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Abstract—Automated web scraping is a popular means for
acquiring data from the web. Scrapers (or wrappers) are derived
from either manually or automatically annotated examples, often
resulting in under/over segmented data, together with missing
or spurious content. Automatic repair and maintenance of the
extracted data is thus a necessary complement to automatic
wrapper generation. Moreover, the extracted data is often the
result of a long-term data acquisition effort and thus jointly
repairing wrappers together with the generated data reduces
future needs for data cleaning. We study the problem of comput-
ing joint repairs for XPath-based wrappers and their extracted
data. We show that the problem is NP-complete in general
but becomes tractable under a few natural assumptions. Even
tractable solutions to the problem are still impractical on very
large datasets, but we propose an optimal approximation that
proves effective across a wide variety of domains and sources.
Our approach relies on encoded domain knowledge, but require
no per-source supervision. An evaluation spanning more than
100k web pages from 100 different sites of a wide variety of
application domains, shows that joint repairs are able to increase
the quality of wrappers between 15% and 60% independently of
the wrapper generation system, eliminating all errors in more
than 50% of the cases.

I. INTRODUCTION

Data acquisition plays an important role in modern or-
ganisations and is a strategic business process for data-driven
companies such as insurers, retailers, and search engines. Data
acquisition processes range from manual data collection and
purchase, to cheaper but often technically challenging methods
such as automated collection and crowdsourcing.

The abundance of web data has made web scraping (also
known as web data extraction or web wrapping) an essential
tool in data acquisition processes. A wrapper is a program
that turns web content into structured data using techniques
ranging from visual analysis of the rendered page to DOM tree
mining [11], [18], [20], [35]. Web scraping is often the only
viable data collection method for websites, in particular when
no API is available. Although web scraping typically relies on
inducing a wrapper for every source, a number of semi- or
fully automated techniques for web scraping have emerged.
These recent advances have finally allowed for accurate and
fully automated wrapper induction at the scale of hundreds
of thousands of sources [18]. They have also contributed to
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Attribute_1 Attribute_2
Lawrence of Arabia  
(re-release)

Director: David Lean Genre (s) : 
Adventure,Biography,Drama,War Rating: PG Runtime: 216 min 

Schindler's List 
(right now)

Director: Steven Spielberg Genre (s) : 
Biography,Drama,History,War Rating: R Runtime: 195 min 

Le cercle rouge  
(re-release) 

Director: Jean-Pierre Melville Genre (s) : Drama,Thriller,Crime 
Rating: Not Rated Runtime: 140 min 

Title Director Genres Rating Duration

RS:   Source Relation

   :   Target Schema

Fig. 1: Web data extraction with RoadRunner

revitalised the area, as evident from a growing number of web
scraping startups, e.g., Import.io, DiffBot, ScrapingHub.

Automatically induced wrappers, however, are still more
error prone than those created by humans, resulting in dirty
data. As an example, Figure 1 (top) shows the outcome of
the application of a wrapper generated by RoadRunner [11]
on metacritic.com, a review aggregator. The extracted (source)
relation (RS) is given at the top, the desired (target) schema
(Σ) at the bottom. Their differences exemplify common issues
found in data extracted by automatically induced wrappers
(see Section V for a more extensive analysis of the typical
errors): (1) Under/over segmented attributes are commonly
caused by irregularities in the HTML markup, or by the inability
of wrapper induction systems to segment different attributes
within the same DOM text node. (2) Missing or incorrect
column types are associated with the lack of domain knowledge
or suitable explicit labels in the source. (3) Misplaced and
missing values (not present here) are typically caused by
irregularities in the source, ambiguities in the content, or a
narrow set of examples considered in the induction.

Repairing the data means aligning the source relation to the
target schema—a task that requires the identification of exact
values from RS (underlined in Figure 1) and their placement
under the correct attribute in Σ. However, just repairing the
extracted data is often not sufficient, as in many cases data
acquisition is an ongoing process and thus wrappers will likely
be executed many more times in the future. This is particularly
the case for data integration [3], [8], in which future executions
of the repaired wrappers generate relations already aligned
with the target schema, thereby reducing the need for repeated
data cleaning and easing integration [15], [24].

The problem. This paper focuses on the problem of



computing a joint wrapper and data repair for web data
extraction systems (formally defined in Section III), so that
future wrapper executions can benefit from the repairs applied
to the wrapper. The problem takes as input a possibly faulty
wrapper (specified in XPath), a relation generated by applying
the wrapper to some collection of pages of the corresponding
source, and a target relation schema. A solution to the problem
is a set of repair expressions that align the relation to the target
schema, adjusting the wrapper where possible.

Example 1. Consider the (source) relation of Figure 1,
where we aim to align the underlined values to the target
schema Σ. A possible repair is

〈TITLE, substring-before($, ()〉
〈DIRECTOR, substring-before(substring-after($,tor: ), Gen)〉
〈GENRES, substring-before(substring-after($,(s): ), Rat)〉
〈RATING, substring-before(substring-after($,ing: ), Runt)〉
〈DURATION, substring-after($,time: )〉

specifying, for each attribute: (a) the attribute label, and (b) an
XPath string-valued expression that extracts the correct value
from the concatenation ($) of the columns of Figure 1.

Novelty. Classical wrapper maintenance assumes that a
correct (usually manually created) wrapper exists and focuses
on maintaining the correctness of the wrapper through tech-
niques such as (a) detecting changes on the sources that may
affect the wrapper, and (b) minimally (and robustly) adjusting
the wrapper to adapt to these changes [5], [22], [25], [27],
[28]. Unfortunately, for automated wrapper induction methods,
the induced wrappers are often incorrect. Tools for cleaning
and maintaining the induced wrappers, as well as the extracted
data, are primarily manual or supervised. Scalable tools for
continuous maintenance of both the induced wrappers and the
extracted data are still largely missing.

Contribution 1. We formally define the problem of com-
puting maximal joint repairs and we give an optimal solution
that relies on the existence of attribute oracles (Section II
and III). Oracles are functions that can test whether a given
value belongs to the domain of an attribute. We show that
the problem is NP-complete but becomes tractable under a
few natural assumptions based on the behaviour of wrapper
induction systems: (1) errors in wrapper induced relations are
likely to be systematic, as wrappers are often induced from
templated websites; (2) wrapper induction systems tend to
under-segment and misplace content rather than over-segment
it (atomic misplacements, see Section V). In practice, this
means that we can avoid reordering fields of generated re-
lations in order to reconstruct a correct segmentation.

Despite being tractable, computing joint repairs remains
difficult in practice. The main obstacle is the presence of
attribute oracles, functions capable of recognising semantically
related content in the relation, e.g., that in Figure 1 the tokens
after “Runtime:” are all time durations. The recognition of se-
mantically related content has some similarities to knowledge-
based wrapper induction, where either an existing set of entity
recognisers (like in [12], [18]) or cross-site, instance-level
redundancy is employed to induce wrappers [3], [6], [8],
[13]. However, in the wrapper induction setting, background
knowledge is only compared with a small sample of webpages

considered for induction. For repair, on the other hand, we can
afford to compare it with all of the extracted data.

Contribution 2. We follow the inspiration of the former ap-
proaches and we propose an approximate solution that replaces
oracles with an ensemble of entity recognisers [4], encoding
existing background knowledge. This has advantages such as
enabling per-source (and therefore per-wrapper) repairs, while
retaining a broad applicability across domains.

