
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

2PCP: Two-phase CP decomposition for billion-scale dense tensors

Publisher:

Published version:

DOI:10.1109/ICDE.2016.7498294

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE Computer Society

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1592562 since 2017-05-18T13:37:55Z

2PCP: Two-Phase CP Decomposition for
Billion-Scale Dense Tensors

Xinsheng Li†
Arizona State University
Tempe, AZ 85287, USA
Email: lxinshen@asu.edu

Shengyu Huang†
Arizona State University
Tempe, AZ 85287, USA

Email: shengyu.huang@asu.edu

K. Selçuk Candan
Arizona State University
Tempe, AZ 85287, USA
Email:candan@asu.edu

Maria Luisa Sapino
University of Torino
I-10149 Torino, Italy

marialuisa.sapino@unito.it

Abstract—Tensors are multi-dimensional arrays – conse-
quently, tensor decomposition operations (CP and Tucker) are
the bases for many high-dimensional data analysis tasks, from
clustering, trend detection, anomaly detection, to correlation
analysis in various application domains, including science and
engineering1. One key problem with tensor decomposition is its
computational complexity and space requirements. Especially,
as the relevant data sets get denser, in-memory schemes for
tensor decomposition become increasingly ineffective; therefore
out-of-core (secondary-memory supported, potentially parallel)
computing is necessitated. However, existing techniques do not
consider the I/O and network data exchange costs that out-of-
core execution of the tensor decomposition operation will incur.
In this paper, we note that when this operation is implemented
with the help of secondary-memory and/or multiple servers
to tackle the memory limitations, we would need intelligent
buffer-management and task-scheduling techniques which take
into account the cost of bringing the relevant blocks into the
buffer to minimize I/O in the system. In this paper, we introduce
2PCP, a two-phase, block-based CP decomposition system with
intelligent buffer sensitive task scheduling and buffer management
mechanisms. 2PCP aims to reduce I/O costs in the analysis of
relatively dense tensors common in scientific and engineering
applications. Experiment results compare with current state of art
tensor decomposition algorithms and show that our algorithms
can significantly reduce the amount of I/O and execution time
while maintaining decomposition accuracy.

I. INTRODUCTION

Tensors are multi-dimensional arrays. Thanks to the avail-
ability of various mathematical tools (such as decompositions)
that support multi-aspect analysis of data, tensors are increas-
ingly being used for representing multi-dimensional data, such
as sensor streams and social networks [29], [18], [14], [17],
[19]. Matrix-shaped data (i.e., 2-mode tensors) are often ana-
lyzed for their latent semantics through matrix decomposition
operations, such as singular value decomposition (SVD). The
corresponding analysis operation which applies to tensors with
more than two modes is known as the tensor decomposition
operation such as CANDECOMP [7] and PARAFAC [11]
decompositions (known as the CP decomposition, Figure 1),
and Tucker decomposition [30]. These operations form the
basis for many data analysis and knowledge discovery tasks.

1This work is supported by NSF Grants 1339835 “E-SDMS: Energy
Simulation Data Management System Software”, 1318788 “Data Management
for Real-Time Data Driven Epidemic Spread Simulations” and 1430144
“Fraud Detection via Visual Analytics: An Infrastructure to Support Complex
Financial Patterns (CFP) based Real-Time Services Delivery”. This work is
also supported in part by a CES grant “Large-scale Data-driven Sensing and
Analytics for Dynamic Failure Prediction”.
† indicates student authors (with equal contributions).

XI1

I2
I3
=

r
r

r

U 3

U2
U1

r

r
r

I1 I2

I 3

Fig. 1. CP-decomposition of a 3-mode tensor [7], [11] results in a diagonal
core and three factor matrices

A. Challenge: Memory Blow-Up

A major challenge with tensor decomposition, however,
is its computational and space complexities – especially for
dense data sets2. While the process is relatively faster for
sparse tensors, decomposition is still a major bottleneck in
many applications [10]: Tensor decomposition process results
in dense (and hence large) intermediary data, even when the
input tensor is sparse (and hence small). This is known as
the intermediate memory blow-up problem [14] and renders
purely in-memory implementations of tensor-decomposition
impractical, for both CP and Tucker decompositions [23].

B. Block-based and Parallel Tensor Decompositions

As the relevant data sets get large, existing in-memory
schemes for tensor decomposition become increasingly in-
effective and block-based solutions where some (possibly
intermediate) data may be materialized on disks (instead of
main memory) or other servers contributing to the decom-
position process are necessitated. Several implementations of
tensor decomposition operations on disk-resident data sets have
been proposed. GridPARAFAC [22], for example, partitions
the tensor into pieces, obtains decomposition for each piece
(potentially in parallel), and stitches the partial decomposition
results into a combined decomposition for the initial tensor
through an iterative improvement process (Figure 2). Ten-
sorDB [15], [16] leverages a block-based framework to store
and retrieve data, extends array operations to tensor operations,
and introduces optimization schemes for in-database tensor
decomposition. HaTen2 [13] focuses on sparse tensors and
presents a scalable tensor decomposition suite of methods for
Tucker and PARAFAC decompositions on the MapReduce
framework. In all these systems, I/O costs is an inevitable
problem as they need I/O to fetch data either from disk or
from the network. As we experimentally verify in this paper,
the I/O or communication overhead of iterative algorithms

2Such dense tensors are common in science and engineering: ensemble
simulations, for example, are created by sampling the domains of the relevant
input parameters, and recording simulation results for each configuration [8].

Fig. 2. Illustration of the two-phase, block-based tensor decomposition: the input tensor is partitioned into smaller blocks, each block is decomposed (potentially
in parallel), and the partial decompositions are stitched together through an iterative improvement process (the notation is introduced in Section III)

(especially on a distributed platform like MapReduce) can
be very expensive. In addition, naive implementations of the
block-based iterative improvement algorithms can result in
significant I/O, when the buffer memory is not large enough to
hold the entire intermediary data. Consequently, reducing these
I/O and communication costs, especially for dense tensors
common in science and engineering, is a critical challenge.

C. 2PCP and Re-Use Promoting Scheduling of Block Accesses

In this paper, we propose 2PCP, a two-phase CP tensor
decomposition mechanism. As we see in Figure 2, two-
phase block-based tensor decomposition can help reduce the
memory-blow-up problem as the first phase requires decom-
position of much smaller tensors. However, the number of
the (so called factor) matrices that are produced in the first
phase and the intermediary data generated while these are
stitched together through an iterative process in the second
phase may still be quite large. Consequently, the intermediary
data may still take too much space to be fully memory-resident
and may need to be brought to the memory on on-demand
basis. Consequently, the 2PCP system we present in this paper
complements the basic two-phase CP tensor decomposition
approach with novel data re-use promoting block scheduling
and buffer management mechanisms to address this difficulty:

• In its first phase, 2PCP partitions the input data to blocks
(or sub-tensors), then conducts ALS on each sub-tensor (po-
tentially in parallel using a MapReduce based platform) inde-
pendently (Section IV).

• In the second phase, which is executed on a single worker
machine, 2PCP leverages fine-grained block centric iterative
refinement with a novel forward looking buffer replacement
strategy that helps improve buffer utilization and reduce I/O:

• In particular, we extend the conventional mode-centric
approach in a way that enables more flexible, fine-
grained, block-centric scheduling of updates and the
corresponding data accesses (Section V).

• Given this fine-grained block-centric iterative im-
provement scheme, we then consider alternative
scheduling techniques that can maximize the utility

of the intermediary-data already in the buffer (Sec-
tion VI).

• We then propose and study alternative buffer replace-
ment policies complementing the different scheduling
techniques considered above and develop a forward-
looking, predictive buffer replacement strategy that
matches the proposed scheduling techniques to further
push the I/O costs down (Section VII).

In the next section, we present the related work. In Sec-
tion III, we present the relevant background and notations
and we formalize the problem. Experiment results, reported in
Section VIII, show that the proposed algorithms significantly
reduce the amount of I/O as well the execution time. We
conclude the paper in Section IX.

