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Abstract—We study the problem of constructing a reverse
nearest neighbor (RNN) heat map by finding the RNN set of
every point in a two-dimensional space. Based on the RNN sef o
a point, we obtain a quantitativeinfluence(i.e., heaf) for the point.
The heat map provides a global view on the influence distribubn
in the space, and hence supports exploratory analyses in mgn
applications such as marketing and resource management. To
construct such a heat map, we first reduce it to a problem
called Region Coloring(RC), which divides the space into disjoint
regions within which all the points have the same RNN set. We
then propose a novel algorithm named CREST that efficiently
solves the RC problem by labeling each region with the heat
value of its containing points. In CREST, we propose innovate
techniques to avoid processing expensive RNN queries andegitly
reduce the number of region labeling operations. We perform
detailed analyses on the complexity of CREST and lower boursd
of the RC problem, and prove that CREST is asymptotically
optimal in the worst case. Extensive experiments with both eal
and synthetic data sets demonstrate that CREST outperforms
alternative algorithms by several orders of magnitude.

I. INTRODUCTION

(&) RNN heat map

(b) Satellite map
Fig. 1. RNN Heat Map of New York City

of every point in the space. Comparing to existing studigs [8
[10], [22], [26], [31] which give only the points or regiongtiv

the highest influence, the RNN heat map enables exploring the
influence of the whole space while considering qualitatae f

tors at any instant during the exploration. Consider a stena
where RNN heat maps are used to assist selecting locations of
self-pickup and drop-off service points for courier comigan

Let O be the potential clients and@ be the existing service
points. For simplicity, let the size of the RNN set measuee th
influence, i.e.,heat (although any other functions related to

In market analysis, urban_design, an_d facility placer_n_gntthe RNN set can be used). Fjg. 1(a) shows such an RNN heat
we often need to select a suitable location for new faddlitie 151 for the New York City, whose satellite image is shown in

such as a warehouse or a hospital. Emerging event-basegl,
social networks such as Meetup and Whova also need tg heat

select an appropriate location suitable for the eventiqpant
arrangement. These problems are calledldication selection

. The darker regions indicate higher heat valuashS
map will allow the exploration of influential regions
while considering qualitative factors as discussed abNo¢e
that regions with high influence values do not necessarily

problem, which is usually a multi-criteria decision making correspond to regions of high client density because we teeed

process involving various gquantitative and qualitativetdas.
A quantitative factor usually considered is tilfluenceof the
location, which is commonly measured by tteverse nearest
neighbor(RNN) set of the locatior [12][[22]| [26]. Given two
sets of pointg? and.F, the RNN set of a locatiop is a subset
of O that are closest tp among all the points iF. There
are many ways to measure the influence dfy the RNN set.
Straightforward measures consider only the size or totahte

consider the competition from existing facilities. For exae

in Fig.[d, the upper left corner has the highest client dgnsit
but the most influential and th¢" influential regions are in
the middle, denoted by the two gray rectangles ¢tfeand the

374 most influential regions are also in the middle near these
two but too small to be visible). Without the RNN heat map,
it is very difficult or impossible to explore all these diféart
choices and make well-informed decisions.

of the set [6], [26], [[31]. Other measures consider various

attributes of the data points i and F, such as the capacity

constraint[[16], [2R], social relationship [19], [29], eW/hile

To construct such a heat map, we need to obtain the
influence value of every point in the space. We call such a

we can model the quantitative factors precisely by numbergyroblem theRNN heat magRNNHM) problem:

we can not do the same to many qualitative factors such as
the area safety, demographic composition and convenience g

public transportation. Some factors in decision-makiregaso

vague and imprecise, which are subject to decision maker
judgments. To assist decision making based on quantitativi
measures while still allowing subjective judgments based o
gualitative measures and other factors, we introduce thisl RN
heat map, which shows the influence (quantitative measure

§Corresponding author. Copyrigh®) 2016 IEEE

Definition 1 (RNN Heat Map Problem)Given two sets of
points O and F and a distance metric in a two-dimensional
pace, the RNN set of a poigt(q ¢ F) is a subset of) that
aveq as their nearest neighbor comparing with other points
in F. Given any influence measure, which is a real-valued
function on the RNN set, associate each point in the space

ngith its influence value, i.e., the heat value.

Since the number of points in the space is infinite, to solee th
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(@) (b) A superimposition

Fig. 3.  An example of the RC problem
RNNHM problem, we first reduce it to a problem calledgion Besides not being able to compute the RNN heat map for
Coloring (RC), which divides the space into disjoir@gions  generic influence measures, a superimposition also caopet s
within which all the points have the same RNN set (detailecport interactive post-processing operations such astsedc

in Sectionll). We use Fid. 3(p) to illustrate the RC problemshowing regions with heat values above a threshold or region
with L. For simplicity and ease of presentation, we will first having the topk heat values, whereas these operations can be
discuss how to obtain such regions and compute their infeuenceasily applied as post-processing of our proposed teckajqu
values with theL., metric, and then extend the techniqueswhich aim to obtain the RNN set of every region in the space.
to L, and Lo metrics. In Fig[3(@), le® = {01,02, 03,04},
represented by the black dots, aid= { f1, f2}, represented
by the small red squares. For each painnh O, we draw a
“circle” called the NN-circle with o being the center and the
distance tw’s nearest neighbor (NN) being the radius, which
is a square with thd.., metric. The NN-circles partition the
space into separate regions. It can be proved that all thegoi
in such a region have the same RNN set. The RC problem i%
to obtain the influence of each such region in the space.

) ) ) (c) A heat map
Fig. 2. Client density

In this paper, we investigate algorithms to efficiently solv
the RNN heat map problem. In some applications such as
taxi-sharing, the heat map may change as clients move around
and need to be recomputed frequently. Therefore, an efficien
algorithm to the RNNHM problem is crucial. A straightforvdar
approach such as employing a grid to divide the space and then
sing the cells to fit the regions has difficulties in finding th
ght granularity and suffers from low efficiency. When the
influence measure involves a large amount of attributes such

Note that if we measure the influence simply by the size oS the capacities of taxis and connections of clients, it can
the RNN set, we can build the heat map bguperimposition also be very expensive to compute [22]. To overcome these
of the NN-circles, i.e., overlap/overlay of translucent NN challenges, we propose an innovative algorithm named CREST
circles as shown in Fig. 3(b). A darker region suggests moréConstructingRNN hEat map with theSweep line Srategy)
NN-circles overlapping there and hence a higher influencevhich efficiently solves the RNNHM problem. Through a
However, for a more generic influence measure than the siZdetailed analysis, we prove that CREST is asymptotically
(or a weighted sum of the RNNSs), the heat map can nofptimal in the worst case. CREST is also generic in the
be achieved by such a simple superimposition. For exampl&ense that it applies to any influence measure computalie fro
consider a taxi-sharing scenario [14] where the heat magtass RNN sets and can easily support interactive post-procgssin
taxi drivers to decide the next pick-up locations. In Figaj3( ©Operations as described above. The main contributionsisf th
let © be potential passengers, e.g., users of taxi booking appBaper are summarized as follows.
and F be taxis. Assume that taxi drivers make more profits
when taking together multiple passengers whose destiratio
are close, say within one kilometer. Let the data pointsos,
and o, connected by an edge denote such passengers. Under
such setting, the influence of a location becomes the number ®
of connected passengers in the RNN set. We build the heat
map as shown in Fig. 3(c). We can see that there is only one
darkest region, which has an influence value3df since its
RNN set is{o1, 02,04} and there are three edges connecting
01, o2 andoy. In comparison, the superimposition as shown in o
Fig.[3(b) creates two darkest regions, both have an influence
value of3.0, one with the RNN sefoy, 03,04} and the other
{01,02,04}. Under the measure that favors connected data
points, the RNN sefo;, 03,04} only has an influence value
of 1.0, which is not a good choice for picking up passengers.
Another example is that in the previous courier company
scenario, all the service points have a capacity limit (e.g.
the storage space). Taking these attributes into acco@t, t The remainder of this paper is organized as follows. Seffflon
influence of a location will depend not only on the size of thereviews related work. Sectiofillll formalizes the problem.
RNN set but also on its serving capalitfhe superimposition  Sectior TV discusses a baseline algorithm. Sedfibn V dessri
will not be able to handle such influence measures. the CREST algorithm. Sectidn VI analyzes the complexity.
Section[VI] extends CREST to other settings. Secfion]VIII
shows the experiments and Section IX concludes the paper.

