, but
outperforms IGQuery by several times when the query-graph
size is larger than 60. Besides, DGTree is faster than PrefIndex
by over an order of magnitude in most of the testings.

101

102

103

DQ1 DQ2 DQ3 DQ4 DQ5

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Query Graph Density Group

DGTree
IGquery

PrefIndex

(a) Query Time of CCD

100

101

102

103

DQ1 DQ2 DQ3 DQ4 DQ5

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Query Graph Density Group

DGTree
IGquery

PrefIndex

(b) Query Time of NCI

Fig. 9: Varying Query Graph Density on Query Processing

Varying Query Graph Density. We vary the query-graph
density to evaluate the performance of algorithms on query
processing. The results are presented in Fig. 9. DGTree
performs better for query-graphs with lower density. This
is because DGTree is based on exclusion logic, and sparse

query-graphs tend to have a smaller answer set. In contrast,
IGQuery prefers denser queries since IGQuery may include
more answers directly when processing a denser query .
IGQuery on DQ5 in the NCI dataset slightly outperforms
DGTree, but is slower than DGTree in all other cases. The
results of PrefIndex are unstable when the query-graph density
varies, and DGTree is over an order of magnitude faster than
PrefIndex in most of the testings.

C. Indexing: DGTree and PrefIndex

In this subsection, we compare the indexing performance
of DGTree and PrefIndex by varying database size, data-graph
size, and data-graph density. We conduct experiments on both
the CCD and NCI datasets. Note that the index size of DGTree
is only 22% of the index size of IGQuery, and 18% of the index
size of PrefIndex on average, which benefits from the bounded
number of generated features in DGTree. For example, on the
setting of 3000 data-graphs with average size of 50 in the CCD
dataset, the index sizes of DGTree, IGQuery and PrefIndex are
0.87MB, 3.71MB and 4.53MB respectively.

102

103

104

1000 3000 5000 7000 9000

In
d
e
x
in

g
 T

im
e
 (

s
)

Graph Database Size

DGTree
PrefIndex

(a) Index Time of CCD

102

103

104

1000 3000 5000 7000 9000

In
d
e
x
in

g
 T

im
e
 (

s
)

Graph Database Size

DGTree
PrefIndex

(b) Index Time of NCI

Fig. 10: Varying Database Size on Indexing

Varying Database Size. We test the effect of database size on
the performance of graph indexing. Fig. 10 shows the indexing
time of DGTree and PrefIndex when database size varies.
When the number of data-graphs increases, the processing
time for both DGTree and PrefIndex increases. In all testings,
PrefIndex is much slower than DGTree as shown in Fig. 10.

102

103

104

10 30 50 70 90

In
d
e
x
in

g
 T

im
e
 (

s
)

Avg. Data Graph Size

DGTree
PrefIndex

(a) Index Time of CCD

102

103

104

10 30 50 70 90

In
d
e
x
in

g
 T

im
e
 (

s
)

Avg. Data Graph Size

DGTree
PrefIndex

(b) Index Time of NCI

Fig. 11: Varying Data Graph Size on Indexing

102

103

104

105

DG1 DG2 DG3 DG4 DG5

In
d
e
x
in

g
 T

im
e
 (

s
)

Data Graph Density Group

DGTree
PrefIndex

(a) Index Time of CCD

102

103

104

DG1 DG2 DG3 DG4 DG5

In
d
e
x
in

g
 T

im
e
 (

s
)

Data Graph Density Group

DGTree
PrefIndex

(b) Index Time of NCI

Fig. 12: Varying Data Graph Density on Indexing

Varying Data Graph Size. We vary data-graph size and report
the indexing time of DGTree and PrefIndex in Fig. 11. From
Fig. 11, we can see that both DGTree and PrefIndex are
efficient when data-graphs are small. But with the growing of
data-graph size, the cost of PrefIndex exponentially increases
(e.g. over 14 hours for 90-sized graphs in CCD), while the cost



of DGTree is more stable. This is due to the expensive mining
cost in PrefIndex, which is not scalable for large data-graphs.

Varying Data Graph Density. In this experiment, we evaluate
the performance of indexing by varying graph density. The
results are presented in Fig. 12. In all testings, DGTree
performs stably and it is from 1.5 to 30 times faster than
PrefIndex.

VII. RELATED WORK

We review the related work of supergraph search problem
from three categories, namely, subgraph search, supergraph
search, and similar graph search.

Subgraph Search. Subgraph search is the most common
graph search type and has been extensively studied in the
literature. Existing algorithms include Ullmann [19], VF2 [9],
gIndex [23], TreePi [28], Tree+δ [30], Fg-index [8], GString
[13], QuickSI [16], GraphQL [12], TurboIso [11], etc. Most
of them follow a backtracking framework, first proposed by
Ullmann [19]. Other works accelerate the matching process
using pruning-verification and matching-order optimizations.

Supergraph Search. Supergraph search has become increas-
ingly popular in recent years. Existing solutions mainly include
CIndex [6], GPTree [29], PrefIndex [31], IGQuery [7], and
LWIndex [24]. More details can be found in Section III.