II. RELATED WORK

Tensor based representations of data and tensor decomposi-
tions (especially the two widely used decompositions CP [11]
and Tucker [30]) are proven to be effective in multi-aspect
data analysis for capturing high-order structures in multi-
dimensional data [17], [28]. There are two widely used tool-
boxes: the Tensor Toolbox for Matlab [4] (for sparse tensors)
and N-way Toolbox for Matlab [3] (for dense tensors).

Since tensor decomposition is a costly process for both
sparse and tensors, various optimization and parallel algo-
rithms and systems have been developed. [18] proposed a
memory-efficient Tucker (MET) decomposition to address the
intermediate blowup problem in Tucker decomposition by up-
dating a subset of the modes at a time. [29] proposed MACH,
a randomized algorithm (based on randomized sampling) that
speedups the Tucker decomposition while providing accuracy
guarantees. Recently, [21] proposed a fast approach for CP
that decomposes an unfolded tensor in lower order, instead
of directly factorizing the high order tensor. TensorDB [15],
[16] extends a block-based array store to store and retrieve
data and introduces optimization schemes for efficient CP-
ALS based in-database tensor decompositions. [19] proposed
a novel Personalized Tensor Decomposition (PTD) mechanism
that boosts accuracy and reduces execution time in situations
where the user’s interest is not uniformly distributed across the
whole tensor.

Parallelization of tensor decompositions have been pro-
posed for different platforms [5], [9], [27]. In [23], authors
proposed a two stage (partition and merge) scheme for imple-
menting the CP decomposition in a parallizable manner. [31]
introduced various parallelization strategies such as distribut-
ing a large tensor onto the servers in a cluster, minimizing data
exchange, and limiting the memory needed for storing matrices
or tensors, to speed up factor matrix update step in tensor
decomposition. In [24], [25], authors propose PARCUBE, a
sampling based, parallel and sparsity promoting, approximate
PARAFAC decomposition scheme. [13] proposed HaTen2, a
massively distributed MapReduce based implementation of
PARAFAC and Tucker running on the MapReduce platform.
HaTen2 focuses on sparse tensors and carefully reorders the
operations and exploits the sparsity of real world tensors. Yet,
HaTen2 may still result in high communication costs during
iterative update process.

III. BACKGROUND AND NOTATIONS

We now present the relevant background and notations and
formalize the problem we consider in this paper.
A. Tensors and Tensor Decompositions

Tensors are generalizations of matrices: while a matrix is
essentially a 2-mode array, a tensor is an array of larger number
of modes. Intuitively, the tensor model maps a relational
schema with N attributes to an N -modal array (where each
potential tuple is a tensor cell).

The two most popular tensor decomposition algorithms
are the Tucker [30] and the CANDECOMP/PARAFAC (CP)
[11] decompositions. Intuitively, both generalize singular value
matrix decomposition (SVD) to tensors.

B. CP Decomposition

As shown in Figure 1, given a tensor X , CP factorizes
the tensor into F component matrices (where F is a user
supplied non-zero integer value also referred to as the rank of
the decomposition). For the simplicity of the discussion, let us
consider a 3-mode tensor X ∈ RI×J×K. CP would decompose
X into three matrices A,B, and C, such that

X ≈ X̃ = [A,B,C] ≡
F∑

f=1

af ◦ bf ◦ cf ,

where af ∈ RI, bf ∈ RJ and cf ∈ RK. The factor matrices A,
B, C are the combinations of the rank-one component vectors
into matrices; e.g., A = [a1 a2 · · · aF].

An alternating least squares (ALS) method is mainly used
in many algorithms for tensor decomposition: at each iteration,
ALS estimates one factor matrix while maintaining other
matrices fixed; this process is repeated for each factor matrix
associated to the modes of the input tensor until convergence
condition is reached. Since tensor decomposition is an approx-
imation algorithm, the new tensor X̃ obtained by recomposing
the factor matrices A, B, and C is often different from the
input tensor, X . The accuracy of the decomposition is often
measured by considering the Frobenius norm of the difference
tensor:

accuracy(X , X̃) = 1− error(X , X̃) = 1−

(
‖X̃ −X‖
‖X‖

)
.

C. Block-based CP Decomposition

As discussed previously, block-based CP decomposition
techniques partition the given tensor into blocks, initially
decompose each block independently, and then iteratively
combine these decompositions into a final composition.

Let us consider an N -mode tensor X ∈ RI1×I2×...×IN ,
partitioned into a set (or grid) of sub-tensors X = {X~k | ~k ∈
K} where K is the set of sub-tensor indexes. Without loss
of generality, let us assume that K partitions the mode i
into Ki equal partitions; i.e., |K| =

∏N
i=1 Ki. Let us also

assume that we are given a target decomposition rank, F , for
the tensor X . Let us further assume that each sub-tensor in
X has already been decomposed with target rank F and let
U(i) = {U (i)

~k
| ~k ∈ K} denote the set of F -rank sub-factors3

corresponding to the sub-tensors in X along mode i. In other
words, for each X~k, we have

X~k ≈ I ×1 U
(1)
~k
×2 U

(2)
~k
· · · ×N U

(N)
~k

, (1)

where I is the N -mode F ×F × . . .×F identity tensor, where
the diagonal entries are all 1s and the rest are all 0s.

Given these, [22] presents an iterative improvement algo-
rithm for composing these initial sub-factors into the full F -
rank factors, A(i) (each one along one mode), for the input
tensor, X . The outline of this block based process is as follows:
Let us partition each factor A(i) into Ki parts corresponding
to the block boundaries along mode i:

A(i) = [A
(i)T
(1) A

(i)T
(2) ...A

(i)T
(Ki)

]T .

Given this partitioning, each sub-tensor X~k,
~k = [k1, . . . , ki, . . . , kN] ∈ K can be described in terms of
these sub-factors (Figure 3):

X~k ≈ I ×1 A
(1)
(k1)
×2 A

(2)
(k2)
· · · ×N A

(N)
(kN)

(2)

Moreover [22] shows that the current estimate of the sub-factor
A

(i)
(ki)

can be revised using the update rule (for more details
on the update rules please see [22]):

A
(i)
(ki)
←− T

(i)
(ki)

(
S

(i)
(ki)

)−1
(3)

where

T
(i)
(ki)

=
∑

~l∈{[∗,...,∗,ki,∗,...,∗]}

U
(i)
~l

(
P~l � (U

(i)T
~l

A
(i)
(ki)

)
)

S
(i)
(ki)

=
∑

~l∈{[∗,...,∗,ki,∗,...,∗]}

Q~l �
(
A

(i)T
(ki)

A
(i)
(ki)

)
such that, given ~l = [l1, l2, . . . , lN], we have

• P~l = ~
N
h=1(U

(h)T
~l

A
(h)
(lh)

) and

• Q~l = ~
N
h=1(A

(h)T
(lh)

A
(h)
(lh)

).

Above, ~ denotes the Hadamart product and � denotes the
element-wise division operation.

3If the sub-tensor is empty, then the factors are 0 matrices of the
appropriate size.

!"
!"

!"

#"

$%&'"("

$
%
&
'
")
"

$
%&
'"
*"

+("

,("

,*"

,)"

+)"

+*"

,("

+
(
-
,
(
"

+)-,)"

+
*
-
,*
"

,)"

,*"

."

.-,"

Fig. 3. Each sub-tensor (or block) can be described in terms of the
corresponding sub-factors

While the precise derivation of the above update rule is
not critical for our discussion (and is beyond the scope of this
paper), it enables us to formulate the 2PCP two-phase, block-
based tensor decomposition process.

IV. OVERVIEW OF 2PCP

The outline of the proposed two-phase, block-based tensor
decomposition algorithm, 2PCP is presented in Algorithm 1
and visualized in Figures 2 and 4.

Example 1: In Figure 2, the given tensor X is partitioned
into two sub-tensors X 1 and X 2:

• Phase 1: In phase 1, each sub-tensor is decomposed
with a standard PARAFAC algorithm. In the example,
sub-factors U

(1)
(1), U

(2)
(1), U

(3)
(1) of sub-tensor X 1 and

sub-factors U
(1)
(2), U

(2)
(2), U

(3)
(2) of sub-tensor X 2 are

generated in the first stage.

