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Abstract—We address the problem of load balancing for
parallel joins. We show that the distribution of input data received
and the output data produced by worker machines are both
important for performance. As a result, previous work, which
optimizes either for input or output, stands ineffective for load
balancing. To that end, we propose a multi-stage load-balancing
algorithm which considers the properties of both input and output
data through sampling of the original join matrix. To do this
efficiently, we propose a novel category of equi-weight histograms.
To build them, we exploit state-of-the-art computational geometry
algorithms for rectangle tiling. To our knowledge, we are the
first to employ tiling algorithms for join load-balancing. In
addition, we propose a novel, join-specialized tiling algorithm
that has drastically lower time and space complexity than existing
algorithms. Experiments show that our scheme outperforms state-
of-the-art techniques by up to a factor of 15.

I. INTRODUCTION

There is an increasing demand for scalable and efficient
parallel processing of large amounts of data. Load balancing
is crucial for reaching this goal, as the total execution time
depends on the slowest machine. In this paper, we develop
algorithms and techniques for efficient and accurate load
balancing for parallel joins.

Join types. The state-of-the-art parallel equi-joins rely on
hashing with special handling for heavy hitters (join keys
with high multiplicity). Examples are the PRPD [1] and F-
SkewJoin [2] schemes. Beame et al. [3] prove that a modified
PRPD scheme [1] is close to the communication optimum.

Unfortunately, these approaches are limited to equi-joins.
In contrast, we propose a partitioning scheme for a broad class
of monotonic joins [4] that include combinations of equality,
band and inequality (<, ≤, >, ≥) join conditions (e.g., band-
join is a combination of 2 inequality join conditions). Still, for
joins with only equality conditions, one should use existing
approaches (e.g. [3]).

Monotonic joins often arise in practice. Notable examples
of band-joins are time-distance joins (e.g. in call logs [5]) and
space-distance joins (e.g. in locating nearby objects [4]).

Skew types. Data skew occurs frequently in industrial
applications [1], [2]. Load balancing is challenging in the
presence of two major types of skew [6]. First, redistribution
skew (RS) represents uneven input data partitioning among the
machines due to skew in the join keys. Thus, RS impedes
performance. For instance, the 1-Bucket scheme [4] achieves
up to 5× speedup by addressing RS.

Second, join product skew (JPS) [6] represents imbalance
in load due to variability in the join selectivity, causing
disproportionate numbers of output tuples to be processed

among parallel workers. That is, a few machines produce a
large portion of the output. These machines become bottleneck,
severely hindering performance. In fact, JPS can occur even in
the absence of RS [7]. The following example illustrates that.

Example 1.1: Let us consider a band join with condition
|R1.A − R2.A| ≤ 10. Let us consider the bucket with range
[0..30] assuming that each relation has 10 join keys in this
range. If R1.A and R2.A never satisfy the join condition (e.g.
R1.A in [0..9] and R2.A in [20..29]), the output size is 0.
On the other hand, if each of R1.A and R1.A has 10 distinct
values in [0..9], the output size is 100.

Although each bucket has the same size bs = 10 (there
is no RS), the join output size per bucket varies from 0
to b2s = 100 (there is JPS), depending on the the relative
distribution of the join keys between the input relations. Thus,
using only bucket sizes leads to inaccurate estimation of the
output distribution, which results in JPS.

Depending on the input and output sizes, JPS may impede
performance more than RS. Our evaluation shows that our
scheme, which addresses both RS and JPS, achieves up to 15×
speedup compared to a state-of-the-art scheme which addresses
only RS [4].

Previous work. We present approaches that, similar to
ours, go beyond just equi-joins and also support band-joins,
inequality-joins etc. We classify previous work as follows.
JPS-avoidance schemes (e.g. 1-Bucket [4]) balance the output-
related work among the machines, regardless of the join
selectivity. However, these schemes heavily replicate the input
tuples, causing high network and memory consumption, high
input-related work per machine, and thus, high execution time.
JPS-susceptible schemes (e.g. M-Bucket [4]) do not estimate
the join output distribution. Hence, these schemes cannot
address JPS, causing high output-related work per machine. In
general, previous work does not capture the output distribution,
as this requires the output sample. Building the sample is hard,
as a join between uniform random samples from the input
relations is not a uniform random sample of the join output [8].

Our scheme. We propose a novel partitioning scheme
which eliminates both RS and JPS. As Table I shows, we are
the first to provide a scheme which is both input- and output-
optimal. In contrast to previous work, our scheme achieves
load balancing on minimal work per machine, which includes
both input- and output-related work. This results in better
execution times.



TABLE I: Comparison with most important related work.

Partitioning Scheme Input-Optimal Output-Optimal
1-Bucket 8 4
M-Bucket 4 8

EWH(ours) 4 4

To build such a partitioning scheme i , we solve two
problems. First, we propose an efficient parallel scheme for
capturing the output distribution. We represent the input and
output distribution as a matrix, where each dimension of the
matrix corresponds to the join keys from an input relation.
Second, using these distributions, we optimally assign portions
of the matrix (called regions) to machines.

To do so, we introduce a novel family of histograms which
we call equi-weight histograms, and a novel histogram algo-
rithm to build them. An equi-weight histogram is a partitioning
of the matrix into regions where regions have almost the
same weight (the region weight corresponds to the machine’s
work). Thus, a partitioning scheme based on the equi-weight
histogram by design provides for accurate load balancing.

Our histogram algorithm builds on state-of-the-art com-
putational geometry (CG) algorithms for rectangle tiling. To
our knowledge, we are the first to employ CG algorithms
for join load balancing. Using existing CG algorithms require
O(n5 log n) time to produce an accurate partitioning (n is the
input relation size). This is impractical, as it is more costly
than executing the join itself. In contrast, our algorithm runs
in O(n) time, while providing for accurate load balancing,
close to that of the baseline CG. We achieve efficiency and
accuracy as follows.

First, we devise a novel CG algorithm that employs the
domain-specific knowledge about monotonic joins (the pro-
perties of the join output distribution). This algorithm drasti-
cally reduces the time and space complexity compared to the
baseline CG, while providing the same accuracy.

Second, we devise a 3-stage histogram algorithm (sam-
pling, coarsening and regionalization), where the output of
each stage is the input to the next one in the chain. Each
stage reduces the input size of the next one, while providing
guarantees for its output. As later stages have more coarse-
grained input, we employ more precise algorithms for them to
preserve accuracy. As more precise (and expensive) algorithms
work on smaller inputs, we preserve efficiency.

Third, we resolve the challenging problem of setting the
right output size for each stage. Namely, the size must be
small enough to keep the algorithm running time short. On the
other hand, the size must be big enough, as insufficient output
granularity (resolution) leads to inaccurate load balancing (one
machine is assigned much more work than the others).

We explain highlights of our solution while outlining the
main contributions of this work:

1. To provide for efficient and accurate load balancing, we
devise a multi-stage histogram algorithm which contains a
novel, join-specialized computational geometry algorithm.

2. Our scheme achieves minimal work per machine, without
imposing any assumptions about the data distribution.

iBy a partitioning scheme we mean either the algorithm for generating
the partitioning, or the partitioning itself. In this case we mean the latter. In
general, the meaning should be clear from the context.

TABLE II: Summary of the notation used in the paper.

Symbol Description Value

R1, R2 Input relations
J The number of machines
n Max. input relation size
m Join output size
ρoi Output/Input ratio
w(r) Weight of region r
M Original join matrix
MS Sample matrix of size ns × ns ns =

√
2nJ

si Input sample size Θ(ns logn)
so Output sample size Θ(ns)
MC Coarsened matrix of size nc × nc nc = Θ(J)
MH Equi-weight histogram

3. We experimentally validate our scheme. Compared to state-
of-the-art, our scheme achieves up to 15× speedup in terms
of total time (which includes both building the scheme and
performing the join) and is up to 5× more efficient in terms
of resource consumption.

II. BACKGROUND & PRELIMINARIES

Next, we introduce definitions used in this paper. Then, we
discuss the schemes from Table I, and highlight the benefits
of our scheme on a concrete example. Finally, we define the
problem statement. Important symbols used in this paper are
summarized in Table II.

Join Model. We model a join among relations R1 and R2 as a
join matrixM. For row i and column j, cellM(i , j ) represents
a potential output tuple.M(i , j ) is 1 iff ri and sj tuples satisfy
the join condition. Figure 1a shows a matrix for a band-join
with a join condition |R1.A−R2.A| ≤ 1. We focus on the joins
which are common in practice, and for which state-of-the-art
techniques perform poorly, that is, low-selectivity joinsii. These
joins have sparse join matrices, i.e. only a small portion of the
Cartesian space produces output tuples.

Regions. We execute a join using J machines in a shared-
nothing architecture. We refer to a set of cells (that is, the
corresponding input tuples) assigned to a single machine for
local processing as a region. We adhere to rectangular regions,
as opposed to rectilinear or non-contiguous regions, to incur
minimal storage and communication costs [9].

Input and Output metrics. A region’s input is its semi-
perimeter, that is, the sum of the number of rows and columns
from the join matrix intersecting the region. Processing an in-
put tuple consists of receiving the tuple (which incurs network
and demarshalling costs) and join computationiii. The output
is the number of output tuples (frequency) of a region. We use
frequency as opposed to area as we focus on low-selectivity
joins. The processing cost of an output tuple mainly comes
from post-processing (writing the output to disk or transferring
it over the network to the next operator in the query plan).
For example, region r1 in Figure 1b has input = 19 and
output = 10.

Load balancing is defined as minimizing the maximum work
per machine. As each machine is assigned a region, we
represent the machine’s work as a weight function of input
and output costs: w(r) = ci(r)+co(r). As these costs depend
on the local join algorithm and hardware/software architecture,
ci(r) and co(r) naturally mimic the actual cost of processing

iiWe also run high-selectivity joins with minimal overhead (see §VI-E).
iiiThe computation cost can partially belong to output (see Section VI-A).
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Fig. 1: Different partitioning schemes (of 3 machines) on a band-join with a join condition |R1.A − R2.A| ≤ 1. Shaded cells
represent output tuples. (b)-(d) Ir is input and Or is output metric of a region r with maximum weight wx∈1..J = Ix +Ox.

input(r) and output(r) tuples, respectively. Thus, the load-
balancing goal can be expressed as minimizing the maximum
w(r). Next, we discuss whether different partitioning schemes
achieve this goal.

A. Content-Insensitive Partitioning Scheme

The content-insensitive partitioning scheme, CI (called 1-
Bucket in [4], [9]), illustrated in Figure 1b, assigns all cells (n2

of them) to machines, regardless of the join condition. Thus,
regions cover the entire join matrix. This ensures result com-
pleteness and avoids expensive post processing or duplicate
elimination. An incoming tuple from R1 (R2) randomly picks
a row (column) in the join matrix, and is assigned to all the
regions which intersect with the row (column). The choice of a
row or a column is completely random, and it does not depend
on the tuple at all (this is why the scheme is called content-
insensitive). For example, the tuple with join key 17 from R2

randomly picks column 5, which intersects with regions r1 and
r3. Thus, the tuple is assigned to these regions.

