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Abstract-Most traditional data mining algorithms struggle 
to cope with the sheer scale of data efficiently. In this paper, we 
propose a general framework to accelerate existing algorithms 
to cluster large-scale datasets which contain large numbers of 
attributes, items, and clusters. Our framework makes use of 
locality sensitive hashing to significantly reduce the cluster search 
space. We also theoretically prove that our framework has a 
guaranteed error bound in terms of the clustering quality. This 
framework can be applied to a set of centroid-based clustering 
algorithms that assign an object to the most similar cluster, and 
we adopt the popular K-Modes categorical clustering algorithm 
to present how the framework can be applied. We validated our 
framework with five synthetic datasets and a real world Yahoo! 
Answers dataset. The experimental results demonstrate that our 
framework is able to speed up the existing clustering algorithm 
between factors of 2 and 6, while maintaining comparable cluster 
purity. 

I. INTRODUCTION. 

Data clustering [1] is a widely used data mining technique 
for the unsupervised grouping of data points, items or patterns. 
The goal is to automatically discover these groupings from 
unlabelled data. The problem can usually be formulated as 
given n items, discover k groups using suitable similarity 
measures which maximise the degree of similarity of items 
in the same group, while minimising the degree of similarity 
of items in different groups. 

Typically, in centroid-based clustering algorithms (e.g., K­
Means [2] and K-Modes [3]), clusters are represented by a 
central vector, and the clustering task is usually defined as 
an optimisation problem: find k clusters and assign the items 
to the closest or most similar cluster such that a certain 
measure (e.g., the squared distances in K-Means) is minimised. 
Therefore, similarity (or distance) comparisons can be a major 
performance bottleneck when facing large scale data cluster­
ing. When k is very large, such clustering algorithms do not 
scale well and have poor performance in terms of efficiency. 

Motivated by this, the key challenge to be addressed in 
this paper is to propose a novel clustering framework that can 
scale well with a massive number of clusters, in which items 
may also be high dimensional. That is, clustering a dataset 
containing a large collection of high dimensional data into 
a large number of clusters represented by centroids. In such 
cases efficiently measuring the similarity of each item to each 
cluster centroid is critical in accelerating the clustering task. 

Recently, in both the research and industry communities, 
increased emphasis has been placed on algorithms to mine 
the abundance of data being generated, so called Big Data 
analysis. One line of research to achieve this is to adapt 
existing, well-understood algorithms to handle larger scale data 
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(e.g., [4]). We follow the same line of research in this paper. 
Our approach to solve this problem and improve efficiency 
is to make use of locality sensitive hashing (LSH) [5]. By 
utilising the LSH technique, we are able to find, for a given 
item to be clustered by a centroid-based clustering algorithm, 
all of the other items that have a certain similarity above a 
predefined threshold. The objective is to build a hash based 
index of all similar items in the dataset to be clustered, and 
to utilise this index to obtain a shortlist of candidate clusters 
for the centroid-based clustering algorithm to operate on for 
this item. This method can eliminate dissimilar clusters before 
applying existing clustering algorithms, and it significantly 
accelerates the clustering process while maintaining clustering 
quality, which is the key novelty of our work. 

In order to present how our framework can be applied 
to existing clustering approaches, we focus on the K-Modes 
algorithm in this paper. K-Modes [3] is a clustering algorithm 
for categorical data. We use the Jaccard similarity [6] to 
compute the similarity between two categorical items, and 
thus we adopt the min-wise independent permutations locality 
sensitive hashing scheme (MinHash) [7], which is an LSH 
scheme which approximates the Jaccard Similarity measure. 
We denote the algorithm accelerated with MinHash as MH­
K-Modes. K-Modes is similar to the K-Means algorithm [2] 
but replaces the numeric distance calculations with a fast and 
simple dissimilarity measure for categorical data. Categorical 
data, sometimes also called nominal data, are variables that 
typically have two or more categories. Importantly, there is no 
intrinsic ordering to these category values. A simple example 
of this would be the colours of items, in which a set can 
have a few or many different colours, and there is no standard 
ordering over a set of colours. 

The K-Modes similarity measure is fast due in part to 
its simplicity, however we will later show that whenever the 
number of clusters in the data increase, and particularly when 
the number of attributes in the data also increases (i.e. it 
becomes higher dimensional), K-Modes can become extremely 
slow. 

To evaluate our approach, we conduct experiments on five 
synthetic datasets, as well as a real world Yahoo! Answers 
dataset [8]. We investigate, compare, and analyse our MH­
K-Modes algorithm and the original K-Modes algorithm in 
respect to a number of properties. We will analyse the time 
taken per iteration, as well as the number of iterations required 
for the algorithms to converge. We will also analyse the 
average size of the shortlist of candidate clusters for our 
algorithm, and how this varies with regard to the chosen 
algorithm input parameters. 
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Next we will analyse the number of moves, or cluster re­
assignments, per iteration of both our MH-K-Modes algorithm 
and the K-Modes algorithm. Finally we will compare the total 
time taken to cluster each dataset using various parameter 
settings for our MH-K-Modes algorithm and the K-Modes 
algorithm. Our algorithm includes an initial extra step before 
the cluster algorithm begins, which will be captured by this 
analysis. 

The contributions of this paper are the following: 

• We present a novel framework for improving the effi­
ciency of existing centroid-based clustering algorithms 
using LSH to greatly reduce the cluster search space. 

• We apply our framework to the well-known K-Modes 
algorithm and utilise the MinHash LSH algorithm. 

• We prove that our method has a guaranteed error 
bound. 

• Through experimentation we evaluate our framework 
on five synthetic datasets as well as a real world 
Yahoo! Answers dataset. We show that our framework 
achieves similar performance in terms of cluster purity 
but most significantly is more efficient. With the 
parameters tested we observe that our framework is 
more efficient by factors between 2x and 6x. 

