
1

Similarity Group-by Operators for
Multi-dimensional Relational Data

Mingjie Tang, Ruby Y. Tahboub, Walid G. Aref, Senior Member, IEEE,
Mikhail J. Atallah, Fellow, IEEE and ACM, Qutaibah M. Malluhi, Mourad Ouzzani, Member, IEEE, and

Yasin N. Silva

Abstract—The SQL group-by operator plays an important role in summarizing and aggregating large datasets in a data analytics
stack. While the standard group-by operator, which is based on equality, is useful in several applications, allowing similarity aware
grouping provides a more realistic view on real-world data that could lead to better insights. The Similarity SQL-based Group-By
operator (SGB, for short) extends the semantics of the standard SQL Group-by by grouping data with similar but not necessarily
equal values. While existing similarity-based grouping operators efficiently materialize this approximate semantics, they primarily
focus on one-dimensional attributes and treat multi-dimensional attributes independently. However, correlated attributes, such
as in spatial data, are processed independently, and hence, groups in the multi-dimensional space are not detected properly.
To address this problem, we introduce two new SGB operators for multi-dimensional data. The first operator is the clique (or
distance-to-all) SGB, where all the tuples in a group are within some distance from each other. The second operator is the
distance-to-any SGB, where a tuple belongs to a group if the tuple is within some distance from any other tuple in the group.
Since a tuple may satisfy the membership criterion of multiple groups, we introduce three different semantics to deal with such
a case: (i) eliminate the tuple, (ii) put the tuple in any one group, and (iii) create a new group for this tuple. We implement and
test the new SGB operators and their algorithms inside PostgreSQL. The overhead introduced by these operators proves to be
minimal and the execution times are comparable to those of the standard Group-by. The experimental study, based on TPC-H
and a social check-in data, demonstrates that the proposed algorithms can achieve up to three orders of magnitude enhancement
in performance over baseline methods developed to solve the same problem.

Index Terms—similarity query, relational database,

F

1 INTRODUCTION

The deluge of data accumulated from sensors, social net-
works, computational sciences, and location-aware services
calls for advanced querying and analytics that are often
dependent on efficient aggregation and summarization tech-
niques. The SQL group-by operator is one main construct
that is used in conjunction with aggregate operations to
cluster the data into groups and produce useful summaries.
Grouping is usually performed by aggregating into the same
groups tuples with equal values on a certain subset of the
attributes. However, many applications (i.e.,in Section 5)
are often interested in grouping based on similar rather
than strictly equal values.

Clustering [1] is a well-known technique for grouping
similar data items in the multi-dimensional space. In most

• M. Tang and R. Tahboub is with the Department of Computer Science,
Purdue University, Indiana, IN, 47906.
E-mail: tang49@purdue.edu

• W.G. Aref is with the Department of Computer Science, Purdue, and
Center for Education and Research in Information Assurance and
Security (CERIAS).

• M. Atallah is with the Department of Computer Science,Purdue Uni-
versity.

• Q. Malluhi is with the Department of Computer Science and Engineer-
ing, Qatar University.

• M. Ouzzani is with the Qatar Computing Research Institute.
• Y. Silva is with the School of Mathematical and Natural Science,Arizona

State University.

cases, clustering is performed outside of the database
system. Moving the data outside of the database to perform
the clustering and then back into the database for further
processing results in a costly impedance mismatch. More-
over, based on the needs of the underlying applications, the
output clusters may need to be further processed by SQL
to filter out some of the clusters and to perform other SQL
operations on the remaining clusters. Hence, it would be
greatly beneficial to develop practical and fast similarity
group-by operators that can be embedded within SQL to
avoid such impedance mismatch and to benefit from the
processing power of all the other SQL operators.

SQL-based Similarity Group-by (SGB) operators have
been proposed in [2] to support several semantics to group
similar but not necessarily equal data. Although several
applications can benefit from using existing SGB over
Group-by, a key shortcoming of these operators is that they
focus on one-dimensional data. Consequently, data can only
be approximately grouped based on one attribute at a time.

In this paper, we introduce new similarity-based group-
by operators that group multi-dimensional data using vari-
ous metric distance functions. More specifically, we pro-
pose two SGB operators, namely SGB-All and SGB-
Any, for grouping multi-dimensional data. SGB-All forms
groups such that a tuple or a data item, say o, belongs
to a group, say g, if o is at a distance within a user-
defined threshold from all other data items in g. In other
words, each group in SGB-All forms a clique of nearby

ar
X

iv
:1

41
2.

48
42

v1
 [

cs
.D

B
]

 1
6

D
ec

 2
01

4

2

data items in the multi-dimensional space. For example, all
the two-dimensional points (a-e) in Figure 1a are within
distance 3 from each other and hence form a clique. They
are all reported as members of one group as they are all
part of the output of SGB-All. In contrast, SGB-Any forms
groups such that a tuple or a data item, say o, belongs to
a group, say g, if o is within a user-defined threshold from
at least one other data item in g. For example, all the two
dimensional points in Figure 1b form one group. Point a
is within Distance 3 from Point c that in turn is within
Distance 3 from Points b, d, and f . Furthermore, Point e
is within Distance 3 from Point d, and so on. Therefore,
Points a-h of Figure 1b are reported as members of one
group as part of the output of SGB-Any.