The scheme achieves almost perfect load balancing for
output by ensuring that regions have almost the same area.
In particular, due to random tuple distribution, almost equal-
area regions have almost equal output.

However, CI incurs prohibitively high input costs for
low-selectivity joins. Namely, as this scheme assigns all the
cells (regardless of whether they produce an output tuple) to
machines, CI suffers from excessive input tuple replication.

We compare partitioning schemes in Figures 1b, 1c and 1d
using the weight function w(r) = input(r) + output(r). Due
to excessive tuple replication, CI has the highest maximum
w(r) (w(r1) = 29 compared to w(r1) = 28 and w(r1) = 20
of the other schemes). In fact, CI works well only if the output
costs are much bigger than the input costs, as in that case input
tuple replication has small effect on the work per machine.

B. Content-Sensitive Partitioning Scheme

A content-sensitive scheme addresses the excessive tuple
replication problem. It assigns an input tuple to a machine(s)
according to its content (join key).

CSI (Figure 1c), called M-Bucket in [4], is a content-
sensitive scheme that uses the input statistics. To simplify
notation, we denote both relation sizes as n iv. CSI builds

ivOur analysis also holds when the sizes differ.

approximate equi-depth histogramsv with p buckets over join
keys of each input relation (p < n), and creates a grid of size
p×p over the join matrix. In Figure 1c, p = n/2 = 8, and each
grid cell contains h = (n/p)2 = 4 matrix cells. We denote a
grid cell which may produce an output tuple as a candidate
cell (marked with diagonally engraved lines).

To efficiently check if a grid cell is a candidate (in O(1)
time), CSI requires a join condition that allows candidacy-
checking by examining only join keys on the grid cell bound-
aries. This holds for monotonic joins, as the boundary join
keys are sorted. For example, grid cell (0, 1) in Figure 1c is
non-candidate, as the distance between the lower R2 and upper
R1 cell boundary join keys (5− 3 = 2) exceeds the width of
the band-join (1).

CSI optimizes the input costs, as it assigns only candidate
grid cells to machines, safely disregarding large contiguous
portions in the join matrix that produce no output. CSI scheme
assigns tuples to regions according to intersection of the rows
and columns with regions. For instance, in Fig. 1c, a tuple
from R1 with join key 9 is forwarded to regions r1 and r2.
Whereas, all other tuples from R1 are forwarded to exactly one
region. However, as regions are rectangular, CSI also assigns
some non-candidates to machines. For example, although grid
cell (0, 1) in Figure 1c is non-candidate, it is assigned to r1.
In Figure 1, the maximum input(r) of CSI is only I1 = 14,
compared to I3 = 21 of CI . The gap between the two schemes
deepens with increasing the number of machines J , as the
number of non-candidates grows.

However, CSI is susceptible to JPS, as it ignores the actual
number of output tuples (output) and assigns a constant to
each candidate cell. In practice, the output of a grid cell
varies from 0 to the size of the Cartesian product between the
encompassed input tuples from the two relations, that is, from
0 to the grid cell area h (h = 4 in our example). In Figure 1c,
regions r1 and r2 have the same number of candidate cells
(4), but vastly different number of output tuples (14 versus
5, respectively). This is why the maximum w(r) in CSI
(w(r1) = 28) only slightly improves that of CI (w(r1) = 29).
Thus, JPS prevents CSI from performing better compared to
CI . In fact, CSI works well only if the input costs are much
bigger than the output costs, as in that case JPS marginally
affects the work per machine.

vFor the sake of this example, we assume the exact histogram.
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C. Equi-Weight Histogram Scheme

We propose a novel, equi-weight histogram scheme, CSIO
(Figure 1d), which achieves the best of both worlds: it avoids
both JPS and excessive tuple replication.

CSIO is a content-sensitive scheme that accurately es-
timates the number of output tuples per candidate cell via
sampling (see Section IV-A)vi. In contrast to CSI , CSIO is
resilient to JPS. This is why the maximum w(r) in CSIO
(w(r1) = 20) is much smaller than that of CSI (w(r1) = 28).
In practice, the gap between the two schemes is much deeper.
Namely, to have acceptable time for building the CSI scheme,
it must hold that p� n [4]. This increases the candidate grid
cell area h, making CSI much more prone to JPS.

An optimal partitioning scheme minimizes the maximum
w(r). In contrast to CI and CSI which work well only
if output or input costs dominate, our CSIO is close-to-
optimum for a wide range of output/input costs. We build
such a scheme using a novel equi-weight histogram. The
histogram contains buckets of almost equal weight, where each
bucket corresponds to a rectangular region. Figure 2 depicts
weight histograms for different schemes from Figure 1. CSIO
is based on equi-weight histograms and it is the only scheme
that minimizes the maximum region weight (machine’s work),
providing by design for accurate load balancing. Next, we
formalize the histogram construction problem.

Problem definition. Given a sparse matrixM[1..n , 1..n ] with
cell values {0, 1}, partition it to J � n non-overlapping axis-
parallel rectangular regions rj ∈ R, such that each 1-cell is
covered by exactly one region, and each 0-cell is covered by
at most one region. The goal is to minimize the maximum
weight of a region, that is min{maxrj∈R{w(rj)}}. M is the
original join matrix where 1-cells represent output tuples and
0-cells depict empty entries, w(r) represents the work of a
machine assigned to region r, and J is the number of joiners
(machines).

The join matrix is just a model. The histogram algorithm
does not build M, as this is the actual join result (this would
defeat the purpose of building the scheme for parallel join
execution). Rather, we resort to sampling (see next section,
particularly Section III-A).

III. HISTOGRAM ALGORITHM

In this section, we show how our efficient histogram
algorithm achieves accurate load balancing. We first provide a

viFor the sake of this example, we assume exact statistics.

TABLE III: The time complexity improvements.

BSP BSP BSP MonotonicBSP
over M over MS over MC over MC
O(n5 logn) O((nJ)2.5 logn) O(n5/3 logn) O(n)

high-level overview of the different stages of our algorithm.

Previous work. The histogram construction problem is
NP-hard. The best known approximate algorithm is BSP [10],
a tiling algorithm which runs in O(n5) time and has an
approximation ratio 2.

To create a histogram with J buckets (regions), we need to
perform a binary search over the BSP (see §III-C). We denote
the entire process as regionalization, and it takes O(n5 log n)
time. This is impractical, as it is more costly than the join.

Our solution. We propose a histogram algorithm that
takes O(n) time on a single machine, while providing for
load balancing that is close to the one of the BSP [10]. Our
idea is twofold. First, we reduce the input matrix size of the
regionalization (originally, regionalization takes the original
matrix M as the input). Second, we drastically improve the
regionalization running time by using a novel tiling algorithm
which we call MONOTONICBSP. These ideas allow us to be
the first to use tiling algorithms for join load balancing.

1. Reducing the regionalization input. We introduce the
sampling stage, which generates sample matrix MS of size
ns × ns. MS has much smaller size than the original matrix
M (ns � n). To provide for load balancing, ns needs to be
(at least)

√
2nJ (see §III-A). If the regionalization takes MS

as the input, it runs in O(n5
s log n) = O((nJ)2.5 log n) time.

This computation cost is still too high.

To further reduce the regionalization input, we introduce
the coarsening stage. This stage takes MS as the input and
creates a coarsened matrix MC of size nc × nc (nc < ns).
The coarsening reduces the regionalization input by using the
distribution of MS cell weights (i.e., we represent multiple
small MS cells as one MC cell). To provide for load balanc-
ing, we opt for nc = 2J (see §III-B). If the regionalization
takes MC as the input, it runs in O(J5 log n) time. As using

J = O( 3

√
n/ log2 n) machines is sufficient in practicevii, the

regionalization takes O(n5/3 log n) time. This is still expensive
compared to the join costs.

2. MONOTONICBSP: a novel tiling algorithm. In con-
trast to BSP which takes O(J5 log n) time, our MONOTON-
ICBSP runs in only O(J3 log2 n) time. To do so, MONOTON-
ICBSP exploits the output properties of monotonic joins (see

§III-C). As J = O( 3

√
n/ log2 n) vii, the regionalization based

on MONOTONICBSP, along with the sampling and coarsening,
takes only O(n) time (see §III-A to III-C). Table III summa-
rizes all the complexity improvements.

Putting everything together. Figure 3 illustrates the chain
of the histogram algorithm stages (the sampling, coarsening
and regionalization) for w(r) = input(r) + output(r). The
sampling stage builds MS of size ns × ns (ns = 16 in
Figure 3a) using small input and output samples from M.

viiDue to parallelization overhead, adding machines after a certain point
provides no additional performance benefits. Our formula for J captures this
observation and states that, for example, if n is hundreds of millions, it is
then sufficient to use hundreds of machines.



1

1

1 2

2 1 1

1 31

1

1216

2 13

714 1

129 11

211312

4125

3 75

9

49 362

2050

1

1

1 2

2 1 1

1 31

1

1216

2 13

7
14

1

129 11

211312

4125

3 75

9

49 62

2050

3

22 23

34 30 5

23

28 1

8 1

5

1

1

1 2

2 1 1

1 31

1

1216

2 13

714 1

129 11

211312

4125

3 75

9

49 62

2050

3

22 23

34 5

23

28 1

8 1

5

181

82

100

15

a) Sample Matrix MS

    nsX ns = 16 x 16

b) Coarsened Matrix MC

nc x nc = 8 x 8
c) Equi-Weight Histogram MH

n / ns=16

Coarsening Regionalization

Input/
Output

Random
Samples

Output
Costs

Input
Costs50

100

150

200

250

Unit Weight

Equi-Weight
Histogram

n / ns=16

7 * 16=112

7*16=112

224

15

10082181

144160

64

r1 r2 r3 r4

r1

r2

r3

r4

d) Equi-Weight Histogram MH
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MS preserves the weight distribution of M. That is, with
high probability, regions’ weights inMS are very close to the
corresponding weights in M. The coarsening stage creates a
non-uniform grid nc × nc over MS (nc = 8 in Figure 3b),
such that each grid cell becomes an MC cell. Thus, MC
is of size nc × nc. The frequency (output) of an MC cell
is the sum of the corresponding MS cell frequencies, e.g.
output(MC(1, 2)) = output(MS(1, 2..3)) = 3. The weight
is w(MC(1, 2)) = 3n/ns + output(MC(1, 2)) = 3 · 16 + 3 =
51. The regionalization builds the equi-weight histogramMH
by coalescing MC cells into regions (see Figure 3c). This
stage uses the hierarchical partitioning (recursively dividing
rectangles into 2 sub-rectangles) over its input (MC). The
hierarchical partitioning allows more configurations that the
grid partitioning from the coarsening stage. For example, the
grid partitioning cannot produce the hierarchical partitioning
from Figure 3c, as r1 and r2 partially overlap over the y-axis.