• Phase 2: In the second phase, the sub-factors U
(i)
~k

of
each sub-tensor X~k are used for iteratively refining
the sub-factors A

(i)
(ki)

of the input tensor X.

A. Key Observations

The pseudo code presented in Algorithm 1 supports the
following key observations:

• Observation #1 (Independent/Parallel Sub-tensor De-
composition in Phase 1): Each sub-tensor X~k can be decom-
posed (in parallel) independently from the others. This ensures
that the proposed system can handle very large tensors as long
as the input tensor is partitioned into several blocks in such a
way that each block can be decomposed with the available
memory. Moreover, this phase is easy to parallelize using,
for example, the popular distributed computing framework,
MapReduce, using the following map and reduce operators
(assuming a three-mode input tensor):

• map: 〈b, i, j, k,X (i, j, k)〉 on b. Here, b is the
sub-tensor id, i, j, k together give the coordinate of
sub-tensor X~k. Tuples with the same b are shuffled
to the same reducer in the form of 〈key : b, values :
i, j, k,X (i, j, k)〉.

• reduce 〈key : b, values : i, j, k,X (i, j, k)〉:
The reducer processing the key b receives the non-
zero elements of sub-tensor X~k. It recomposes the

Algorithm 1 The outline of the 2PCP block-based iterative
improvement process
Input: original tensor X , partitioning pattern K, and decomposition

rank, F
Output: CP tensor decomposition X̊

1) Phase 1: for all ~k ∈ K
• decompose X~k into U

(1)
~k

, U (2)
~k

, . . ., U (N)
~k

2) Phase 2: repeat
a) for each mode i = 1 to N

i) for each modal partition, ki = 1 to Ki,
A) update A

(i)

(ki)
using U

(i)

[∗,...,∗,ki,∗,...,∗]
,

for each block X [∗,...,∗,ki,∗,...,∗]; more
specifically,
• compute T

(i)

(ki)
, which involves

the use of U
(i)

[∗,...,∗,ki,∗,...,∗]
(i.e. the mode-i factors of
X [∗,...,∗,ki,∗,...,∗])

• revise P [∗,...,∗,ki,∗,...,∗] using
U

(i)

[∗,...,∗,ki,∗,...,∗]
and A

(i)

(ki)

• compute S
(i)

(ki)
using the above

• update A
(i)

(ki)
using the above

• for each ~k =
[∗, ∗, . . . , ki, . . . , ∗, ∗]
◦ update P~k and Q~k using
◦ U

(i)
~k

and A
(i)

(ki)

until stopping condition
3) Return X̊

sub-tensor X~k. Then sub-tensor X~k is decomposed
into sub-factor Un

b , where n is the mode id, by
using PARAFAC. Finally, reducer emits each sub-
factor Un

b as an independent file, with content 〈 key :
Un

b , value : i, j,Un
b (i, j)〉. Here, i, j are the coordi-

nates of sub-factor Un
b .

.
• Observation #2 (In-place Iterative Refinement in Phase
2): As shown in Algorithm 1, once Phase 1 is completed, in
the second phase, each A

(i)
(ki)

can be maintained by computing

and revising T
(i)
(ki)

and P [∗,...,∗,ki,∗,...,∗] incrementally. Note
that this incremental update process presented in Algorithm 1
is logically equivalent to the one presented in [22], but includes
a significant structural difference: in [22], P and Q are
updated using a separate loop for each mode to optimize for
parallelism, whereas Algorithm 1 updates P and Q in-place
to significantly reduce the amount of disk accesses.

The total space requirement during this iterative refine-
ment process is governed by the sizes of the F -rank partial
factors, A

(i)
(ki)

, and the corresponding, U
(i)
[∗,...,∗,ki,∗,...,∗], for

each mode i of the given tensor X ; i.e., memory requirement
memtotal(X) can be computed as

N∑
i=1

Ki ×

(

Ii
Ki
× F

)
︸ ︷︷ ︸

A
(i)

(ki)

+

∏
j 6=i

Kj

× Ii
Ki
× F

︸ ︷︷ ︸
total for U

(i)

[∗,...,∗,ki,∗,...,∗]

!"#$"%&'"()*#+&"%*,-&.*/0&1&

!"
#$
"%
&'
"(
)*
#+
&"
%*
,-
&&

.
*/
0&
2&

!
"
#$
"
%&
'
"
(
)*
#+
&"
%*
,
-
&.

*
/
0
3
&

!"
!"

!"

415"&

!"
!"

!"

4356&

!"
!"

!"

425(&

Fig. 4. The outline of the mode-centric iterative improvement algorithm
proposed in [22]: the kth partial factor along mode i is updated using the
mode i partial factors of the blocks aligned with the kth mode partition along
mode i

or equivalently as

memtotal(X) ∼
N∑
i=1

1 +
∏
j 6=i

Kj

× Ii × F

 .

This implies that the total memory requirement increases
quickly with the number of partitions considered. Since,
when large tensors are considered, the number of partitions
themselves may need to be large (to ensure that each result-
ing block can be decomposed using the available memory),
memtotal(X) can go beyond the available memory.

• Observation #3 (On-demand Per Mode-Partition (MP)
Data Access in Phase 2): Fortunately, during this itera-
tive refinement process we do not need all this data in the
memory simultaneously. Incrementally maintaining T

(i)
(ki)

and

P [∗,...,∗,ki,∗,...,∗] require bringing only U
(i)
[∗,...,∗,ki,∗,...,∗] (i.e.

the mode-i factors of X [∗,...,∗,ki,∗,...,∗]) and (the old value of)
A

(i)
(ki)

to the main memory. In fact, Phase 2 can be executed
by considering each mode-partition individually and bringing
to the memory only the relevant partial factors. In other words,
for maintaining each A

(i)
(ki)

, we need

memMP (X ,A
(i)
(ki)

) ∼

1 +
∏
j 6=i

Kj

× Ii
Ki
× F

units of memory.

• Observation #4 (Challenge - Naive Execution Increases
I/O): While the above observations show that using the pro-
posed two phase Algorithm 1, we are able to significantly
reduce the amount of memory needed to decompose large
tensors. A naive implementation of this strategy, however, may
require significant amount of I/O: After each mode partition is
processed, to open space for the data needed to process the next
mode partition, (a) all updated data need to be written back to
the disk and (b) data relevant to the next mode partition need to
be read from the disk into the memory, resulting in

∑N
i=1 Ki

data swap operations for a single iteration of the algorithm. A
more reasonable alternative would be to use the memory as a

!"#

!"$%"# %"#

&'()#*#

&
'(
)#
+#

%*#

%+#

%"#

!"
!"

!"

,$%#

-*$%#

-"$%#

-+$%#

!+#!
+$%+#

%+#

!*#

%*#

!
*
$
%
*
#

Fig. 5. For any block X [k1,...,∗,ki,∗,...,kN], its factors
U

(1)
[k1,...,∗,ki,∗,...,kN]

through U
(N)
[k1,...,∗,ki,∗,...,kN]

can be used for
maintaining N sub-factors of X , one along each of the N modes.

cache for mode-partition data and only swap data in and out
of the buffer if the cache is full.

B. Problem Statement: Re-Use Promoting Data Access and
Buffer Management During Iterative Refinement Phase

As we have seen above, in the second phase of 2PCP,
the overall efficiency of the process depends highly on the
effectiveness of the buffer utilization. Therefore, the key prob-
lem that needs to be addressed to improve the efficiency of
2PCP is to improve the utilization of the buffer through re-
use promoting data access and buffer management during the
iterative improvement process.

In the rest of the paper, we introduce how 2PCP addresses
this problem: we first (a) present an alternative fine-grained
block-centric iterative refinement scheme, next (b) we consider
alternative block-scheduling techniques leveraging this block-
centric update process, and then (c) we investigate correspond-
ing buffer replacement strategies to help improve the buffer
utilization and reduce I/O costs.