Notice that in the SGB-All operator, a data item may
qualify the membership criterion of multiple groups. For
example, data item c in Figure 1a forms a clique with two
groups. In this case, we propose three semantics, namely,
on-overlap join-any, on-overlap eliminate, and on-overlap
form-new-group, for handling such a case. We provide
efficient algorithms for computing the two proposed SGB
operators over correlated multi-dimensional data. The pro-
posed algorithms use a filter-refine paradigm. In the filter
step, a fast yet conservative check is performed to identify
the data items that are candidates to form groups. Some of
the data items resulting from the filter step will end up being
false-positives that will be discarded. The refinement step
eliminates the false-positives to produce the final output
groups. Notice that for the case of SGB-Any, a data item
cannot belong to multiple groups. For example, consider a
data item, say o, that is a member of two groups, say g1
and g2, i.e., o is within distance epsilon from at least one
other data item in each of g1 and g2. In this case, based on
the semantics of SGB-Any, Groups g1 and g2 merge into
one encompassing bigger group that contains all members
of g1, g2 and common data item o. Specificity, we mainly
focus on two and three dimensional data space, leaving
higher dimensions for future work.

The contributions of this paper are as follows:

1) We introduce two new operators, namely SGB-All
and SGB-Any, for grouping multi-dimensional data
from within SQL.

2) We present an extensible algorithmic framework to
accommodate the various semantics of SGB-All and
SGB-Any along with various options to handle over-
lapping data among groups. We introduce effective
optimizations for both operators.

3) We prototype the two operators inside PostgreSQL
and study their performance using the TPC-H bench-
mark. The experiments demonstrate that the pro-
posed algorithms can achieve up to three orders
of magnitude enhancement in performance over the
baseline approaches. Moreover, the performance of
the proposed SGB operators is comparable to that
of relational Group-by, and outperform state-of-the-
art clustering algorithm (i.e., K-means, DBSCAN and
BIRCH) from one to three orders of magnitude.

5

3

6

631 2 4

1

2

4

5

5

3

6

631 2 4

1

2

4

5

(a) DISTANCE-TO-ALL (b) DISTANCE-TO-ANY

a

a

b

b

c

c
d

d

e

e

f

f

g

g
h

Fig. 1: The Semantics of Similarity predicates ε = 3.

The rest of the paper proceeds as follows. Section 2
discusses the related work. Section 3 provides background
material. Section 4 introduces the new SGB operators. Sec-
tion 5 presents application scenarios that demonstrate the
use and practicality of the various proposed semantics for
SGB operators. Sections 6 and 7 introduce the algorithmic
frameworks for SGB-All and SGB-Any operators, respec-
tively. Section 8 describes the in-database extensions to
support the two operators and their performance evaluation
from within PostgreSQL. Section 9 concludes the paper.

2 RELATED WORK

Previous work on similarity-aware query processing ad-
dressed the theoretical foundation and query optimization
issues for similarity-aware query operators [2]. [3], [4]
introduce similarity algebra that extends relational algebra
operations, e.g., joins and set operations, with similarity
semantics. Similarity queries and their optimizations in-
clude algorithms for similarity range search and K-Nearest
Neighbor (KNN) [5], similarity join [6], and similarity ag-
gregates [7]. Most of work focus on semantic and transfor-
mation rules for query optimization purpose independently
from actual algorithms to realize similarity-aware operators.
In contrast, our focus is on the latter.

Clustering forms groups of similar data for the purpose
of learning hidden knowledge. Clustering methods and
algorithms have been extensively studied in the litera-
ture, e.g., see [8], [1]. The main clustering methods are
partitioning, hierarchical, and density-based. K-means [9]
is a widely used partitioning algorithm that uses several
iterations to refine the output clusters. Hierarchical methods
build clusters either divisively (i.e., top-down) such as in
BIRCH [10], or agglomeratively (i.e., bottom-up) such as
in CURE [11]. Density-based methods, e.g., DBSCAN [12],
cluster data based on local criteria, e.g., density reacha-
bility among data elements. The key differences between
our proposed SGB operators and clustering are: (1) the
proposed SGB operators are relational operator that are
integrated in a relational query evaluation pipeline with var-
ious grouping semantics. Hence, they avoid the impedance
mismatch experienced by standalone clustering and data
mining packages that mandate extracting the data to be
clustered out of the DBMS. (2) In contrast to standalone
clustering algorithms, the SGB operators can be interleaved
with other relational operators. (3) Standard relational query
optimization techniques that apply to the standard rela-
tional group-by are also applicable to the SGB operators

3

as illustrated in [2]. This is not feasible with standalone
clustering algorithms. Also, improved performance can be
gained by using database access methods that process multi-
dimensional data.

An early work on similarity-based grouping appears
in [13]. It addresses the inconsistencies and redundancy
encountered while integrating information systems with
dirty data. However, this work realizes similarity group-
ing through pairwise comparisons which incur excessive
computations in the absence of a proper index. Further-
more, the introduced extensions are not integrated as first
class database operators. The work in [14] focuses on
overcoming the limitations of the distinct-value group-by
operator and introduces the SQL construct “Cluster By”
that uses conventional clustering algorithms, e.g., DBSCAN,
to realize similarity grouping. Cluster By addresses the
impedance mismatch due to the data being outside the
DBMS to perform clustering. Our SGB operators are more
generic as they use a set of predicates and clauses to refine
the grouping semantics, e.g., the distance relationships
among the data elements that constitute the group and how
inter-group overlaps are dealt with.