Unfortunately, entity recognisers are often noisy and in-
complete (as noted also in [4], [12], [18]) and our approach
is specifically tailored to tolerate these deficiencies by elim-
inating noise and ambiguity and generalising the underlying
structure to cope with incompleteness (see Section IV).

The resulting approach is fully unsupervised and computes
an optimal approximation of the joint repairs using an en-
semble of entity recognisers to (1) discover hidden attribute
structures in the annotated relations through the elimination of
incorrect annotations, and to (2) construct relation-wide repairs
for both wrappers and relations.

Contribution 3. We show that our method is optimal under
certain conditions on the error rate of the entity recognisers
(Section IV) and, then, experimentally verify the performance
and the generality of our method on a dataset of 100 websites
from 10 different domains (Section V). The evaluation uses
4 different wrapper induction systems, namely DIADEM [18],
DEPTA [35], ViNTs [38], and RoadRunner [11], and shows in each
case an improvement in the quality of the extracted relation
by 15%–60%, while fully repairing corresponding wrappers in
more than 50% of the cases.

II. DEFINITIONS

Preliminaries. A relation R is a set of n-tuples 〈u1, . . . ,un〉
where n=arity(R) is the arity of the relation. A schema
Σ=〈A1, . . . ,Am〉 is a tuple representing attributes (or fields) of
the relation, where m=arity(Σ) is the arity of the schema. Each
attribute A ∈ Σ takes values from a domain dom(A) extended
with the null value. A domain is the set of admissible semantic
values for a given attribute. As an example, the domain for
the attribute MAKE of a car may contain the values “Ferrari”,
“Citroën” and “Ford”. We test whether a value u belongs to
a given domain via an oracle function ωA, s.t., ωA(u)=1 if
u ∈ dom(A) or u=null, and ωA(u)=0 otherwise. We say that R
agrees with Σ if arity(R)=arity(Σ) and that R satisfies Σ if it
agrees with Σ and ωAi(ui)=1, for each attribute Ai ∈ Σ and
corresponding attribute value ui in any tuple 〈u1, . . . ,un〉 ∈ R.

Wrappers. In web data extraction, a wrapper is a pro-
gram extracting structured data from a collection of (semi-
structured) web pages P represented as DOM trees. Differently
from, e.g., information extraction, in our setting the pages in
P follow the same template. In this paper we limit ourselves
to wrappers specified in XPath.

Definition 1. An XPath wrapper W is a set of pairs
{〈L1,χ1〉, . . . ,〈Lm,χm〉}, where each Li is a label and each χi is
an XPath expressions on DOM trees, possibly with functions,
e.g., substring-after(//b[@name=’price’],‘£’). The application of a
wrapper W to a collection of web pages P is denoted by W(P)
and produces, as an output, a relation with schema 〈L1, . . . ,Lm〉.



Fitness. Automatically induced wrappers often introduce
misalignments between relations and schemas, i.e., under/over
segmented or misplaced values. We therefore require a way to
quantify the agreement between a relation and a schema.

Definition 2. The fitness for a tuple u (and for a relation R)
w.r.t. a schema Σ and a set of oracles Ω = {ωA1 , . . . ,ωAarity(Σ)}
is computed as:

f (u,Σ,Ω) =
c

∑
i=1

ωAi(ui)/d f (R,Σ,Ω) = ∑
u∈R

f (u,Σ,Ω)/|R|

where c = min{arity(Σ),arity(R)} and d = max{arity(Σ),arity(R)}.

Example 2. Consider the following (misaligned) relation
and the schema Σ : 〈MAKE,MODEL, PRICE〉.

MAKE MODEL PRICE
u1 £19k Audi A3 Sportback
u2 £43k Audi A6 Allroad quattro
u3 Citroën £10k C3
u4 Ford £22k C-max Titanium X

Given a set of oracles Ω={ωMAKE,ωMODEL,ωPRICE}, the fitness
of R w.r.t. Σ and Ω is 2/12 as only the two values of MAKE
are in the correct position, out of 12 possible correct values.
The other values are misplaced and/or under-segmented.

Repairs. The relation of Example 2 is misaligned and
wrongly segmented w.r.t. to the schema but the correct infor-
mation is somehow represented in the relation. When a relation
does not fit a schema, we re-segment it and adjust the wrapper
accordingly. Given a tuple u = 〈u1, . . . ,un〉 ∈ R, we denote by
Π(u) a tuple obtained by permuting the values of u and by
T(u) the string concatenation (on a suitable separator, e.g.,

) T(u1)‖ . . .‖T(un), where T(ui) is the string representation of
ui ∈ u. Thus, T(Π(u)) is the string computed by concatenating
permuted values of u according to Π. A segmentation of a
string S is a sequence (s1, . . . ,sk) of non-overlapping substrings
of S. If the concatenation s1‖ . . .‖sk=S, then we say that
(s1, . . . ,sk) is a partition of S. We can now extend the notion
of fitness to segmentations of strings: given a permutation Π of
u and a segmentation of T(Π(u)), the fitness of T(Π(u)) can be
computed by invoking oracles on elements of the segmentation
rather than on elements of u (Definition 2).

Definition 3. Given a relation R and a schema Σ, a Σ-
repair of R is a pair σ=〈Π,ρ〉, where Π is a permutation
of the fields of R and ρ a set of pairs 〈Ai,EAi〉 where
Ai ∈ Σ, and EAi is a regular expression over strings. The
application of a Σ-repair σ on a tuple u, denoted by
σ (u), is the tuple u∗ = 〈EA1 (T(Π(u))), . . . ,EAm (T(Π(u)))〉, where
(EA1 (T(Π(u))), . . . ,EAm (T(Π(u)))) is a segmentation of T(Π(u)).

Put simply, a Σ-repair extracts values for an attribute A from a
tuple u. This is done by concatenating the (possibly permuted)
values of u, and by applying a regular expression EA. This
notion generalises to relations, denoted by σ (R), by applying
σ to all tuples u ∈ R.

Example 3. Consider the relation and the schema of Ex-
ample 2. The following is a possible Σ-repair maximising the

fitness of R w.r.t. Σ and Ω. The symbol $ denotes the argument
of the expression, and ‘ ’ is the whitespace character:

Π : (1,3,2)
ρ : 〈MAKE,substring-before($, )〉

〈MODEL,substring-before (substring-after($, ),£)〉
〈PRICE,concat(£,substring-after($,£))〉

The application of σ , to, e.g., u4 produces the correct (seg-
mentation and) tuple 〈Ford,C-max Titanium X,£22k〉.

Σ-repairs are applied to wrappers in a similar way.

Definition 4. The application of a Σ-repair σ to a wrapper
W = {〈A1,χ1〉, . . . ,〈An,χn〉}, denoted by σ (W), produces a
modified wrapper as follows:

W′ = {〈A1,E1(concat(χπ1 , . . . ,χπn)〉,
. . .
〈Am,Em(concat(χπ1 , . . . ,χπn)〉}

where concat concatenates all the strings produced by the
XPath expressions χπ1 , . . . ,χπn in the order specified by the
permutation Π=(π1, . . . ,πn). In this work we limit ourselves
to expressions that can be constructed by XPath 1.0 string
manipulation functions, denoted by f Σ

XPATH.

III. MAXIMAL JOINT REPAIRS

Definition 5. Let Σ be a schema, Ω a set of oracles for Σ, R
a relation, and W a wrapper s.t. W(P)=R for a collection of web
pages P. We say that a Σ-repair σ is a maximal joint repair
for R and W w.r.t. Σ and Ω, if σ (W(P))=σ (R) and σ maximises
the fitness of R w.r.t. Σ and Ω, i.e., f (σ (R),Σ,Ω) is maximum.