II. RELATED WORK 

The data clustering problem continues to have been studied 
intensively in recent years, and it has been used in many 
applications such as image segmentation [9]-[11], genetic 
mapping [12], cOlmnunity detection [13], etc. The centroid­
based clustering algorithms such as K-Means [2] and K-Modes 
[3] have been widely applied due to their simplicity and easy 
implementation. 

As has been pointed by several existing studies, centroid­
based clustering is inefficient. For example, [14] outlines the 
efficiency problem with large numbers of data points and 
large numbers of clusters for the K-Means algorithm. In their 
approach the authors optimised the assignment of points to 
cluster centres using multiple random spatial partition trees 
such that only a small number of clusters need to be considered 
during the assignment step of K-Means. More specifically, this 
approach creates a neighbourhood for each point via a multiple 
random partition trees method and uses this neighbourhood 
to find the set of clusters within it. These clusters form the 
candidate set which are typically smaller than the full cluster 
set. Their approximate K-Means algorithm converged 2.S times 
faster, and achieved better performance than the state-of-the-art 
approaches they compared. 

[IS] proposes the idea of canopies which represent divi­
sions of overlapping subsets of the data. These canopies can 
be computed quickly and is followed by a second stage that 
preforms exact distance measurements among points in com­
mon canopies. The concept of canopies is used to improve the 
efficiency of clustering. This work supports high dimensional 
data, with large numbers of clusters and data points. 

[4] shows how the K-Means algorithm can be scaled up 
to large vocabulary sizes in the computer vision domain. This 
is achieved through the use of a random forest approximate 
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nearest neighbour algorithm. Similar in spirit to us, the costly 
exact distance comparison between points and clusters is 
replaced by an approximate measure using randomized k-d 
trees. 

[16] presents an updated K-Means that addresses three 
core issues that have been identified for web scale clustering; 
latency, scalability and sparsity. They manage to achieve a 
decrease in computational cost by orders of magnitude with 
the use of mini-batch clustering for K-Means. 

None of the above studies consider utilising LSH to accel­
erate the clustering. The min-wise independent permutations 
locality sensitive hashing scheme (MinHash) is a technique for 
quickly approximating the Jaccard Similarity [6] between sets. 
It has been applied in numerous domains such as duplicate 
web page detection for a search engine [S], online news 
personalisation [17] and computer vision tasks [4]. 

There have been several data clustering algorithms pro­
posed that use LSH in some manner. For example, the work 
[18] proposes to utilise LSH in clustering web pages. In this 
study, web pages are hashed in such a way that similar pages 
have a much higher probability of collision than dissimilar 
pages based on LSH. A graph is created for the web pages in 
which each node represents a web page and each edge indicates 
that the two pages are similar according to LSH. Next, a graph 
partitioning algorithm is applied to divide the web pages into 
different clusters. This approach is different from our work in 
that we are interested in centroid based clustering algorithms, 
rather than graph partitioning algorithms. Also, building the 
graph is infeasible for very large datasets. 

One approach [19] uses a centroid-based clustering algo­
rithm K-Medoids with LSH but with the idea of developing 
a locality sensitive hashing method for generic metric spaces. 
The intention in this work is to improve the LSH algorithm, 
rather than the clustering algorithm. 

Another example [20] evaluates the use of various LSH 
functions, specifically searching for high dimension SIFT 
descriptors. Their approach was inspired by the challenge of 
high dimensional nearest neighbour retrieval, which is a very 
expensive process. The authors proposed a technique called 
KLSH that makes use of the K-Means clustering algorithm. 
Although the idea here is similar to ours, there are a number 
of differences. First, our idea is to consider large numbers of 
clusters rather than just a large number of dimensions. Second, 
[20] uses K-Means clustering as a means of speeding up 
nearest neighbour search of large vectors via LSH, whilst our 
framework uses LSH as a means of speeding up the clustering 
algorithm. 

In summary, to the best of our knowledge, this is the first 
work on increasing the efficiency of centroid-based clustering 
by using MinHash to reduce the cluster search space. 

III. LARGE SCALE CLUSTERING 

A. Preliminaries of K-Modes and MinHash 

1) K-Modes: In order to describe our framework, we first 
introduce the K-Modes algorithm [21]. 

K-Modes differs from K-Means in three major ways; K­
Modes uses a simple dissimilarity measure between items 



rather than the least squares method; cluster centroids are 
represented by modes rather than means; and it uses frequency 
based updating of modes to minimise the cost function. 

The K-Modes algorithm can be summarised as: 

• Select k initial modes from the dataset. Numerous 
methods exist for making this selection. A simple 
selection method would be to choose k random items. 

• For each item assign it to the closest cluster based on 
the dissimilarity measure. 

• Recalculate the modes of all clusters. 

• Repeat the previous two steps until either no item has 
changed cluster, or the cost has minimised (Equation 
4). 

From these steps we can expect that when there are many 
items to cluster into (very large) k clusters, with each of 
the items having many attributes, step 2 could become an 
expensive and time consuming operation. This is due to each 
of the many large items requiring comparison to each of the 
many cluster centroids over many iterations. 

Let X and Y be two categorical items described by m 

categorical attributes. The dissimilarity measure d(X, Y) [3] 
computes the total mismatches of the corresponding attribute 
categories between X and Y. The fewer the mismatches, the 
more similar the two items are. 

where 

m 
d(X,Y) = L O(Xj,Yj) 

j=l 

if (Xj = Yj), 

otherwise. 