V. BLOCK-CENTRIC SCHEDULING OF ITERATIVE
IMPROVEMENT PROCESS

As we have seen in the previous section (Algorithm 1 and
visualized in Figure 4), the conventional way to perform the
iterative refinement process of the block-based CP involves
considering each mode, i, separately. In this mode-centric
scheme, for the kthi partition of mode i, we then maintain
A

(i)
(ki)

using, for all 1 ≤ j ≤ N , the current estimates for

A
(j)
(kj)

and the decompositions in U(j); i.e., the F -rank sub-
factors of the sub-tensors in X along different modes.

As we experimentally validate in Section VIII, however,
this conventional scheme may result in a significant amount of
I/O (for swapping data in and out of memory) if the available
memory is not sufficient to buffer all the data. Intuitively, this
is because the order in which the update rules are applied
does not lend itself into significant amount of data sharing.
In this section, we present an alternative block-centric way to
implement the process of iterative refinement; as we see later
in the paper, this alternative process lends itself to better data
sharing and memory utilization, thereby helping reduce the
overall I/O costs.

!"#$%&'()* !"#$%&'(+*

,*

,*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/* ,*

!"#$%&'(*0* !"#$%&'(*102)3*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/* ,*

,*

(a) Mode-centric scheduling of updates
!"#$%&!'((&)*+(,&&-.&/((&0(-+1&2-$"3-.$&

44444&

44444&

44444&

44444&

0(-+1&5&0(-+1&6& 4444444444444& 4444444444444&

0(-+1&5&0(-+1&6&

44444444444&

7,+-.8&!'((&)*+(,&&-.&/((&0(-+1&2-$"3-.$&

(b) Block-centric scheduling of updates

Fig. 6. (a) Mode-centric vs. (b) block-centric scheduling of updates

Algorithm 2 The outline of the fine-grained decomposition
algorithm, used by 2PCP, which schedules update rules in a
block-centric manner
Input: original tensor X , partitioning pattern K, and decomposition

rank, F
Output: CP tensor decomposition X̊

1) for all ~k ∈ K
• decompose X~k into U

(1)
~k

, U (2)
~k

, . . ., U (N)
~k

2) repeat for each ~k = [k1, . . . , kN] ∈ K
a) for each mode i = 1 to N

i) update A
(i)

(ki)
using U

(i)

[∗,...,∗,ki,∗,...,∗]
, for

each block X [∗,...,∗,ki,∗,...,∗]; more specif-
ically,
• compute T

(i)

(ki)
, which involves the use

of U
(i)

[∗,...,∗,ki,∗,...,∗]
(i.e. the mode-i

factors of X [∗,...,∗,ki,∗,...,∗])
• revise P [∗,...,∗,ki,∗,...,∗] using

U
(i)

[∗,...,∗,ki,∗,...,∗]
and A

(i)

(ki)

• compute S
(i)

(ki)
using the above

• update A
(i)

(ki)
using the above

ii) for all ~l = [∗, . . . , ∗, ki, ∗, . . . , ∗] ∈ K
• update P~l and Q~l using

◦ U
(i)
~l

and A
(i)

(ki)until stopping condition
3) Return X̊

A. Block-centric Scheduling of the Update Rules for Iterative
Refinement

The key observation that forms the basis of this alternative
iterative refinement process is visualized in Figure 5: here,
we see that for any block X [k1,...,∗,ki,∗,...,kN], its factors
U

(1)
[k1,...,∗,ki,∗,...,kN] through U

(N)
[k1,...,∗,ki,∗,...,kN] can be used

for maintaining N sub-factors of X , one along each of the N
modes. Therefore an alternative way to implement the iterative
refinement process is to schedule the update rules in a block-
centeric manner as opposed to the mode-centeric manner of
the conventional scheme.

The outline of the proposed block-centric iterative refine-
ment process is visualized in Algorithm 2. While the core
update-rule is identical to that of the conventional, mode-
centric decomposition process [22] (detailed in Algorithm 1)
and while the two algorithms have the same time and space
complexities, these two algorithms differ significantly in the

ways the update-rules are scheduled:

• as visualized in Figure 6(a), the mode-centric Algo-
rithm 1 considers each mode one at a time, and for
each mode it schedules the update rule for all the
partitions of that mode; whereas

• as visualized in Figure 6 (b), the block-centric Algo-
rithm 2, considers the individual block positions one
at a time, and for each block index, ~k, it schedules
update rules for all N modes together.

One way to see the key difference between these two algo-
rithms is to consider their outer repeat-loops: as also visualized
in Figure 6, in the mode-centric Algorithm 1, for each cycle
of the repeat rule, each sub-factor, A(i)

(ki)
, along each mode,

i, is updated exactly once. In the block-centric Algorithm 2,
however, when all the block indexes, ~k ∈ K, are considered
once, the sub-factor A

(i)
(ki)

along mode i is updated once for

each block along the partition ki; i.e., A(i)
(ki)

has been updated∏
j 6=i Kj times.

Definition 1 (Block-Centric Update Schedule): Let us
consider an N -mode tensor X ∈ RI1×I2×...×IN , partitioned
into a set (or grid) of sub-tensors X = {X~k | ~k ∈ K} where
K is the set of sub-tensor indexes. An update schedule,
S = 〈u1, u2, . . .〉, is a sequence, such that each uj belongs to
the set, K, of block positions.

In other words, a block-centric update schedule drives the
order in which Algorithm 2 applies its updates through the
order in which the blocks of the tensor are considered. In this
paper, we consider tensor-filling, cyclic update schedules.

Definition 2 (Tensor-Filling Schedules): Let
X ∈ RI1×I2×...×IN be an N -mode tensor partitioned
into a grid of blocks and K be the indexes of the resulting
blocks. A schedule, S, is said to be tensor-filling if S is of
the form C : C : C : . . . : C ′ (i.e., S can be thought as a
repeated concatenation of a cycle sequence, C), such that

• the length of the cycle sequence C is equal to
|K|,

• there exists a one-to-one mapping between uj ∈
C, and ~ki ∈ K,

• the last (potentially partial) sequence, C ′, is a
prefix of the cycle sequence C.

Intuitively, a tensor-filling schedule consists of cycle se-
quences, each traversing all the blocks of the given tensor –
possibly except the last cycle, which may be partial if the
termination condition is satisfied before the cycle sequence is
completed. A tensor-filling cycle sequence would ensure that
all sub-factors of X are updated using all the data available
from the decompositions of its blocks.

B. Virtual Iterations

In the mode-centric Algorithm 1, the stopping condition
is checked once for each iteration of the outer repeat-loop;
in other words, each sub-factor, A

(i)
(ki)

, along each mode, i,
is updated once. On the other hand, the outer-cycle of the
block-centered Algorithm 2 is not necessarily aligned with
individual iterations of the outer repeat-loop Algorithm 1. In
fact, as visualized in Figure 6, each cycle of Algorithm 2
potentially involves many more updates than a single iteration
of Algorithm 1. This naturally raises the question of when
to check for the termination condition. While the termination
condition can be checked at the end of one full cycle, this
might result in redundant updates if the termination condition
is reached early in a cycle.

Therefore, instead of using cycle boundaries as positions
for termination condition evaluation, we introduce virtual
iterations, which are equal in length to the length of the
iterations of the mode-centric update process.

Definition 3 (Virtual Iteration): Given an N -mode tensor
X ∈ RI1×I2×...×IN , partitioned into a set (or grid) of sub-
tensors X = {X~k | ~k ∈ K} where K is the set of sub-tensor
indexes, partitioning each mode i into Ki equal partitions, the
length of each virtual iteration is

length virtual iteration(K) =
N∑
i=1

Ki

updates of the sub-factors of X.

Given a tensor-filling, cyclic update schedule S with cycle
C, the update schedule C is split into

∏N
i=1 Ki∑N
i=1 Ki

virtual itera-
tions, each of length length virtual iteration(K).
As visualized in Figure 7, we check for termination once for
each virtual iteration.