As an example, the Σ-repair of Example 3 is a maximal joint
repair as the fitness increases from 2/12 to (its maximum) 1.

We first establish the complexity of the problem when
relations have only atomic misplacements, i.e., where an at-
tribute value is either entirely misplaced or, if it has been over-
segmented, the fragments are in adjacent fields in the relation
(and in the correct order). Under this restriction, our problem
is closely related to the Table Induction Problem (TIP) [6], [8],
[13], [24], which asks to compute a segmentation of a list of
strings in k parts in such a way that the values of each column
minimise a given distance function.

TIP is shown to be NP-hard via a reduction from Multiple
Sequence Alignment [6]. An optimal approximation can be
obtained in polynomial time by decomposing the distance
function in such a way that the independent minimisation
of each component results in the minimisation of the whole
distance function. In our setting, fitness maximisation plays
the same role of distance minimisation, while the presence of
the oracles reduces the fitness of a relation to an aggregate of
the fitness of its tuples (i.e., we can independently maximise
the fitness of individual tuples).

The problem is now to determine how hard it is to compute
a maximal joint repair of a single tuple. We show that this
problem can be reduced to the computation of a partition of
T(u) that, encoded as a Σ-repair, produces the maximal fitness.
However, restricting to partitions raises the problem of treating



“garbage” content—parts of the extracted data that are never
accepted as value of an attribute in any segmentation and
typically form part of the boilerplate code of a web page.

Example 4. Consider the following relation and the target
schema Σ : R(BEDS,TYPE,CITY, PRICE).

BEDS TYPE CITY PRICE
u 2 beds apartment Bradford £495k

If the correct tuple is 〈2, apartment, Bradford, £495k〉, then it
is not possible to obtain such a tuple by restricting to partitions
of 4 elements of T(u) =“2 beds apartment Bradford £495k”,
as the garbage substring “beds” must be part of an element of
the partition (by definition of partition). We therefore need a
way to identify and eliminate garbage substrings by leveraging
the oracles. Since we have to enumerate all possible partitions,
this can be done by marking substrings of T(u) that are never
accepted by an oracle in any of the enumerated partitions. As
an example, consider the following partitions of T(u):

ωBEDS ωTYPE ωCITY ωPRICE

Φ1 “2 beds” “apartment” “Bradford £” “495k”
Φ2 “2” “beds apartment” “Bradford £” “495k”
Φ3 “2” “beds” “apartment Bradford” “£495k”

If a substring is (part of) an attribute value, it will be accepted
by an oracle in some of the enumerated partitions, e.g., “2”
will be accepted by ωBEDS in Φ2 and Φ3, while “beds” will
never be accepted by any of the oracles. Once all partitions
have been enumerated, we can update them by removing all
identified garbage substrings. This will collapse some of the
partitions as it is the case for Φ1 and Φ2 above, collapsing to
(“2”,“apartment”,“Bradford £”,“495k”).

Lemma 1: Let R be a relation with atomic misplacements,
Σ a schema, k the arity of Σ, and Ω a set of oracles for Σ.
Given a tuple u ∈ R, we can construct a segmentation of T(u)
of maximum fitness w.r.t. Σ and Ω in polynomial time.

Proof: We describe the polynomial time algorithm
Naïve-Repair as a proof of Lemma 1. The algorithm first enu-
merates all possible partitions of T(u) of k elements. As we ex-
pect null values, we compute partitions with k = {1, . . . ,arity(Σ)}
and fill the remaining elements of the partition (up to arity(Σ))
with null. A partition of k elements for a string S can be
computed recursively. Since each partition must contain at least
one character, the 1-element partition consists of one element
equal to S. A partition of k elements is computed by assigning
to the first element of the partition the first y characters of the
string (y ∈ [1, length(S)− k+1]), and computing the partitions
of k−1 elements on the rest of the string. Once the partitions
have been enumerated, Naïve-Repair tests each element of
each partition against the oracles, and deletes those (garbage)
substrings that are never accepted by an oracle in any of
the partitions. Eventually the algorithm returns the partition
(without garbage substrings) with maximum fitness. A full
description of Naïve-Repair can be found online [1].

Under the assumption of atomic misplacements, the spe-
cific Π is not important because the correct value of an attribute
will, in the worst case, be split across adjacent fields (we do
not need to permute elements of u). The number of different
partitions is therefore equivalent to the number of ways a T(u)

can be partitioned into k = arity(Σ) parts. Since the number of
characters per tuple n is usually much larger than k, the number
of different partitions is polynomial in n and described by the
binomial coefficient

(n+k−1
k−1

)
∼ nk
√

k·kk [19].

The interaction of attribute misplacements and over-
segmentation makes computing an optimal solution intractable,
since we have to find the right permutation of elements in u
that, once segmented, produces the maximal fitness.

Example 5. Consider the following relation, having the
same schema of Example 2, where values have been both
wrongly segmented and misplaced.

MAKE MODEL PRICE
u Ford C-max Titanium £22k X

Without permuting the fields it is not possible to maximise the
fitness, since the over-segmented and misplaced value “C-max
Titanium X” cannot be tested against ΩMODEL.

We can easily accommodate non atomic misplacements in
Algorithm Naïve-Repair by enumerating all of the possible
permutations of elements of u before partitioning T(Π(u)). This
is unnecessary in table induction where the content is expected
to be wrongly segmented but in the correct order. We now
prove that the corresponding decision problem is NP-complete.

Theorem 1: Let R be a relation, Σ a schema, and Ω a set
of oracles for Σ. Given a tuple u ∈ R and a score w, checking
whether there exist a permutation Π(u) and a segmentation of
T(Π(u)) of fitness ≥ w w.r.t. Σ and Ω is NP-complete.

Proof: (Sketch) We prove the NP hardness via a reduction
from the Weighted Set Packing problem (WSP). Given a set
U and a family S of subsets of U , a packing is a subfamily
C ⊆ S of sets such that all sets in C are pairwise disjoint. If
we assign a weight w(S) to each element S of S, the problem
of determining if there exists a Cw of weight ∑

S∈Cw

w(S) equal

or greater than w is NP-complete. For any instance of WSP, we
construct an instance of our problem as follows. Each element
of U for WSP is taken as an element of u. Each set S in S is
mapped to a string xS by considering the string representation
of elements in U and concatenating them (in any order). We
then define an oracle ω such that ω(xS)=w(S) for each S in S.
Note that the fact that oracles return a positive real value does
not affect the polynomial of the reduction. It can be shown that
there exists a solution to WSP iff there exists a solution to our
problem. The proof relies on the fact that pairwise disjoint sets
are mapped to strings that do not share any element of u, and
such strings are therefore a segmentation of a permutation of u.
Membership in NP is straightforward. Given a set of substrings
φ and a weight w, checking whether φ is non-crossing and that
it has fitness w or more can be done in polynomial time. The
complete proof of the Theorem can be found in [1].

Once an optimal segmentation has been computed, we
still have to construct the expressions matching the correctly
segmented content in the relation. This can be done using the
values of the segmentation as positive examples. Indeed an
f Σ
XPATHexpression that exactly matches the correctly segmented

values in each tuple can always be naïvely constructed by:
(i) selecting the tuple with the content to be matched, and



(ii) matching the desired value using substring functions that
use the content before and/or after the correct value as context.
The expression segmenting an attribute is then the disjunction
of the expressions computed for each tuple.