Formally we can define the K-Modes algorithm as: 

(1) 

(2) 

Let X be a set of categorical items each with m cat­
egorical attributes AI,'" , Am, where each Aj is a sin­
gle attribute, e.g., 'Colour'. The domain of Aj, denoted 
by DOM(Aj), contains a set of category values, i.e., 
DO M (Aj) = {aI, a2, . . .  , al}. For example, given an item 
Xi = {Xl,Xj,··· ,xm} EX, Xj may have the category value 
'blue' for attribute colour Aj. A mode of X = {Xl,'" , Xn} 
is a vector Q = [ql,' . .  , qm] that minimises: 

n 

D(X,Q) = L d(Xi,Q) (3) 
i=l 

Let nC
k

•
j 

be the number of items having the kth category 

value Ck,j for attribute Aj and ir (Aj = ck,jIX) = 
nC� ,j 

the relative frequency of category Ck,j in X. The function 
D (X,Q) is minimised iff ir(Aj =qjIX) 2: ir(Aj =Ck,j) 
for qj i- Ck,j and all j = 1, ... , m. 

Therefore, the optimisation problem for partitioning a set 
of n items each with m categorical attributes into k clusters 
is to minimise the following cost function: 
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k n 

P(W, Q) = L L wi,lD(Xi, Ql) 
l=l i=l 

(4) 

where W is the n x k membership matrix, Wi,l E W, and 
Q = {Ql, ... ,Ql, ... ,Qk} is a set of cluster centers. 

2) MinHash / Locality Sensitive Hashing: We will use 
duplicate document detection, which is a common use case for 
MinHash, as an example to describe how it may be applied to 
our problem. Given a set of documents, we would first want 
to convert each set of words in the document into 'signatures' 
which will be a more compact representation of each docu­
ment. These signatures are computed for each document by 
'minhashing' the document a number of times. Given a word­
document matrix in which each column represents a document 
and each row indicates the presence/absence (1/0) of a word in 
a document; 'Minhashing' would be choosing for each column, 
from a permutation of the rows, the row number of the first 
row which has a value 1 in that column, a process that is 
typically repeated a number of times. If we do this n times, 
each with a different permutation, the size of the signature 
would be n. To make this practical, the random permutations 
of the matrix can be simulated by the use of n randomly chosen 
hash functions. Given a row r in the word-document matrix, 
we use hash function hO to simulate the permutation of r to 
the position h(r). For example, let r be the third row, and let a 
hash function be h(x) = 2x+1 mod 5, then h(r) = 2*3+1 
mod 5 = 2. r is permuted to the second row according to 
this hash function. Similarly, this hash function is applied to 
all rows with value 1, and the smallest hash value (also the 
highest ranked row number) is chosen as the outcome of this 
particular hash function. This value is denoted as Si (where 
i represents it is the ith hash function used). Formally, the 
signature equation can be represented as 

(5) 

where Si = min(hi(rj)lj = 1, t), and for i = 1, ... , n, 

such that t is the number of total rows with value 1, and n is 
the number of hash functions. The detailed description of the 
idea can be seen in Algorithm 1. 

These signatures, although likely smaller than the original 
document, are only part of the solution for quickly estimating 
the similarity between documents. The next step is to further 
subdivide the signature produced above into rows(r) and 
bands(b). Each band will consist of r hash-values, which are 
input to another hash function that maps the band to a new 
bucket. Importantly there will be b sets of buckets to map to, 
one set for each band so no overlapping between bands can 
occur. Thus we can now say that if a band from each of the 
two documents map to the same bucket, they are candidate 
pairs. 

MinHash is known to approximate the Jaccard Similarity 
between sets, and the choice of r and b have significance in 
that they determine the probability that two documents with a 
Jaccard Similarity (Equation 6) of S become candidate pairs. 

. IX n YI Jaccard-Slm(X, Y) = 
IX u YI 

(6) 



Specifically, the probability that the signatures are identical in 
at least one band, therefore making them a candidate pair, is 
l-(l-sT)b. We can exploit this in order to choose appropriate 
values for r and b prior to the clustering. The similarity s at 
which there is a 50% chance of two items becoming candidate 
pairs, at which the rise of the s curve is the steepest, is a 
function of b and r: (l/b)I/T. 

Algorithm 1: SIGGEN : MINHASH S IGNATURE GENER-
ATION [7] 

Input: item: a vector of categorical values from a 
single item 

Input: H: hash functions hI, . . .  , hm E H 
Output: signature: a vector of length m 

1 forall i in item do 
2 L hmin(i) = 00 

3 forall i in item do 
4 l forall j in H do 
5 l if hj(i) <hm�n(j) 

.
then 

6 L hmin (J) - hj ( t ) 

B. Our Algorithm MH-K-Modes 

The integration of MinHash and LSH with K-Modes is 
detailed in Algorithm 2. Specifically, after the centroid initial­
isation step of K-Modes, we can make a single pass over the 
entire dataset, applying MinHash to each item. When we insert 
each item into a bucket as per MinHash procedure, we will also 
store a reference to the cluster that the item has been assigned 
to by K-Modes. Once this single pass over the dataset has 
been completed, we will have effectively produced an index 
data-structure of items to other similar items that we can query 
from the K-Modes algorithm. Therefore during each iteration 
of K-Modes, each time we encounter an item to assign to a 
cluster, we will query our MinHash index with the item to 
find the set of other similar items. Since each item contains a 
reference to the cluster it is currently assigned to, we can create 
a shortlist of candidate clusters for K-Modes. This is possible 
as when we MinH ash the query item we will discover all the 
previously MinHashed items that the LSH function regarded as 
similar. From these items we retrieve their referenced clusters 
to build the shortlist. Our framework relies on the assumption 
(for which we will have a theoretical investigation in Section 
III-C) that we can achieve similar performance in terms of 
accuracy whenever the true positive (TP) cluster is in the 
shortlist, along with a small number of other false positive (FP) 
clusters. Once we have updated the clustering by assigning an 
item to a cluster we must update the MinH ash index to reflect 
this. This is a fast operation as we merely update the items 
cluster that is stored via a reference or pointer. 