We propose the RNN heat map problem, which com-
putes a heat map showing the distribution of RNN-
based scores to support effective exploratory analyses.

We propose an innovative algorithm named CREST
which efficiently solves the RNN heat map problem.
The algorithm utilizes two novel techniques to respec-
tively avoid processing any RNN queries and greatly
reduce the times of influence computation.

We carefully analyze the complexity of CREST and
lower bounds of the RC problem, and prove that
CREST is asymptotically optimal in the worst case.

We also conduct extensive experiments with both real
and synthetic data sets. The results confirm the superi-
ority of CREST by showing that CREST outperforms

alternative algorithms by several orders of magnitude.

1The influence of a locatiop is computed b3 s e rugpy min{e(f), IR(HI}
wherec(f) is the capacity andR (f) the RNN set off [22].



II. RELATED WORK only pairwise intersections of line segments or rectangles
RNN Query. The RNN query is introduced by Kom et while CREST computes the overlaps_and_relative complements
al. [1Z]. Yang ét al.[[28] proposed the Rdnn-tree (a varian of _mult|ple circles, squares, anq axllls-allgned line segmjen
S tee oy ](é/hlch are much more challenging. i) In order to efficiently

of R-tree) to process the RNN query. Maheshwari etlall [15 . .
present a data structure for answering the monochromati¢ RN ompute t_he RNN sets, besides the line status, CREST need
to memorize the RNN sets of previous events. This requires a

?i;]set}rgblgirzjgI;ﬂggN?uPceirrglliegquE) gﬁg ge(?ugalr?/].p-orimet ;mmﬁ:é delicate design to minimize the overhead and achieve optima
dimension and then among these retrieved NN-circles Iecateoerformance. BO does not have such optimization.

the face (region) enclosing the point in thelimension. These

algorithms focus on computing the RNN set of a single query
point. None of them directly applies to the RNNHM problem. e first introduce basic concepts in SectionTlI-A and then
In the RNNHM problem, the aim is to compute the RNN setreduce RNNHM to the Region Coloring (RC) problem in

for every point in the space all at the same time, and th&ectionIII-B. Frequently used symbols are listed in Tdble |
challenge is to avoid the expensive RNN computation. The

IIl. PROBLEM FORMULATION

. . . TABLE |
All Nearest Neighbor (ANN)[[[7] operation takes as input two FREQUENTLY USED SYMBOLS
discrete and finite sets of points and computes for each point :
in the first set the NN in the second set. For the RNNHM Symbol | Meaning

problem, however, we need to obtain RNN sets for essentially
infinite points in a continuous space. Therefore, the tepkes -
for ANN do not apply. F the set of facilities

n the number of data points i»
C(0:) the NN-circle ofo; € O

z; (resp.y;) | the left (resp. lower) side of(0;)

the set of clients

Influence Measures based on RNN Set&/arious influ-
ence measures based on the RNN set have been studied. Korn
et al. [12] propose to use the size (or sum of weights) of RNN i .
sets as the influence value. To find the optimal points whose _ i (résp.:) | the right (resp. upper) side @f(o;)

RNN sets are of the maximum size (influence), Cabello et e the I-th event
al. [6] propose the maximization problem MaxCov and they x1 the z-coordinate ofe;
solve the problem by finding the depth of an arrangement of (1) the line status between_; ande,
disks. W(_)ng et al[[26] solve MaxCov b_y the de\_/iseo_l Max(_)ver- v the t-th element in a line status
lap algorithm. Huang et al. [11] and Xia et al. [27] investija o1, 90) tWO consecutive elements in a line status
finding such points in a given set. Sun et al.l[21],][22].][23] 7
", . . . + - L2 ] the rectangldz;—1, 1, ye—1, Y
additionally consider the capacity constraints of suchn{zoi he RNN - b
and study how to achieve a global influence maximization RO) the set of an object

instead of a local maximization. Qi et al. [17] define the

influence based on the average distance between a poinsand &, Preliminaries

RNNs. As RNNHM applies to a general measure, the RNNHM . . . .
problem can be viewed as a generalized version of the above We consider two types of RNN queries: the bichromatic
problems and therefore the solution of RNNHM can be adaptean_d monochromatic RNN queries. In the former type, the data
to solve these problems. However, their solutions do nolyapp POINts and their NNs belong to two different sg#sand 7.

to RNNHM, since the special properties exploited in thesdn the latter type, they are from the same set, i@.~ F.
problems do not present in RNNHM. Let d(p, q) be the distance between two pointsand g. We
consider three different distance metrids;,, Li, and Ls.

RNN Variations. RNNHM is a variant of the RNN query. e start with solving the bichromatic RNNs with.., metric

There are also many other studies on variations of the RNMecause the bichromatic type is generic dngd is simpler.
query. For instance, Lu et al. [13] investigate reverseiapat

and textual nearest neighbor queries, in which both lopatio  RNN Query. In bichromatic RNNs, we are given two sets
and textual descriptions are considered in the distanceianet © and 7. The setO can be considered as (the locations of)
Similarly, Sun et al. [[24] consider temporal aggregates oflients whileF as (the locations of) facilities. The clients find
location-based social network check-ins in the distanceicne their NNs from the facility set. The RNN set of a poifitin
Zhang et al.[[30] design indexes utilizing modern memory” denoted byR(f), consists of the points i that havef
hierarchies to speed up such query processing. Ali ef al. [1§s their NN, i.e.,

study approaches to continuous retrieval of the query tdjec R(F) — OIVf e F-d <d /

She et al.[[19],[[20] devise algorithms to arrange sociahtve (f) ={ocOfVf € F:dlo,f) < dlo, f)}-

to proper users using RNN sets. These problems are quifeor a pointg not in 7, we obtain its RNN seR(q) by adding
different from RNNHM and the proposed algorithms cannotg into the facility set7 and computingz(¢) as above.

be adapted to solve the RNNHM problem. Nearest Neighbor Circle (NN-circle) An NN-circle of a
Sweep Line Strategy The sweep line strategy is a quite point o, denoted byC(0), is a circle witho being the center
generic approach to handling geometric objects. The Bgntle and the distance frona to its NN being the radius. With
Ottmann (BO) algorithm uses this strategy to compute ieters the L., distance metric, the distance between two points is
tions of line segments [4] or rectanglés [5]. The BO algaonith the maximum difference between their coordinates among all
and the proposed CREST algorithm compute very differentimensions, i.e.d(p, ¢) = max{|ps — ¢z|, |[py —py|} In @ two-
problems and are different in many aspects. i) BO computedimensional space, where the subscripts denote the cabedin
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Definition 2 (Region Coloring)Given a set of NN-circles,
Region Coloring is to label each region in the arrangement of
the NN-circles based on the RNN set of any point contained

in the x and y dimensions, respectively. Hence, NN-circles
are of a square shape. (Withy and Lo, the NN-circles are
of diamond and circular shapes, respectively.) For exaniple