The main ideas in our histogram algorithm that allow for
efficient and accurate load balancing are:

1) We avoid imposing any assumptions about distribution
within a cell, as it leads to incorrect weights and inaccurate
load balancing. Thus, we create MC cells (regions) on the
granularity of an MS (MC) cell.

2) Careful choice of the matrix sizes ns and nc.

3) Using more precise algorithms when it matters for
accuracy of load balancing, that is, when the cell weights in
the input matrix of the stage are high (i.e., on more coarse-
grained matrices). In particular, as we move forward in the
chain of the stages, the matrix size drops and the maximum
cell weight grows. For example, in Figure 3, the matrix sizes
are ns = 16 and nc = 8, and the maximum cell weights
are w(MS(1, 1)) = 2 · 16 + 62 = 94 and w(MC(6, 6)) =
6 · 16 + 8 = 104. We account for this by using more precise
algorithms as we move forward in the chain. Namely, the
coarsening considers only grid configurations (of size nc×nc)
over its input (MS ), as illustrated in Figure 3b. Whereas,
the regionalization is more precise than the coarsening, as it
explores all the hierarchical partitionings over its input (MC),
as illustrated in Figure 3c. More precise algorithms are also
more expensive per input matrix cell (see §III-A to III-C).
However, as more expensive algorithms work on smaller
input matrices (recall ns = 16, nc = 8), the histogram
algorithm is efficient.

4) Devising MONOTONICBSP, a novel tiling algorithm.

5) All the stages use a weight function which accurately
estimates the processing costs, and each stage provides
guarantees for minimizing its maximum cell weight. We
prove an upper bound on the MS cell weight (Lemma 3.1).
The coarsening (regionalization) guarantees to produce par-
titionings within a factor of 2 from the optimum on grid
(arbitraryviii) partitioning on the given MS (MC) matrix.

Next, we discuss the details of each stage.

A. Sampling

This stage efficiently builds the sample matrixMS , which
provides for accurate load balancing.

Region weight proximity. As the histogram algorithm requires
precise region weights for accurate load balancing, MS must
preserve the region weights of the original matrix M. As we
previously saw that regions are defined by their boundary keys,
a region rs from MS corresponds to a region r from the
original matrix M if and only if they share all the region
boundary keys. The region weight proximity means that for
any two corresponding regions rs and r, MS ensures that
w(rs) ≈ w(r) with very high probability. In other words, any
region in the sample matrix has almost the same weight as the
corresponding region in the original matrix.

Previous work on sample data structures mainly concerns
multi-attribute single-relation histograms, which are used for
answering range queries (e.g. [11], [12]). As the algorithms for
building these data structures consider only frequency (output),
they cannot preserve the w(rs) ≈ w(r) property. Hence, these
algorithms fall short for providing accurate load balancing.

Building sample matrix MS . In contrast, we build MS
of size ns × ns (in Figure 3a, ns = 16), which keeps the
w(rs) ≈ w(r) property by preserving both the input and output
distribution: a) To preserve the input distribution, we build
an approximate equi-depth histogram [13] with ns buckets on
each input relation. The histogram boundaries form a grid of
size ns × ns over the original matrix. Each such grid cell
corresponds to anMS cell. Region’s input is a product of the
number of MS cells on its semi-perimeter and the expected
bucket size n/ns. For example, in Figure 3a, the region defined
by MS(0..1, 0) has input of 3 · n/ns = 48. b) To preserve
the output distribution, we take a uniform random sample of
the join output. To do so efficiently, we propose a parallel

viiiIt allows any partitioning into rectangles.



sampling scheme (Section IV-A). Once the sample is in place,
we increment the corresponding MS cell for each sample
output tuple. Region’s output is a product of the ratio of
output sample tuples within the region and the total output
size m (we show how to find m in §IV-A). For example, in
Figure 3a, region MS(0..1, 0) has output of 50 + 49 = 99.

Efficiency and Accuracy Considerations. Setting the MS
size ns is crucial for both efficiency and accuracy. As the
coarsening takesMS as the input, in order to keep the running
time of this stage short, ns must be small enough. On the
other hand, decreasing ns may affect accuracy of the histogram
algorithm, and thus, accuracy of load balancing. In particular,
if we decrease ns, theMS cells correspond to bigger portions
in the original matrix and thus, the MS cell weights grow.
For example, the maximum cell weight in Figure 3a is σ =
2 · 16 + 62 = 94, which corresponds to MS(1, 1). Assume
thatMS′ differs from theMS in Figure 3a only by replacing
ns = 16 by n′s = 4. Then, the maximum cell weight is σ′ =
8 · 16 + 201 = 329, which corresponds to MS(0..3, 0..3) and
which is much bigger than sigma = 94. As we avoid imposing
assumptions within an MS cell, regions are on the MS cell
granularity and a region contains at least one MS cell. Thus,
the maximum region weight in the partitioning scheme with
n′s = 4 is at least σ′ = 329. Such a scheme is suboptimal
compared to theMH scheme from Figure 3c,d, which has the
maximum region weight w(r1) = 4 · 16 + 181 = 245. Thus,
small ns leads to weighty regions, which affects accuracy of
load balancing.

It is challenging to choose a value for ns, as in the
sampling stage we do not know the maximum w(r) of the
MH partitioning scheme. To that end, we find a lower bound
on the maximum w(r) of the optimum MH scheme. We
denote this lower bound as wOPT , and we compute it by
dividing the lower bound on the total join work (w(M), where
input(M) = 2n and output(M) = m) ix equally among
the machines. In fact, w(M) is a lower bound as it assumes
no input tuple replication. To ensure accuracy given that the
coarsening and regionalization use approximate algorithms, we
require that σ ≤ 0.5wOPT (rather than simply σ ≤ wOPT ).
This holds independently from the join condition and join key
distribution if ns =

√
2nJ , as the following lemma shows.

The proofs are in Appendix A.

Lemma 3.1: ns =
√

2nJ is the minimum MS size such
that the maximum cell weight σ in MS is at most half of the
maximum region weight of the optimum MH partitioning.
This holds independently from the join condition and the join
key distribution, given that m ≥ n x.

Next, we briefly discuss the sizes of the input and output
sample, which are required for building MS . The detailed
analysis is in [14]. The input sample size is si = Θ(ns log n).
We determine that the output sample size is so = Θ(ns) using
Kolmogorov’s statistics [15]. Next, given ns =

√
2nJ , we

prove that the sampling stage has low running time.

Lemma 3.2: The time complexity of the sampling stage is

O(ns log ns). For ns =
√

2nJ and J = O( 3

√
n/ log2 n) xi,

ixIt is a lower bound as it assumes no input tuple replication.
xThis typically holds in practice. We discuss the extensions to support the

general case for m in [14].
xiSee footnote vii.

the time complexity is O(n/J).

B. Coarsening

This stage creates a coarsened matrix MC by imposing a
grid of size nc×nc over the input matrixMS . As nc < ns, the
coarsening further reduces the regionalization input. Figure 3b
showsMC with nc = 8. The goal is to minimize the maximum
cell weight inMC . This is an NP-hard tiling problem. The best
approximate algorithm is the coarsening from [16], which has
an approximation ratio 2.

Deciding on nc. To keep the running time short, while
achieving accurate load balancing in the regionalization, we
opt for nc = 2J . We discuss how such nc brings accuracy in
§III-D. The following lemma proves low time complexity.

Lemma 3.3: The running time of the coarsening algorithm
is O((ns + n2

c log ns) · nc log ns). For nc = 2J and J =

O( 3

√
n/ log2 ns)

xi, the time complexity becomes O(n).

Monotonicity is a property of the join output distribution
which holds for many interesting joins, including equi-, band-
and inequality joins. It states that “if cell (i, j) is not a can-
didate cell, then either all cells (k, l) with k ≤ i, l ≥ j, or all
cells (k, l) with k ≥ i, l ≤ j are also not candidate cells” [4].
That is, candidate cells are consecutive per row/column. All
the join matrices in Figure 1 are monotonic, while the one in
Figure 2b is not due to the candidate cells marked black.

MonotonicCoarsening. We speed up the coarsening algorithm
using monotonicity. The coarsening algorithm iteratively im-
proves the coarsened matrix. To do so, in each iteration it
computes the weights of all the MC cells. As the weight of
non-candidate cells is 0, it suffices to compute only the weights
of the candidate cells. Monotonicity allows skipping the non-
candidates for free. Thus, the MonotonicCoarsening considers
only the candidate cells. This improves the algorithm’s running
time in practice, although the complexity does not change
asymptotically.

C. Regionalization

This stage creates the equi-weight histogram MH, which
consists of (at most) J rectangular regions over MC cells.
Figure 3c illustratesMH with J = 4. The goal is to minimize
the maximum region weight δ, while covering with regions all
the candidate MC cells. xii The best such algorithm is Binary
Space Partition (BSP) [10], [17]. However, BSP solves a dual
problem: given the maximum region weight δ, it minimizes the
number of regions. To that end, we perform a binary search
over δ until BSP returns a partitioning with the available J
regions (machines).

BSP [10], [17] is a tiling algorithm based on dynamic pro-
gramming. It creates an optimum hierarchical partitioning,
which is within a factor of 2 from an optimum arbitrary
partitioning. BSP (Algorithm 1) analyzes each rectangle in
MC as follows. If the rectangle weight is below the given
maximum region weight δ, we cover the rectangle with a
single region (line 5). Otherwise, BSP splits the rectangle
by a horizontal or vertical line such that the total number of
regions used for the two sub-rectangles is minimized (lines

xiiAs regions are rectangular, they cover some non-candidates as well,
subject to minimizing δ.



Algorithm 1 BSP.
1: function BSP(rectangles)
2: for each rectangle r in rectangles do
3: rm = MINIMALCANDIDATERECTANGLE (r)
4: if w(rm) ≤ δ then
5: r.regions = {rm}
6: else
7: for each splitter in rm do
8: {r1, r2} = rm.split
9: splits.add({r1, r2})

10: r.regions = min{r1,r2}∈splits(r1.regions ∪ r2.regions)
11: end function

7-9). We obtain a minimal set of regions for a rectangle by
using the previously found splitters for each sub-rectangle. We
acquire the final regions by extracting them from the rectangle
encompassing the entire MC .

Extending BSP to join load balancing. As we do not need
to assign non-candidate MC cells to machines, we minimize
a rectangle so that no candidate cell is omitted (line 3). We
denote such a rectangle as minimal candidate rectangle. For
example, in Figure 2c, rectangle r1 (r2) contains no candidate
cells on the left and lower (right and upper) boundaries. Thus,
before computing the weights, we minimize r1 (r2) to its
minimal candidate rectangle rm1 (rm2).