Worth noting, as seen in Lines 2-4 of Algorithm 2, we filter 
out any feature values that indicate the feature is not present 
before the signature generation in Algorithm 1. This is useful 
in scenarios in which each feature vector item may be large and 
may contain many values that are not present. Such cases may 
include when you would like to represent a vocabulary with 
word presence indicated by Yes or No values. By excluding the 
'No' values, MinHash is able to produce more useful similarity 
scores between two feature vectors, as many shared negative 
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Fig. 1 :  I IIustrating the idea of how LSH can be used to find 
the relevant clusters for the red coloured point X. 

features in two vectors does not provide particularly useful 
information about the similarity of two sets. Usually we are 
only interested in the similarity of values present in the feature 
vectors. 

We now present the steps of our modified MH-K-Modes 
algorithm. 

• Select k initial modes from the dataset. Numerous 
methods exist for making this selection. A simple 
selection method would be to choose k random items 
from the dataset. 

• For each item assign it to the closest cluster based on 
the dissimilarity measure. 

• MinHash each item, effectively creating an index of 
similar items. In the index store a cluster reference for 
each item. 

• For each item query the previously generated MinHash 
index for similar items and their clusters. Use these 
clusters rather than the full set to assign it to the 
closest cluster based on the dissimilarity measure. 
After each change, update the cluster reference in the 
MinHash index to the new cluster. 

• Recalculate the modes of all clusters. 

• Repeat the previous two steps until either no item has 
changed cluster, or the cost has minimised. 

Compared to the original K-Modes algorithm described in 
Section III-AI, we now have a number of extra operations. 
One completely new step is the initial MinHash operation that 
is run only once at the beginning of the clustering process. We 
have also significantly modified the step in which the similarity 
of each item to existing clusters is calculated. It makes use of 
the MinHash index to pre-filter the potential cluster candidates 
during each iteration of the K-Modes algorithm. 

C. Error Bound 

Our proposed framework relies on the accurate indexing of 
clusters and matching of clusters to data items being clustered. 
Recall that in our method, when X is to be clustered, we first 
retrieve items similar to X from the index, and then create 
a shortlist of clusters from these items. We then compute 

LSH
Range

C1

C9

C7

C6C4

C3

C5

C2

C8

Cluster Shortlist

C1
C2

K-Modes-Distance(X, [C1,C2])

LSH(X)

X



Algorithm 2: MINHASH PRE-FILTERING STEP 

Input: item: item to be clustered 
Input: H: set of hash functions 
Output: shortlist Shortlist of clusters to fully search 

1 filtered_presence_item = [] 
2 foreach feature in item as feature do 
3 l if feature is present then 
4 L add feature to filtered_presence_item 

5 signature = SIGGEN(jiltered-presence_item, H) 
6 divide signature into b bands each consisting of r hash 

values. 
7 buckets = setO 
8 foreach b in band do 
9 L add idx_hash(b) to buckets 

10 shortlist = setO 
11 foreach bucket in buckets do 
12 L add the clusters in bucket to shortlist 

the similarity between X and each cluster in the shortlist. 
Therefore, if the actual cluster that X shall be clustered to 
contains one item which is similar to X in the index, X 
will be correctly clustered (the correctness here means that 
the clustering result is the same as the original algorithm 
without using the index). Therefore, the error of our method 
can only occur when the candidate clusters selected for an 
item do not in fact include the actual cluster that this item 
shall be clustered to. In this section, we investigate theoretical 
properties of this error in the clustering framework, and we 
show that our method utilising MinHash has a guaranteed error 
bound. 

In order to analyse the error caused by the MinHash index, 
we take clustering a categorical item X with m attributes as 
an example. We denote en as the actual cluster X should 
be clustered to (whose mode has the least dissimilarity with 
X) according to the original K-Modes. We can compute the 
probability that en is not in the candidate clusters list as 
follows. 

If en is the best cluster, then in en there must exist an 
item such that it has the same values on at least one attribute 
as that of X (otherwise, the dissimilarity of the mode of en 
and X will be m and en is not the best cluster). Now let us 
denote this item in en as Y, the Jaccard Similarity of X and Y 
is at least s = '�8�' 2: 2�-1' Hence, the probability that the 
signatures of X and V agree in all rows of one particular band 
is at least S

T
, and the probability that the signatures disa�ree in 

at least one row of each of the bands is at most (1-S
T) • This 

means that the probability of X and Y not being a candidate 
pair is at most Pr = (1 - sT)b = (1 - (2�-1 nb. 

When clustering item X, if en is the cluster whose mode 
has the least dissimilarity with X but en is not obtained from 
the index, it means that no item Y' exists in en that can 
form a candidate pair with X according to the index. Given 
the similarity between X and Y is at least s = 2�-1' we 

know that the probability of this error is at most PrlCnl = 

(1- (2�_ly)bICnl, where b is the number of bands and r is 
the number of rows in MinHash. 
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Therefore the error bound can be very small even when the 
number of attributes is very large in the dataset. For example, 
in our experiments, a common number of attributes of an item 
in the datasets we used is 100. If we set r = 1 and b = 25 in 
MinHash, and we assume that a cluster has at least 20 items, 
the probability of the error when clustering an item in our 
framework is at most PrlCnl = (1 - 1�9)25X20 = 0.08. This 
explains why our framework improves clustering efficiency 
significantly while maintaining excellent clustering quality. 

D. Choice of LSH Parameters 

In Table I we can see the relationship between the band 
parameter, the Jaccard Similarity of two items, the probability 
of candidate pairs using MinHash, and the probability of MH­
K-Modes finding the candidate cluster. With the number of 
rows set to 1, the greater the number of bands, the lower the 
Jaccard Similarity needs to be for the algorithm to find two 
items similar. In Table II with the number of rows set to 5, 
the same trend of more bands increasing the probability of 
candidate pairs being found exists. However, it is clear that 
with the increased number of rows the probability of finding 
two items with a Jaccard Similarity regarded as similar has 
decreased compared to Table I which had only 1 row. 