Fig.[d, set® consists of two points, ando,. SetF consists " the region.

of one pointf;. The NNs ofo; andos are bothf;. The NN-

circlesC(o1) andC(oz) are the two squares. IV. A BASELINE ALGORITHM

B. Problem Reduction A simple approach to the RC problem is to pick a pgint

) ) inside each region, useint enclosure queryo obtain the
Our goal is to draw the heat map of a given space based qQN.circles that enclosg, obtain the RNN set and label the

the RNN sets of the points. In a continuous space, the numbeggion, However, picking a point in each region is an expensi

of points is infinite, which makes finding the RNN set of every gperation. This is because it requires computing an exact
point infeasible. To overcome this, we reduce RNNHM to anrepresentation of each region in the arrangement, whicmsea
equivalent problem Region Coloring (RC), which divides theeyery edge bounding a region needs to be computed (c{IFig. 6)
space ‘!nto regions and “colors” (i.e., associates) evegion  gnd hence has a very high complexit9(@2logn) [9]). To

with a *heat” (i.e., influence value). We divide the spacegsi  4y0id such complicated computations, we extend the sides of
the NN-circles as follows. Tharrangement(i.e., layout) of  gach NN-circle to let them span across the whole arrangement
the NN-circles, as illustrated in Figl 5, forms a planar gap 55 shown in Fig[l7. By doing so we form a grid over the
which also induces subdivisionof the space. We use the grrangement, where each grid cell can be easily located. We
notions in planar graphs such asrtices edgesand faces  gcan the grid cells and compute the RNN set for the centroid

(as illustrated in Figll5) in the arrangement directly. I th o each cell, which solves the RC problem. An alternative
arrangement, each face represents a uniggien, whichis a \\ay is to use a regular grid where each cell has the same
maximal connected subset of the space that does not contalfye However, it is difficult to determine a proper cell size

a vertex or an edge (e.g., the gray region in Eig. 5). In eachy,arantee that each cell falls in exactly one region unlash e
region, all the points have the same RNN set. If two points ofint is treated as a cell, which again is impossible to campu
a region have different RNN sets, there must exist at least onry efficiently compute the RNN set of a point, instead of
NN-circle that one point lies inside but the other does u§ t  cecking each NN-circle to test whether it encloses a certai
means one side of the NN-circle mustt the region, making - hoint, we build an index that supports point enclosure @seri
it no longer a region by definition. The RNN set of each pointss, the NN-circles. We use the-tree[25] for ease of analysis,

in the region consists of the centers of the NN-circles thakihoygh other spatial indexes such as the R-tree may be used
enclosethe region. For example, in Fifl 5, poings and ¢

lie in the region enclosed by NN-circl€Xo,) andC(o2), and Algorithm Complexity . Let n = |O| denote the number
they have the same RNN séb;, 02}. For pointgs, its RNN  of NN-circles, andm denote the number of grid cells. There
set is{o; }, which is different from that of; or ¢-. Therefore, are at mosn extended sides vertically or horizontally, thus
g3 must lie in a different region. Note that the opposite doesn = O((2n)?) = O(n?). To obtain the grid cells, it takes
not hold, i.e., different regions may have the same RNN setD(2 x 2nlog2n) = O(nlogn) time to sort the sides. It then
We formalize the above facts with the following proposition takesO(n log® n) time to build an S-tree index ar@(logn +

. ) o . . «a) time to process a point enclosure queryi[25], wheiis the
Proposition 1. The points in the same region of the subdi pumber of NN-circles returned. Let be the maximum size

vision formed by the arrangement of the NN-circles have the . . ;
same RNN set. of the RNN sets in the arrangement. The time complexity of

the baseline algorithm i€ (n log® n + mlogn + mM). Since
For RNNHM, each region can be used to represent all theve consider a general influence measure, which can be any
points it contains. To associate each point with a heat, ifunction with any computational cost, in the analysis weyonl|
suffices to color each region with the heat of the points itcount the number of times of influence computation, ie.,
contains. Since the influence is computed straightforwardlin the above complexity. We further derive a bound feras
based on the RNN set, in the following discussion, we do nofollows. Let » be the number of regions formed by NN-
distinguish the process of outputting the RNN set of a regiortircles. It can be proved b¥euler characteristicthat r is
and the process of computing and outputting the influencéetweer®(n) and©(n?). In particular, when the NN-circles
value. We will simply use the term “labeling a region” to do not intersect with each other=n+1 = O(n); when the
denote the two processes. Assuming that the NN-circles are NN-circles are placed as shown in Fid. 8, where they all
already precomputed (there are efficient algorithms to agmp have the same side lengthand thei* NN-circle is centered
and maintain the NN-circles [12]), we define the above regiorat point (i,i), 7 = n> —n + 2 = ©(n?). Sincer < m and
coloring problem as follows. m = O(n?), we obtain®(r) < m < 0(n?).
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the most space, which i©(nlog”n) [25). Thus, the space oy ‘
complexity isO(nlog® n). We summarize the above analysis P s N T ‘
with the following theorem. T T i3 T TsieTiis To
Theorem 1:The baseline algorithm for the RC problem stops Fig. 10. Example of events and line status

in O(nlog®n + mlogn 4+ m)) time and uses(nlog?n)
space, wheren is the number of grid cells and is the
maximum size of the RNN sets.

RNN sets of adjacent regions these setsand cache them

for obtaining the RNN sets of newly swept regions. We also

devise techniques to constrain the number of cached base set
Limitations of the algorithm. One drawback of the Powered by these techniques, we achieve a highly efficient

baseline algorithm is that it needs to process point enobosu algorithm to the RNNHM/RC problem, which is proved to be

queries, which is reflected in thelog n andm logn termsin  asymptotically optimal in many cases (cf. Section VI). Next

the time complexity. Another drawback is that it furtherides ~ we detailed these techniques.

the regions into multiple grid cells, which means a region in

the original arrangement will be_IabeIed muItipIe_times.e_Th A. Concepts and Notation

number of these grid cells: may increase quadratically with

the increase of. (closer to©(n?)). A largem means we need Events Letz; (resp.y;) andz; (resp.y;) be thez- (resp.y-

to process a large number of point enclosure queries antidabe) coordinates of the left and right (resp. lower and uppeigsi

large number of grid cells, which significantly deteriosatee  of NN-circle C(o;), respectively. Thelistinctz-coordinatesof

efficiency. We aim to reduce: (the number of times of region the vertical sides (of all the NN-circles) are stored in asiieg

labeling) to the number of regions in the arrangement, wisich order in a queue, which is called tiesent queuand denoted

optimal in the RC problem. Therefore, we have two directionddy Q.. The elements inQ. are called theeventsor event

for improvements: (i) to avoid point enclosure queries, andgooints For convenience, we refer to the coordinates of the

(i) to reduce the number of times region labeling. We présensides simply as sides when the context is clear. We denote the

our CREST algorithm which achieves these two goals in thé'" event (i.e., thé'" ejected element fron®.) by e; and the

following section. z-coordinate of; by z;. Note the difference between an event
coordinater; and the side coordinates 6fo;) (i.e., z; or z;).
V. THE CREST ALGORITHM They may have an equal value, but different semantics.