Example 6. Consider again the relation R and the schema
Σ of Example 2. The following is the correct segmentation
of R obtained by executing Naïve-Repair on every tuple of
R, and by mapping the elements of the segmentation to the
corresponding attribute.

ωMAKE ωMODEL ωPRICE

〈Audi〉 〈A3 Sportback〉 〈£19k〉
〈Audi〉 〈A6 Allroad quattro〉 〈£43k〉
〈Citroën〉 〈C3〉 〈£10k〉
〈Ford〉 〈C-max Titanium X〉 〈£22k〉

A naïvely constructed f Σ
XPATHexpression for, e.g., MAKE is:

matches($,£19k Audi A3 Sportback) and
substring-after(substring-before($,A3 Sportback),£19k )
or
. . .
matches($,Ford £22k C-max Titanium X) and
substring-before($,£22k C-max Titanium X))

Given the result of Lemma 1 and the fact that a Σ-
repair for a relation with only atomic misplacements can
always be constructed in polynomial time from the output of
Naïve-Repair, we can now derive the following:

Theorem 2: Given a relation R with atomic misplacements,
a wrapper W that generated R, a schema Σ and a set of oracles
Ω for Σ, it is possible to construct a maximal joint repair for
R and W w.r.t. Σ and Ω in polynomial time.

IV. APPROXIMATING JOINT REPAIRS

Even under the assumption of atomic misplacements, com-
puting a joint repair remains impractical. For instance, it
is unrealistic to construct oracles for all attributes. More-
over, a tuple-by-tuple repair would still require testing
O
(

length(T(u))arity(Σ)
)

alternative partitions against the oracles
for each tuple u, making it infeasible on large relations.
E.g., in the book domain (Section V) we have roughly 2,000
records per site, 150 characters per record, and 5 attributes,
i.e., 2,000 ·1505 partitions.

Another problem is the robustness of the Σ-repair, i.e., its
ability to match correct values on unforeseen data (or to avoid
overfitting). Clearly, the naïve construction of expressions done
by Naïve-Repair always overfits the examples and would
require re-computing the repair at every wrapper execution as
the produced expressions are never robust. Our goal is instead
to produce a repair for the original wrapper such that future
extractions on unforeseen data will produce clean values.

Approach Overview. We now introduce a general frame-
work to approximate joint repairs that: (i) Relaxes the notion
of oracles to allow errors. In particular, oracles are replaced by
an ensemble of entity recognisers (annotators) tagging strings
with types corresponding to attributes in Σ [4]. (ii) Under
the assumption of atomic misplacements, computes robust
relation-wide segmentations that can be encoded in f Σ

XPATH.

Algorithm 1: Repair.
input : R – relation instance, set of tuples
input : Ω – ensemble of annotators
input : Σ – schema of the relation
input : t f low – flow network threshold
input : tregex – regex induction threshold
output: ρ – set of pairs 〈A,EA〉

1 RΩ← /0; // Phase 1: Annotation
2 foreach u ∈ R do
3 anns(u)← annotate(u,Ω);
4 RΩ← RΩ∪{(u,anns(u))};
5 Rcopy← RΩ; // Phase 2: Segmentation
6 cover← 0; S← /0;
7 repeat
8 〈V,λ ,E,w〉 ← FlowNetwork(Rcopy);
9 s← MaxFlowSequence(〈V,λ ,E,w〉);

10 if @a,b ∈ s | a = b then
11 S← S∪ s;

12 foreach anns (u) ∈ Rcopy do
13 if subSequence(anns (u),s) then
14 cover← cover+1;
15 Rcopy← Rcopy \{(u,anns(u))};

16 until cover ≥ (|R | ·t f low) ;
17 foreach anns (u) ∈ RΩ do
18 foreach 〈[i, j),A〉 ∈ anns (u) do
19 if @s ∈ S | A ∈ s then
20 anns(u)← anns(u)\{〈[i, j),A〉};

21 ρ ← /0; // Phase 3: Induction
22 foreach A ∈ Σ do
23 ρ ← ρ ∪{〈A,regexInduction(A,RΩ, tregex)〉};
24 return ρ

(iii) Optimally approximates (w.r.t. fitness) maximal joint
repairs constructed by Naïve-Repair.

Relation-wide repairs require the understanding of the
structure of the relation, e.g., to locate misplaced or wrongly
segmented attribute values. In this respect, we observe the
following: (i) Tuples are extracted from templated web pages,
i.e., they follow a similar structure within a site modulo
optional attributes, i.e., values may be omitted for some of the
tuples. (ii) Wrappers make systematic errors, i.e., if an attribute
is misplaced or wrongly segmented by a wrapper, this happens
in a substantial fraction of the relation. (iii) The ensemble of
annotators makes non-systematic errors.

Algorithm 1, given a relation R, a schema Σ and a set of
annotators Ω, constructs an approximate joint repair under the
assumption of atomic misplacements. The algorithm takes as
input a relation R generated by the application of a wrapper W
(not an input to the algorithm), and a collection Ω of annotators
for values of attributes in Σ. Algorithm 1 works in three phases:
annotation, segmentation, and induction.

Annotation. The input for this phase is a relation R and
an ensemble of annotators Ω. For each tuple u ∈ R, T(u) is
handed over to annotators in Ω producing, as an output, an
annotated tuple (lines 1–4). We represent tuple annotations via
a labelling function anns associating a tuple to a set of pairs
of the form 〈[i, j),A〉, where [i, j) is an integer interval (with
0 ≤ i < j ≤ length(T(u))) and A ∈ Σ. This phase produces an
annotated relation RΩ, consisting of a set of annotated tuples.
We expect it to contain both incorrect and missing annotations.



Segmentation. The segmentation phase takes as input the
annotated relation RΩ. A straightforward way of constructing
a Σ-repair of maximum fitness is to directly use the annotated
values, since the fitness is determined by the number of times
annotators recognise values in RΩ. Due to noisy annotators,
we first have to determine the sequences of annotation types
representing the correct structure of the relation. The intuition
is that correct annotations are very likely to be predominant
and that errors, although frequent, are non-systematic

This can be encoded as the problem of computing max-
flows in a network N(V,E) having the following properties:

1) Each node v ∈ V represents an annotation type A ∈ Σ in a
given context (i.e., within a sequence of annotations). Two
special nodes, i.e., SRC (source) and SINK nodes represent
the beginning and the end of the relation respectively.

2) There exists a path 〈SRC,vA1 , . . . ,vAk , SINK〉 in N if and
only if there exists a tuple u ∈ RΩ such that we observe
a sequence of annotations (aA1 , . . . ,aAk) in u, where aAi is
an annotation of type A ∈ Σ and i is the position in the
sequence.

3) Given an edge e(vAi ,vAi+1) ∈ E, its capacity is the sum of
all the annotations that would be preserved by selecting
all the tuples u ∈ RΩ s.t. we can observe a sequence of
annotations (aA1 , . . . ,aAi ,aAi+1 , . . . ,aAk) in u.

Paths on the network are possible attribute structures for R.
Incorrect annotations lead to networks where multiple nodes
are labelled with the same attribute. A path is valid if and only
if it does not contain two nodes with the same attribute label.

Algorithm 2 constructs the network starting from an an-
notated relation. It iterates over all tuples (line 3) and their
annotations (line 6), creating a new node whenever it observes
a new annotation type or an existing one but in a different
context. A suitable labelling function λ associates each node
to a pair 〈A,(A1, . . . ,Ak)〉 denoting the type of the node and
its context (line 11), context represented as the sequence of
types observed in u before A (line 15). The weight w of an
edge (vi,vi+1) is the total number of annotations we observe if
we consider the sequence (SRC, . . . ,vi,vi+1) (line 4).