As the input for the BSP is of size nc × nc, and nc = 2J
(see § III-B), BSP runs in O(J5) time. With binary search,

it takes O(J5 log n) time. As J = O( 3

√
n/ log2 n) xiii, the

regionalization based on BSP runs in O(n5/3 log n) time. This
is expensive compared to the join costs.

BSP also suffers from high space complexity, which is
proportional to the total number of rectangles in the input
matrix MC . As a rectangle is defined by 2 corners, and each
corner is defined by 2 MC coordinates, the space complexity
is O(n4

c) = O(J4).

MONOTONICBSP. We propose MONOTONICBSP, a novel
tiling algorithm which drastically reduces both time and space
complexity of the BSP. To that end, MONOTONICBSP ex-
ploits the output distribution properties for monotonic joins.
In BSP, enumerating rectangles from MC results in high
time and space complexity (O(n4

c)). However, for monotonic
joins, only a small portion of these rectangles are minimal
candidates. The main challenge is to enumerate only minimal
candidate rectangles without even looking at all the rectangles,
as this would require O(n4

c) time. To that end, we use the
following lemma.

Lemma 3.4: A rectangle is defined by the upper left and
the lower right corner. For monotonic joins, each defining
corner of a minimal candidate rectangle is a candidate cell,
yielding O(n2

c) minimal candidate rectangles in total.

Rectangles rm1 and rm2 in Figure 2c are minimal candi-
date rectangles, and their defining corners are candidate cells.

Thus, by designating each pair of the candidate cells as
the rectangle defining corners, the MONOTONICBSP (Algo-
rithm 2) enumerates all the minimal candidate rectangles (lines
6-13). There are O(n2

c) such rectangles, as MC has O(nc)

xiiiSee footnote vii.

Algorithm 2 MONOTONICBSP.
1: function MONOTONICBSP
2: rectanglesm = GENERATECANDIDATERECTANGLES()
3: Sort rectanglesm according to the semi-perimeter
4: BSPCANDIDATES(rectanglesm)
5: end function
6: function GENERATECANDIDATERECTANGLES
7: for x1 = 1 to nc do
8: for y1 in cand. cell indexes in row x1 do
9: for x2 = x1 to nc do

10: for y2 in cand. cell indexes in row x2 do
11: rectanglesm.add(x1, y1, x2, y2)
12: return rectanglesm
13: end function
14: function BSPCANDIDATES(rectanglesm)
15: for each rectangle rm in rectanglesm do
16: if w(rm) ≤ δ then
17: rm.regions = {rm}
18: else
19: for each splitter in rm do
20: {r1, r2} = rm.split
21: rm1 = MINIMALCANDIDATERECTANGLE(r1)
22: rm2 = MINIMALCANDIDATERECTANGLE(r2)
23: splits.add({rm1, rm2})
24: rm.regions = minsplits(rm1.regions ∪ rm2.regions)
25: end function

candidate cells (we deal with low-selectivity joins). Then, the
algorithm sorts the rectangles by their semi-perimeter (line
3), and runs a BSP version which considers only minimal
candidate rectangles (lines 14-24).

Lemma 3.5: The regionalization stage based on MONO-
TONICBSP runs in O(n3

c log nc log n) time. For nc = 2J and

J = O( 3

√
n/ log2 n) xiii, the stage takes O(n) time.

The space complexity of MONOTONICBSP is O(n2
c), as

there are n2
c minimal candidate rectangles (see Lemma 3.4).

MONOTONICBSP significantly outperforms the baseline
BSP for monotonic joins, both in terms of space and time
complexity. Namely, MONOTONICBSP requires only O(n2

c)
space and O(n3

c log nc log n) time. Whereas, the baseline BSP
runs in O(n4

c) space and O(n5
c log n) time.

D. Putting it all together

The computation cost. By directly applying previous
work [10] (i.e., the regionalization based on BSP over the orig-
inal matrixM), computing the histogram requires O(n5 log n)
time. In contrast, our 3-stage histogram algorithm runs in only
O(n) time.

Theorem 3.1: The time complexity of the histogram algo-
rithm is O(n).

The proof directly follows from Lemmas 3.2-3.5 (each
stage runs in O(n) time).

The accuracy of load balancing. As in our algorithm the
regionalization creates regions on the MC cell granularity,
we next discuss how much the coarsening stage affects the
accuracy of load balancing. For output-only weight functions,
Wang [18] shows that the arbitrary partitioning over a grid



partitioning is within a factor of 4 from the arbitrary partition-
ing over the original data. Applied to our case, if nc ≥ J and
the input matrix of the coarsening stage is the original matrix
M (rather than the sample matrix MS ), the coarsening and
regionalization produce a partitioning which is at most a factor
of 4 from the one produced by the regionalization alone (this
holds only for output-only weight functions). We lessen the
factor of 4 by choosing nc = 2J (rather than nc = J) for the
MC size.

Sampling minimally affects load balancing, as MS with
very high probability preserves the weight distribution fromM
(Section III-A). Further, we minimize the effect of coarsening
to accuracy by ensuring that the maximum cell weight inMS
is at most half of (rather than equal to) the maximum region
weight in the optimumMH partitioning scheme (Lemma 3.1).
We provide strong empirical evidences for the accuracy of our
equi-weight histogram scheme (see Section VI).

IV. JOIN OPERATOR

In this section, we integrate our partitioning scheme into
a join operator. First, we collect the statistics, that is, samples
of the input and output tuples (see Section IV-A). Then,
using these statistics, we build the equi-weight histogram
(see Section III). Finally, we distribute and process the data
according to the histogram.

Local Join Algorithm. Each machine processes a region using
a local join algorithm. As long as all the machines run the same
algorithm, our scheme is orthogonal to the local joins.

Sampling the Input Tuples. As described in §III-A, we need
a uniform random sample of size si from each relation. We
build the input sample in one pass in parallel using Bernoulli
sampling [19] with a sampling rate of qi = si/n.

A. Sampling the Output Tuples

Chaudhuri et al. [8] show that we cannot obtain a uniform
random sample of the join output by joining uniform random
samples from the input relations. Alternatively, performing the
entire join and then sampling from the output defeats the
purpose of building the equi-weight histogram. The Stream-
Sample algorithm [8] provides a uniform random output sam-
ple without performing the entire join. However, this is a
single-machine algorithm. To make it efficient and scalable,
we devise a parallel version of the Stream-Sample algorithm.
Next, we discuss efficiency of this algorithm in the context
of join load balancing. To our knowledge, we are the first to
use random samples of the join output for parallel join load
balancing. Then, we describe the baseline and parallel Stream-
Sample in detail.

Efficiency. The cost of Parallel Stream-Sample, which mainly
comes from scanning the input relations, is small compared to
the cost of parallel join. This is due to the following:

1) The benefits of using the collected statistics easily sur-
pass the scanning overhead, both in MapReduce [4], [20], [21]
and distributed databases [22]. In both cases, scanning involves
repartitioning of the join keys [4], [22]. Our experiments (§VI)
also show that scanning pays off, as JPS affects performance
much more than scanning.

2) The output sample tuples contain only join keys, as we
use the samples only for buildingMS (and not for propagating
it further in the query plan). This reduces the network traffic.

3) The output sample size is much smaller than the input
relation size (so = Θ(ns) = Θ(

√
nJ)� n).

Stream-Sample. The Stream-Sample [8] works only for equi-
joins, but we extend it to work for band- and inequality joins.

First, we introduce the notation. The base relations are R1

and R2 and a sample from R1 is S1. Given a tuple t1 ∈ R1

with a join key t1.A, the joinable set of t1 consists of all the
tuples from R2 which are joinable with t1. For equi-joins, the
joinable set of t1 comprises of all the tuples from R2 with t1.A
as the join key. For band- and inequality joins, the joinable set
contains all the tuples from R2 with a join key within a certain
distance (specified by the join condition) from t1.A. We denote
the joinable set size as d2(t1.A), and the ensemble of them as
d2. Using the keys from d2 with an equality condition yields
d2equi. WR (WOR) is sampling With (Without) Replacement.

The Stream-Sample algorithm works as follows. We take a
WR weighted sample S1 of size so from R1, where the weight
of t1 ∈ R1 is d2(t1.A). Then, for each ts1 ∈ S1, we randomly
choose t2 ∈ R2 from the joinable set of ts1 and produce an
output tuple ts1 on t2.

Parallelization. We design a parallel, scalable version of
Stream-Sample, which runs efficiently on the same number
of machines as the join itself. For the ease of presentation, we
describe it in terms of MapReduce [23] jobs.

1. We build d2equi from R2 in a single MapReduce job.
To reduce the work, we designate R2 to be smaller of both
relations. To partition the work evenly, we assign the R2

tuples to the machines according to their join keys and the
approximate equi-depth histogram on R2.

2. In this step, we build d2 and S1. We create d2 as follows:
Each reducer obtains a range of sorted join keys from d2equi

along with their multiplicities. As mentioned before, d2(t1.A)
is the sum of multiplicities of the join keys from R2 which
are within a certain distance from t1.A (according to the
join condition). Each time a reducer moves in the sorted
key sequence such that the joinable set changes (adding or
removing a tuple), a new d2 key-value pair is created.

We also build a WR weighted sample S1 from R1, where
weights are based on d2. To do so, we use a parallel one-
pass algorithm for WOR weighted sampling [24] which works
as follows: It puts each t1 ∈ R1 into a priority queue of
size so using the priority computed as a function of d2(t1.A).
According to [24], the precise formula for priority is r(1/w),
where r = random(0, 1) and w is the weight, which is in
our case d2(t1.A). After each reducer produces its Max-Heap
reservoir, we merge them into a single reservoir using the same
priority function. Finally, we transform S1 from a WOR to a
WR sample using [8].

We build d2 and S1 together in a single MapReduce job.
We assign the d2equi and R1 tuples to the machines according
to their join keys and the approximate equi-depth histogram
on R1 due to the following reasons: First, d2equi tends to be
much smaller than R1. Secondly, by doing so, we balance the
work for computing S1.



3. Finally, we produce a uniform random output tuple for each
tuple ts1 ∈ S1. As we use the output tuple only for building
MS , it contains only a concatenation of the join keys. This
relieves us from choosing uniformly at random an R2 tuple
from the joinable set of ts1 , which would require processing
R2 again. Instead, we randomly choose a join key from the
joinable set of ts1 , with probability directly proportional to the
key multiplicity. These multiplicities are available in d2equi. As
S1 is typically much smaller than d2equi, we assign S1 and
d2equi to the machines according to their join keys and the
partitioning of d2equi from step 1. Thus, we sort S1 and use
a Map-only job for this step.

Synergy. We first build equi-depth histograms on R1 and R2.
Then, we sample input and output tuples in parallel by sharing
mappers (sampling the input requires only one reducer). If an
input relation has a predicate which filters out many tuples,
we reduce the scanning overhead for the join by materializing
the filtered relation in the statistics scan.

Parameters. To build the sample matrix, we need to know m
(see §III-A). We obtain m from the Parallel Stream-Sample.
In particular, as we iterate over the entire R1 relation in the
step 2 of the algorithm, we compute m as

∑
t1∈R1

d2(t1.A).