We employ the classisweep linestrategy [[4], [9] (cf. Line Statuses Let s, be the x-coordinate of the sweep

Section[D) to avoid forming a large number of cells to beline. We say that the lineuts NN-circle C(o;) if and only
labeled as done by the grid dividing strategy. We let a lindf s. € (z;,73] (i.e., it is in the horizontal range af(0;)).
sweep from the left to the right of the space, and storeBy definition, the NN-circles that are cut by thg line remain
information about the NN-circles that are currentlyt by the ~ the same between two consecutive events (including their
sweep line. We call such information thiee status and say ~Positions). LetC(oy,),C(os,), . ...C(ai,,,) be then(l) NN-
that aneventis triggered when the line status changes. Ascircles cut by the line when it sweeps fram., to ¢;. We sort
illustrated in Fig.[ID, we use thdistinct vertical sides of the horizontal sides (not only coordinates), v, , yi,, Ui, - - -»

the NN-circles as event points (i.ez;, xo,...,x), and the ¥i,q, Y, Of these NN-circles in ascending order (ties are
sorted horizontal sides of the NN-circles as the line statusbroken arbitrarily), and use the sorted list as the lineustat
Every pair of adjacent vertical sides and horizontal sidedetween eventg;_; and ¢;, which is denoted byZ(l) =
forms a subregionto be labeled. We notice that some of |y,,,....41,,---Yi,--- g ll, a,b,c,d € {1,2,...,n(])}.
these subregions come from the same original region formeHor example, in Fig[_10, the current line statusZig3) =

by the NN-circles, and hence do not require the RNN set|y; yo, 71, 72|. For convenience, we denote hy the it
and influence computations repetitively. We use th@nge element in the line status, and hence the line status between
intervals to avoid labeling such regions multiple times. We ¢;_; ande; is

avoid the RNN computation with point enclosure queries by

utilizing the fact that the RNN set of a region can be obtained ~ Z(1) = ly1, 42, - - . y2nlls ¥1 <92 <o < yanqy-
efficiently by modifying the RNN sets of the adjacent regions

For example, in Fig.]9, if the RNN set of the lower region is  Pair and Subregion Any two consecutive elements in the
{01,02} and the boundary between the two regions is formedine status is termed asgair, which is denoted byy; 1, y:).

by the upper and lower sides 6fo,) andC(os), denoted by, ~ We denote by(y; 1, y:) € Z(I) that the pair(y;_1,y;) comes
andys, respectively, then we can immediately obtain the RNNfrom the line statug(l). We denote byz, 2’, y,y'] a rectangle
set{o1, 03} of the upper region by removing from {01,02}  whose diagonally opposite corners drey) and(z’,’) with
and then adding; to {o0;}. We call the already-computed = < 2’ andy < y'. Wheny = ¢/, [z,2,y,4'] is in fact a



horizontal line segment. For ease of presentation, weitraat It is easy to observe that if we have obtained the RNN set
a special rectangle. We denote by, yo) € [z,y,2',y'] that  R({y:—1,v:)) of a valid pair, we can start frong; (which
point (zo,y0) IS in rectanglex, y, 2, y']. Here the rectangle is the first element among elements of the same value) and
is open (i.e., (z0,%0) € [z,y,2',y] iff xp € (z,2') and useR({y:—1,y:)) as the base set for the valid p&ir/_1, yy)

yo € (y,9")) and no point is in the special rectangle. Whenimmediately next to it. In this way, we can obtain the RNN set
the line sweeps frome;_; to ¢;, the x-coordinater;_; of  of everyvalid pair (in one line status) with a single traversal of
event ¢;_; is strictly less than that of;. This forms a the line status. Continuing with the above example in Eig. 10
rectangle(z; 1, 1, y1, y2n()] between the two events. In this for pair (y2,y3), we useR((y1,y2)) = {01} as base set,
rectangle, each paify;—1,y:) € Z(l) forms asmall rectangle encountery,, addo,, and stop withR({ys2,ys)) = {01, 02}.
[1-1, 21, yt—1,y¢). The small rectangle has no vertex or edgeFor pair (y3,y4), we removeo; from {o1,02} and stop with

in it, which makes it a connected subset of a region. WeR ((ys, y4)) = {02}

call each small rectangle subregion and denote by the

one formed by paiy;_1,y:) € Z(l). We denote byR(r{)  C. Reducing the Number of Times of Region Labeling

the RNN set of the points in subregiorf, or simply by

R({y:—1,y:)) when the line status is clear. 1) Locating the Change IntervalVith the above approach,

we obtain the RNN sets and label the corresponding regions
between two events;_; ande;. We then move the sweep
line forward acrosg; and label regions between ande;, ;.

We obtain the RNN set of each subregion by finding theCrossinge;, we obtain a new line statug(l + 1). We notice
NN-circles enclosing it. When the line sweeps frem; to  that some of the pairs iff(l) and Z(I + 1) represent the
e;, the subregions between_; ande; are enclosed by the same regions (not subregions) even though they are formed
NN-circles in thez dimension if and only if these NN-circles by different NN-circles. For example, in Fig.]10, between
are cut by the line. Therefore, we only need to check whethesind e3, Z(3) = ||y1,y2, %1, 92|, While betweenes and ey,
these NN-circles enclose the subregions in ghdimension,  7(4) = |lys,y1, y2, U3, U1, J2||. The pair(ys,41) € Z(3) and
which can be easily achieved by checking the line status. Waew pair (i3, 71) € Z(4) represent the same region. Besides
use the following lemma to show the RNN set of a pair in thenew pairs, a pair also represents the same region if it exists
line status. Due to space limitation, we omit the proofs &f th in poth Z(1) and Z(I + 1) and the RNN sets of the pair in
lemmas in this section. the two line statuses are the same (e{@:, 7=) in the above

Lemma 1:V{y;_1,4:) € Z(1), the RNN setR(r!) of subre- ~ €xample). The reason is that, by Lemiia 1, the RNN set of a
gion vt = [w1_1, 21, -1, ] IS an empty set ify,_; = y; or pair is changed |f_ar_1d only |f_the pair is entirely enclosed by
a set consists of the centers of the NN-circles that are cut b§"? NN-circle that is inserted into (i.e., newly cut) or reradv

the line and enclose! in the y dimension, i.e.R(r!) is rom (i.e., no longer cut by) the line. When the RNN set of
a pair does not change, the two subregions formed by the