One possible choice is to use MinHash with just one row 
and one band, which would have the effect of eliminating 
clusters that are extremely unlikely to have any similarity. 
Whilst with 100 bands it is possible, with 99% probability, 
to find sets with a Jaccard Similarity of just 0.1 to become 
candidate pairs. With 800 bands, sets with a Jaccard Similarity 
an order of magnitude smaller have the same probability. The 
downside of this parameter setting is that it is likely to include 
many false positive clusters in the shortlist. This is overcome 
by increasing the number of rows, at the cost of introducing 
more false negatives in shortlist. 

In Section III-A2 we discussed the probability of collisions 
occurring for given Jaccard similarities, bands and rows. To 
reiterate, we can calculate the probability that two items 
become candidate pairs for any given combination of the 
Jaccard similarity, band and row parameters. However, since 
we only consider the cluster of each candidate pair when 
forming the shortlist (see Lines 10-12 of Algorithm 2) we do 
not need to find all item candidate pairs in order to achieve our 
goal of finding cluster candidate pairs. Instead, we only need to 
find just one item candidate pair from each candidate cluster. 
If there is a 10% probability of two items with a Jaccard 
Similarity of 0.1 becoming candidate pairs, and if there are 
50 such candidate pair items in the cluster, then we have a 
high probability (99%)1 that at least one of them will collide 
and thus provide us with the candidate cluster. Importantly, 
our application of MinHash means we can achieve much better 
performance without increasing the number of hash functions 
and thereby increasing computational overhead. This should 
provide an intuition as to how the choice of r and b will affect 
our efficiency and performance, and how the standard MinHash 
selection criteria in terms of r and b need not be so strict with 
our framework. 

11_ (1- (0.1))50 



TABLE I: Probability of finding a candidate pair with a given 
Jaccard Similarity and given number of bands with a row 
value of 1. MH-K-Modes probability calculated assuming a 
minimum of 10 other items in the cluster with at least the 
given Jaccard Similarity. 

Bands Jaccard Similarity Probability MH-K-Modes Probability 
10 0.01 0.09 0.61 

10 0.1 0.65 I 

10 0.2 0.89 

10 0.5 0.99 

100 0.001 0.009 0.09 

100 0.01 0.3 0.97 

100 0.1 0.99 I 

100 0.5 I I 

100 0.8 

800 0.0001 0.07 0.52 

800 0.001 0.55 0.99 

800 0.01 0.99 I 

800 0.1 I I 

TABLE II: Probability of finding a candidate pair with a given 
Jaccard Similarity and given number of bands with a row 
value of 5. MH-K-Modes probability calculated assuming a 
minimum of 10 other items in the cluster with at least the 
given Jaccard Similarity. 

Bands Jaccard Similarity Probability MH-K-Modes Probability 
10 0.1 0.0001 0.001 

10 0.2 0.003 0.03 

10 0.5 0.27 0.96 

10 0.8 0.98 

100 0.1 0.001 0.01 

100 0.5 0.95 I 

800 0.1 0.008 0.08 

800 0.2 0.23 0.93 

800 0.3 0.86 I 

IV. EXPERIMENTATION 

We will now provide experimental evidence of the effec­
tiveness of our framework MH-K-Modes, in comparison to 
regular K-Modes, on a number of datasets. To make it easier 
to clearly analyse the properties of our framework, we will 
first provide our analysis on a number of synthetic datasets. 
Following this we will provide results on a dataset consisting 
of questions and topics from Yahoo! Answers [8] in order to 
demonstrate real-world effectiveness. For each dataset we hope 
to show that our algorithm will improve the efficiency of K­
Modes algorithm, while maintaining comparable performance. 

Our experimentation was carried out on machines with an 
Intel X5650 CPU and 96GB of RAM. Our implementation 
was single threaded and thus only used one of the available 
twelve cores on the machine. The programming language used 
for both the K-Modes and MH-K-Modes algorithm is Python 
and made heavy use of the numpy package2 for numerical 
computations. 

A. Results on Synthetic Data 

Our synthetic datasets were generated with the datgen 
tool3. For all experiments we used a domain size of 40000 

2http://www.numpy.org/ 
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categorical values which can be used by each attribute when 
generating the dataset. Each item will be associated with one of 
the k clusters. This association is decided in the form of con­
junctive rules formed from the attributes. For example, cluster 
1 could require attribute Al having the categorical value A 
and attribute A4 having the categorical value B, etc. Therefore 
when creating an item that belongs to cluster 1, attributes 
Al and A4 would have the above values. The remaining 
attributes may be any other values. For our base experiments 
consisting of 100 attributes each item used a conjunctive rule 
involving between 40 and 80 attributes when creating data 
items for clusters. The remaining 20 to 60 attributes were not 
relevant to the cluster assignment. For experiments in which 
the number of attributes were increased, these values were 
scaled in proportion to the number of attributes in the larger 
items. 

K-Modes has a number of potential initialisation methods 
for choosing the initial cluster centroids [3] [22]. As the 
objective of our work is to improve the clustering efficiency by 
optimising the item assignment process during each iteration, 
we will randomly select the k initial centroids. We note that for 
each experiment in which we are evaluating various parameters 
of our MH-K-Modes algorithm and the K-Modes algorithm, 
the same initial centroid points were selected. This prevents 
the initial centroid selection from influencing the performance 
and efficiency results. 