Several DBMSs have been extended to support similarity
operations. SIREN [15] is a similarity retrieval engine that
allows executing similarity queries over a relational DBMS.
POSTGRESQL-IE [16] is an image handling extension of
PostgreSQL to support content-based image retrieval capa-
bilities, e.g., supporting the image data type and responding
to image similarity queries. While these extensions incor-
porate various notions of similarity into query processing,
they focus on the similarity search operation. SimDB [2]
is a PostgreSQL extension that supports similarity-based
queries and their optimizations. Several similarity opera-
tions, e.g., join and group-by, are implemented in as first-
class database operators. However, the similarity operators
in SimDB focus on one-dimensional data and do not handle
multi-dimensional attributes.

3 PRELIMINARIES

In this section, we provide background definitions and
formally introduce similarity-based group-by operators.

Definition 1: A metric space is a space M = 〈D, δ〉 in
which the distance between two data points within a domain
D is defined by a function δ : D × D → R that satisfies
the properties of symmetry, non-negativity, and triangular
inequality.

We use the Minkowski distance Lp as the distance
function δ. We consider the following two Minkowski
distance functions. Let px be a data point in the multi-
dimensional space of the form px : 〈x1, ..., xd〉 and pxy is
the value of the yth dimension of px.
• The Euclidean distance
L2 : δ2(pi, pj) =

√∑
y

(piy − pjy)
2

• The maximum distance
L∞ : δ∞(pi, pj) = max

y
|piy − pjy|.

Definition 2: A similarity predicate ξδ,ε is a Boolean
expression that returns TRUE for two multi-dimensional
points, say pi and pj , if the distance δ between pi and pj
is less than or equal to ε, i.e., ξδ,ε(pi, pj) : δ(pi, pj) ≤ ε. In
this case, the two points are said to be similar.

Definition 3: Let T be a relation of tuples,
where each tuple, say t, is of the form
t = {GA1, ..., GAk, NGA1, ..., NGAl, }, the subset
GAc = {GA1, ..., GAk} be the grouping attributes, the
subset NGA = {NGA1, ..., NGAl} be the non-grouping
attributes, and ξδ,ε be a similarity predicate. Then, the
similarity Group-by operator G〈GAc,(ξδ,ε)〉(R) forms a
set of answer groups Gs by applying ξδ,ε to the elements
of GAc such that a pair of tuples, say ti and tj , are in the
same group if ξδ,ε(ti.GAc, tj .GAc).

Definition 4: Given a set of groups G = {g1, ..., gm},
the Overlap Set Oset is the set of tuples formed by the
union of the intersections of all pairs of groups (g1, ..., gm),
i.e., Oset = ∪(i,j)∈{1..m}(gi ∩ gj), where i 6= j. In other
words, Oset contains all the tuples that belong to more
than one group.

For simplicity, we study the case where the set of group-
ing attributes, GAc, contains only two attributes. In this
case, we can view tuples as points in the two-dimensional
space, each of the form p:(x1, x2). We enclose each group
of points by a bounding rectangle R:(pl, pr), where points
pl and pr correspond to the upper-left and bottom-right
corners of R, respectively.

4 SIMILARITY GROUP-BY OPERATORS
This section introduces the semantics of the two similarity-
based group-by operators, namely, SGB-All and SGB-Any.

4.1 Similarity Group-By ALL (SGB-All)
Given a set of tuples whose grouping attributes form a set,
say P , of two-dimensional points, where P = {p1, ..., pn},
the SGB-All operator Ǧall forms a set, say Gm, of groups of
points from P such that ∀g ∈ Gm, the similarity predicate
ξδ,ε is TRUE for all pairs of points 〈pi, pj〉 ∈ g, and g is
maximal, i.e, there is no group g′ such that g ⊆ g′. More
formally,

Ǧall = {g | ∀pi, pj ∈ g, ξδ,ε(pi, pj) ∧ g is maximal}

Figure 1 gives an example of two groups (a-e) and (c,f,g),
where all pairs of elements within each group are within a
distance ε ≤ 3. The proposed SQL syntax for the SGB-All
operator is as follows:

SELECT column, aggregate-func(column)

FROM table-name

WHERE condition

GROUP BY column DISTANCE-TO-ALL [L2 | LINF] WITHIN ε

ON-OVERLAP [JOIN-ANY | ELIMINATE |FORM-NEW-GROUP]
SGB-All uses the following clauses to realize similarity-

based grouping:
• DISTANCE-TO-ALL: specifies the distance function

to be applied by the similarity predicate when deciding
the membership of points within a group.

4

Longitude

L
at

it
u
d
e

Input order: a1, a2, a3, a4, a5

a1

a2

a3

a4a5
6

6 10

2

4

8

2

Fig. 2: Data points using ε = 3 and L∞.

– L2: L2 (Euclidean distance).
– LINF: L∞ (Maximum infinity distance)

• ON-OVERLAP: is an arbitration clause to decide on a
course of action when a data point is within Distance
ε from more than one group. When a point, say pi,
matches the membership criterion for more than one
group, say g1 · · · gw, one of the three following actions
are taken:

– JOIN-ANY: the data point pi is randomly inserted
into any one group out of g1 · · · gw.

– ELIMINATE: discard the data point pi, i.e., all
data points in Oset (see Definition 4) are elimi-
nated.

– FORM-NEW-GROUP: insert pi into a separate
group, i.e., form new groups out of the points in
Oset.

Example 1: The following query performs the aggregate
operation count on the groups formed by SGB-All on
the two-dimensional grouping attributes GPSCoor-lat and
GPSCoor-long. The L∞ distance is used with Threshold
ε = 3.