%] !f Yi—1 = Yt, pair must be connected (and hence represent the same region)
{oi|zi <z <xyandy; <ys1 <ye <} if yi1 #y:. since no side of NN-circles separates them. To reduce the
number of times of region labeling, we should avoid processi
By Lemmal, we can obtain the RNN sR{(y;_1, y:)) of pairs representing the same regions, i.e., osdyneof the
a pair as follows. Whem,_; = v, the RNN set is empty. For newly formed pairs and the pairs that exist in both line statu
convenience, we call such painsvalid pairs and the others whose RNN sets are changed should be processed. We use
(with y,_1 < v,) valid pairs. For a valid pair, we check the the following lemma to precisely Ioca_\te th_e pairs that. nged
elements in the line status in the range(efco, y;—1]. Since  to be prqcessed when only one NN.—C|rcIe is changed in (i.e.,
the elements are sorted in ascending orger, (resp.y;)  inserted into or removed from) the line.
of a valid pair must be the last (resp. first) element among Lemma 2:When a line statug
elements of the same value. Thus, we only need to checﬁ1
A . .~ Jine statusZ
elements from the beginning of the line status to the flrsllr
element (inclusive) of the pair. Starting with an empty S€linserted into or removed frordi(1), we only need to process
which is called thebase setand denoted byR, if an element P :
. . : the pairs in the following set
is a lower side, we add the center of the corresponding NN-
circle to R, otherwise we remove the center frdR. When {ye—1,ye) € IU) | Ye S yr—1 <yt < Yo}
reaching the second element (exclusive) of the pair, we stop -
and R is the RNN set of the pair. For example, in Fig] 10, By Lemmal2, the pairs that need to be processed are located
the line status i€(3) = [y1,y2, 1, %2[|. For pair(y1,y2), y1  within arange We call such a range ehanged intervahnd
is the only element we encountered in the chgcklng range angenote it by[ye:, ye,]. Note thaty., andy,., are coordinate
henceR({y1,y2)) = {o1}. We formally describe the above values, not line elements. When the line triggers (i.e s%es)
approach with the following corollary. an event, multiple NN-circles are inserted into or removed
. i from the line, and hence several (initial) changed intexval
Corollary 1: V € 1, € Z(l) with y,_ , the ' .
RNN Set};z(rt) of éy;ut,r‘gt>- ¢ (_) Y1 7 Ut are created. We cannot process such changed intervals one
i gion] = [x;-1,21, Y1,y can b . h ! 4 aff h other. Wi
be obtained by checking elemengsfor i = 1 to ¢ — 1 and y one, since they may intersect and affect each other. We
maintaining the seR(r}) as follows need to merge the intersected changed intervals. Whenmgergi
two changed intervals, we need to be careful about the line
oy, is removed fromR(r}) if y; is gy, elements that are of the same value so that no regions are
oy is added intoR (r}) if y; is yg. labeled repeatedly. Specifically, any two changed intsrval

B. Avoiding Point Enclosure Queries

(1) is changed into a new
(') because an NN-circlé(o.) = [z., T¢, Ye, Ue)
s newly or no longer cut by the sweep line, ig.,andy,. are
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Fig. 11. Example of changed intervals

respectively. IZ(3), C(o2) is inserted and the changed interval
is [y2,72]. The element immediately preceding the changed
interval isy;. We obtain{o;} as the base set with ke x
1—1=1, and keep record® x 2 — 1 = 3,{01,02}), (2 x
1=2,{02}) and (2 x 2 = 4, 3) for (ya2,41), (¥1,%2) andysa,
respectively. We now havél, {o1}), (2,{02}), (3,{01,02})
and (4, @) cached for future use.

D. The Algorithm

We now present the detailed steps of CREST, as summa-
rized in Algorithm[1. We first obtain the event que@ by
storing the vertical sides of the NN-circles @, in ascending
order (line4). The sides are stored in a way such that for

each side, we can directly obtain the NN-circle to which it

[Yei» Ye;) and [y, ye, ] with ye, < y., are merged into a pelongs and whether it is the left or right side.

We then

new onely.,, max{yc;,ye, }| if ye; > y,. After merging,

we only need to handle separated changed intervals, whichAlgorithm 1: The CREST algorithm

can be processed individually. For example, in Eid. 11, when
the line crossesrs, the grey area is processed, in which

for convenience denoted Ry 2, and3, need to be processed,
which are in changed intervdds, 3]. When the line crosses
x4, C(01) is removed and’(o4) is inserted. Only pairg, 5,
6 and 7 in [y1,y4] (merged from[yi, 1] and [y4, y4]) are
processed. When the line crosses C(oz) is removed and
only pair8, the only one iny., 2], is processed. The validity
of the sweep line strategy still holds with the above apphpac
since a simple induction will show that all pairs in all line 4,
statuses are properly processed. 11
12

2) Caching and Retrieving Base Seffo obtain the RNN |,
set within a changed interval, an efficient way is to use they,
RNN set of the pair that is immediately preceding of the 15
changed interval as the base set. Such a pair must be a valid
pair, since the changed interval includes the line elements?
whose values are equal to the interval boundary. Thereforels
we cache (only) the RNN set of each valid pair in the line *°
status. We index the RNN set of a pair with its first element. °
Specifically, if the pair’s first element is the lower (respper) "
side ofC(o;), we assign the RNN setkey2i — 1 (resp.2i). ”3
When the RNN set of a pair is changed, the record in the,,
index is also updated accordingly (for elements of the sames;
value, the record is always maintained only at the last one fo 2
efficient access and space saving). In this way, the base set
for a changed interval is the record of the element that is ones
position ahead of the changed interval. (In case that theggha 2°
interval is at the end of the line status, we also keep an empty
set for the last element of a line status.) When we process®

© 0 N o g b

Input: An arrangement ofi NN-circles

Output: A subdivision with each region labeled
C(o3) is inserted into the line. The pairs (i.e., subregions), 1 7 + @
2U+— O
3P+ o
Q. + the vertical sides of the NN-circles in ascending order
for each element in Q. do

o the index structure for the horizontal sides
o the changed NN-circles between events
o the cached RNN sets

C(0;) < the NN-circle to whichv belongs
Add C(o;) into U
if vis a left sidethen
| Inserty;, y; into structureT
else -
Deletey;, §; from structure7
Remove the corresponding records frgn
if the next element’ of Q. equalsv then
| Continue the outer for-loop
Merge the changed intervals of the NN-circlesin
Delete all elements it¥
for each separated changed intergal
Find the starting elementt and ending elemenid
R <+ Retrieve the base set frof
for each element betweenst and ed do
C(oj) < the NN-circle to whichy belongs
if y is the lower sidethen
R < addo; into the base set

p2j—1
else
R < removeo; from the base set
p<2j

f y is greater than the next element then
Label the region represented by péir, y')
with setR

Plp] < R

several separated changed intenialsascending orderit is

guaranteed that such a record is always available and up-trocess the elements @, one by one (lin). If an element
date. Specifically, leg; be the element whose record we need.iS & left (resp. right) side, we insert (resp. remove) the two
If no such elemeng;, exists, the base set is an empty set, Smce{honzontal sizes of the NN-circle correspc_)ndlng to the &latn
the changed interval must be at the beginning of the linestat INto (resp. from) a balanced search trgein which the data

If , is the boundary of a preceding changed interval, then sucf® stored in the doubly linked leaf nodes (e.g., &-tBee)

arecord is already updated and ready to use, othepwis®ist

(lines 6-14). When the next element i@, is greater than the

exist in the last line status and the record is also available Current one, we process the event. The strucfureow stores
the information of the current line status. We obtain sejeara

We use an example to illustrate the above approach. Ighanged intervals by merging tlyecoordinates of the inserted

Fig.[10,Z(1) is empty,Z(2) = |ly1, %1, and [y1, 7] is the
changed interval which is at the beginning Bf2). We thus

and removed sides in this event (ling). For each changed
interval (line17), we locate the starting and ending elements in

use an empty set as the base set, and keep the re@ords— T (line 18), and retrieve the base set from the RNN set records

1,{o1}) for (y1,%1), and(2 x 1, @) for ¢, (the last element),

(line 19), which are stored in a random access data structure



as az a1 a4 a2 a6
as -

such as an array. We then sequentially check the elements in 1] | as

each changed interval (lin20). For each element, we either as 06,
add or remove the corresponding data point (bg.from the [ 0¥

base set to obtain RNN sets of the valid pairs and label the 1] o1 a1
regions (lines21-29). To facilitate efficient insert, delete and i T b3

copy operations on the base set, we keep the data points in | [[] C(or as| 10

a linked list and store pointers to the nodes in the linked lis as b

with an additional random access data structure indexebéy t Fig. 12. Multilabelling Fig. 13. Reduction

data points. The RNN sets we obtained are also dynamicallyya to the number of regions in the arrangement which is
recorded to support the future base set retrieval gieAfter 4 't,rn greater than or equal to the number of NN-circles

all changed intervals are processed, V\_/e_eject the next atemerparefore. the time complexity of CREST @(n logn + k).
in @, and repeat the above steps urdil is empty. Shortly (in Sectiof VI-B) we will prove that = ©(r), where
r is the number of regions in the arrangement.