VI. I/O REDUCING UPDATE SCHEDULES

Intuitively, when the available buffer is not sufficient to
hold the entire data needed to support the decomposition
process, the efficiency of the decomposition will necessarily
depend on the effectiveness of the utilization of the buffer.
In this section, we consider alternative block-centric update
scheduling techniques, which set the order in which blocks
are considered in a way to boost data reuse and reduce I/O
needed to obtain tensor decomposition.

In Section IV-A, we had formalized the amount of data
needed for each iteration of the mode-centric iterative improve-
ment algorithm. We now formalize the amount of data needed
for each step of the block-centric update process.

Definition 4 (Unit of Data Access): As we see in Algo-
rithm 2, for each ~k = [k1, . . . , kN] ∈ K, we need to bring

!"
!"

!"

!"#

!"
!"

!"

!$#

!"
!"

!"

!%#

&"#

&$#

&%#

'&"(&$(&%)#

*"
&"#

*$
&$#

* %
&% #

Fig. 8. For a given block position ~k = [k1, . . . , kN] ∈ K, we need to
bring into the memory, for each mode i = 1 to N , the data unit data(~k, i)
consisting of the sub-factor, A(i)

(ki)
and U

(i)
[∗,...,∗,ki,∗,...,∗]

.

into the memory, for each mode i = 1 to N , (a) the sub-
factor, A

(i)
(ki)

, of the corresponding mode partition, and (b)
the ith mode factors of all blocks corresponding to the mode
partition ki; i.e., U

(i)
[∗,...,∗,ki,∗,...,∗]. Therefore, for a given a

block position, ~k = [k1, . . . , kN] ∈ K,

data(~k, i) =

{
A

(i)
(ki)

; U
(i)
[∗,...,∗,ki,∗,...,∗]

}
, i ∈ {1 . . . N}

are the N units of data needed for implementing the update
corresponding to this block position.

This is visualized in Figure 8. Therefore the data in the buffer
can be organized in terms of mode-partition pairs,

〈i, ki〉 =
{
A

(i)
(ki)

; U
(i)
[∗,...,∗,ki,∗,...,∗]

}
,

of size (assuming 8-byte double precision representation)
(

Ii
Ki
× F

)
︸ ︷︷ ︸

A
(i)

(ki)

+

∏
j 6=i

Kj

× (Ii
Ki
× F

)
︸ ︷︷ ︸

U
(i)

[∗,...,∗,ki,∗,...,∗]

×8

bytes

as also discussed in Section IV-A. Once brought into
memory, such a pair can be used for implementing the factor
matrix revision updates at any block position ~k for which the
ith mode partition is equal to ki.

A. Re-Use Promoting Schedules

As seen above, the update process corresponding to two
distinct block positions, ~k = [k1, . . . , kN] ∈ K and ~l =

[l1, . . . , lN] ∈ K, can share the same U (i)
[∗,...,∗,ki,∗,...,∗] matrices,

if ki = li for some mode i, 1 ≤ i ≤ N (i.e., they are along
the same mode partition on mode i). The larger the number
of common mode partitions between ~k = [k1, . . . , kN] and
~l = [l1, . . . , lN], the larger will be the sharing of U matrices.
This leads us to our primary desideratum.

!"#$%&'()* !"#$%&'(+*

,*

,*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/*

!"#$%&'(*0* !"#$%&'(*102)3*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/*

45$6"*4788*9:;8#**'(*%88*<8';=*>'65&'(6*

,,,,,*

,,,,,*

,,,,,*

,,,,,*

<8';=*)*<8';=*+* ,,,,,,,,,,,,,* ,,,,,,,,,,,,,*

<8';=*)*<8';=*+*

,,,,,,,,,,,*

,*

,*

?#;'(.*4788*9:;8#**'(*%88*<8';=*>'65&'(6*

,

,

@5$"7%8*!"#$%&'(* @5$"7%8*!"#$%&'(* @5$"7%8*!"#$%&'(*

,*,*

@5$"7%8*!"#$%&'(*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

!
"
#
$
%&
$
'
(
)
*+
,

-
."
+
/
%&
$
'
(
)
*+
,

Fig. 7. Virtual iterations are equal in length to the length of the iterations of the mode-centric update process and the block-centric process checks for termination
once for each virtual iteration.

Desideratum 1 (Reuse-Promoting Schedules): The cycle
sequence, C = 〈u1, u2, . . . , um〉 of the update schedule S
should be such that, the closer ua and ub are to each other
(i.e., the smaller |a− b| is), the larger the intersection between
the corresponding block partitions, ~ka, ~kb ∈ K. ♦

As we experimentally validate in Section VIII, the more reuse-
promoting a schedule is, the lower is the number of accesses to
the disk. We next consider alternative update schedules, with
different traversal patterns of the tensor blocks.

B. Fiber-Order Update Schedules

The first, straightforward, alternative is to traverse the
tensor blocks one fiber at a time as shown in Figure 9(a).
This strategy is very simple to implement in the form of a set
of nested loops, with one loop for each mode.

Fiber-order update schedules support significant amount of
data re-use. To see why, consider two consecutive block posi-
tions ~kh = [kh,1, . . . , kh,N] and ~kh+1 = [kh+1,1, . . . , kh+1,N],
visited as the schedule traverses along a single fiber. It is
easy to see that, in most cases, the only difference be-
tween these two positions will be in their N th position; i.e.,
∀i<N (kh,i = kh+1,i) and (kh+1,i = kh,i + 1). Consequently,
∀i<N data(~kh, i) = data(~kh+1, i). Therefore (assuming that
N data units fit into memory), once all the data needed for
the block position, ~kh, are brought into memory, the only new
data unit that may need to be fetched from the disk for the
block position, ~kh+1, is data(~kh+1, N).

C. Fractal-based Update Schedules

We, however, note that we can have even better data reuse
by using fractal-structured block traversals, instead of relying
on this simple fiber-order scheduling strategy. A fractal curve,
thus, is a curve that looks similar when one zooms-in or
zooms-out in the space that contains it. Fractals that are space-
filling, such as Z-order curve [20] and Hilbert curve [12] are
known to show good clustering properties in the sense that
these curves tend to completely traverse a neighborhood of
the space before moving to another neighborhood.

Our intuition is that, if two block locations ~ka =
[ka,1, . . . , ka,N] and ~kb = [kb,1, . . . , kb,N], share significant
amount of data, then traversals based on space-filling fractal
curves are likely to visit them close to each other. Based on

(a) fiber-order schedule

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

6

 7

1
1
0

1
1
1

 3

 4

5

0
1
1

1
0
0

1
0
1

13

0

1

2

0
0

0
0
1

0
1
0

0

0
0

CZ(010,011) = 001101

5

 6

 7

 2

3

 4

0

1

0 1 2 3 4 5 6 7

(b) z-order (c) Hilbert-order

Fig. 9. Alternative update schedules for the blocks of a 2-mode tensor (the
numbers along a given mode denote the block indexes along that mode)

this intuition, we propose two update scheduling techniques,
based on Z-order and Hilbert-order traversal of tensor blocks.

1) Z-Order Update Schedules: Z-order (or Morton-order)
curve [20] is a fractal-based curve that fills the space more
effectively than the fiber-order traversal described above. In
particular, as mentioned above its fractal nature ensures that
it clusters nearby block positions (i.e., nearby block positions
are visited close to each other during traversal).

Let us consider an N -mode tensor where each mode i
is partitioned into 2m partitions for some m > 0 and let
~k = [k1, k2, . . . , kN] be a block position. Then, the Z-value
corresponding to ~k is an integer, zvalue(~k), defined as follows:
∀1≤i≤N∀1≤j≤m

zvalue(~k).base2((m− j)N + i) = ki.base2(j),

where, given an integer a (0 ≤ a ≤ 2m − 1), a.base2(j) ∈
{0, 1} denotes the value of the jth least significant bit of a.

Figure 9(b) provides an example. In this example, the block
position [2, 3], has the corresponding Z-order value, 0011012
(= 1310), which can be obtained by shuffling the bits of

the inputs, 0102 (= 210) and 0112 (= 310) as specified by
the above formula. This example also shows that the Z-order
traversal of the space is self-similar (i.e., composed of “Z”s at
multiple scales) and clustered: block-positions that are closer
to each other on the grid tend to be visited closer to each other
also in traversal sequence. We argue that this property of the
Z-order traversal should help provide a more re-use promoting
schedule than the fiber-order traversal.