SELECT count(*)

FROM GPSPoints

GROUP BY GPSCoor-lat,GPSCoor-long DISTANCE-TO-ALL LINF

WITHIN 3

ON-OVERLAP <clause>

Consider Points a1-a5 in Figure 2 that arrive in the order
a1, a2, · · · , a5. After processing a4, the following groups
satisfy the SGB-All predicates: g1 {a1, a2} and g2 {a3, a4}.
However, Data-point a5 is within ε from a1, a2 in g1 and
a3, a5 in g2. Consequently, an arbitration ON-OVERLAP
clause is necessary. We consider the three possible seman-
tics below for illustration.

With an ON-OVERLAP JOIN-ANY clause, a group is
selected at random. If g1 is selected, the resulting groups are
g1{a1, a2, a5} and g2{a3, a4}, and the answer to the query
is {3, 2}. With an ON-OVERLAP ELIMINATE clause, the
overlapping point a5 gets dropped; the resulting groups are
g1 {a1, a2} and g2 {a3, a4}, and the query output is {2, 2}.
With an ON-OVERLAP FORM-NEW-GROUP clause, the
overlapping point a5 is inserted into a newly created group;
the resulting groups are g1 {a1, a2}, g2 {a3, a4}, g3{a5}
and the query output is {2, 2, 1}.

4.2 Similarity Group-By Any (SGB-Any)
Given a set of tuples whose grouping attributes from a set,
say P , of two dimensinal points, where P = {p1, ..., pn},

the SGB-Any operator Ǧany clusters points in P into a set
of groups, say Gm, such that, for each group g ∈ Gm, the
points in g are all connected by edges to form a graph,
where an edge connects two points, say pi and pj , in the
graph if they are within Distance ε from each other, i.e,.
ξδ,ε(pi, pj). More formally,

Ǧany = {g | ∀pi, pj ∈ g, (ξδ,ε(pi, pj) ∨
(∃ pk1, ..., pkn, ξδε(pi, pk1) ∧ ... ∧ ξδε(pkn, pj))) ∧
g is maximal}

The notion of distance-to-any between elements within
a group is illustrated in Figure 1b, where ε = 3. All of
the points (a-h) form one group. The corresponding SQL
syntax of the SGB-Any operator is as follows:

SELECT column, aggregate-func(column)

FROM table-name

WHERE condition

GROUP BY column DISTANCE-TO-ANY [L2 | LINF] WITHIN ε

SGB-Any uses the DISTANCE-TO-ANY predicate that
applies the metric space function while evaluating the
distance between adjacent points. When using the semantics
for SGB-Any, the case for points overlapping multiple
groups does not arise. The reason is that when an input
point overlaps multiple groups, the groups merge to form
one large group.

Example 2: The following query performs the aggregate
operation count on the groups formed by SGB-Any on
the two-dimensional grouping attributes GPSCoor-lat and
GPSCoor-long using the Euclidean distance with ε = 3.

SELECT count(*)

FROM GPSPoints

GROUP BY GPSCoor-lat and GPSCoor-long

DISTANCE-TO-ANY L2 WITHIN 3

Consider the example in Figure 2. After processing a4,
the following groups are g1{a1, a2} and g2{a3, a4}. Since
Point a5 is within ε from both a1, a2 in g1 and a3, a4 in g2,
the two groups are merged into a single group. Therefore,
the output of the query is {5}. Any overlapping point will
cause groups to merge and hence there is no need to add
a special clause to handle overlaps.

5 APPLICATIONS
In this section, we present application scenarios that demon-
strate the practicality and the use of the various semantics
for the proposed Similarity Group-by operators.

Example 3: Mobile Ad hoc Network (MANET) is a
self-configuring wireless network of mobile devices (e.g.,
personal digital assistants). A mobile device in a MANET
communicates directly with other devices that are within the
range of the device’s radio signal or indirectly with distant
mobile devices using gateways (i.e., intermediate mobile
devices, e.g., m1 and m2 in Figure 3a). In a MANET,
wireless links among nearby devices are established by
broadcasting special messages. Radio signals are likely to
overlap. As a result, uncareful broadcasting may result in
redundant messages, contention, and collision on commu-
nication channels Consider the Mobile Devices table in

5

Mobile Devices Table

Latitude LongitudeMDID

m1

m2

lon1

lon2

lat1

lat2

...

...

(b)

m1

m2

m3

m4

m5

m6

(a)

Fig. 3: (a) An Mobile Ad hoc Network (MANET) contain-
ing the devices m1 . . .m6, where the circle around each
device is its signal range, (b) The corresponding Mobile
Devices table.

Figure 3b that maintains the geographic locations of the
mobile devices in a MANET. In the following, we give
example queries that illustrate how MANETs can tremen-
dously benefit from SGB-All and SGB-Any operators.

Query 1: Geographic areas that encompass a
MANET. A mobile device, say m, belongs to a MANET
if and only if m is within the signal range from at least one
other device mobile. The SGB-ANY semantics identifies a
connected group of mobile devices using signal range as
a similarity grouping threshold.

SELECT ST_Polygon(Device-lat, Device-long)

FROM MobileDevices

GROUP BY Device-lat, Device-long

DISTANCE-TO-ANY L2 WITHIN SignalRange

Referring to the mobile devices in Figure 3a, the output
of Query 1 returns a polygon that encompasses mobile
devices m1-m6.

Query 2: Candidate gateway mobile devices. A gate-
way represents an overlapping mobile device that connects
two devices that are not within each other’s signal range.
The SGB-All FORM-NEW-GROUP inserts the overlapped
devices into a new group. Therefore, those devices in the
newly formed group are ideal gateway candidates.