VI. COMPLEXITY ANALYSIS
The space required by the quegs and structureT is

A. Complexity of CREST O(n). The space required by caching the RNN set9(a)\),
and the storage of the base set requi?és+\) space. Overall,

We analyze the time complexity of CREST following the space complexity of CREST @8(n)

the steps in Algorithni]l. We sort then vertical sides of

the n NN-circles in O(nlogn) time. When we process the
events, each horizontal side is inserted into and thenetelet B. Bounding the Times of Region Labeling in CREST
from the structure] once. Therefore, there are at mast

elements in7, and the2 x 2n insertions and deletions can .. . ; .
be done iNO(nlogn) time. To merge the changed intervals times of region labeling: largely decides the performance of

: . ! . CREST. In CREST, we successfully avoid labeling the same
at an event, we can first sort them in lexicographical orde

; ; ; .Fegion multiple times in different line statuses. Althoughely
and then obtain the merged result with a linear scan. Thi appens, multi-labeling still exists within the same littss.

requiresO(flog 5 + ) = O(Blog 3) time, wheref3 is the "o amle 'in Fig12, at the event of the left sidec6h, ),

number of changed intervals at the event. Since each NNyg 1oy region is labeled six times. Despite the multi-iaige
circle can Of?'y be a qhanged interval twice, the total numbe(Ne show with the following lemma that the number of times
of changed intervals in all events &(n). Thus, the overall f region labeling in CREST and the number of regions in the
time required for merging the changed intervals is bounde‘irrangement, up to a constant factor, are asymptoticady th
by O(>_Blog5) = O(logny ) = O(nlogn). For each  oume"(ag 4 function of).

merged changed interval, we obtain its starting elemefftin

O(nlogn+A) time, wherel is the maximum size of the RNN  Lemma 3:k = O(r), wherer is the number of regions in
sets in the arrangement. This is because we first searfhnn  the arrangement.

O(logn) time to obtain an element whose value is equal to
the lower endpoint of the interval. Starting froyn we obtain , -
the starting element by checking backward (to the beginnin ned c(;cl)lntTweeC;idm(l:)%Tgl?ggmess IBOtlTI‘? diﬁrra;?:niq(?r?tt’h;ezge(r:g\e/e(?f/
of 7) until the elements are less thgn This procedure takes . phens bg o 9 i 9 ot ? h
O(2)) = O()) time, since) is the maximum size of the RNN € region, and theé number of edges incident to a vertex the
sets and there are at mostipper sides and lower sides that gﬁﬁ/rg? ??_f g‘: dfdrtezxr.elenvzrr]tiggsar:/gﬁi?ﬁgtreozi esggf‘erggyt:ere are
aLe (_)f. the r?am@(—j(_:oordlmate. S)(/rvnmﬁtrlc ar:g))l(ys;s ﬁpphez o anduvy ' re:::pectively In CREST, ’the number of times a r?ggion
obtaining the ending element. We have orilyn) changed ' : ' ; X
intervals, and thus obtaining starting and ending elemesuts is labeled cannot be greater than the degree of the regrug si

be done i (n log n+n\) time. We then process the elements €SN time the region is labeled we need a distinct valid pair
between them. We first retrieve a base set, which takes at mo‘%’}iIICh requires at least one of the edges bounding the region.
O()) copying time. Thus, it take®(n\) time to obtain base | nerefore.k is less than or equal to the sum of degrees of
sets forO(n) changed intervals. For each element betweer?!l €9ions which equalSe, i.e., k < 2e. In the arrangement,
the starting and ending elements, we either add into or remoyV€ IS0 havey = v + vs + vy, 2e = dvy + 3vs + 2vy and
from the base set its corresponding data point ¢, takes U~ €+ 7 —c =1 (Euler characteristic). Combining these three
at mostO()\) time for the adding or removing operations to €duations, we obtain = v +v3/2+c+1. We then have that
obtain an RNN set for a valid pair. This is because to get a _ _

RNN set of sizea; by changing an RNN set of size,, at b < 26 = duatBus 20, < 6(vartos/2+et1)+20, = 6420
mosta; data points are removed ang data points are added, The number of 2-degree vertices is less than or equahto
which takesO(as + o) = O()\) time. We denote by: the  and hence less than or equakiq since each square makes at
number of valid pairs, and hence the time for obtaining themost four 2-degree vertices amd< r. Therefore, it follows
RNN sets fork valid pairs is bounded by (k\). For each that

valid pair, we record its RNN set and label its corresponding kE < 6r 4 2vs < 61 + 8n < 14r.

region, and this take®(k\) time.

From the above analysis, we can see that the number of

Proof: Let v, ¢, andc be the number of vertices, edges

. ] ~Obviously,r < k, and hence < k < 14r, which completes
Putting all things together, we have that CREST stops ithe proof. m

O(nlogn + nA + kX) time. Sincek denotes the number of o _
times of region labeling in CREST, must be greater than or We conclude the above analysis with the following theorem.



Theorem 2:The CREST algorithm solves the (bichromatic)
RC problem inO(nlogn+r\) time with O(n \) space, where
r and A are the number of regions and the maximum size of
the RNN sets in the arrangement, respectively.

C. A Lower Bound of the RC Problem

We show thatQ)(nlogn + rA*) is a lower bound of the .
RC problem (in the algebraic computation tree model) [3], Lo !
where)* is theaveragesize of RNN sets in the arrangement. T1X2 T4l 7 T16Z1r Too  Tag Ta9 Ta1
When r\* is the dominating term, at least the RNN sets of Fig. 14. CREST withL» distance metric
all regions need to be output, the above bound is a triVia‘Therefore it follows that
lower bound. Thus, we only need to show that it requires '
Q(nlogn) operations even without considering the output A - n®+2n n n® +2n n_A
cost. This bound is proved by the reduction from thant T 3(n2-n+2) 3 n3-n2+2n -3 3
distinctness probleno a special case of the RC problem. ) ) o

Since A* < A, it follows that A\ = ©(\*), which indicates

Definition 3 (Element Distinctnessiziven real numbers CREST is overall asymptotically optimal.
ai,...,a, € R, determine whether or not there is a pair

with i # j anda; = a;. VIl. RNNHM IN OTHER SETTINGS

We show that the element distinctness problem can be reduced We show how CREST solves the RNNHM problem with
to the RC problem in linear time. For each real numbgr the monochromatic RNNd,,;, and L, distance metrics.