2) Hilbert-Order Update Schedules: A second look at Fig-
ure 9(b), however, points to a potential weakness of the Z-order
traversal: the Z-order traversal of the blocks contains a few
relatively large jumps and, at these points, the Z-order based
schedule may result in a large amount of data to be brought into
the memory from the disk. Therefore, the Hilbert (or Peano-
Hilbert) curve [12], which tends to have smaller jumps, may
provide a higher degree of reuse-promotion. Figure 9(c) shows
a sample Hilbert traversal of blocks assuming a 2 mode tensor.
As we see here, Hilbert traversal relies on “U” shaped curve-
segments (as opposed to the “Z” shaped curve-segments of the
Z-order traversal) and this helps better preserve the adjacency
property (i.e., avoiding discontinuity - which would require
undesirable jumps).

As we experimentally verify in Section VIII, Hilbert-
order based traversal indeed provides lower I/O costs than Z-
order based scheduling of the updates. However, one difficulty
with the Hilbert-order traversal is that, unlike the Z-order
traversal, there does not exist an efficient way to map from
the block positions to the positions on the Hilbert curve (and
vice versa). Existing algorithms are not practical for tensors
with large numbers (10s or 100s) of modes as they may
require large amounts of memory. Therefore, in those cases,
Z-order traversal, which (as described above) has very efficient
mapping implementations, may be preferred over Hilbert-order
traversals of block positions.

VII. UPDATE SCHEDULE AWARE BUFFER REPLACEMENT

So far, we focused on the problem of selecting an update
schedule for tensor decomposition refinement such that the
total amount of data that need to be brought from disk to
the buffer is minimized. In this section, we argue that the
I/O needed to perform the iterative refinement can be further
reduced by using buffer replacement policies that complement
the traversal order, driving the update scheduling process. In
particular, we argue that the common least-recently used (LRU)
buffer replacement strategy4, which relies on the temporal-
locality principle (i.e., assumes that data brought to the mem-
ory recently is likely to be used also in the near future) and
drops the data which have been used furthest in the past, is
not likely to be effective.

A. Fiber-Order Schedules and MRU

Let us first consider the fiber-order strategy described in
Section VI-B and visualized in Figure 9(a). It is easy to see that
data brought to the memory for a given block of a fiber will not
be accessed again during the traversal of that fiber. This implies
that temporal locality principle does not hold during fiber-order
traversal. In contrast, due to the looping characteristic of the

4For example, SciDB[1] array database underlying TensorDB [15], [16]
implements LRU-based buffer management.

!"#$#$"#$%&'

(%
"#$%'

(#
"#$#'

!"%$#$"%$%&'

(%
"%$%'

(#
"%)#'

*+,,-./''

012341.'

#'

%'

5'

6'

/,78-,279'2*:-;+9-'

<%
!"#$#$"#$%&'

<#
!"#$#$"#$%&' <#

!"%$#$"%$%&'

<%
!"%$#$"%$%&'

Fig. 10. Forward-looking, schedule-aware buffer replacement: Let us assume
that the buffer currently contains the 4 shown data units, 2 for each of
[k1,1, k1,2] and [k2,1, k2,2]. Since, according to the current traversal plan,
data([k1,1, k1,2], 2) = {A(2)

(k1,2)
; U

(2)
[k1,1,k1,2]

} is the last data unit to be
needed, it will be the one selected for replacement

traversal, a temporal-alocality principle (which states that data
brought to the memory for a block is not likely to be used
in the near future) holds and this implies that a most-recently
used (MRU) buffer replacement strategy may be more suitable
for fiber-order schedules.

B. Forward-Looking Buffer Replacement

More importantly, though, the definition of the unit of
data access (Definition 4 in Section VI), along with the
proposed update scheduling techniques, enable more precise
forward-looking, and traversal order aware, predictive buffer
replacement strategies as opposed to the backward-looking
strategies, such as LRU and MRU. In particular, as we
have seen in the previous section, the data in the buffer
are organized in the form of mode-partition pairs, 〈i, ki〉 ={
A

(i)
(ki)

; U
(i)
[∗,...,∗,ki,∗,...,∗]

}
. Once brought into memory, a

〈i, ki〉 pair is used for updates at any block position ~k for which
the ith mode partition is equal to ki. Consequently, given the
current position in an update schedule, if we can compute for
each mode-partition pair 〈i, ki〉 in the buffer, how far in the
future the traversal will cross that mode-partition pair, then we
can select for replacement the pair that will be crossed furthest
in the future (Figure 10).

While such forward-looking replacement policies are dif-
ficult to implement when the data accesses are irregular and
unpredictable, thanks to the regular natures of fiber-, Z-, and
Hilbert-order traversals, it is possible to compute in advance
precisely how far in the future (i.e., how urgently) a given data
unit that is brought into the buffer will be needed again. This
enables us to maintain the data units in an order of urgency
and, if needed, replace the least urgent data unit. As we see
in the next section, this forward-looking, traversal-order aware
replacement policy significantly reduces the I/O cost of the
decomposition process.

VIII. EXPERIMENTAL EVALUATION

In this section, we report experiments that aim to assess
the effectiveness of the proposed disk and buffer sensitive up-
date scheduling and buffer management techniques underlying

Tensor size 2PCP (sec.) HaTen2 (sec.)
500× 500× 500 (0.025B non-zeros) 92.9 2380.2
1000× 1000× 1000 (0.2B non-zeros) 441.5 11764.9
1500× 1500× 1500 (0.7B non-zeros) 1513.9 FAILS

TABLE I. COMPARISON OF EXECUTION TIMES ON BILLION-SCALE
DENSE TENSORS (DENSITY 0.2; TARGET RANK 10; RESULTS REPORTED

HERE USE A 2× 2× 2 PARTITIONING STRATEGY FOR 2PCP; DUE TO THE
LARGE EXECUTION TIME OF HATEN2, WE ONLY REPORT EXECUTION TIME

FOR 1 ITERATION)

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	

Ex
cu
%o

n	
%m

e	
(s
ec
on

ds
)	

#	 of	 non-‐zeros	 (Billion)	

The	 Rela%onship	 between	 the	 #	 of	 Non-‐
Zero	 Elements	 and	 the	 Execu%on	 Time	

Fig. 11. 2PCP scales well as the tensor size grows (data from Table I)

2PCP. In particular, we aim to observe and report the amount of
I/O (i.e., data swaps) necessitated by different update schedules
under different partitioning strategies, memory availabilities,
and buffer replacement strategies.

A. Experiments with Strong Configuration

In these experiments, we considered billion-scale (with
∼ 1 billion non-zero entries) dense tensors and compared the
execution time performance of 2PCP to that of another billion-
scale tensor decomposition platform, HaTen2 [13]. Note that
unlike 2PCP designed for scientific applications, HaTen2 is
designed for handling sparse tensors, commonly found in
social media applications.

Hardware. For these experiments, we used EC2 platform with
R3.xlarge configurations: we deployed 2PCP and HaTen2 each
on 8 Intel Xeon E5-2670 v2 (Ivy Bridge) Processors (4 CPUs,
each with 30.5GB and 80 GB SSD storage).

Software. Distributed version of 2PCP was implemented in
Java 7, over Hadoop 0.20.2. The binary code for HaTen2 was
obtained from http://datalab.snu.ac.kr/haten2.

In Table I, we compare the execution time performance of
2PCP to that of HaTen2 [13] for dense tensors of different sizes.
As we mentioned earlier, HaTen2 is designed for handling
sparse tensors, commonly found in social media applications,
whereas 2PCP (motivated by scientific and engineering applica-
tions) does not make this assumption. The results reported in
Table I confirm this: as we see in this table and Figure 11,
while 2PCP scales well as the tensor size grows, HaTen2
requires significantly more time and memory and soon fails
to run with the available resources.