1) Varying Number of Clusters: One of the most impor­
tant parameters in validating how our algorithm scales is by 
exploring how it performs with data sets consisting of large 
numbers of clusters. As our algorithm is designed such that it 
reduces the cluster search space using LSH, we expect to find a 
significantly smaller number of clusters on the shortlist for K­
Modes to use. Indeed this is clearly seen in Figure 2b in which 
consistently less clusters are included in the shortlist with all 
parameters tested on the MH-K-Modes algorithm. We expect a 
correlation between the number of clusters on the shortlist, and 
the time taken for each iteration of K-Modes. This expectation 
is confirmed in Figure 2a; all of our tested parameters resulted 
in less time spent per iteration. The parameters 20 bands 
and 5 rows appears to be the optimal tested whilst 50 bands 
and 5 rows offers almost no improvement in the average 
cluster shortlist size, despite the increased number of hash 
functions and therefore total time required to cluster (Figure 
7a). This can be seen in Figure 2e. In Figure 2c we can see 
the number of times that an item was moved from one cluster 
to another during the K-Modes assignment steps. The trend 
here continues, the optimal value of 20 bands and 5 rows 
results in the least number of moves. Finally, the experiments 
also reveal in Figure 7a that not only does our MH-K-Modes 
algorithm always result in less time per iteration, in all tested 
cases it converged faster, resulting in less overall iterations. 
The best result was MH-K-Modes with 20 bands and 5 rows 
taking under 225 minutes per iteration, and converging after 
5 iterations. This is in comparison to the original K-Modes 
which took around 380 minutes per iteration, and converged 
after 12 iterations. 

3http ://www.datasetgenerator.com/source/ 



Fig. 2: 90000 items with 100 attributes and 20000 clusters. 

We have achieved promising results so far since the effi­
ciency of our MH-K-Modes algorithm is significantly better 
than that of the K-Modes algorithm with 20 thousand clusters. 
Our next experiment will run with the same parameter settings, 
but with twice as many clusters. In Figure 3a we can see a sim­
ilar trend to the previous experiment. All our tested parameters 
resulted in a less time per iteration. In this case, the time per 
iteration difference between our MH-K-Modes algorithm and 
the original K-Modes algorithm is more significant. We can see 
that previously we reduced the time taken per iteration from 
around 380 minutes to around 220 minutes. In Figure 3a the 
time is reduced from around 780 minutes (after 4 iterations) 
to just over 300 minutes. This is an improvement of around 
480 minutes per iteration with 40 thousand clusters, compared 
to 160 minutes per iteration with 20 thousand clusters. Figure 
3b provides a clearer picture of the time taken per iteration, 
by excluding the original K-Modes algorithm. One interesting 
observation is that the parameter combination of 20 bands 
and 5 rows appears to be an outlier when compared to the 
others as it takes around 380 minutes per iteration, as opposed 
to 315 minutes. Nonetheless, it manages to converge in the 
smallest number of iterations, just 4. This shows that while 
time per iteration is important, so is the number of iterations 
before converging. Both Figure 2 and Figure 3 illustrates that 
our algorithm with large numbers of clusters is more efficient 
in both time per iteration and number of iterations before 
converging than the original K-Modes algorithm. 

2) Varying Number of Items: The next aspect of our MH­
K-Modes algorithm we would like to evaluate is how much 
more efficient our algorithm is when it comes to increasing the 
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number of items in the dataset. As our algorithm is designed to 
reduce the cluster search space, it is reasonable to assume that 
the more items there are to be clustered, the more time that 
will be saved overall as each item will make a time saving . 

In order to investigate the effect of increasing the number 
of items on the efficiency of our algorithm, we generated 
a synthetic dataset consisting of 250 thousand items. We 
maintained 20 thousand clusters and 100 attributes as before. 
Figure 4 shows the results of this experiment. In Figure 4c 
it is clear that as we increased the number of items to be 
clustered, the total time taken per iteration increased. However, 
we can still see that our MH-K-Modes algorithm resulted in 
less iterations and less time per iteration. With 20 bands and 
5 rows, our algorithm converged after 8 iterations, compared 
to the original K-Modes with 10 iterations. Our algorithm also 
took much less time per iteration, around 800 minutes until the 
sixth iteration, followed by around 1100 minutes per iteration 
for the final two iterations. On the other hand the original 
K-Modes algorithm took almost 1600 minutes per iterations 
consistently for 10 iterations. Accounting for the jump in time 
per iteration for our algorithm after 6 iterations, we still see 
an improvement of between 800 minutes (or 50%) and 500 
minutes for each iteration. Figure 4a and Figure 4b exhibit the 
same trend as witnessed with 90 thousand items. In Figure 6a 
we plot the rate of growth in time taken for the K-Modes and 
MH-K-Modes algorithms to cluster both 90000 and 250000 
items. It is clear from this that our algorithm scales more 
efficiently with regard to dataset size than the original K­
Modes algorithm. 

3) Varying Number of Attributes: We will now investigate 
the performance and efficiency of our algorithm when the num­
ber of attributes in the dataset is increased. Higher dimensional 
data is typically associated with increased complexity and 
running time as each item and centroid is much larger. Specif­
ically we will report and analyse the results with 90000 items, 
20000 clusters and 100, 200 and 400 attributes respectively. We 
expect that our framework will see improvements in efficiency 
as the number of attributes increase because each comparison 
will require more computation within the dissimilarity function 
(Equation 1 and Equation 2). 

In Figure 5a our results reveal that with the increased 
number of attributes, doubled from 100 to 200, we maintain 
significant efficiency gains. Our best parameter selection for 
MH-K-Modes converged 101 hours faster than K-Modes with 
100 attributes, and 104 hours faster with 200 attributes. With 
400 attributes, Figure 6c displays an even greater increase in 
efficiency when comparing our algorithm with the original K­
Modes algorithm. We will discuss the scaling aspect in more 
detail in Section IV-A4. Figure 5b also reinforces that our 
algorithm can significantly reduce the cluster search space, as 
the candidate cluster shortlist is consistently much smaller than 
the full search space by many orders of magnitude. 