SELECT COUNT(*)

FROM MobileDevices

GROUP BY Device-lat , Device-long

DISTANCE-TO-ALL L2 WITHIN SignalRange

ON-OVERLAP FORM-NEW-GROUP

The output of Query 2 returns the number of candidate
gateway mobile devices. Along the same line, identifying
mobile devices that cannot serve as a gateway is equally
important to a MANET. SGB-All ELIMINATE identifies
mobile devices that cannot serve as a gateway by discarding
the overlapping mobile devices.

Example 4: Location-based group recommendation
in mobile social media. Several social mobile applications,
e.g., WhatsApp and Line, employ the frequent geographical
location of users to form groups that members may like to
join. For instance, users who reside in a common area (e.g.,
within a distance threshold) may share similar interests and
are inclined to share news. However, members who overlap
several groups may disclose information from one group
to another and undermine the privacy of the overlapping
groups. Query 3 demonstrates how SGB-ALL allows form-

ing location-based groups without compromising privacy.
Query 3: Forming private location-based groups. The

various SGB-All semantics form groups while handling
ON-OVERLAP options that restrict members to join mul-
tiple groups. In Query 3, we assume that Table Users-
Frequent-Location maintains the users’ data, e.g., user-id
and frequent location. The user-defined aggregate function
List-ID returns a list that contains all the user-ids within a
group.

SELECT List-ID(user-id),

ST_Polygon(User-lat, User-long)

FROM Users− Frequent− Location

GROUP BY User-lat , User-long

DISTANCE-TO-ALL L2 WITHIN Threshold

[ON-OVERLAP JOIN-ANY | ELIMINATE | FORM-NEW-GROUP]

The output of Query 3 returns a list of user-ids for each
formed group along with a polygon that encompasses the
group’s geographical location. The JOIN-ANY semantics
recommends any one arbitrary group for overlapping mem-
bers who in this case will not be able to join multi-
ple groups. The ELIMINATE semantics drops overlap-
ping members from recommendation, while FORM-NEW-
GROUP creates dedicated groups for overlapping members.

6 ALGORITHMS FOR SGB-ALL

In this section, we present an extensible algorithmic
framework to realize similarity-based grouping using the
distance-to-all semantics with the various options to handle
the overlapping data among the groups.

6.1 Framework
Procedure 1 illustrates a generic algorithm to realize SGB-
All. This generic algorithm supports the various data
overlap semantics using one algorithmic framework. The
algorithm breaks down the SGB-All operator into pro-
cedures that can be optimized independently. For each
data point, the algorithm starts by identifying two sets
(Line 2). The first set, namely CandidateGroups, consists
of groups that pi can join. pi can join a group, say g,
in CandidateGroups if the similarity predicate is true
for all pairs 〈pi, p′i〉 ∀p′i ∈ g. The second set, namely
OverlapGroups, includes groups that have some (but not
all) of its data points satisfying the similarity predicate.
A group, say g, is in OverlapGroups if there exist at
least two points p and q in g such that the similarity
distance between pi and p holds and the similarity distance
between pi and q does not hold. OverlapGroups serves
as a preprocessing step required to handle the semantics
of ELIMINATE and FORM-NEW-GROUP encountered
in later steps. Figure 4 gives four existing groups g1-
g4 while Data-point x is being processed. In this case,
CandidateGroups contains {g2, g3} and OverlapGroups
contains {g1}.

Procedure ProcessGroupingALL (Line 3 of Procedure
1) uses CandidateGroups and the ON-OVERLAP clause
CLS to either (i) place pi into a new group, (ii) place
pi into existing group(s), or (iii) drop pi from the output,

6

Procedure 1: Similarity Group-By ALL Framework
Input: P : set of data points, ε: similarity threshold , δ:

distance function , CLS: ON-OVERLAP clause, G
set of existing groups

Output: Set of output groups
1 for each data element pi in P do
2 (CandidateGroups,OverlapGroups)←

FindCloseGroups(pi, G, ε, δ, CLS)
3 ProcessGroupingALL(pi, CandidateGroups, CLS)
4 if CLS is not JOIN-ANY And sizeOf(OverlapGroups)!=

0 then
5 ProcessOverlap(pi, OverlapGroups, CLS)
6 end
7 end

in case of an ON-OVERLAP clause. Finally, Procedure
ProcessOverlap (Line 5) uses OverlapGroups to ver-
ify whether additional processing is needed to fulfill the
semantics of SGB-All.

6.2 Finding Candidate and Overlap Groups
In this section, we present a straightforward approach to
identify CandidateGroups and OverlapGroups. In Sec-
tion 6.3, we propose a new two-phase filter-refine approach
that utilizes a conservative check in the filter phase to effi-
ciently identify the member groups in CandidateGroups.
Then, in Section 6.4, we introduce the refine phase that is
applied only if L2 is used as the distance metric to detect
the CandidateGroups that falsely pass the filter step.

Procedure 2 gives the pseudocode for Naive Find-
CloseGroups that evaluates the distance-to-all similarity
predicate between pi and all the points that have been
previously processed (Lines 6-15). The grouping semantics
(Lines 16-20) identify how the two sets CandidateGroups
and OverlapGroups are populated.

6.2.1 Processing New Points
The second step of the SGB-All Algorithm in Procedure
1 places pi, the data point being processed, into a new
group or into an existing group, or drops pi from the output
depending on the semantics of SGB-All specified in the
query.