The network has at most a number of nodes equal to the
total number of annotations and a number of paths equal to
the number of tuples in RΩ. In the worst case, where each
attribute has a different annotator, the number of annotations
is n · arity(Σ), where n is the total number of tokens in R, i.e.,
each token of each tuple is annotated with all attributes. The
network can therefore be constructed in polynomial time.

Algorithm 1 uses the computed network to compute the
max-flow sequences S. For the max-flow computation, we
adopted the Dinitz blocking flow algorithm to ease the imple-
mentation. We first compute augmenting paths with Dinitz’s
algorithm (line 9), then we select only valid paths, i.e.,
paths where there are not two nodes with the same attribute
(lines 10–11). Dinitz’s algorithm runs in O (| V |2 · | E |). The
number of computed sequences depends on the number of
tuples that are covered by each sequence. In particular, we
iterate over the following steps: (i) Compute the max-flow
sequence s in the network. (ii) Remove from RΩ all annotations
matching s or one of its subsequences and recompute the net-
work (lines 12–15). The iteration continues until the number of
tuples that are covered by some computed sequences exceeds

Algorithm 2: Flow Network.
input : RΩ – annotated relation
output: 〈V,λ ,E,w〉 – flow network

1 V←{SRC, SINK};
2 E,λ ,w← /0;
3 foreach u ∈ RΩ do
4 ann#←| anns(u) |;
5 Aseen← (SRC); vprev← SRC;
6 foreach 〈[i, j),A〉 ∈ anns(u) do
7 v←{v ∈ V | λ (v) = 〈A,Aseen〉};
8 if v = null then
9 v← new Node;

10 V← V∪{v};
11 λ ← λ ∪{(v,〈A,Aseen〉)};
12 E← E∪{〈vprev,v〉};
13 w← w∪{(〈vprev,v〉,0)};
14 w(〈vprev,v〉)← w(〈vprev,v〉)+ann#;
15 Aseen← (Aseen,A);// identify the context

16 if 〈vprev, SINK〉 /∈ E then
17 E← E∪{〈vprev, SINK〉};
18 w← w∪{(〈vprev, SINK〉,0)};
19 w(〈vprev, SINK〉)← w(〈vprev, SINK〉)+ann#;

20 return 〈V,λ ,E,w〉

a given threshold t f low ∈ [0,1] (line 16). The output of the
algorithm is a ranking of attribute sequences by number of
covered tuples. The max-flows computation on a network aims
to reconstruct (i) the original (valid) attribute sequence of
the original website, (ii) that maximises the total number of
preserved annotations (since the majority of annotations are to
be considered correct).

Example 7. Consider the relation of Example 2, with tar-
get schema Σ = {MAKE,MODEL, PRICE} and annotators Ω =
{ωMAKE,ωMODEL,ωPRICE}. The following is a possible anno-
tated relation RΩ, having ωMAKE and ωMODEL incomplete, i.e.,
they miss the values “Citroën” and “Allroad quattro”.

u1 £19k Audi A3 Sportback
u2 £43k Audi A6 Allroad quattro
u3 Citroën £10k C3
u4 Ford £22k C-max Titanium X

The network is shown on the left (multiple nodes with same
label are due to different contexts). The maximum flow is
6 corresponding to the sequence s1: (PRICE,MAKE,MODEL)
covering the first three tuples in RΩ. Note that u3 is also covered
since it contains a subsequence of s1. If we set t f low > 0.75, the
algorithm then deletes the annotations covered by s1, leading
to the network on the right. The sequence corresponding to the
maximum flow of 3 is now s2: (MAKE, PRICE,MODEL). The
computation stops here as the set {s1,s2} covers the entire
relation.
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A step-by-step example of the network construction process
and the optimality w.r.t. maximum-likelihood sequences using
memory-less Markov Chains can be inspected online [1].

The computation of max-flow sequences always terminates
since (i) RΩ is finite, and (ii) every time a max-flow sequence
is computed, the corresponding annotations are removed from
RΩ, thus reducing the number of possible valid flows in
the network. In the worst case, each tuple produces a new
sequence, therefore the number of sequences is bounded by
the size of the relation.

Algorithm 1 then removes from RΩ all annotations that do
not match any of the computed sequences (wrong annotations),
leaving each tuple of RΩ with only one annotation per attribute
(lines 17–20). The output of the segmentation phase is the
annotated relation RΩ, without those annotations that disagree
with the computed flow sequences S.

Induction. As a final step, the induction phase takes as
input the modified annotated relation RΩ and computes regular
expressions segmenting attribute values. For each attribute
A ∈ Σ, the function regexInduction (line 23) produces a
regular expression EA matching the substrings annotated as
A in T(u), for each u ∈ RΩ. The expression EA is constructed
by generalising the annotated spans.

The function regexInduction takes as input a set of (posi-
tive) examples: {〈T(u1),anns(u1)〉, . . . ,〈T(un),anns(un〉)} where
each example consists of the string representation of a tuple
and the corresponding annotated spans. For each attribute A,
the function takes the corresponding annotated spans in the
examples and looks for (i) common length prefixes and or
suffixes to the annotated content, or (ii) non-content strings that
repeat a constant number of times. Non-content strings consist
of punctuation, whitespace, special characters, and other un-
annotated content. Among the computed expressions, the
function returns the expression matching the highest number of
examples, provided that this number exceeds a given threshold
tregex ∈ [0,1]. The algorithm also prefers expressions where
the common prefix/suffix does not overlap with annotated
content (i.e., it privileges robust expressions). When it fails to
produce an expression matching enough examples, the function
constructs an expression that matches the disjunction of the
annotated values. We call this expression value-based. Value-
based expressions are less robust since they depend on the
observed attribute values. The method is an improved version
of the text-range induction algorithm used in [18] (details are
deferred to [1]). The output of the induction phase (and of
the repair algorithm) is the set of pairs computed as described
above, consisting of a Σ-repair of R w.r.t. Σ and Ω.

Example 8. Consider the relation and the set of max-flow
sequences of Example 7. Algorithm 1 computes the following
Σ-repair, with Π= (1,2,3):

〈MAKE,value-based($, ’Audi | Ford’)〉
〈MODEL,substring-after(substring-after($, ), )〉
〈PRICE,substring-after(substring-before($,k ), )〉

We use the value-based as a shortcut for a case statement
in XPath. Note that the expressions for PRICE and MODEL

are robust, provided that examples are representative of the
corresponding domains. In contrast, the expression for MAKE
is value-based (similar to the one computed in Example 6) and
therefore much less robust. In this case, the result has a higher
fitness than the one computed using directly the annotations (it
would not identify “Allroad quattro” as belonging to MODEL).

The induction of a regular expression for an attribute A
requires the iteration over all the examples and the inspection
of tokens occurring before and after the annotated spans. Since
we repeat this procedure for all the attributes, this requires
O (n · arity(Σ)) steps, with n the number of tokens in RΩ.

Optimality. We now show that Algorithm 1 produces good
approximations of joint repairs if certain conditions on the
error rate of the annotators are satisfied.

Let 〈ν1, . . . ,νM〉 be the error rates for the annotators
〈ω1, . . . ,ωM〉 in Ω. Moreover, let σΩ be the joint repair con-
structed by directly using the values returned by the annotators,
and σ be the joint repair produced by Algorithm 1. The
following result holds.