we create a poinfa;,a;), i = 1,2,...,n in the plane. We
then build a squar€(o;) with point (a;,a;), i = 2,...,n
and point(a1,aq1) being the diagonally opposite corners and
0; being the center. An example of such reduction is shown in CREST directly applies to the monochromatic RNNs, since
Fig.[I3. These squares form an arrangement of NN-circles i and 7 being the same set does not affect the computation
a two-dimensional space. We use this arrangement as input @ the NN-circle and these NN-circles still form a planar
any algorithm that solves the RC problem. A correct alganith subdivision with axis-aligned edges as in the bichromatic
outputs exactly. RNN sets (including the empty set) if and RNNs. By Korn et al. [[12], an RNN set contains at most
only if the elements are distinct. The reason is that each RNISix points for monochromatic RNN queries, which means
set corresponds to only one region, and thereramegions A = O(1). Therefore, by Theorei 2, the time complexity of
(including the exterior face) in the arrangement if and dhly CREST for the monochromatic RNNs {8(nlogn + r) and

the elements are distinct. It has been proved that the elemethe space complexity i®(n).

distinctness problem has a lower boua¢h log ) [3] (in the

algebraic computation tree model), which implies that R€ haB. RNNHM with 1 Distance

a lower bound(n logn) without the output cost. Therefore,
Q(nlogn + rA*) is a lower bound of the RC problem.

>

A. Monochromatic RNNs

In two-dimensional spaces, thg distance can be viewed
as equivalent to thd.., distance by rotation and scaling.
Specifically, with thel; distance, NN-circles are of diamond
D. Optimality of CREST shape. If we rotate (around the origin) the coordinate syste
counter-clockwise byr/4, diamonds become squares. Each
point (z,y) in the original system has a corresponding point
(',y’) in the rotated system with'’ = xcosf — ysinb,

y = xsinf + ycosh and § = 7 /4. In the rotated system,
CREST directly applies. The transformation takeg:) time

In the following cases, we show that the upper bound@nd the overall time and space complexities stay unchanged.
O(nlogn + rA) of CREST is also tight, which indicates that
CREST is overall asymptotically optimal. For the bound to beC. RNNHM with 2 Distance

tight, it is sufficient to show thak = ©(\"). With the L, distance, the NN-circles are of circular shape.
Case (i) When the clients and facilities are relatively They form a planar subdivision witurvededges, as shown in
uniformly distributed such thak is bounded by a sufficiently Fig.[14. CREST still applies in such a subdivision but reesir
large constan€ (which depends oril%), since)\* < \, \* is modlflca_mons as foIonvs. We use the-extreme pomts.of
also bounded by>. Thus,A = O(\*) = O(1). An example is circles (instead of vertical sides of squares) as eventt@aiin

that none of ther squares intersects any other ones (or onl i . . . S
a few of them overl?’;\p). y ( ytconsecu'uve events as line elements (instead of horizeiutes

of squares). For each line elemept(i.e., an arc segment), we

Case (i) When )\ is unbounded, we show with the worst assign two valueg; andy!, which are the smallest and largest
case illustrated in Fig]8 thax = ©(\*) also holds when y-coordinates ofy; between two consecutive events ; and
every square intersects all the other ones. In this ar@eg&m el, respectively. Line elemeny; is less thany; iff (i) y; < yj
A =n, and we have that =n? —n+2 andr-\* = 2422 or (i) y; = y5 andy, < ¢! or (i) y; = y5,y! =y} and

From the time complexity of CREST and lower bound of
the RC problem, CREST is asymptotically optimal in terms
of the number of times of region labeling (i.e., influence
computation) in all cases, sinde= O(r).
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yi* < yj*, wherey™ andy;" are the y-coordinates of; and

y; at xl%““ respectively. We include intersection points as Name | Size | Description
event points (e.gv4 andxy in Fig.[14). This is because the arc NYC | 128,547| points-of-interest in New York City
segments of NN-circles switch positions at intersectiomyso LA~ | 116,596| points-of-interest in Los Angeles

We also use the center of each NN-circle as event points (e.g. - - _
x5 and x99 in Fig. [I2) to guarantee that each line elementd special case of the bichromatic RNNs. We useand L

is y-monotone (i.e., strictly increasing or decreasing in thedistance metrics since they are used more often thanin
y-dimension). Before processing an event, we update valug§al-world scenarios, anfl; and L. are equivalent in two-

y? andy! for each line elemeny; regardless of whether it is dimensional spaces. We uniformly sample from the data sets
related to the event. This update is required in order to tamin  to obtain the client seD and the facility set. All algorithms

a proper order in the line status because the arcs go up or dov@ie implemented using C++ and the experiments are conducted
between events and their upper and lower values changefeverfin @ desktop computer with 34GHz Intel i7-2600 CPU and

they are irrelevant to the events. Note that such an update do8GB main memory.

not change the relative order of the line elements irrelet@n

the events, and thus can be completed in linear time. A. Showecasing Real-World Heat Maps

Apart from the above modifications, CREST remains the In the first set of experiments, we show the RNN heat
same. Specifically, if an event pointat ; is the left boundary ~maps for two cities: New York City and Los Angeles. For each
point of C(o.), we inserty, and . into the line status with data set NYC and LA, we uniformly sampl®, 000 points
vl = 7.5 = y,. andy,® and 7. being the lower and upper &S the clients and, 000 points as the facilities, since in real
y-coordinates where; intersectsC(o.), respectively. We also Werld scenarios the number of clients is usually larger tian
create a change interval with and,. If an event point is an number of facilities. For simplicity, we measure the inflaen
intersection point, we obtain the relevant line elementss(a DY the size of RNN sets, although any other function on the
incident to the intersection point) in the line status, stitheir ~ RNN sets may be used. Fig. 1(a) and fig. [L(b) (in Sediion )
positions and create a change interval with these elemen%?t?/w(\f\t]i&iﬁl\llal\ltit:?j? Qw%plgggithhfesgﬁgZ{ZOmS%p Z(‘; 9N5?W York
If an event point is the right boundary point or center of : _ ). 08, . Jo] X
an NN-circle, we remove or update the two line elementg—74-15, —73.70]), while Fig.[15(d) and Fid. I5(b) show the
corresponding to the NN-circle. We do not create changd'@atand satellite maps of Los Angeles (witfd.82, 34.17] x
intervals for either of these two types of event points,sino | —118.47, —118.12]), respectively. Comparing the heat and
pair is between the removed elements and updating the ling2tellite maps, we can see that they are closely geograyhica

elements by the centers is only to keep thgmonotone. We correlated as expected. For instance, the mountain ande®sa a
then merge and handle change intervals as before. have few clients or facilities, and hence have very low heat.