B. Discussion and Generalization

System architecture. As [25] shows, systems designed for
main-memory parallel processing are very popular nowadays
(e.g. Shark-Spark [26], Dremel [27]), mainly because of supe-
rior performance compared to the disk-based systems. For that
reason, recent parallel joins are main-memory operators [22],
[25]. We follow the same reasoning and implement our ope-
rator in a main-memory parallel system.

Input relations are not necessarily base relations. Rather, a
join may contain selection predicates, or it may consume the
output from another join. To support these general joins, we
build our scheme for each join (i.e. no reusing among different
joins), and report this in the total execution time. The M-
Bucket scheme [4] adopts the same approach.

Multi-way joins. Our scheme assumes 2-way joins. As our
scheme enhances performance especially when the output cost
matters a lot (e.g. transferring tuples between operators over
the network), a multi-way join can be efficiently executed
using a sequence of our 2-way joins. In the future, we plan to
extend our approach to support a multi-way join in a single
join operator, akin to how [5] extends [4].

V. RELATED WORK

Load balancing is extensively studied both in the context
of MapReduce and distributed databases. There has been
much work done towards devising efficient join algorithms
using the MapReduce framework. The predominant join type
in MapReduce is repartition join [28], which moves each
input tuple over the network. In distributed databases, data
is already partitioned among the machines (rather than being
stored externally, e.g., on HDFS, as in MapReduce). Thus,
some tuples can stay on the same machine. Broadcast join
replicates one relation on all the machines. This is efficient
only if the replicated relation is very small [1]. Directed join
moves portions of one relation to the corresponding locations
of the other relation. It typically requires that one relation is

physically partitioned by the join key [28]. This is a limitation
when we join a relation with other relations using different join
keys [28]. We propose a novel repartition join, as repartition
joins are the most widely applicable.

1. Equi-joins. Most previous work focuses on equi-joins [29],
[28], [1], [2], [3], [22], [25] and partitions the input through
some variant of hashing. One should use these techniques for
joins that have only equality join conditions.

Next, we discuss why hashing techniques fall short for
monotonic joins on an example of a band-join. Namely, hash-
ing scatters neighboring join keys, so that the corresponding
tuples from the opposite relation need to be replicated. For a
band-join with the width of the band of β, each tuple from the
opposite relation goes to 2β + 1 machines (hash(key − β),
hash(key−β+1), . . . hash(key+β) xiv ). This implies more
input-related work, as well as higher network and memory
consumption. The overheads grow proportionally to the width
of the band β. Range partitioning avoids this problem, as
neighboring join keys are in most cases on the same machine.
This leads to less tuple replication, and less overall work
compared to hash partitioning.

2. Monotonic joins. In this paper we focus on monotonic joins.
State-of-the-art techniques in MapReduce are the 1-Bucket and
M-Bucket schemes [4] (for detailed discussion, see §II-A,II-B).
In contrast to the 1-Bucket scheme [4], our scheme achieves
load balancing on minimal work per machine. In contrast
to the M-Bucket scheme [4], we address JPS. In distributed
databases, Stamos et al. [30] present a method that covers
the entire join matrix with regions, similarly to the 1-Bucket
scheme. This method uses a heuristic model to minimize total
communication cost. DeWitt et al. [31] studied band-joins with
the goal of minimizing disk accesses.

3. Reliability. Bruno et al. [2] introduce the term reliability
for equi-joins, arguing that the repartitioning overhead “is more
predictable” than the imbalance in load due to JPS. We use a
similar argument for monotonic joins: the sampling overhead
is more predictable than the imbalance in load when JPS
is not addressed. In particular, sampling introduces minimal
overhead (up to 0.04×, as Section VI-E shows). However,
this is negligible compared to the speedups that our scheme
achieves by addressing JPS (up to 15×, see Section VI-B).

Adaptive load balancing. Adaptive skew handling exist for
hash joins (e.g., [32], and for general-purpose MapReduce
applications (e.g., [33]). These techniques in general work as
follows. When a task becomes idle, it takes over some work
from the busiest task. This implies moving the tuples over the
network multiple times (first to the “busy”, then to the “idle”
task), which increases the input-related work. In contrast, we
ensure that after building the partitioning scheme, each tuple is
repartitioned exactly once. Furthermore, the precise estimation
of the remaining time for joins essentially requires equi-
weight histograms. In contrast to these adaptive approaches
which rely on future load distribution estimation, we present
equi-weight histograms that accurately capture workload skew
and accordingly fairly partition the work. One could combine
the two techniques to reap the benefits of both worlds. In
particular, we can use our technique for initial partitioning and
for feeding the estimator from [33] in the case of necessity for

xivThis is an upper bound on the number of machines, as different hash
values can be assigned to a single machine.



task reassignment. By doing so, we could obtain a scheme that
adapts to run-time changes (e.g., network problems, machine
failures), and that drastically reduces number of task reassign-
ments compared to that of [33] alone.

Work-stealing. Work-stealing (e.g., [34]) is a concept related
to adaptive load balancing, but with important differences.
Rather than moving the partitions among the machines, it
implies dividing the workload into many more partitions than
the number of available machines. Each machine pulls a new
partition once it finishes processing the previous one. How-
ever, increasing the number of partitions inherently increases
replication. For example, if we divide a partition into two sub-
partitions, the corresponding tuples from the opposite relation
need to be duplicated. Thus, work-stealing increases the input-
related work. Finally, it is not clear how to decide on the
number of partitions so that work-stealing avoids JPS.

Sample data structures. The closest data structure to our
sample matrix MS is single-relation multi-attribute his-
togram [11], [12], [35], [36], which is used for selectivity esti-
mation. These histograms represent the frequency distribution
over a multi-dimensional space. In our MS , frequency is the
number of output tuples for the corresponding segments of the
input relations. However, the goal of multi-attribute histograms
differs from ours as their aim is to minimize the total frequency
errors over the entire domain, rather than to lend support
for load balancing. Namely, multi-attribute histograms cannot
provide for load balancing, as they capture the frequency rather
than the weight distribution, and they cannot guarantee the
maximum cell weight nor decide on the MS size ns. Finally,
we take advantage of join peculiarities, that is, monotonicity.

VI. EVALUATION

This section compares our operator with state-of-the-art
operators. We first evaluate the execution time and resource
consumption, i.e., memory requirements and network com-
munication. Then, we assess the scalability of each operator.
Further, we evaluate the accuracy of our partitioning scheme,
along with the efficiency of building it. Finally, we analyze
worst-case scenarios for our operator.

A. Experimental Setup

Environment. We perform our experiments on an Oracle
Blade 6000 server with 10 Oracle X6270 M2 blades. Each
blade has two 3Ghz 6-core Intel Xeon X5675 CPUs. Out of
120 cores, 64 are available exclusively for our experiments.
Each blade runs Ubuntu 12.04 and has 72GB of DDR3 RAM
and a 1Gbit Ethernet interface. Later on, by a machine assigned
to an operator, we mean a core with an exclusively assigned
portion of the blade main memory.

Datasets. We run joins over both TPC-H [37] and a synthetic
dataset X. We employ the TPC-H generator [38], which creates
datasets with Zipf distributions set through the skew parameter
z. We set z = 0.25 to demonstrate that JPS can be large even if
RS is moderate. The X dataset has 2 independently generated
relations (R1 and R2), each with 2 segments. The second and
first segment sizes are in proportion 80/20, and joining smaller
segments from R1 and R2 produces majority of the output. In
particular, in the first segment, we generate x tuples and choose
its join keys uniformly at random from the [0..x/6] domain. In
the second segment, we generate y = 4·x tuples and choose its

TABLE IV: Joins’ characteristics. Input and output sizes are
in millions of tuples. β is the width of the band.

Name Dataset Join condition input output
B∗ICD TPC-H Band-join(β = 2) 480M 296M
BCB X Band-join(β = 1) 192M 348M
BCB X Band-join(β = 2) 192M 580M
BCB X Band-join(β = 3) 192M 812M
BCB X Band-join(β = 4) 192M 1044M
BCB X Band-join(β = 8) 192M 1972M
BCB X Band-join(β = 16) 192M 3828M
BE∗OCD TPC-H Band/Equi-join(β = 2) 36.8M 2000M

* For joins over the TPC-H data, the database size is 160G and z = 0.25.

join keys uniformly at random from the [2y, 6y] domain. The
segments from different relations are independently generated.

Operators. We evaluate three different operator partitioning
schemes: (i) CI (1-Bucket scheme) [4], (ii) CSI (M-Bucket
scheme) [4], and finally, (iii) CSIO, which is our equi-weight
histogram scheme.

Configuration. We run the join queries on J = 32 machines,
whereas for the scalability experiments we use 16 to 64
machines. For the joins over the TPC-H data, we set the scale
factor to 160 (i.e., 160GBs) and for the scalability experiments,
we set it between 80 and 320. In the histogram algorithm
of CSIxv, we set the number of buckets p to 2000. In the
scalability experiments, we scale p proportionally to J .

Programming model. We use our MapReduce-like system
called SQUALLxvi. SQUALL is an in-memory systemxvii which
is based on Twitter’s STORMxviii. The system runs in Java v1.7.
Mappers shuffle the input tuples according to the partitioning
scheme of the operator. Reducers perform the actual join and
randomly shuffle the output tuples to the mappers of the next
stage (e.g. join, aggregation). Thus, each mapper performs the
same amount of work and it suffices to balance the load among
the reducers of a job. The job execution time includes sending
the tuples over the network to the next stage.

Cost model. For our experiments we define the weight func-
tion (§II) for load balancing among the reducers asxix:

w(r) = ci(r) + co(r) = wi · input(r) + wo · output(r)

where wi, wo is the average time cost of processing a single
input and output tuple, respectively. We determine the values
for wi and wo using linear regression on several benchmark
runs. The regression method automatically divides all the
communication and computation costs into ci and co costs. The
results of regression in our system suggest the values wi = 1
and wo = 0.2 for band-joins and wi = 1 and wo = 0.3 for
combinations of equi- and band-joins.

Joins. As the operator performance is highly correlated to the
output/input cost ratio (co/ci), we classify joins to input-
cost dominated (ICD), cost-balanced (CB) and output-cost
dominated (OCD). We evaluate a band-join (BICD) and a
join with band and equality join conditions (BEOCD) over the
TPC-H dataset, and a band-join (BCB) with 6 different widths
of the band (β) over the X dataset. Table IV summarizes the
joins’ characteristics. BICD is an input-cost dominated join,

xvThis histogram algorithm does not create equi-weight histograms; it is a
heuristic that builds a partitioning scheme.

xvihttps://github.com/epfldata/squall/
xviiSee §IV-B for a discussion about alternative architectures.
xviiihttp://storm.apache.org/
xixThe model can be flexibly adapted to represent any realistic cost function.
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Fig. 4: Performance Evaluation

as ci = 8.1 · co. BEOCD is an output-cost dominated join, as
ci = 0.06co. Finally, BCB is cost-balanced, as the input and
output cost are comparable (0.25co ≤ ci ≤ 2.75co, depending
on β). The joins are defined in Appendix B.