Procedure 3 (ProcessGroupingAll) proceeds as follows.
First, it identifies the cases where CandidateGroups is
empty or consists of a single group. In these cases, pi
is inserted into a newly created group or into an exist-
ing group depending on p’s distance from the existing
group. Procedure ProcessInsert places the data point
pi into a group. Next, the ON-OVERLAP clause CLS
is consulted to determine the proper course of action.
The JOIN-ANY clause arbitrates among the overlapping
groups by inserting pi into a randomly chosen group.
The procedure ProcessEliminate (Line 13) handles the
details of processing the ELIMINATE clause. Consider the
example illustrated in Figure 4, where CandidateGroups
consists of {g2, g3}. ProcessEliminate drops Point x.

Finally, Procedure ProcessNewGroup (Line 15) pro-
cesses the FORM-NEW-GROUP clause. It inserts pi into a

Procedure 2: Naive FindCloseGroupsALL
Input: pi: data point, ε: similarity threshold , δ: distance

function, CLS: ON-OVERLAP clause, G: set of
existing groups

Output: Candidate, OverlapGroups
1 Candidate← NULL
2 OverlapGroups← NULL
3 for each group gj in G do
4 CandidateFlag = True
5 OverlapFlag = False
6 for each pk in gj do
7 if (Distance(pi, pk, δ)6 ε) then
8 OverlapFlag = True
9 else

10 CandidateFlag = False
11 if CLS == JOIN-ANY then
12 break
13 end
14 end
15 end
16 if CandidateFlag is True then
17 insert gj into Candidate
18 else if CLS is not JOIN-ANY and CandidateFlag is

False and OverlapFlag is True then
19 insert gj into OverlapGroups
20 end
21 end

Procedure 3: ProcessGroupingALL
Input: pi: data point, CLS: ON-OVERLAP clause,

CandidateGroups
Output: updates CandidateGroups based on CLS

semantics
1 if sizeof(CandidateGroups)== 0 then
2 create a new group gnew

3 ProcessInsert(pi, gnew)
4 else if sizeof(CandidateGroups) == 1 then
5 insert into existing group gout
6 ProcessInsert(pi, gout)
7 else
8 switch CLS do
9 case JOIN-ANY

10 gout ←
GetRandomGroup(CandidateGroups)

11 ProcessInsert(pi, gout)
12 case ELIMINATE
13 ProcessEliminate(pi, CandidateGroups)
14 case FORM-NEW-GROUP
15 ProcessNewGroup(pi, CandidateGroups)
16
17 endsw
18 end

temporary set termed S′ for further processing. The SGB-
All with FORM-NEW-GROUP option forms groups out of
S′ by calling SGB-All recursively until S′ is empty.

6.2.2 Handling Overlapped Points
The final step of SGB-All in Procedure 1 processes the
groups in the Set OverlapGroups. OverlapGroups con-
sists of groups, where each group has some data points
(but not all of them) that satisfy the similarity predicate
with the new input point pi. This step is required by the

7

a1

a2
a3

b1

c1

X

b2

c2
c3

g1 {a1, a2, a3}
g2 {b1, b2}

g3 {c1, c2, c3}

d1

d2

g4 {d1, d2}

Fig. 4: Processing the point x using L∞ with ε = 4.

ELIMINATE and FORM-NEW-GROUP semantics. Proce-
dure ProcessOverlap handles the ELIMINATE semantics
as follows. It iterates over OverlapGroups and deletes
overlapped data points. Consider the example illustrated
in Figure 4. Set OverlapGroups consists of {g1} with
overlapped Data-Point a3. Finally, ProcessOverlap han-
dles the FORM-NEW-GROUP semantics by inserting the
overlapped data points into a temporary set termed S′ and
deletes these points from their original groups.

The time complexity for SGB-All according the al-
gorithmic framework in Procedure 1 is dominated by
the time complexity of FindCloseGroups. The time
complexity of ProcessGrouping and ProcessOverlap
(Lines 3-6) is linear in the size of CandidateGroups and
OverlapGroups. Consequently, given an input set of size
n, Procedure Naive FindCloseGroups incurs

(
n
2

)
distance

computations that makes the upper-bound time complexity
of SGB-All quadratic i.e., O(n2). Section 6.3 introduces
a filter-refine paradigm to optimize over Procedure Naive
FindCloseGroups.

6.3 The Bounds-Checking Approach

In this section, we introduce a Bounds-Checking approach
to optimize over Procedure Naive FindCloseGroups. Con-
sider the data points of Group g illustrated in Figure 5a.
Procedure Naive FindCloseGroups performs six distance
computations to determine whether a new data point x
can join Group g. To reduce the number of compar-
isons, we introduce a bounding rectangle for each Group
g in conjunction with the similarity threshold ε so that
all data points that are bounded by the rectangle satisfy
the distance-to-all similarity predicate. For example, Data
Element x in Figure 5b is located inside g’s bounding
rectangle. Therefore, g is a candidate group for x.

Definition 5: Given a set of multi-dimensional points
and a similarity predicate ξδ∞,ε, the ε-All Bounding Rect-
angle Rε−All is a bounding rectangle such that for any two
points xi and yi bounded by Rε−All, the simiarity predicate
ξδ∞,ε(xi, yi) is true.