N ) We can easily explore regions of various influences to help
Complexities In the worst case (as shown in Figl 8), various decision making applications such as those destrib
CREST runs inO(n°) time with the L, distance, since there in the motivating examples. If the decision maker is intereés

2 . e . X
can be as many a9(n*) events and for each event we needin any specific area, she can zoom in to see more details.
to updateO(n) line elements. However, the worst case com-

plexity is much lower than that of an existing algorithm1[22] R I b oo O
which suffers from an exponential running time in the worst ~ p o
case. The algorithm was proposed to obtain regions with
the maximum influence value, but it could be adapted to
solve the RC problem if we remove its pruning techniques.
The algorithm [[22] follows the filter and refine paradigm by
enumerating all possible regions and then checking thésr ex

tence. For example, whef(o;) intersect(o2) andC(o3), it A 'fi";,f;' 3 £
ple, WN@(o,) INtersects(o,) ande{os) Tt AV
enumerates the regionso, 03, 610203, 010203, 010203, where P ‘.ﬁj..ﬁpz,, :
6, means inside(o;) and o, means outsid€(o;), and then (a) Heat map for LA (b) Satellite map for LA

checks whether such regions really exist. In our experiment
(in Sectio V1), CREST constantly outruns the algorithm o
data sets of various settings. B. Performance of CREST withLIDistance

Fig. 15. Real-world heat map

In this set of experiments, we compare the running time
of three algorithms: the baseline algorithBA(), the CREST

In this section, we experimentally evaluate the perforneancalgorithm with only the RNN computation optimization, de-
of CREST. We use both real and synthetic data sets. Twaoted by CREST-A, and theCREST algorithm with both
real data sets, NYC and LA, contain points-of-interest inRNN computation optimization and repetitive region labgli
New York City and Los Angeles, respectively (we obtain theoptimization. We cannot evaluate the effect of the latter op
data sets from the authors ofl [2]). Talilé Il lists the detailstimization alone, since it is built upon the former optimiza
of the real data sets. We also generate two synthetic datson. We compute the influence by (i) the size of RNN sets
sets, Uniform and Zipfian, which contain points of uniform and (ii) the function considering the capacity constraiots
and Zipfian distributions, respectively. The skew coeffitima  facilities [22] (described in the Introduction), respeety. The
Zipfian distribution is set td.2. In the experiments, we use results of the latter function are consistent with thosegishe
the bichromatic RNNs since the monochromatic type is jussize and hence are omitted due to space limitation.

VIIl. EXPERIMENTS
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|71

210, Since the baseline algorithm does not terminate wigin
hours on large data sets, we only show results on relativel
small data sets and fix = |O| at 2!°. We plot the results in

Fig.[18 (note the log scale in the axes). We can see that in alll . X . s
data sets, CREST outperforms the baseline by at least three ;126 CRESFEI % X gize cREST LS o ¥
orders of magnitude, and outperforms CREST-A by several o108 « o108
times. With the increase o‘f%' the running time of CREST S0t * Aot

also moderately increases. This is because both the number 5,3 : P10

of regions and the maximum size of the RNN sets increase 1, “10?

with % The growth rates of CREST-A and CREST are
similar, which indicates that the ratio I mainly affects

the number of regions in the arrangement, but not the number
of times a same region is repeatedly labeled. We can also see g, e

10

51 24 7
Ratio |O|/|F]|

(b) NYC

I71

2 2
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(d) Zipfian

Effect of /2 with L1 diatance

We first vary the ratio ofl2l from 2! to

| 7]

from the slope of the lines that with the increase‘%‘, the

number of regions increases only polynomially (rather than 21of
exponentially). This indicates that the performance of GRE

will stay stable even iﬁ%

Effect of Data Set Size We then fix% at 27
the size of the client set) from 27 to 2

becomes very large.

and vary

plotted in Fig[I¥. When the size @ is greater thar'?, the

baseline runs for more thaht hours and is early terminated, the results in

hence the results are not presented.
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6. The results are

Again we can see that CREST outruns the baseline by
at least three orders of magnitude and outruns CREST-A
by up to an order of magnitude. The running time of the
baseline increases much faster than that of the other two
algorithms, which indicates the number of point enclosure
gueries computed in the baseline increases dramaticaénwh
n = |O| becomes larger. The growth rate of CREST-A is also
higher than that of CREST. This implies that the number of
times of repeated labeling becomes larger with the increfise
data size. The lowest growth rate of CREST also demonstrates
its scalability for processing much larger data sets.

C. Performance of CREST witle IDistance

We repeat the above experiments with the distance
metric, where the CREST algorithm fdr, (CREST-L2) is
compared with the pruning algorithnPuning) described in
Section[VII-G. We compute the influence with the function
in [22] and use the two algorithms to find the regions with
the maximuminfluence, since in such settings the pruning
algorithm performs the best. This also shows the flexibility
of CREST since the adaptation to various influence functions
¥nd supporting post-processing operations is very easy.

21 24 27 210 21 24 7 210
Ratio [O]/|F| Ratio [O|/|F]|
@ LA (b) NYC

Pruning-¥- /7&

7 Pruning-*-

10
CREST-LZ 4, %
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(c) Uniform (d) Zipfian
Fig. 18. Effect of% with L2 distance
Effect of 12 We first vary the ratio fron2! to 21° and plot

71 o
ig_18. In all data sets, when the ratio istgrea
than2?, we can see that CREST consistently outperforms the
Pruning algorithm by several orders of magnitude. With the
. 0| . .
increase ofﬁ, the performance of the Pruning algorithm
deteriorates rapidly, since the number of regions enuradrat

. . . | . .
grows exponentially with the increase % Comparing with
the Pruning algorithm, CREST has a much lower growth rate.
When% is less than or equal 7, in Fig.[I8(d) the Pruning
algorithm runs slightly faster than CREST. This is because
the number of regions enumerated in the Pruning algorithm is
small, while the number of events in CREST is large when the
data distribution is very skewed. Overall, CREST still ouis
the Pruning algorithm by up to three orders of magnitude.

Effect of Data Set SizeNext, we fix% at2® and vary the
size of|O| from 27 to 216. The results are presented in Fig] 19.
In all the data sets, again CREST consistently outperfolhms t
Pruning algorithm. With the increase |, CREST and the
Pruning algorithm have a similar growth rate. The running



time of the Pruning algorithm gets closer to that of CREST [3]
when|O] is very large. This is because although the number
of regions increases with the increasd©f, most of them are
pruned without being searched in the Pruning algorithmgtvhi
does not happen in CREST. It is notable that even we solve
the maximization problem with CREST which is quite general, (5]
it still outruns the specialized Pruning algorithm desigjfier

(4]

. 7~ 6
the problem, which demonstrates the efficiency of CREST. 16l
10’ 107 7
£10° £10°
%105 * %105 [8]
NS Pruning k- b10* * Pruning--
2103 CREST-LZ 210 CREST-L2 -
O O
102 10% [9]
27 210 213 216 27 210 213 216
Cardinality of O Cardinality of O [10]
(a) LA (b) NYC
10’ 10’ K-
2 mz glo: X F [11]
210 g10 g
;‘JIOA * Pruning - Vuloq Pruning - [12]
2103 CREST-LZ - 2103 CREST-LZ —6—
102 102 [13]
27 210 213 216 27 210 213 216
Cardinality of O Cardinality of O [14]
(c) Uniform (d) Zipfian
Fig. 19. Effect of data set size with2 distance [15]
IX. CONCLUSIONS [16]

In this paper, we proposed the RNN heat map problem,
which computes the influence of every point in the space[.17]
Comparing to existing studies which give only the points or
regions with the highest influence, the RNN heat map enablds®!
exploring the influence of the whole space while considerinqlg]
gualitative factors at any instant during the exploratigve
solved the problem by first reducing it to the Region Coloring[zo]
(RC) problem, and then computing the influence on regions
instead of points with a novel algorithm called CREST. We[21)
proposed two techniques in CREST, one to avoid point en-
closure queries in the influence computation and the other to
reduce the total number of times of the influence computatior22]
Through a detailed analysis, we showed that the number of
influence computation in CREST is asymptotically optimal. 3
We also showed that the worst-case time complexity of crestd
is much lower than that of the baseline algorithm and in many
cases meets the lower bound of RC. We conducted extensiygy)
experiments on both real and synthetic data sets. The sesult
showed that CREST outperforms alternative algorithms by upes)
to three orders of magnitude.
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