It is important to note that this execution time gain does
not come with any loss in accuracy. In fact, 2PCP provides sig-
nificantly higher accuracy than that of HaTen2. For example,
for the case with 0.025B non-zeros, the fit measure (described
in Section III-B) for 2PCP is 0.077 whereas HaTen2’s fit for
the same configuration is only 0.0011.

Part. Phase I Phase II Total
BD (per block) LRU FOR LRU FOR

Naive CP >12 hours N/A N/A N/A N/A
2× 2× 2 79.1 10.6 9.6 89.7 88.7
4× 4× 4 9.8 64.3 54.5 74.1 64.4

TABLE II. EXECUTION TIMES (IN MINUTES)

Parameter Alternative values
partitions 2× 2× 2; 4× 4× 4; 8× 8× 8
Buffer size (portion of
the total space require-
ment)

1/3; 1/2; 2/3

(virtual) iterations 100; 200
Schedules Mode-centric (MC); Fiber-order (FO); Z-order

(ZO); Hilbert-order (HO)
Replacement LRU; MRU; Forward (FOR)

TABLE III. PARAMETER SETTINGS (UNLESS OTHERWISE SPECIFIED)

B. Experiments with Weak Configuration

In addition to the configuration considered above,
we also ran experiments with a weaker configuration,
consisting of quad-core Intel(R) Core(TM)i5-2400 CPU
@ 3.10GHz machines with 8.00GB RAM. Since in
this configuration the main-memory is much smaller,
2PCP is implemented on top TensorDB (obtained from
https://github.com/mkim48/TensorDB and
installed on SciDB 12.12 [1], using Python and C++) to
enable out-of-core CP-ALS computations in Phase 1.

In Table II, we compare Naive CP-ALS against 2PCP
with LRU and the forward-looking (FOR) strategies (both
under the proposed Z-order update scheduling scheme) for
different partition scenarios, for a 1000 × 1000 × 1000 of
high density (0.49). The target rank was set to 100. Here,
the execution time for the first phase includes the time for
obtaining and decomposing each block. The second phase was
ran until convergence. The table also includes times for the
conventional CP-decomposition (i.e., default TensorDB with
no partitioning [15], [16]).

The first thing to note in this table is that, compared
to conventional CP tensor decomposition (without partition-
ing), the fine-grained decomposition strategies that operate in
a block-centric manner, significantly improve the execution
time of tensor decomposition process. Secondly, we see that,
as expected, the forward-looking buffer replacement (FOR)
outperforms the LRU buffer replacement strategy. The fastest
execution time was obtained using the 4×4×4 strategy, where
the forward strategy (FOR) completed in 64.4 minutes, against
74.1 minutes for the LRU strategy, a ∼ 15% gain. These results
are especially significant when considering that (a) this tensor
cannot be decomposed using a fully in-memory Matlab based
strategy and (b) a naive secondary-storage supported CP tensor
decomposition using TensorDB runs more than 12 hours for
the same configuration.

C. Parameter Analysis (Stand-Alone Configuration)

In the next set of experiments we study the impact of
various parameters on the data swap and accuracy performance
of 2PCP. These experiments are running on a stand alone
version of 2PCP developed to support system-independent
evaluation of the algorithms underlying 2PCP: in order to count
data swaps precisely, this version is implemented and run using
Matlab 7.11.0 (2010b) and Tensor Toolbox Version 2.5 [4].

0	

5	

10	

15	

20	

25	

MC	 FO	 ZO	 HO	 MC	 FO	 ZO	 HO	 MC	 FO	 ZO	 HO	

2x2x2	 4x4x4	 8x8x8	

Per-‐Itera6on	 Data	 Swaps	 (buffer	 size	 =	 1/3*total	 req.)	

LRU	

MRU	

FOR	

0	

5	

10	

15	

20	

25	

MC	 FO	 ZO	 HO	 MC	 FO	 ZO	 HO	 MC	 FO	 ZO	 HO	

2x2x2	 4x4x4	 8x8x8	

Per-‐Itera6on	 Data	 Swaps	 (buffer	 size	 =	 1/2*total	 req.)	

LRU	

MRU	

FOR	

0	

5	

10	

15	

20	

25	

MC	 FO	 ZO	 HO	 MC	 FO	 ZO	 HO	 MC	 FO	 ZO	 HO	

2x2x2	 4x4x4	 8x8x8	

Per-‐Itera6on	 Data	 Swaps	 (buffer	 size	 =	 2/3*total	 req.)	

LRU	

MRU	

FOR	

(a) Buffer size is 1
3 of total data req. (b) Buffer size is 1

2 of total data req. (c) Buffer size is 2
3 of total data req.

Fig. 12. Per-(virtual)iteration number of data swaps for different configurations (since the per-iteration number of swaps is not a function of the data, but the
number of partitions and the size of the buffer relative to the total space requirement, we have the same result for all data sets)

Evaluation Criteria - Data Swaps. Since (a) the wall-clock
execution times depend on the particular hardware/software
setting (including the disk page read/write times and data
compression/decompression costs – based on whether the data
is compressed on the disk) and (b) since the block-based
decomposition process is I/O-bound5 we observe and report
the amount of I/O (i.e., data swaps) between the disk and
memory buffer for different scenarios, as is common in the
buffer/cache management literature.

Evaluation Criteria - Accuracy. We use the measure reported
in Section III-B to assess decomposition accuracy. Each exper-
iment is ran 10 times and we report median results.

Data. We used four real datasets with different character-
istics: Epinions [32], Ciao [32], Enron [26], and Face [2].
The first two of these are comparable in terms of their
sizes and semantics: they are represented in the form of
170 × 1000 × 18 (density 2.4 × 10−4) and 167 × 967 × 18
(density 2.2 × 10−4) tensors, respectively, and both have the
schema 〈user, item, category〉. The Enron email data set,
however, is larger (5632 × 184 × 184, density 1.8 × 10−4)
and has a different schema, 〈time, from, to〉. The Face data
set, a benchmark for research of face recognition, is a dense
480×640×100 tensor with schema 〈x-coord, y-coord, image〉
and density 1.0. For these experiments, we set the stopping
condition to an accuracy improvement of less than 10−2 per
iteration; but, we also set a maximum number of (virtual)
iterations to help observe how quickly iterative improvement
converges under different strategies. In these experiments, we
set the target decomposition rank to 100.

Parameter Settings. The number of data swaps necessary for
iterative improvement is not a function of the absolute data
size, but the number of partitions and the size of the buffer
relative to the total space requirement (see Section IV-A).
Therefore, as we report in Table III, in these experiments,
we primarily vary the number of partitions of the tensors
and the size of the memory buffer, relative to the total space
requirement for the decomposition process.

1) Amount of I/O (Data Swaps): In Figure 12, we see
per-(virtual)iteration data swaps for different scheduling and
replacement algorithms, and different buffer sizes. Since the
number of per-iteration swaps is not a function of the data,

5We observed that, on the average, swapping a block takes ∼ 3 times more
than the time needed to perform the in-memory operations on the block.

but the number of partitions and the size of the buffer relative
to the total space requirement, we have the same result for
all data sets. To see the impact of scheduling on convergence,
the scheduling process was run without any bound on iter-
ations. As we see in this figure 12, for all configurations
the conventional mode-centric (MC) update plans result in
the highest amount of I/O. In contrast, the proposed block-
centric schedules require significantly lesser I/O, especially
when combined with the forward-looking, schedule aware
buffer replacement strategies. The worst strategy is the mode-
centric (MC) schedules with LRU buffer replacement, with up
to ∼ 24 swaps per iteration, for 8×8×8 partitions, independent
of the buffer availability; while MRU based replacement brings
the number of swaps down, MC is overall the worst strategy.
In contrast, block-centric Hilbert-order schedules (HO) with
forward-looking (FOR) buffer replacement has as low as ∼ 1.1
swaps per iteration for 8 × 8 × 8 partitions with 1

3 buffer
availability and ∼ 0.22 swaps per iteration for the same
partition with 2

3 buffer availability.