B. Performance Analysis

In this section, we evaluate the operators’ performance
in terms of the execution time and resource consumption,
i.e., memory requirements and network communication. We
show that the execution time mainly depends on the join
output/input ratio, which we call ρoi.

Total execution time is shown in Figure 4a as the sum of the
time for building the partitioning scheme (“stats time”) and the
join execution time (“join time”). CI has only “join time” as
it has no preprocessing phase. Figure 4b shows the normalized
total execution times for BCB . The operators’ execution times
are highly correlated to the output/input ratio: (i) For small
ρoi, i.e., on one side of the spectrum, input costs dominate
the join execution time. Thus, CI , which replicates each input
tuple to 6 machines, performs poorly for BICD. CSI avoids
this problem, but due to lack of output statistics it suffers
from JPS. (ii) For high ρoi, i.e., on the other side of the
spectrum, output costs dominate the join execution time. Thus,
for BEOCD, the effect of JPS on the join execution time of
CSI escalates, causing CSI to perform poorly. CI avoids

this problem, but it still suffers from high input replication.
(iii) As BCB is a cost-balanced join, both existing operators
perform poorly. Increasing the width of the band β in BCB
leads to the increase in ρoi, such that the output costs grow
relatively to input costs. This improves the performance of CI
and degrades the performance of CSI compared to CSIO.

Our CSIO outperforms the other operators as it is close-to-
optimum on the total work per machine, which includes both
input and output costs. CSIO captures the output distribution
and avoids high input tuple replication. Thus, in terms of
the join execution time, CSIO achieves from 1.04× (BICD)
to 17.22× (BEOCD) speedup compared to CSI , and from
1.1× (BEOCD) to 4.59× (BICD) speedup compared to CI .
Similarly, in terms of the total execution time, CSIO achieves
up to 15.63× (BEOCD) speedup compared to CSI , and up
to 3.16× (BICD) speedup compared to CI . In fact, as CI for
BICD runs out of memory, we extrapolate its total execution
time using the cost model parameters and the percentages of
processed input and output tuples.

All the SQUALL operators will be faster once we migrate
from STORM to Twitter HERON, as HERON is an order-of-
magnitude fasterxx than STORM. HERON is API-compatible
with STORM. At the time of preparing this paper, HERON

xxhttp://www.infoq.com/news/2015/06/twitter-storm-heron



TABLE V: Join execution and histogram algorithm time (s) of
CSI for different number of buckets p.

Join Time Number of buckets p
2000 4000 8000 10000 16000 24000

BEOCD
Join execution 6372 6306 5480 5080 4294 3410
Histogram alg. 0.4 1.3 5 8.1 19 49

BCB Join execution 615 604 601 582 569 575
β = 3 Histogram alg. 0.4 1.4 4.9 6.7 15 36

was not open source yet. In the meantime, HERON became an
open source project, and we are currently porting SQUALL to
HERON. Once we complete the porting, SQUALL will be on
par with other parallel main-memory database systems (e.g.
Track Join [22]).

Choosing among CSI and CI . An important difficulty
when using the existing CSI and CI schemes is that we
cannot always choose the better one without knowing the
input/output sizes. However, output size estimation using the
precomputed statistics is error-prone due to possible predicate
correlations [39]. In fact, the estimate can be orders of mag-
nitude away [40]. Output size estimation is even harder for
non-equi joins. This might lead to choosing the worst operator
among CI and CSI (e.g. CI for an input-cost dominated join).
In that case, our CSIO achieves from 2.25× (BCB−4) to
15.63× (BEOCD) speedup.

More detailed input statistics in CSI (increased number
of buckets p in CSI ) cannot cure the lack of output statis-
tics nor address JPS. In particular, Table V shows that for
both BEOCD and BCB−3, increasing p leads to increased
histogram algorithm time, and thus, increased time for building
the partitioning scheme. Increasing p also decreases the join
execution time. However, even if CSI is given more time for
building the partitioning scheme than CSIO, its total execution
time is still much worse than that of CSIO. For instance, for
BEOCD and p = 24000, the histogram algorithm grows to 49
seconds, making the time for building the partitioning scheme
1.8× worse than that of CSIO. Moreover, in that case, the total
execution time of CSI is 8.51× worse than that of CSIO.

Resource consumption. Figure 4c illustrates resource con-
sumption, which includes cluster memory and network traffic
(input data sent from mappers to reducers). Resource con-
sumption is important because it directly translates to energy
consumption and, in cloud environments, to dollar costs. In
general, CI has better execution times than CSI , but it is
very resource-inefficient compared to both CSI and CSIO.

For BICD and BCB−3, CI requires around 4× more
memory than CSI and CSIO. This is due to the fact that
CI excessively replicates tuples (the replication factor is 6, as
the partitioning scheme is 4 × 8 so one relation is replicated
4× and the other is replicated 8×). CI requires 4× rather
than 6× more memory as both CSI and CSIO replicate some
input tuples (see Figures 1c, 1d). CSIO uses slightly more
memory than CSI , because CSIO balances on the total work,
so it assigns more input for the regions with relatively small
output. In fact, as CI for BICD runs out of memory, we
extrapolate its memory consumption using the percentage of
the processed input tuples. CI in BEOCD does not have high
memory consumption, as the input size is smaller than for
BICD and BCB−3.

C. Scalability

Next, we evaluate the weak scalability of the operators by
scaling the data size and the number of machines evenly. We
show that our CSIO, in contrast to CSI and CI , scales well
both in the total execution time and resource consumption.

BCB−3 total execution time is shown in Figure 4d. We
evaluate various input/output/J settings, more specifically,
96M /406M /16, 192M /811M /32 and 384M /1.62B/64, where
M and B stand for millions and billions of tuples. CI scales
worse than CSI and CSIO. This is expected, as the replication
factor grows from 4 (J = 16) to 8 (J = 64), which doubles
the input costs on each machine. Namely, for J = 16 and
J = 64, CI has 1.66× and 3.39× worse total execution time
than CSIO. In fact, as CI with J = 64 runs out of memory, we
extrapolate its total execution time and memory consumption.

BCB−3 resource consumption. Figure 4e shows the cluster
memory consumption for BCB−3. As the replication factor
grows from 4 (J = 16) to 8 (J = 64), CI requires increasingly
more memory compared to CSI and CSIO. Namely, for J =
16 and J = 64, CI requires 3.1× and 5.25× more memory
than CSIO, respectively. As CI with J = 64 runs out of
memory, we extrapolate its memory consumption.

BEOCD total execution time is shown in Figure 4f. The
input/output/J settings are 21.2M /612M /16, 36.8M /2B/32
and 62M /8.8B/64. Taking into account that increasing J from
16 to 64 (4×) causes the output size to grow 14.46×, CSIO
and CI achieve good scalability. For CSIO, this validates the
efficiency of our scheme even for highly output-cost dominated
joins (for J = 64, ρoi = 142.57). For CI , this is due to the fact
that the output cost outweighs the input cost. On the other
hand, CSI scales very poorly as JPS causes that only few
machines produce most of the output. Namely, for J = 16,
J = 32 and J = 64, CSI has 7.52×, 15.63× and 15.43×
longer total execution time than CSIO, respectively.

BEOCD resource consumption. Figure 4g shows the cluster
memory consumption for BEOCD. The gap between CI and
the other two operators is smaller than in BCB−3 due to the
following. As the number of machines J grows from J = 16
to J = 64 (4×), the input size grows only 2.92×. Thus, for
J = 64, CI takes 2.82× more memory than CSIO.

Scalability summary. Overall, in terms of the total execution
time and resource consumption, only CSIO scales well for
both BCB−3 and BEOCD.

D. Accuracy and Efficiency of CSIO

This section evaluates the accuracy of our partitioning
scheme, as well as the efficiency of building it. Building the
partitioning scheme consists of collecting the input and output
samples and running our 3-stage histogram algorithm.

Accuracy of the cost model. Our cost model represents the
join work of a machine as the weight of the region assigned to
it. The cost model is accurate if the region weight corresponds
to the machine’s work, and consequently, if the maximum
region weight corresponds to the join execution time. Fig-
ure 4h validates the model accuracy as for each join among
BICD, BCB−3 and BEOCD, the maximum region weights
of different schemes are proportional to the corresponding
join execution times. The proportionality holds only within



the same join, as a weight unit represents different amount of
work in different joins. We obtain the weights after the join
execution by computing the weight function on the number of
input and output tuples processed per machine.

Accuracy of our CSIO. Figure 4h shows that the estimated
maximum region weight in our histogram algorithm, marked
as CSIO-EST., is at most 6% off the value computed after the
execution. Thus, our scheme is accurate.

The time for building the partitioning scheme is illustrated
in Figure 4a as “stats time”. It includes the time to collect
statistics (the input statistics for CSI and input and output
statistics for CSIO), and the running time of the histogram al-
gorithm. We evaluate the efficiency of building our partitioning
scheme, and compare it to that of CSI .

Figure 4a shows that building the CSIO scheme takes at
most 31% of its total execution time (BICD). Further, building
the CSIO scheme is at most 6.7% more expensive than that
of CSI in terms of the CSIO total execution time (BICD).
This is due to the following reasons: (i) Collecting the input
statistics is much cheaper in CSIO than in CSI . CSI requires
2 MapReduce stages, while CSIO requires only 1 MapReduce
stage. This is due to the fact that CSI needs to use more
buckets than CSIO to account for the error caused by the
lack of the output statistics. In the worst case (high JPS),
the required number of buckets for CSI is Θ(n). In contrast,
the number of buckets for CSIO does not depend on skew
at all, and it slowly grows with the increase in n (O(

√
n)).

(ii) The time to collect output statistics for CSIO is not much
longer than the second pass of collecting input statistics for
CSI . In addition to a scan over the input relations, which is
required by both operators for building the partitioning scheme,
CSIO performs a scan over d2equi (step 2 in Section IV-A)
and produces the output sample (step 3 in Section IV-A). The
former is cheap as d2equi tends to be much smaller than its
originating relation, which is the smaller one. The latter is
cheap as the output sample size is very small compared to n
(so = Θ(

√
nJ)).

Accuracy/Efficiency summary. Overall, our equi-weight his-
togram scheme is practical, as it provides for both accurate
and efficient load balancing.

E. Worst-case scenarios

Input-cost dominated joins (small ρoi)/no skew. For very
small ρoi (BICD), CSIO achieves minimal speedups in the
join execution time compared to CSI (1.04×). This is because
the output cost is 8.1× smaller than the input cost, so JPS
minimally affects the performance. In fact, joins with very
small ρoi behave almost as if there was no JPS at all. Thus,
in the worst case (BICD), the total execution time of CSIO
is 1.04× higher than that of CSI .