Theorem 3: For every relation R and wrapper W such that
W(P)=R for some collection of pages P, every schema Σ and
every set of annotators Ω, if maxω∈Ω(νω)< (1− ∑

ω∈Ω

νω), then

f (σΩ(R),Σ,Ω)≤ f (σ (R),Σ,Ω).

In other words, the joint repair computed by Algorithm 1
will always induce a fitness that is not less than the one induced
by a joint repair that directly uses the annotations, provided
that the number of tuples annotated with correct sequences
is more than the maximum number of errors made by an
individual annotator on the same relation. Theorem 3 can also
be seen as a precise quantification of how many errors can be
made by an annotator before being considered systematic. We
refer to the online appendix [1] for the proof.

V. EVALUATION

Our repair approach is implemented in Java and SQL, and
uses the ROSeAnn [4] entity recogniser framework to produce
annotated relations. For this paper we have used all of the
11 annotators described in [4], which contains an extensive
evaluation of the involved annotators. Our experimental eval-
uation aims at demonstrating (i) the independence of our
approach w.r.t. domains and wrapper induction systems, (ii) the
robustness w.r.t. annotation errors, (iii) an increased accuracy
and performance w.r.t. redundancy-based methods.

Datasets. The dataset consists of 100 websites from 10
domains and is an enhanced version of SWDE [20], a bench-
mark commonly used in web data extraction. SWDE’s data is
sourced from 80 sites and 8 domains: auto, book, camera, job,
movie, NBA player, restaurant, and university. For each website,
SWDE provides collections of 400 to 2k detail pages (i.e.,
where each page corresponds to a single record). We comple-
mented SWDE with collections of listing pages (i.e., pages with
multiple records) from 20 websites of real estate (RE) and auto
domains. The final dataset (Table I) has more than 120k pages,
130k records, and 500k attribute values. SWDE comes with
ground-truth data created under the assumption that wrapper
induction systems could only generate extraction rules with
DOM-element granularity, i.e., without segmenting text nodes.



TABLE I: Dataset characteristics.

Domain Type Sites Pages Records Attributes
Real Estate listing 10 271 3,286 15

Auto listing 10 153 1,749 27
Auto detail 10 17,923 17,923 4
Book detail 10 20,000 20,000 5

Camera detail 10 5,258 5,258 3
Job detail 10 20,000 20,000 4

Movie detail 10 20,000 20,000 4
Nba Player detail 10 4,405 4,405 4
Restaurant detail 10 20,000 20,000 4
University detail 10 16,705 16,705 4

Total - 100 124,715 129,326 78

Since modern wrapper induction systems support text-node
segmentation, we have refined the ground truth accordingly. As
an example, in the camera domain, the original ground truth for
MODEL consisted of the entire product title but the text node
also provides, e.g., COLOUR, PIXELS, and MANUFACTURER.

Wrapper induction systems. We generated input relations
for our evaluation using four wrapper induction systems:
DIADEM [18], DEPTA [35] and ViNTs [38] for listing pages,
and RoadRunner [11] for detail pages.1 The output of DIADEM,
DEPTA, and RoadRunner can be readily used in the evaluation.
ViNTs, on the other hand, does not have the notion of attributes
and only segments search listings into rows corresponding to
records. We therefore post-processed its output, typing the
content of lines from different records that are likely to have
the same semantics. The distance metric used is equivalent to
the ones used, e.g., by WEIR [3] and TEGRA [6].

Metrics. The performance of the repair is evaluated
by comparing wrapper-generated relations against the SWDE
ground truth before and after the repair. The metrics used for
the evaluation are Precision, Recall, and F1-Score computed at
attribute level. Both the ground truth and the extracted values
are normalised, and exact matching between the extracted
values and the ground truth is required for a hit. Due to space
limitations, we only present the most relevant results. The full
evaluation, together with the dataset, gold standard, extracted
relations, the code of the normaliser and of the scorer are
available at [1]. All experiments are run on a desktop with
an Intel quad-core i7 at 3.40GHz with 16 GB RAM.

Relation-level Accuracy. The first two questions we want
to answer are: whether joint repairs are necessary and what
their impact is in terms of quality. Table II reports, for each
system, the percentage of: (i) Correctly extracted values.
(ii) Under-segmentations, i.e., when values for an attribute are
extracted together with values of other attributes or spurious
content. (iii) Over-segmentations, i.e., when attribute values
are split over multiple fields. As anticipated in Section II,
this rarely happens since an attribute value often falls within
a single text node. In this setting an attribute value can be
over-segmented only if the extraction system is capable of
splitting single text nodes (DIADEM), but even in this case the
splitting happens only when the system can identify a strong
regularity within the text node. (iv) Misplacements, i.e., values
are placed or labeled as the wrong attribute. This is mostly
due to lack of semantic knowledge or overlapping attribute
domains. (v) Missing values, due to lack of regularity and
optionality in the web source (RoadRunner, DEPTA, ViNTs) or

1RoadRunner configuration has been optimised for detail pages.

TABLE II: Wrapper induction errors.

System Correct
(%)

Under
Segmented

(%)

Over
Segmented

(%)

Misplaced
(%)

Missing
(%)

DIADEM 60.9 34.6 0 23.2 3.5
DEPTA 49.7 44 0 25.3 6
ViNTs 23.9 60.8 0 36.4 15.2

RoadRunner 46.3 42.8 0 18.6 10.4

missing values from the domain knowledge (DIADEM). Note
that the numbers do not add up to 100% since errors may
fall into multiple categories. These numbers clearly show that
there is a quality problem in the produced relations and also
support the assumption of atomic misplacements.

Figure 2 shows the impact of the joint repair on our metrics.
Light (resp. dark)-coloured bars denote the quality of the
relation before (resp. after) the repair.

A first conclusion that can be drawn is that repairs are
always beneficial. From 697 extracted attributes, 588 (84.4%)
require some form of repair, with 50% being the average pre-
repair F1-Score across systems. Our approach induces a correct
regexes for 335 (57%) attributes, falling back to value-based
expressions for the remaining 253 (43%). We repair at least
one attribute in every wrapper and we repair more than 75%
of attributes in more than 80% of the cases.

Among the considered systems, DIADEM delivers, on av-
erage, the highest pre-repair F1-Score (≥60%), but it never
exceeds 65%. RoadRunner is on average worse than DIADEM but
it reaches a better 70% F1-Score on restaurant. Websites in this
domain are in fact highly structured and individual attribute
values are contained in a dedicated text node. When attributes
are less structured, e.g., on book, camera, movie, RoadRunner
has a significant drop in performance. ViNTs delivers the worst
pre-cleaning results.

In terms of accuracy, our approach boosts F1-Score between
15% and 60%. Performance is consistently close to or above
80% across domains and, across systems (except for ViNTs),
with a peak of 91% for RoadRunner on NBA player.

The following are the remaining causes of errors: (i) Miss-
ing values cannot be repaired as our approach can only
use the data available in the relation. This mostly affects
RoadRunner and ViNTs. (ii) There are cases where the struc-
ture of the content is regular enough to induce (suboptimal)
f Σ
XPATHexpressions without triggering the use of value-based

expressions. This often results in a sub-optimal repair of the
relation. This is more evident on domains such as book, camera,
and movie where some of the attributes only occur in irregular
positions in text summaries or titles. (iii) On very irregular
relations (e.g., those generated by ViNTs), the repair essentially
relies on the accuracy of the annotators.