Consider Figure 5c, where the bounding rectangle
Rε−All is constructed for a group that consists of a single
Point a1, where ε = 2 and the sides of the rectangle are 2ε
by 2ε centered at a1. After inserting the second Point a2
into g, as in Figure 5d, Rε−All is shrunk to include the area
where the similarity predicate is true for both Points a1 and
a2. The invariant that Rε−All maintains varies depending

(a) (b)

(c)
g {a1} g {a1, a2} g {a1, a2, a3}

5

3

6

631 2 4

1

2

4

5

5

3

6

631 2 4

1

2

4

5

5

3

6

631 2 4

1

2

4

5

a1 a1 a1

a2 a2

a3

5

3

631 2 4

1

2

4

5

5

3

631 2 4

1

2

4

5

x x

(d) (e)

Fig. 5: The ε-All Bounding Rectangle approach.

on the distance metric used. For the L∞ distance metric,
Rε−All is updated such that if a Point, say xi, is inside
Rε−All, then xi is guaranteed to be within Distance ε from
all the points that form Group g. For the Euclidean distance,
the invariant that Rε−All maintains is that if a point, says
xi, is outside Rε−All, then xi cannot belong to Group g. In
this case, if xi is inside Rε−All, it is likely that xi is within
distance ε from all the points inside Rε−All. Hence, for the
Euclidean distance, Rε−All is a conservative representation
of the group g and serves as a filter step to save needless
comparisons for points that end up being outside of the
group. We illustrate in Figures 5c- 5e how to maintain
these invariants when a new point joins the group. We use
the case of L∞ for illustration. When a new point xi is
inside the bounding rectange Rε−All of Group g, then xi is
within Distance ε from all the points in the group, and hence
will join Group g. Once xi joins Group g, the bounds of
Rectangle Rε−All are updated to retain the truth of Rε−All’s
invariant. The sides of Rε−All will need to shrink and will
be updated as illustrated in Figures 5d-5e.

Notice that deciding membership of a point into the
group requires a constant number of comparisons regardless
of the number of points inside Group g. Furthermore, the
maintenance of the bounding rectangle of the group takes
constant time for every inserted point into g. Also, notice
that Rε−All stops shrinking if its dimensions reach ε × ε,
which is a lower-bound on the size of Rε−All. Figure 5e
gives the updated Rε−All after Point a3 is inserted into the
group.

Procedure 4 gives the pseudocode for Bounds-Checking
FindCloseGroups. The procedure uses the ε-All bounding
rectangle to reduce the number of distance computations
needed to realize FindCloseGroups using the L∞ dis-
tance metric. Procedure PointInRectangleTest (Line 4)
uses the ε-All rectangle to determine in constant time
whether gj is a candidate group for the input point. Proce-
dure OverlapRectangleTest (Line 6) tests whether the ε-
All rectangle of pi overlaps Group gj’s bounding rectangle.
In case of an overlap, all data points in gj are inspected
to verify whether the overlap is nonempty. The correctness
of the ε-All bounding rectangle for the L∞ distance metric

8

Procedure 4: Bounds-Checking FindCloseGroups
Input: pi: data point, ε: similarity threshold , δ: distance

function, CLS: ON-OVERLAP clause, G: set of
existing groups

Output: CandidateGroups, OverlapGroups
1 CandidateGroups← NULL
2 OverlapGroups← NULL
3 for each group gj in G do
4 if PointInRectangleTest(pi, gj) is True then
5 insert gj into CandidateGroups
6 else if CLS is not JOIN-ANY and

OverlapRectangleTest(pi, gj) is True then
7 for each pk in gj do
8 if (Distance(pi, pk, δ)6 ε) then
9 insert gj into OverlapGroups

10 break
11 end
12 end
13 end
14 end

follows from the fact that the rectangles are closed under
intersection, i.e., the intersection of two rectangles is also
a rectangle.

A major bottleneck of the bounding rectangles ap-
proach is in the need to linearly scan all existing bound-
ing rectangles that represent the groups to identify sets
CandidateGroups and OverlapGroups, which is costly.
To speedup Procedure Bounds-Checking FindCloseGroups,
we use a spatial access method (e.g., an R-tree [17]),
to index the Rε−All bounding rectangles of the existing
groups.

Procedure 5 gives the pseudocode for Index Bounds-
Checking FindCloseGroups. The procedure performs a
window query on the index Groups IX (Line 4) to
retrieve the set GSet of all groups that intersect the
bounding rectangle Rpi for the newly inserted point
pi. Next, it iterates over GSet (Lines 4-11) and exe-
cutes PointInRectangleTest to determine whether the
inspected group belongs to either one of the two sets
CandidateGroups or OverlapGroups. Finally, the el-
ements of OverlapGroups are inspected to retrieve the
subset of elements that satisfy the similarity predicate.

Refer to Figure 6 for illustration. An R-tree index, termed
Groups IX , is used to index the bounding rectangles of
the groups discovered so far. In this case, Groups IX
contains bounding rectangles for Groups g1-g4. Given the
newly arriving Point x, a window query of the ε-All
rectangle for x is performed on Groups IX that returns
all the intersecting rectangles; in this case, g1, g2, and g3.
The outcome of the query is used to construct the sets
CandidateGroups and OverlapGroups.

6.4 Handling False Positives L2

In this section, we study the effect of using L2 as a
similarity distance function on the SGB-All operator. Refer
to Figure 7a for illustration. In contrast to the L∞ distance,
the set of points that are exactly ε away from a1 in the
L2 metric space form a circle. Inserting a2 (Figure 7b) is

Procedure 5: Index Bounds-Checking FindCloseGroups
Input: pi: data point, ε: similarity threshold , δ: distance

function, CLS: ON-OVERLAP clause, G: set of
existing groups, Groups IX: index on G’s
bounding rectangles

Output: CandidateGroups, OverlapGroups
1 CandidateGroups← NULL
2 OverlapGroups← NULL
3 Rpi ← CreateBoundingRectangle(pi, ε)
4 GSet←WindowQuery(pi, Rpi , Groups IX)
5 for each group gj in GSet do
6 if PointInRectangleTest(pi, gj) is True then
7 insert gj into CandidateGroups
8 else if CLS is not JOIN-ANY then
9 for each pk in gj do

10 if (Distance(pi, pk, δ)6 ε) then
11 insert gj into OverlapGroups
12 break
13 end
14 end
15 end
16 end

a1

a2

a3

b1

c1

X

b2

c2

c3

g1 {a1, a2, a3}

g2 {b1, b2}

g3 {c1, c2, c3}

d1

d2

g4 {d1, d2}

g1 g2

g4

g3
R1R2

R3

g1 g3 g2 g4

R2 R3

R1
Groups_IX ...