To give context, let us consider a 100K × 100K × 100K
tensor partitioned into 8 × 8 × 8 blocks. Let us also assume
that our target rank is 100. The best case for MC is on the
average ∼ 8.32 swaps per iteration with MRU, corresponding
to (assuming double-precision number representation)

8.32×
((

105

8
× 100

)
+

(
(8× 8)×

(
105

8
× 100

))
× 8

)
' 6GB data exchange per iteration (Section VI). In contrast,
for the same configuration, Hilbert-order (HO) schedule with
forward-looking replacement (FOR) requires only ∼ 0.22
swaps per iteration, corresponding to only ∼ 160MB data
exchange per iteration.

2) Accuracy Results: In Figure 13, we see the accuracy
results for different data sets, scheduling algorithms, and
partition configurations The charts in the figure plot the
relative accuracy difference between the block-centric algo-
rithms (fiber-order, FO, Z-order, ZO, and Hilbert-order, HO)
and conventional mode-centric scheduling (MO). Positive rel-
ative difference indicates cases where buffer-centric approach
outperforms mode-centric approach.

As we see here, except for a few instances (specifically
Enron data set, 2×2×2 partitions), the accuracies of the block-
centric algorithms (especially Hilbert-order, HO) do match
or exceed the accuracies of the mode-centric algorithm. As
expected, the variability is higher for the sparse data sets as
the accuracy of the block-based iterative improvement strategy

!"#$%

!&#$%

!'#$%

!(#$%

#$%

(#$%

'#$%

&#$%
'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

+,-.-/.0% 1-2/% +.3/.% 4256%

768-2.%955:325;%<-=636.56%36>2?@6%A/%AB6%955:325;%

C-AB%71%D5B68:>6%!%(E&%F:=63G%79H%%(##%IA632?/.0%

!"#

$"#

%"#

(a) Max. 100 iterations; buffer size is 1
3 of total data req.

!"#$%

!&#$%

!'#$%

!(#$%

#$%

(#$%

'#$%

&#$%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

+,-.-/.0% 1-2/% +.3/.% 4256%

768-2.%955:325;%<-=636.56%36>2?@6%A/%AB6%955:325;%/C%

71%D5B68:>6%!%(E&%F:=63G%79H%%'##%IA632?/.0%

!"#

$"#

%"#

(b) Max. 200 iterations; buffer size is 1
3 of total data req.

Fig. 13. Relative accuracy difference: positive values indicate cases where
buffer-centric approach outperforms mode-centric approach.

depends highly on the densities of the blocks and, on sparse
data sets, densities of the blocks can vary significantly. For the
dense Face data set, accuracies for the mode- and block-centric
algorithms are virtually identical.

IX. CONCLUSIONS

In-memory implementations of tensor decomposition oper-
ations do not scale well. In this paper, we introduced 2PCP,
a two-phase CP decomposition system with novel re-use pro-
moting data access scheduling and buffer replacement mech-
anisms for efficient implementations of out-of-core and/ore
parallel tensor decompositions. We first extended a block-
based iterative improvement scheme in a way that enables
fine-grained scheduling decisions for data accesses. Given
this fine-grained block-centric scheme, we then considered
alternative update scheduling techniques that maximizes the
utility of the intermediary-data already in the buffer. We then
proposed alternative buffer replacement policies and a forward-
looking buffer replacement strategy that matches the proposed
scheduling techniques to further bring the I/O costs down.

REFERENCES

[1] http://www.scidb.org.
[2] “The extended yale face database b”, http://vision.ucsd.edu/∼leekc/

ExtYaleDatabase/ExtYaleB.html.
[3] C. A. Andersson and R. Bro. The n-way toolbox for matlab. Chemo-

metrics and Intelligent Laboratory Systems, 52(1):1-4, National Labs,
2000.

[4] B. W. Bader, T. G. Kolda, et al. MATLAB Tensor
Toolbox Version 2.5, Available online, January 2012. URL:
http://www.sandia.gov/∼tgkolda/TensorToolbox.

[5] A. Beutel, A. Kumar, E. E. Papalexakis, P. P. Talukdar, C. Faloutsos, and
E. P. Xing. Flexifact: Scalable flexible factorization of coupled tensors
on Hadoop. SDM, 2014.

[6] P. G. Brown. Overview of scidb: large scale array storage, processing
and analysis. In SIGMOD, 963–968, 2010.

[7] J. Carroll and J.-J. Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition. Psychometrika, 1970.

[8] K. S. Candan. Scalable Retrieval and Analysis of Simulation and Obser-
vation Data Sets. 7th International Conference on Similarity Search and
Applications, SISAP 2014.

[9] J. H. Choi and S. V. Dfacto: Distributed factorization of tensors.
Advances in Neural Information Processing Systems 27, pages 1296-
1304, 2014.

[10] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton.
Mad skills: new analysis practices for big data. Proc. VLDB Endow.,
2(2):1481–1492, Aug. 2009.

[11] R. A. Harshman, Foundations of the PARAFAC procedure: Model
and conditions for an explanatory multi-mode factor analysis. UCLA
Working Papers in Phonetics, 16:1-84, 1970.

[12] D. Hilbert. Ueber stetige abbildung einer linie auf ein flachenstuck.
Mathematische Annalen, 38:459-460, 1891.

[13] I. Jeon, E. Papalexakis, U. Kang, and C. Faloutsos. HaTen2: Billion-
scale tensor decompositions. ICDE’15, 1047-1058, 2015.

[14] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor:
scaling tensor analysis up by 100 times algorithms and discoveries. KDD,
2012

[15] M. Kim and K.S. Candan. Efficient Static and Dynamic In-Database
Tensor Decompositions on Chunk-Based Array Stores. CIKM, 2014.

[16] M. Kim and K.S. Candan. TensorDB: In-Database Tensor Manipulation
with Tensor-Relational Query Plans. CIKM Demos, 2014.

[17] T. G. Kolda and B.W. Bader. The tophits model for higher-order web
link analysis. Workshop on Link Analysis, Counterterrorism and Security,
2006

[18] T. G. Kolda, J. Sun. Scalable tensor decompositions for multi-aspect
data mining. ICDM, 2008.

[19] X. Li, S. Huang, K.S. Candan, M.L. Sapino. Focusing Decomposition
Accuracy by Personalizing Tensor Decomposition (PTD). CIKM, 2014.

[20] G. M. Morton. A computer oriented geodetic data base; and a new
technique in file sequencing. Technical Report, Ottawa, Canada: IBM
Ltd., 1966.

[21] A. H. Phan et al. CANDECOMP/PARAFAC decomposition of high-
order tensors through tensor reshaping. TSP, 2013.

[22] A. H. Phan and A. Cichocki, PARAFAC algorithms for large-scale
problems, Neurocomputing, 74(11), 2011.

[23] A. H. Phan and A. Cichocki. Block decomposition for very large-scale
nonnegative tensor factorization. CAMSAP, Workshop, 2009.

[24] E. Papalexakis, C. Faloutsos, N. Sidiropoulos. Parcube: Sparse paral-
lelizable tensor decompositions. ECML/PKDD. 2012.

[25] E. Papalexakis, C. Faloutsos, N.Sidiropoulos. Parcube: Sparse par-
allelizable CANDECOMP-PARAFAC tensor decompositions. TKDD
10(1): 3. 2015.

[26] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park. Enron data
set, 2006. http://cis.jhu.edu/ parky/Enron/enron.html

[27] K. Shin and U. Kang. Distributed methods for high-dimensional and
large-scale tensor factorization. ICDM, pages 989–994, 2014.

[28] J. T. Sun, H. J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a novel
approach to personalized web search. WWW, 2005

[29] C. E. Tsourakakis, Mach: Fast randomized tensor decompositions. Arxiv
preprint arXiv:0909.4969, 2009

[30] L. Tucker, Some mathematical notes on three-mode factor analysis.
Psychometrika, 31:279-311, 1966.

[31] Q. Zhang, M. Berry, B. Lamb, and T. Samuel. A parallel nonnegative
tensor factorization algorithm for mining global climate data. ICCS,
2009.

[32] http://www.public.asu.edu/∼jtang20/datasetcode/ truststudy.htm