Similar Graph Search. Similarity graph search aims to
find graphs that are similar to the query-graph. Existing
techniques mainly fall into three categories, the propagation-
based paradigm [2, 15, 17], whose intuition is that two nodes
are similar if their neighbors are similar; the spectral-based
paradigm [1, 3, 4, 14, 20, 21], due to the fact that two
graphs are isomorphic if their adjacency matrices have the
same eigenvalues and eigenvectors; and optimization-based
paradigm [26, 27], which transfers graph matching to an
optimization problem.

VIII. CONCLUSIONS

In this paper, we study the supergraph search problem
which is a fundamental problem in graph databases. Existing
solutions are not scalable when processing large-sized data-
graphs and query-graphs. In our approach, we build a full-
structure feature-tree as our index, that does not rely on an
expensive frequent subgraph mining algorithm, and can gen-
erate better features. We propose a verification-free algorithm
that processes features in a query-dependent order for query
processing. We further explore two optimization strategies to
improve the efficiency of our algorithm. We conduct extensive
experiments on two large real datasets to demonstrate the high
scalability of our approach.

ACKNOWLEDGEMENTS

Lu Qin is supported by ARC DE140100999 and ARC
DP160101513. Xuemin Lin is supported by NSFC61232006,
ARC DP140103578, and ARC DP150102728. Lijun Chang
is supported by ARC DE150100563 and ARC DP160101513.
Jeffrey Xu Yu is supported by Research Grants Council of the
Hong Kong SAR, China No. 14209314 and 418512.

REFERENCES

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6), 2003.

[2] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren.
A measure of similarity between graph vertices: Applications to synonym
extraction and web searching. SIAM review, 46(4), 2004.

[3] T. Caelli and S. Kosinov. An eigenspace projection clustering method
for inexact graph matching. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 26(4), 2004.

[4] T. Caelli and S. Kosinov. Inexact graph matching using eigen-subspace
projection clustering. International Journal of Pattern Recognition and
Artificial Intelligence, 18(03), 2004.

[5] M. Cannataro, P. H. Guzzi, and P. Veltri. Protein-to-protein interactions:
Technologies, databases, and algorithms. ACM Comput. Surv., 43(1),
2010.

[6] C. Chen, X. Yan, P. S. Yu, J. Han, D. Zhang, and X. Gu. Towards graph
containment search and indexing. In Proc. of VLDB’07, 2007.

[7] J. Cheng, Y. Ke, A. W. Fu, and J. X. Yu. Fast graph query processing
with a low-cost index. VLDB J., 20(4), 2011.

[8] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free
query processing on graph databases. In Proc. of SIGMOD’07, 2007.

[9] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(10), 2004.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[11] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and
robust subgraph isomorphism search in large graph databases. In Proc.
of SIGMOD’13, 2013.

[12] H. He and A. K. Singh. Query language and access methods for graph
databases. In Managing and Mining Graph Data. Springer, 2010.

[13] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring: A novel approach
for efficient search in graph databases. In Proc. of ICDE’07, 2007.

[14] D. Knossow, A. Sharma, D. Mateus, and R. Horaud. Inexact matching
of large and sparse graphs using laplacian eigenvectors. In Graph-Based
Representations in Pattern Recognition. Springer, 2009.

[15] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to schema
matching. In Proc. of ICDE’02, 2002.

[16] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism. PVLDB, 1(1),
2008.

[17] R. Singh, J. Xu, and B. Berger. Pairwise global alignment of protein
interaction networks by matching neighborhood topology. In Research
in computational molecular biology, 2007.

[18] A. Trémeau and P. Colantoni. Regions adjacency graph applied to color
image segmentation. IEEE Transactions on Image Processing, 9(4),
2000.

[19] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM), 23(1), 1976.

[20] S. Umeyama. An eigendecomposition approach to weighted graph
matching problems. PAMI, 10(5), 1988.

[21] L. Xu and I. King. A pca approach for fast retrieval of structural
patterns in attributed graphs. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 31(5), 2001.

[22] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
Proc. of ICDM’02, 2002.

[23] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based
approach. In Proc. of SIGMOD’04, 2004.

[24] D. Yuan, P. Mitra, and C. L. Giles. Mining and indexing graphs for
supergraph search. PVLDB, 6(10), 2013.

[25] D. Yuan, P. Mitra, H. Yu, and C. L. Giles. Iterative graph feature mining
for graph indexing. In Proc. of ICDE’12, 2012.

[26] M. Zaslavskiy, F. Bach, and J.-P. Vert. Global alignment of protein–
protein interaction networks by graph matching methods. Bioinformatics,
25(12), 2009.

[27] M. Zaslavskiy, F. Bach, and J.-P. Vert. A path following algorithm for
the graph matching problem. PAMI, 31(12), 2009.

[28] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing method.
In Proc. of ICDE’07, 2007.

[29] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for efficient
supergraph query processing on graph databases. In Proc. of EDBT’09,
2009.

[30] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree + delta >= graph.
In Proc. of VLDB’07, 2007.

[31] G. Zhu, X. Lin, W. Zhang, W. Wang, and H. Shang. Prefindex:
An efficient supergraph containment search technique. In Proc. of
SSDBM’10, 2010.

[32] Q. Zhu, J. Yao, S. Yuan, F. Li, H. Chen, W. Cai, and Q. Liao.
Superstructure searching algorithm for generic reaction retrieval. Journal
of Chemical Information and Modeling, 45(5), 2005.