4) Synthetic Data Scaling Comparison: In previous sec­
tions we have analysed a number of properties of the two 
algorithms when varying various parameters of the datasets 
and algorithms. For the sake of clarity, we will also show and 
discuss how each of the algorithms scale in terms of efficiency 
with respect to the number of clusters, attributes and items. 

In Figure 6a we show how, while both our MH-K-Modes 



algorithm and the original K-Modes algorithm grow almost 
linearly with the number of items, our algorithm has a slower 
rate of growth than that of K-Modes. This aligns with our 
expectations as each item will have a time saving from using 
the cluster shortlist, and this time saving accumulate with the 
number of items, contributing to the total time saving. 

In Figure 6b it is clear that when we increase the number 
of clusters from 20000 to 40000 with 250000 items of data 
we see a much smaller rate of growth than the original K­
Modes algorithm. In fact, our algorithm is able to cluster the 
dataset with 40000 clusters over 1.5 times faster than K-Modes 
clustering the dataset consisting of 20000 clusters, and over 2.5 
times faster than K-Modes clustering the 40000 cluster dataset. 

With higher dimensional data Figure 6c reveals that MH­
K-Modes scales at a much better rate than the original K­
Modes algorithm. Specifically, the increase from 200 attributes 
to 400 attributes resulted in our algorithm only taking an 
extra 8 hours (36 to 44 hours), while the original K-Modes 
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algorithm required an extra 72 hours (140 to 212 hours). 
Again, these results confirm how efficient our algorithm is. By 
increasing the number of attributes, MH-K-Modes achieves a 
greater time saving per item comparison when compared to 
lower dimensional data. Therefore as the data becomes higher 
dimensional, even when the candidate cluster shortlist size 
remains the same, we can expect greater efficiency savings. 

5) Cluster Purity: For each experiment on the synthetic 
datasets we also calculated the total cluster purity, as shown 
in Figure 8. It is clear that in nearly all cases, our algorithm 
manages to achieve very similar cluster purity to the original 
K-Modes. This is a trade-off that is made for the increased 
efficiency in clustering. 

B. Results on Real Dataset: Yahoo! Answers 

We will now validate our framework and algorithm on a 
real world dataset. Yahoo! Answers is a popular web service in 
which users are able to ask questions and receive answers from 
other members of the community. When asking questions users 
are able to select the topic they believe best describes their 
question. These topics can be fine-grained and very specific 
to the question asked. It is the set of these topics that we 
will use as the ground truth for evaluation of our clustering. 
The objective of the clustering is: using the words of each 
question, group questions of the same topic together. In order 
to model this in a suitable format for categorical clustering, 
we will create a vocabulary of potential words, with each 
attribute value chosen from the set {Yes, No}. This will 
indicate whether or not this word was present in the question. 

1) TF-IDF: To achieve reasonable results, we must first 
try and learn the important words from each topic. TF-IDF 
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[23] (Term Frequency - Inverse Document Frequency) is a 
common weighting algorithm in text mining for statistically 
estimating the importance of words to a document from a 
collection of documents. The algorithm first calculates the 
frequency of each word in a single document as the initial 
step in calculating the significance of it The second step of 
the algorithm is to calculate the 'inverse document frequency' 
which penalises words that occur in many documents and gives 
more significance to words that are rare across documents. 
The usefulness of this approach is clear when you consider a 
typical question asked on Yahoo! Answers. The following is 
a real example: "im interested in being a zoologist but im not 
sure what do they really do.Does zoologist work only in zoo?" 

If we wish to assign this question to a topic 'Zoology', 
it is clear that most words would not be usefuL We would 
expect words such as 'zoologist' and 'zoo' would be frequently 
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occurring in the 'zoology' topic, while the rest of the question 
consists of words that would be frequent across many topics. 
Therefore we expect that they would be given a low score by 
the 'inverse document frequency' step of TF-IDF, leaving only 
the important words 'zoologist' and 'zoo' with high scores. 

More formally we can state IDF as 

(7) 

where ti is the term we wish to calculate the importance of, N 
is the number of documents and ni is the number of documents 
that ti occurs in. 

We will validate our framework on the Yahoo! Answers 
question dataset using the vocabulary of meaningful words 
extracted using TF-IDF for each topic. Each question is 
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Fig. 8: Comparison of cluster purity scores on the synthetic datasets. 

represented as a feature vector, in which each feature is a 
binary indicator of the presence of the word in the question. 
The length of the feature vectors will be the size of our 
vocabulary. It is expected that each feature vector will be 
sparse, consisting mostly of negative binary indicators as each 
question will usually consist of only a few words out of 
the entire vocabulary. As our MinHash step does not take 
ordering of attributes into account we must augment each 
binary indicator with the name of the feature. That is, the 
value for the feature 'zoo' will become either 'zoo-O' or 'zoo­
l' dependant on if it is present in the question. 

For our first experiment on this dataset we extracted up to 
100 questions from each of the 2916 topics. This gave us a 
total of 81036 items from the dataset to cluster. TF-IDF was 
used to extract the meaningful words from each topic, using up 
to 10000 words from each topic, and any word with a score 
over 0.7 was chosen to be included in the vocabulary. This 
resulted in each item consisting of 382 attributes. We must 
note that by using TF-IDF, and with a high threshold of 0.7, 
we are reducing the potential efficiency gains of our approach. 
As shown in Section IV-A3, greater numbers of attributes 
results in greater efficiency improvement with our algorithm. 
However, we chose to include the TF-IDF pre-processing step 
as performance in terms of cluster purity was poor without 
it, and we would like to make this experiment as realistic as 
possible. 