Note that numbers published in this paper differ in parts
from previously published results (e.g., [3], [11]). This is due to
the use of exact matches (in this paper) instead of containment.

Another interesting question is whether the ability to seg-
ment text nodes during wrapper induction (as done, e.g., by
DIADEM) has an impact on the quality of the repair. It turns
out that the impact is very limited: if we disable text-node
segmentation in DIADEM and re-run the experiment, the number
of values requiring segmentations ranges from 4.7% in auto
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Fig. 2: Impact of repair.

to 30% in real estate, with an identical effect in almost all
domains.

Attribute-level accuracy. Another question is whether
there are substantial differences in attribute-level accuracy.
The top of Table III shows attributes where the repair is
very effective (F1-Score'1 after repair). These values appear
as highly structured attributes on web pages and the corre-
sponding expressions repair almost all tuples. As an example,
DOOR NUMBER is almost always followed by suffixes dr or
door. In these cases, the wrapper induction under-segmented
the text due to lack of sufficient examples.

TABLE III: Attribute-level evaluation.

System Domain Attribute Original F1-Score Repaired F1-Score
DIADEM real estate POSTCODE 0.304 0.947
DIADEM auto DOOR

NUMBER
0 0.984

DEPTA real estate BATHROOM
NUMBER

0.314 0.973

DEPTA auto MAKE 0.564 0.986
DIADEM real estate CITY 0 0.59
DEPTA real estate COUNTY 0 0.728

DIADEM auto ENGINE
TYPE

0 0.225

DEPTA auto PRICE 0.711 0.742

For attributes such as CITY and COUNTY, despite a sig-
nificant boost (59% and 72% respectively) produced by the
repair, the final F1-Score is still low. These are irregularly struc-
tured attributes, often co-occurring with others, e.g., STATE,
POSTCODE, in ways that cannot be easily isolated by regular
expressions. Despite not having syntactic regularity, these
attributes are semantically related, e.g., COUNTY is usually
after CITY and before POSTCODE, and could be captured by
extending f Σ

XPATHwith NER capabilities [4].

An exceptional case is ENGINE TYPE, where the value
Petrol is also recognised as COLOUR. This causes a loss of
performance as it creates a systematic error in the annotated
relation. Another exception is the case of PRICE in relations
generated by DEPTA. DEPTA extracts large chunks of text with
multiple prices among which the annotators cannot distinguish
the target price reliably, resulting in worse performance.

Independent evaluation. We performed an extraction of
restaurant chain locations in collaboration with a large social
network, which provided us with 210 target websites. We used
DIADEM as a wrapper induction system and we then applied
joint repair on the generated relations. The accuracy has been
manually evaluated by third-party rating teams on a sample
of nearly 1,000 records of the 276,787 extracted. Table IV

shows Precision and Recall computed on the sample (values
higher than 0.9 are highlighted in bold). In order to estimate

TABLE IV: Accuracy of large scale evaluation.

Attribute Precision Recall % Modified values
LOCALITY 0.993 0.993 11.34%

OPENING HOURS 1.00 0.461 17.14%
LOCATED WITHIN 1.00 0.224 29.75%

PHONE 0.987 0.849 50.74%
POSTCODE 0.999 0.989 9.4%

STREET ADDRESS 0.983 0.98 83.78%

the impact of the repair, we computed, for each attribute, the
percentage of values that are different before and after the
repair step. These numbers are shown in the last column of
Table IV. Clearly, the repair is beneficial on all of the cases. For
OPENING HOURS and LOCATED WITHIN, where recall is very
low, the problem is due to the fact that these attributes were
often not available on the source pages, thus being impossible
to repair. The independent evaluation proved that our repair
method can scale to hundreds of thousands of non-synthetic
records. On the other hand, the joint repair is bound to the
accuracy of the extraction system, i.e., it cannot repair data
that has not been extracted.

We have previously shown (Section IV) that an optimal
approximation of a joint repair can be computed efficiently.
To stress the scalability of our method, we created a synthetic
dataset by modifying two different variables: n—number of
records, with an impact mostly on the induction of regular
expressions, since it increases the number of examples; k—
number of attributes, which influences the size of the flow
network and the computation of the maximum flow. The
synthetic relations are built to produce the worst case scenario,
i.e., each record contains k annotated tokens, each annotation
has a different context and each record produces a different
path on the network. This results in a network with n · k+ 2
nodes, and n · k+ n edges. The chart on the left of Figure 3
plots the running time over an increasing number of records
(with number of attributes fixed), while the chart on the right

Fig. 3: Running time.



increases the number of attributes (with number of records
fixed). As expected, the joint repair grows linearly w.r.t the
size of the relation, and polynomially w.r.t. the number of
attributes. In the extreme case, the computed network contains
10M nodes and 10.1M edges. The largest network obtained
on non-synthetic datasets has 39,148 nodes and 45,797 edges
(book), with repairs computed in less than 3 seconds.

Comparative evaluation. We compare our approach
against WEIR [3], a wrapper induction and data integration sys-
tem that can be used to compute a joint repair of a relation w.r.t.
a schema. WEIR induces wrappers by generating candidate
expressions using simple heuristics and by filtering them using
instance-level redundancy across multiple web sources, i.e., it
picks, among candidate rules, those that consistently match
similar values on different sources. We compare with WEIR as
the only other similar system, Turbo Syncer [8], is significantly
older, and we were not able to obtain an implementation.

WEIR uses only redundant values for rules selection, re-
sulting in relations with missing values (and records). We
compared against WEIR on SWDE original dataset, the same
one used in their evaluation [3] (using RoadRunner as extraction
system). We evaluated WEIR and our approach in two separate
settings: Figure 4 shows the performance of our approach and
WEIR on each domain, computed on redundant records only,
while in Figure 5 we also take into account non-redundant
ones. A first observation is that redundant records are a
small fraction of the whole relation, thus limiting the recall
(shown on top of the bars in Figure 4). The results show
that, if we limit the evaluation to redundant values only,
our approach delivers same or better performance than WEIR.
Interesting cases are auto, restaurant and university, where our
approach outperforms WEIR by more than 10% in F1-Score. In
particular, WEIR suffers from false redundancy caused by a lax
similarity measure and under-segmented text nodes. The only
case where WEIR performs better than our approach is in movie,
where the presence of multivalued attributes (such as GENRE)
causes the selection of suboptimal max-flow sequences. If we
also consider all values, including non redundant ones, our
approach clearly outperforms WEIR in every domain, with a
peak of 36% boost in F1-Score in camera.

In terms of running time, WEIR requires an average of 30
minutes per domain whereas our approach repairs a domain in
less than 2 minutes. This is due to the way WEIR exploits cross-
source redundancy, i.e., instances in a source are compared
against instances of all other sources. As a consequence,
the running time increases with the number of sources. Our
approach instead repairs each source in parallel.

We also run a preliminary comparative evaluation with
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Google Data Highlighter, a supervised data annotation tool that
can be used to produce tabular data from web pages. A
discussion is available at [1].