High-selectivity joins (very high ρoi). Our scheme is de-
signed for low-selectivity joins. CSIO is better or on par with
CI if the output is up to 2 orders of magnitude bigger than the
input. We address high-selectivity joins as follows. As we saw
in §VI-B, we cannot know join selectivity beforehand. Rather,
we take advantage of the following fact. As ρoi grows, building
CSIO requires less time compared to the total execution time
of the better among CI and CSIO (from 31% for BICD
to only 9.8% for BEOCD, see Figure 4a). As building the

CSIO scheme is comparably cheap for high-selectivity joins,
we always start with our scheme, and fall back to CI if needed.
We decide when to switch to CI using the following fact.
As ρoi grows, the time for building the CSIO scheme grows
relatively to the input sizes (138s for 480M tuples of BICD to
40s for only 37M tuples of BEOCD). If the time for building
the scheme exceeds an experimentally-found threshold (e.g.
half a second for each million of input tuples in our setup),
we fall back to CI . In that case, we waste only 4% of the total
execution time of CI before switching to CI .

Summary. Possible slowdowns (up to 1.04×) are negligible
compared to the achieved speedups (up to 15×).

F. Summary

Joins are defined in a spectrum of cost distribution. At
each end, either input or output costs dominate the join
cost. Previous work, that is, CSI and CI , perform well only
at the extreme ends of the output/input spectrum. This is
because CI suffers from excessive input tuple replication
(which worsens with the increase in the number of joiners),
while CSI cannot capture the output cost distribution. Due
to errors in the output size estimation, especially for non-
equi joins, choosing the wrong operator among CSI and CI
becomes plausible, causing severe performance degradations.
In contrast to previous work, our CSIO captures the output
distribution, and avoids high input tuple replication. Thus, our
scheme is close-to-optimum on the total work per machine,
which includes both input and output costs. Consequently,
our scheme performs very well over a wide spectrum of
output/input ratios, and it scales with increasing data sizes.

CSIO achieves up to 5.25× improvement in resource
consumption and up to 3.39× speedup compared to CI .
Moreover, CSIO achieves up to 15.63× speedup compared
to CSI . As these speedups refer to the total execution time,
they also validate the efficiency of building our scheme, which
consists of collecting the input and output samples and running
our 3-stage histogram algorithm.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. We also owe many thanks to
Yannis Klonatos. His comments greatly improved the presen-
tation of the paper, especially in describing the algorithms.

REFERENCES

[1] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling data skew in
parallel joins in shared-nothing systems,” in SIGMOD, 2008.

[2] N. Bruno, Y. Kwon, and M.-C. Wu, “Advanced join strategies for large-
scale distributed computation,” in VLDB, 2014.

[3] P. Beame, P. Koutris, and D. Suciu, “Skew in parallel query processing,”
in PODS, 2014.

[4] A. Okcan and M. Riedewald, “Processing theta-joins using MapRe-
duce,” in SIGMOD, 2011.

[5] X. Zhang, L. Chen, and M. Wang, “Efficient multi-way theta-join
processing using MapReduce,” VLDBJ, vol. 5, no. 11, 2012.

[6] C. Walton, A. Dale, and R. Jenevein, “A taxonomy and performance
model of data skew effects in parallel joins,” in VLDB, 1991.

[7] V. Poosala and Y. E. Ioannidis, “Estimation of query-result distribution
and its application in parallel-join load balancing,” in VLDB, 1996.

[8] S. Chaudhuri, R. Motwani, and V. Narasayya, “On random sampling
over joins,” in SIGMOD, 1999.



[9] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch, “Scalable and
adaptive online joins,” in VLDB, 2014.

[10] P. Berman, B. DasGupta, and S. Muthukrishnan, “Slice and dice: A
simple, improved approximate tiling recipe,” in SODA, 2002.

[11] M. Muralikrishna and D. J. DeWitt, “Equi-depth multidimensional
histograms,” in SIGMOD, 1988.

[12] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the
attribute value independence assumption,” in VLDB, 1997.

[13] S. Chaudhuri, R. Motwani, and V. Narasayya, “Random sampling for
histogram construction: How much is enough?” in SIGMOD, 1998.

[14] A. Vitorovic, M. Elseidy, and C. Koch, “Load balancing and skew
resilience for parallel joins,” EPFL, Technical Report 203656, 2015.

[15] J. D. Gibbons, Nonparametric methods for quantitative analysis. New
York: Holt, Rinehart and Winston, 1976.

[16] S. Muthukrishnan and T. Suel, “Approximation algorithms for array
partitioning problems,” J. Algorithms, vol. 54, no. 1, 2005.

[17] S. Muthukrishnan, V. Poosala, and T. Suel, “On rectangular partitionings
in two dimensions: Algorithms, complexity, and applications,” in ICDT,
1999.

[18] Y. Wang, “Relations between two common types of rectangular tilings.”
Int. J. Comput. Geometry Appl., vol. 19, 2009.

[19] R. Gemulla, P. J. Haas, and W. Lehner, “Non-uniformity issues and
workarounds in bounded-size sampling,” VLDBJ, vol. 22, no. 6, 2013.

[20] C. Doulkeridis and K. Nørvag, “A survey of large-scale analytical query
processing in mapreduce,” VLDBJ, vol. 23, no. 3, 2014.

[21] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “A study of skew in
mapreduce applications,” in Open Cirrus Summit, 2011.

[22] O. Polychroniou, R. Sen, and K. A. Ross, “Track join: distributed joins
with minimal network traffic,” in SIGMOD, 2014.

[23] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in OSDI, 2004.

[24] P. S. Efraimidis and P. G. Spirakis, “Weighted random sampling with
a reservoir,” Inf. Process. Lett., vol. 97, no. 5, 2006.

[25] S. Chu, M. Balazinska, and D. Suciu, “From theory to practice: Efficient
join query evaluation in a parallel database system,” in SIGMOD, 2015.

[26] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica, “Shark: Sql and rich analytics at scale,” in SIGMOD, 2013.

[27] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: Interactive analysis of web-scale datasets,”
in VLDB, 2010.

[28] S. Blanas, J. Patel, V. Ercegovac, J. Rao, E. Shekita, and Y. Tian, “A
comparison of join algorithms for log processing in MapReduce,” in
SIGMOD, 2010.

[29] F. Afrati and J. Ullman, “Optimizing joins in a MapReduce environ-
ment,” in EDBT, 2010.

[30] J. Stamos and H. Young, “A symmetric fragment and replicate algorithm
for distributed joins,” Transactions on Parallel and Distributed Systems,
vol. 4, no. 12, 1993.

[31] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An evaluation of
non-equijoin algorithms,” in VLDB, 1991.

[32] L. Harada and M. Kitsuregawa, “Dynamic join product skew handling
for hash-joins in shared-nothing database systems,” in DASFAA, 1995.

[33] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: Mitigating
skew in mapreduce applications,” in SIGMOD, 2012.

[34] K. Agrawal, C. E. Leiserson, and J. Sukha, “Executing task graphs
using work-stealing,” in Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on. IEEE, 2010, pp. 1–12.

[35] A. Aboulnaga and S. Chaudhuri, “Self-tuning histograms: Building
histograms without looking at data,” in SIGMOD, 1999.

[36] N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: A multidimen-
sional workload-aware histogram,” in SIGMOD, 2001.

[37] “The TPC-H benchmark,” http://www.tpc.org/tpch/.
[38] S. Chaudhuri and V. Narasayya, “TPC-D data generation with skew.”
[39] Y. Ioannidis and S. Christodoulakis, “On the propagation of errors in

the size of join results,” in SIGMOD, 1991.
[40] M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO - DB2’s

learning optimizer,” in VLDB, 2001.

[41] P. Berman, B. Dasgupta, S. Muthukrishnan, and S. Ramaswami, “Im-
proved approximation algorithms for rectangle tiling and packing,” in
SODA, 2001.

APPENDIX

A. The histogram algorithm: Details and proofs

1) Sampling: The following lemmas require that w(r) is
monotonic xxi (a region weighs at least the weight of any of its
subregions) and that ci(r) and co(r) are superadditive, that is,
processing x+y input (output) tuples is at least as expensive as
the sum of processing costs for x and y input (output) tuples.
This holds for realistic cost models.

Lemma 3.1: ns =
√

2nJ is the minimum MS size such
that the maximum cell weight σ in MS is at most half of the
maximum region weight of the optimum MH partitioning.
This holds independently from the join condition and the join
key distribution, given that m ≥ n xxii.

Proof: An MS cell corresponds to a region in the
original matrix with dimensions n/ns × n/ns, where ns is
the number of buckets in the equi-depth histogram. Due to
the fact that ns =

√
2nJ , the semi-perimeter of each cell

is maxcell(sp(cell)) = 2n/ns =
√

2n/J . The maximum
frequency of an MS cell is given by the Cartesian product
between the encompassed input tuples from the two relations.
That is, maxcell(f(cell)) ≤ (n/ns)

2 = n/2J . Because
m ≥ n, it follows that maxcell(f(cell)) ≤ m/2J . It holds that
σ = maxcell(w(cell)) ≤ ci(

√
2n/J) + co(m/2J). As J � n

(it suffices that J < n/3), it follows that
√

2n/J < n/J
and σ ≤ ci(n/J) + co(m/2J). We denote the maximum
region weight of the MH optimum partitioning as wOPT . It
holds that wOPT ≥ (ci(2n) + co(m))/J , as each incoming
tuple is assigned to at least one region. Since ci and co are
superadditive, it follows that wOPT ≥ ci(2n/J) + co(m/J)
and that σ ≤ wOPT /2. More precisely, as the bucket sizes are
probabilistic, we can conclude that with high probability, these
bounds are very close to the actual bounds.

For the next lemma, we will need to define input and output
sample sizes.

Input sample size si. For each relation, we build an approxi-
mate equi-depth histogram [13]. Namely, for each relation, we
take a random uniform sample of size si, sort the sampled
tuples according to the join key, and then build an equi-depth
histogram on them with ns < si buckets.

According to [13], for a given ns, si needs to be at least
4ns ln(2n/γ)/e2, where e is the maximum error on the bucket
size with probability of at least 1 − γ. This implies that a
small sample of size si = Θ(ns log n) is sufficient for building
approximate equi-depth histogram.

Output sample size so. In [11], the authors show that the
sample size is not a function of the actual data size, and that it
can be obtained from standard tables based on Kolmogorov’s
statistics [15]. For example, for an error on the region output
within 5% and confidence of at least 99%, the standard tables
only require that the sample size is at least 1063. On the other
hand, the sample size should be a small integer multiple of the

xxiMonotonicity on the join output and monotonicity on the weight function
are different and should not be confused.

xxiiThis typically holds in practice. We relax it in §A5.



number of scrutinized categories in the population. In our case,
this number is the number of candidateMS cells (nsc), as the
non-candidate cells never produce an output tuple. Thus, the
output sample size is so ≥ max(1063, nsc) for the specified
error margin and confidence interval. Consequently, we need
an output sample of size so = Θ(nsc).