Results from this experiment can be seen in Figure 9. 
The trends displayed are similar to those from the experi­
ments on the synthetic datasets. Figure 9a clearly shows the 
improvements in the time taken per iteration, with our MH­
K-Modes algorithm around 1.8 hours, compared to 3 hours 
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for the original K-Modes algorithm. We also note that our 
algorithm converged after just 4 iterations, one iteration less 
than K-Modes. Figure 9b confirms our original motivation 
that our framework can create a shortlist of candidate clusters 
which is much smaller than the full set of all clusters, while 
the results of Figure 9c follows a familiar trend in that our 
framework typically requires less movement of points between 
clusters during each iteration. Crucially, Figure 9d confirms 
that our framework is able to cluster the dataset faster than 
the K-Modes algorithm. MH-K-Modes was able to cluster our 
Yahoo! Answers dataset in half as much time as that required 
by the K-Modes algorithm. Figure ge reveals that it was able 
to maintain almost exactly the same cluster purity, despite the 
significant increase in time savings. 

We will now investigate how our algorithm MH-K-Modes 
and K-Modes will perform when we lower the TF-IDF scoring 
threshold, increasing the number of attributes each item has. As 
a result of lowering the threshold from 0.7 to 0.3, the number 
of attributes in each item increased from 382 to 2881. There 
are 157602 items to cluster in total with 2916 clusters. 

In Figure l O we can see a similar trend as before, our 
algorithm requires significantly less time per iteration. Due 
to time constraints we set the maximum iterations to 10. In 
Figure l Oc we see the now familiar trend of our framework 
creating a candidate cluster shortlist significantly smaller than 
the full set of clusters. This is a key reason for the efficiency 
gains of our algorithm. Figure 10d exhibits again the trend 
of our algorithm typically requiring less moves during each 
iterations assignment step. The overall time taken for each 
parameter combination of our MH-K-Modes algorithm, as well 
as the original K-Modes algorithm is evident in Figure l Ob. 



3. 2 3000F==========� 3.0 
7000 0 

2.8 

2.' 

2.4 I ...... MH-K-Modes Ib 1r l _ ...... K-Modes 
2. 2 

2.0 

1. 8 

2500 
2000 
1500 
1000 
500 ..... MH-K-Modes I b  1 r l 

6900 
'000 

� 6700 
:::E 6600 

6500 
6400 

0 
0 
0 I � MH-K-Modes Ib lr I: 
0 ....... K-Modes 

:l---
1. • 

..... K-Modes I 1�.o �1':".5 �2"::'.O �2':".5 �3';;'.O �37.5 �4';;-.O ----'47.5 ----}5.0 6300 0 
U U U U U U U U U 

Iteration U U W � U U U U U 

Iteration 

Iteration 

(a) Iteration time 
(b) Average shortlist size (c) Average moves 

, O. 5 

4 c::::J MH-K-Modes I b  1 r l 
c::::J K-Modes 

I � MH-K-Modes Ib lr 

c::J K-Modes O. 4 2 
0 3 
8 

, 
2 

4 O. 1 
2 
0 O. 0 

(d) Total time taken (e) Cluster purity 

Fig. 9: Yahoo ! Answers questions with 0.7 TF-IDF terms. 

Here we can see that just 1 band and 1 row achieved the 
most efficient clustering, almost twice as fast as the original 
K-Modes algorithm, with around 200 hours compared to 
almost 400 hours. We expect that we would have found larger 
efficiency savings if we had not set the maximum iterations to 
10, as both algorithms reached the threshold, but our MH-K­
Modes algorithm appeared to be converging (Figure l Od). As 
we have shown before, our algorithm almost always converges 
faster than the original K-Modes algorithm. 

2) Cluster Purity: As before, we also evaluated the purity 
of the resulting clusters found by both algorithms when clus­
tering the Yahoo! Answers questions dataset created with the 
TF-IDF threshold set to 0.7. Figure ge shows that we are able 
to achieve exactly the same cluster purity as the original K­
Modes algorithm, even with the increased efficiency of taking 
just half the running time. We do note however that the cluster 
purity is quite low at just 25%. We believe this is due not 
just to the difficulty of the problem, but also the fine-grained 
topic assignments of the data. With such a large number of 
very specific topics, it is to be expected that it will not be 
always straightforward for the algorithms to find the correct 
cluster out of a number of similar clusters. Furthermore, the 
topic assignments being user editable also makes establishing 
a proper and accurate ground truth clustering very difficult, 
as users can mistakenly choose the non-optimal topic for their 
question. Manually checking the question to topic assignments 
in the original data confirm this. 

V. CONCLUSION 

In this paper we proposed a framework for improving clus­
tering efficiency for larger scale data by integration of LSH as 
a cluster search space reduction method. This framework had 
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the objective of decreasing the number of distance comparisons 
by reducing the cluster search space for each item during the 
assignment step. We discussed how this framework could be 
used with the well-known K-Modes algorithm. 

We also theoretically showed that our framework has a 
guaranteed error bound in terms of the clustering quality 
relative to the original clustering algorithm that must use the 
full cluster search space. 

Finally we validated our framework by testing the effi­
ciency and performance of both our MH-K-Modes algorithm 
and the original K-Modes algorithm on five synthetic datasets, 
as well as a real world Yahoo! Answers dataset. These exper­
iments empirically proved the effectiveness of our framework 
for improving the efficiency of clustering large datasets which 
contain many clusters and attributes. We discovered both 
empirically and theoretically that we could achieve comparable 
cluster purity, but most importantly, in all tested parameter 
combinations and settings our algorithm MH-K-Modes was 
more efficient, successfully clustering the dataset at least 2 
times faster and up to 6 times faster. 

V I. FURTHER W ORK 

While our framework was implemented on the K-Modes 
clustering algorithm, evaluation on the performance and effi­
ciency with other clustering algorithms would be worthwhile. 
Further, it would be interesting to investigate extending our 
framework to work with not only categorical data, but also 
numeric data, or combinations of both. Finally, adapting our 
algorithm to develop an online/stream clustering framework 
would be another exciting future research topic. 



Fig. 10 :  Yahoo !  Answers questions with 0 .3 TF-IDF terms 
(maximum of 10 iterations).  
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