Ablation study. In this experiment we measured the impact
of each phase of the joint repair computation on F1-Score
for the most relevant scenarios (we found similar results in
other scenarios but those have not been included due to space
reasons). With respect to Figure 6, original (or) refers to the

Only Annotator Only Regular Only Value Based Final

DIADEM (RE) 0.6487 0.7048 0.8315 0.8613 0.8735

DIADEM (AUTO) 0.6048 0.798 0.7249 0.8819 0.8875

RR (AUTO) 0.5651 0.5838 0.7148 0.8418 0.8691

RR (UNIVERSITY) 0.4594 0.6253 0.7803 0.8254 0.8335

RR (NBA) 0.6147 0.8408 0.9235 0.9169

RR (CAMERA) 0.1487 0.4650 0.755 0.7561
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Fig. 6: Impact of individual components

original (i.e., before repair) quality of the relation, while joint (j)
is the post-repair quality. annotator (ann) shows the effect of
constructing the repair by directly using annotations, regex (reg)
shows the performance when only regexes are induced (i.e.,
without value based expressions), network (net) shows the repair
performance by using only value based expressions computed
from max-flow sequences (i.e., no regex induction).

As we can see, the direct use of annotations for repair or
regex induction delivers poor results. The major contribution
to the quality is the use of max-flow sequences that uncover
the underlying structure of the relation and eliminate noisy
annotations. Regex induction is still beneficial afterwards to
recover misses of the annotators. The most striking case is
STREET_ADDRESS in the real estate domain. The attribute
is hardly recognised by annotators (accuracy around 50%),
however its structure in the relation is very regular and the
after-repair accuracy reaches 85%.

Thresholding. This second experiment measures the effect
of the thresholds t f low and tregex on performance. Figure 7
shows the variation of F1-Score for the most interesting sce-
narios (other scenarios report similar results). The setting of
excessively low thresholds negatively impacts the performance,
as it causes a premature induction of regexes that repair only
a small number of records. However, there are cases, e.g.,
DIADEM on real estate, where a lower threshold helps to recover
misses of the annotators. In domains where attributes are better
structured or the annotator is more accurate, e.g., auto, the best
performance is achieved by setting a high threshold. Overall,
the variation in performance is anyway limited (≤3%) and the
average best performance is obtained with a 75% threshold.



Fig. 7: Impact of t f low and tregex threshold

Effect of annotator accuracy. We gradually decreased the
Recall of our annotators by randomly eliminating a number
of annotations and observing the effect on F1-Score while
keeping a fixed regex induction threshold (0.75). To lower the
effect of sampling bias, we ran the experiment 30 times with
different annotation sets and took the average performance.
The accuracy numbers are limited to those attributes where
our approach induces regular expressions, since it is already
clear that annotator errors directly reduce the accuracy of
value-based expressions. This is still a significant number of
attributes, i.e., ≥65% in all cases except for RoadRunner on
book (35%), and RoadRunner on movie (46%). Figure 8 shows

Fig. 8: Annotator recall drop - Fixed threshold

the impact of a drop in recall (x-axis) on F1-Score. As we
can see, our approach is robust to a drop in recall until we
reach 80% loss, then the performance rapidly decays. This is
somehow expected, since the regular expressions compensate
for the missing recall up to the point where the max-flow
sequences are no longer able to determine the underlying
attribute structure reliably.

Figure 9 show the effect on F1-Score if we set a low regex-
induction threshold (i.e., 0.1) instead. Clearly, in this case
our approach is highly robust to annotator inaccuracy and we
notice a loss in performance only after 80-90% loss in recall.
In summary, a lower regex-induction threshold is advisable
when we know that annotators have low recall. Even involving
an annotator with very low accuracy, our approach is robust

Fig. 9: F1-Score variation with a threshold value of 0.1

enough to overcome the errors introduced by the annotator.

VI. RELATED WORK

Computing joint repairs is one of the many maintenance
problems faced in web data extraction [5], [22], [25], [27],
[28]. However, classical wrapper maintenance has assumed
perfect, typically human-created wrappers to begin with, with
errors only being introduced over time due to change in the
sources. When covering thousands or hundreds of thousands
of sources with automatically or semi-supervised wrapper
induction this assumption is no longer valid.

Closer in spirit to joint repairs are techniques to generate
wrappers from background data [3], [8], [17], [36]. These
techniques implicitly align background data and wrappers as
part of the generation process. The closest works to ours
are Turbo Syncer [8] and WEIR [3], which use instance-level
redundancy across multiple sources to compute extraction rules
on individual sites that, together, can be used to effectively
learn wrappers without supervision. An advantageous side-
effect of these approaches is the construction of “compatible”
relations that can be more easily integrated. Differently from
Turbo Syncer and WEIR, our approach assumes the existence
of an already generated wrapper to be repaired w.r.t. a target
schema. From a practical point of view, both Turbo Syncer and
WEIR can be adapted to compute joint repairs, however, as
shown in Section V with a significantly worse performance
than our approach due to their reliance on redundancy. Our
approach also eliminates the need for re-induction of wrappers,
leading to better runtime performance.

Redundancy. Instance-level redundancy across web
sources has been previously used in different contexts to detect
and repair inconsistent data extracted from the web [3], [7], [8],
[13]. Redundancy-based approaches face two main obstacles:
(i) it is not always possible to leverage sufficient redundancy
in every domain, (see, e.g., the number of redundant records
in SWDE of Figure 4), and (ii) redundancy-based methods
require access to a substantial number of sources that have,
so far, limited their scalability (see, e.g., WEIR running time).
Encoding the redundancy by other means, e.g., through entity
recognisers and knowledge bases, has proven beneficial to cir-
cumvent the scalability problems without sacrificing generality
of the approaches [7], [18]. Our approach achieves this via an
ensemble of entity recognisers [4], some of which are trained
using redundancy-based methods.

Cleaning, segmentation and alignment. Traditional data
cleaning methods focus on the detection and repair of database
inconsistencies, using, e.g., statistical value distributions [31],
[34], constraints [2], [14], [16], [29], and knowledge bases [7].
Differently from our setting, cleaning methods operate on
relation(s) that contain incorrect values but are assumed to be
correctly segmented.

A more relevant body of work is list segmentation/table
induction techniques, targeting the induction of structured
records from unstructured (i.e., wrongly segmented) lists of
values. These are alternatives to the segmentation based on
flow networks used in our approach. Being inspired by tagging
problems common in bio-informatics and other areas, these ap-
proaches traditionally require some form of supervision. Many
require an initial seed of correctly segmented records [10],



[21], [23], [26], [37], while others require positive and negative
examples of valid field/column values as training data [24],
[32], sometimes leveraging existing knowledge bases [9], [30]
or, again, instance-level redundancy [6], [13].

While Google Data Highlighter relies on Freebase and there-
fore targets only a few entity types [30], an unsupervised
method close to our segmentation strategy is employed in
TEGRA [6]. Differently from, e.g., List Extract [13], TEGRA looks
at the relation globally, circumventing the intractability of the
problem by constructing approximated but optimal solutions.
The key difference between TEGRA and our approach is in the
distance metrics used for alignment. TEGRA’s is essentially
equivalent to cross-site instance-level redundancy (carrying
all its pros and cons), while our approach encodes it via
attribute oracles. Another major difference of our setting is
the presence of misplacements and spurious content in the
lists to be segmented. It is worth mentioning that the problem
of segmenting lists with spurious content was already tackled
by [33] but, again, using cross-site, instance-level redundancy.

VII. CONCLUSION

This paper studies the problem of computing joint repairs
for web wrappers and generated relations, proposing an unsu-
pervised framework that is independent on the domain and of
the wrapper induction system. A future direction is to extend
our approach to multivalued attributes, by allowing sequences
to have multiple nodes with the same attribute label. Another
interesting direction is to use the repairs to incrementally learn
entity recognisers: both in terms of precision (identification of
wrong annotations), and in terms of recall (discovery of new
attribute values through regex generalisation).
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