To determine nsc, we define a low-selectivity join precisely.
As §II-A states, the content-insensitive (CI) scheme achieves
(almost) perfect load balancing for output. Thus, if the output
size m > ρBn (ρB � 1 is a constant), CI works very well.
Hence, it pays off to use a content-sensitive scheme only if
m ≤ ρBn

xxiii , that is, if m = O(n). This condition defines
a low-selectivity join. We require a similar condition to hold
between the input and output of the sample matrixxxiv:

nsc = O(ns) (1)

Thus, we need a small output sample: so = Θ(ns) = Θ(
√
nJ).

We next prove that, given this ns =
√

2nJ from Lemma
3.1, the sampling stage time complexity is low.

Lemma 3.2 [Extended version]: The total sample size col-
lected for building MS is Θ(ns log n). The sampling stage
running time is O(ns log ns). For ns =

√
2nJ and J =

O( 3

√
n/ log2 n) xxv, the sample size and the time complexity

are both O(n/J).

Proof: From J = O( 3

√
n/ log2 n), it follows that

log n = O(
√
n/J3) (2)

As the input sample size is si = Θ(ns log n), and the
output sample size is so = Θ(ns), the total sample size is
dominated by the input. By substituting log n from Equation 2,
the total sample size is si = Θ(ns log n) = Θ(

√
nJ log n) =

O(n/J).

Let us discuss the time complexity for building MS . To
create approximate equi-depth histogram on input, we need to
sort the input sample tuples. We do it on the sites providing
the samples, incurring O(log2 si) = O(log2(n/J)) time.

For each sample output tuple (so of them), we use binary
search to find a MS cell to increment. Thus, processing the
output takes O(so log ns) = O(ns log ns) time. As ns ≤ n,
it follows that log ns ≤ log n, and from Equation 2, log ns =
O(

√
n/J3). Hence, O(ns log ns) = O(n/J). Thus, the total

time complexity for building MS is bounded by O(n/J).

2) Coarsening: The coarsening algorithm [16] is the RTILE
(rectangle tiling) problem with grid (nc × nc) partitioning
and the MAX-WEIGHT-ID metric. This is an approximation
algorithm with an approximation ratio of 2 [16]. That is, given
MS and nc (the size of MC), where the maximum MC cell
weight of the optimum grid partitioning is φ0, the algorithm
returns an MC with maximum cell weight φ ≤ 2φ0.

xxiiiIn our setup, our scheme works well even if m is two orders of
magnitude bigger than n (see §VI-C). Thus, we cover a wide range of joins
in practice.

xxivIf any of these assumptions do not hold, we fall back to the content-
insensitive operator (see §VI-E for details). However, we experimentally show
that the assumptions hold for many interesting joins.

xxvSee footnote vii.

For sparse matrices, if range trees are used for computing
the prefix sum, the coarsening algorithm [16] runs in

O(nsc log nsc + (ns + n2
c log nsc) · nc log ns) (3)

time, where ns is the MS size, and nsc is the number of
candidates in MS .

MonotonicCoarsening. Monotonicity (consecutiveness of
candidate cells) allows us to visit all the ncc candidate cells
in O(ncc) time. Along the lines of Equation 1, we assume
ncc = O(nc). Consequently, the coarsening algorithm for
monotonic joins performs only O(nc), rather than n2

c weight
computations per iteration. The complexity from Equation 3
then becomes:

O(nsc log nsc + (ns + nc log nsc) · nc log ns) (4)

Lemma 3.3: The running time of the coarsening algorithm
is O((ns + n2

c log ns) · nc log ns). For nc = 2J and J =

O( 3

√
n/ log2 ns)

xxvi, the time complexity becomes O(n).

Proof: Equation 3 shows the total running time for
building the coarsened matrix. By substituting nsc = O(ns)

(Equation 1), log ns from J = O( 3

√
n/ log2 ns), nc = Θ(J)

and ns = Θ(
√
nJ) into Equation 3, it follows that the

complexity is O(n).

3) Regionalization: Regionalization is an RTILE problem
with arbitrary partitioning [17] and the MAX-WEIGHT-ID
metric. There exist algorithms for this problem in the restricted,
output-only case, e.g. [41]. However, they are not applicable
for the general case, which entails support for: a) monotonic
metrics (including the weight function) and b) segments which
may or may not be covered by a region (0-cells). By design,
these algorithms generate prolate regions and thus incur ex-
cessive input costs. Hence, they can be arbitrarily worse in
weight than the optimum. The best algorithm which works for
the general case is Binary Space Partition (BSP) [10], [17].

BSP. Binary Space Partition [10] is a dynamic programming
algorithm which creates an optimum hierarchical partitioning,
within a factor of 2 from an optimum arbitrary partitioning.
We use the MAX-WEIGHT-ID metric.

Next, we prove lemmas about from §III-C.

Lemma 3.4: A rectangle is defined by the upper left and
the lower right corner. For monotonic joins, each defining
corner of a minimal candidate rectangle is a candidate cell,
yielding O(n2

c) minimal candidate rectangles in total.

Proof: We prove the lemma using contradiction by assum-
ing that a defining corner of a minimal candidate region is not
a candidate cell. Let us consider the position of the upper left
corner. If it is before the first candidate cell in the row ofMC ,
the left boundary of the rectangle is empty (see rectangles r1

and rmin1 in Figure 2c). Thus, the rectangle is not a minimal
candidate. If the position of the upper left corner is after the last
candidate cell in the row, the upper boundary of the rectangle
is empty (see rectangles r2 and rmin2 in Figure 2c). Again,
the rectangle is not a minimal candidate. Consequently, the
upper left corner must be a candidate cell. The proof for the
lower right corner is symmetric. Thus, both defining corners
of a minimal candidate rectangle are candidate cells.

xxviSee footnote vii.



Consequently, there are nc2c minimal candidate rectangles,
where ncc is the number of candidate cells in MC . Along the
lines of Equation 1, we assume ncc = O(nc). Thus, there are
O(n2

c) minimal candidate rectangles in total.

Lemma 3.5: The regionalization stage based on MONO-
TONICBSP runs in O(n3

c log nc log n) time. For nc = 2J and

J = O( 3

√
n/ log2 n), the stage takes O(n) time.

Proof: Generating rN minimal candidate rectangles and
sorting them takesO(rN log rN ) time. Then, for each rectangle
(there are rN of them), we: a) compute its weight which takes
O(1) time withO(n2

c) prefix sum precomputation (line 16) and
b) for each splitter line within a rectangle, O(nc) of them, for
both subrectangles, find the corresponding minimal candidate
rectangle (using binary search it takes O(log nc) time) (lines
19-23). Step b yields O(nc log nc) time per rectangle. Overall,
this requires a total time of O(n2

c + rN (log rN + nc log nc)).

From Lemma 3.4, we know that rN = O(n2
c). Thus,

MONOTONICBSP runs in O(n3
c log nc) time. Due to transfor-

mation from DRTILE to RTILE, the regionalization stage takes
O(n3

c log nc log n) time. Given nc = Θ(J), log J ≤ log n and

J = O( 3

√
n/ log2 n), it follows that the stage takes O(n) time.

4) Putting it all together:

Theorem 3.1 [Extended version]: The histogram algo-
rithm runs in O(n) local time and it requires a total of
O(n/J) sample tuples.

Proof: Lemmas 3.2, 3.3 and 3.5 directly imply Theo-
rem 3.1.

We next discuss why this cost is affordable. As a parallel
join takes Ω((n+m)/J) communication time (m is the join
output size), the histogram algorithm can afford O(n/J) time
for collecting sample tuples and O(n) local processing time
(which is much cheaper than the communication time).

5) Generalization and Discussion: We next relax some
assumptions and outline how we address them to preserve all
the guarantees.

Heterogeneous clusters. In heterogeneous clusters, we assign
work to machines proportionally to their capacity. To do so,
we set the number of regions (J) in the histogram algorithm
higher than the number of machines.

A small number of output tuples. We relax the assumption
m ≥ n from Lemma 3.1. If m < n, a sample matrix MS
cell frequency can surpass m/J , breaking the Lemma bounds.
We distinguish two cases. (i) If m = Θ(n) = cn, where
c < 1 is a constant, we increase ns to preserve the bounds.
More precisely, it must hold that (n/ns)

2 ≤ m/2J , that is,
(n/ns)

2 ≤ cn/2J . It follows that ns ≥
√

2nJ/c. Thus,
ns grows only by a constant factor of 1/

√
c. (ii) If c � 1

(m � n), to avoid a huge increase in ns, and thus the
histogram algorithm complexity, we adjustMS such that each
cell weight is below the required threshold (wOPT /2, where
wOPT is the maximum region weight of the MH optimum
partitioning). Namely, we divide only the row and/or column
of the overweighted cell(s). Then, we reassign the affected
output sample tuples to the new MS cells.

Reducing the sample matrix size ns is an important opti-
mization, as it decreases the histogram algorithm running time.
Lemma 3.1 decides on ns using a conservative assumption
that ρB ≥ 1 in m = ρBn, that is, m ≥ n. (We covered the
case when m < n earlier in this section.) Using the actual
value of ρB ≥ 1 decreases ns from

√
2nJ to

√
2nJ/ρB ,

without loosing any guarantees. We know m and thus ρB
from sampling the output tuples (see §IV-A). This optimization
requires rebuilding the sample matrix once m is known (input
and output samples are collected as before). Reducing ns is
very useful when ρB is sufficiently bigger than 1 and when
input relations are very large. We use it for BCB .

Parameters. The output sample size is so = O(nsc). In our
experiments we set so = 2nsc. We compute ncs by counting
the candidateMS cells right after collecting a sample of input
tuples.

B. Joins

The joins are defined as follows:

B
I
C
D SELECT *

FROM ORDERS O1, ORDERS O2
WHERE ABS(O1.orderkey - 10 * O2.custkey) <= 2

B
C
B
−
β SELECT *

FROM R1, R2
WHERE ABS(R1.key - R2.key) <= β

B
E
O
C
D

SELECT *
FROM ORDERS O1, ORDERS O2
WHERE O1.custkey = O2.custkey
AND ABS(O1.ship-priority - O2.ship-priority) <= 2
AND O1.order-priority = "4-NOT SPECIFIED"
AND O2.order-priority = "1-URGENT"
AND 01.totalprice BETWEEN γ AND 360000
AND 02.totalprice BETWEEN γ AND 360000

For BCB , we experiment with different widths of the band
β: 1, 2, 3, 4, 8 and 16. Scaling out BEOCD using the same
γ leads to highly disturbed output/input ratio ρoi. As the
relative performance of different operators highly depends on
ρoi, we set γ such that ρoi remains on the same order of
magnitude. Namely, we set γ to 120.000, 140.000 and 160.000
for the scale factor of 80, 160 and 320, respectively.