...

Fig. 6: SGB-All: performing a window Query on
Groups IX using ε = 4 and L∞

correct using the L∞ distance since a2 is inside the ε-All
rectangle of a1’s group. However, under the L2 distance,
a2 is more than ε away from a1 since a2 lies outside a1’s ε-
circle. As a result, all points that are inside a1’s ε-All group
rectangle but are outside the ε-circle (i.e., the grey-shaded
area in Figure 7b) falsely pass the bounding rectangle test.

Procedure Naive FindCloseGroups in (Procedure 2) in-
spects all input data points. Therefore, the problem of
false-positive points does not occur. On the other hand,
the Bounds-Checking approach introduced in Procedures
4 and 5 uses the ε-All rectangle technique to identify the
sets CandidateGroups and OverlapGroups and hence must
address the issue of false-positive points for the L2 distance
metric.

We introduce a Convex Hull Test to refine the data
points that pass the Bounds-Checking filter step. Given a
group of points, a convex hull [18] is the smallest convex
set of points within a group. In Figure 7c, the points a1-a5
form the convex hull set for Group g. Based on the SGB-
All semantics, the diameter of the conevex hull (i.e., the

9

(a) (b)

a1

ε-All Rectangle

L∞ distance

ε-radius circle

L2 distance

a1

a2

5

3

6

631 2 4

1

2

4

5

a1

a2

a3

a5

a4

x

y

7 8 9 10

7

(c)

Fig. 7: (a) The ε-radius circle in L2, (b) The problem of
false positive for L2, (c) The ε-convex hull test for ε = 6.

Procedure 6: Convex Hull Test
Input: pi: data point, g: existing group
Output: True if pi is not false positive, False otherwise

1 ConvexHullSet← getConvexHull(g)
2 if pi inside convex hull then
3 return True
4 else
5 farthestPoint←

getMaxDistElem(ConvexHullSet, pi)
6 if distance(farthestDistPoint, pi) <= ε then
7 return True
8 end
9 end

10 return False

two farthest points) satisfies the similarity predicate.
The Convex Hull Test, illustrated in Procedure 6, verifies

whether a point is a false-positive. This additional test can
be inserted immediately after (Line 4) in Procedure 4 or
immediately after (Line 6) in Procedure 5. Consequently,
any new point that lies inside a group’s convex hull (e.g.,
Point y in Figure 7c) satisfies the similarity predicate. In
addition, in order to verify points that are outside the convex
hull (e.g., Point x in Figure 7c), it is enough to evaluate the
similarity predicate between pi and the convex hull. The
correctness of the convex hull test follows from the fact
that the convex hull set contains the farthest point from pi,
say pf . Therefore, it is sufficient to evaluate the similarity
predicate between pi and pf (e.g., Point x and Point a3
in Figure 7c). Section 8.1 discusses the complexity of the
convex hull approach.

7 ALGORITHMS FOR SGB-ANY
In this section, we present an algorithmic framework to
realize similarity-based grouping using the distance-to-any
semantics. The generic SGB-Any framework in Procedure 7
proceeds as follows. For each data point, say pi, Procedure
FindCandidateGroups (Line 2) uses the distance-to-any
similarity predicate to identify the set CandidateGroups
that consists of all the existing groups that pi can join.
In contrast to SGB-All, in the distance-to-any semantics,

Procedure 7: Similarity Group-By ANY Framework
Input: P : set of data points, ε: similarity threshold, δ:

distance function, Points IX: spatial index
Output: Set of groups G

1 for each data element pi in P do
2 CandidateGroups←

FindCandidateGroups(pi,Points IX, ε, δ)
3 ProcessGroupingANY (pi, CandidateGroups)
4 end

a point, say pi, can join a candidate group, say g, when
pi is within a predefined similarity threshold from at least
one another point in g. Procedure ProcessGroupingANY
(Line 3) inserts pi into a new or an existing group.

7.1 Finding Candidate Groups

A Naive FindCandidateGroups approach similar to Proce-
dure 2 can identify the set CandidateGroups. However,
this solution incurs many distance computations, and brings
the upper-bound time complexity of the SGB-Any frame-
work to O(n2). The filter-refine paradigm using an ε-group
bounds-checking approach while applying a distance-to-any
predicate (i.e., similar to Procedures 4-6) suffers from two
main challenges. By drawing squares of size ε×ε around the
input point and forming a bounding rectangle that encloses
all these squares results in a consecutive chain-like region
and the area of false-positive progressively increases in size
as we add new data points. Furthermore, the convex hull
approach to test for false-positive points cannot be applied
in SGB-Any as it suffers from false-negatives caused by the
fact that the length of the diameter of the convex hull can
actually be more than ε in the case of SGB-Any. Details
are omitted here for brevity.

Consequently, FindCandidateGroups in Procedure 8 uses
an R-tree index, termed Points IX . Points IX main-
tains the previously processed data points to efficiently find
CandidateGroups. Refer to Figure 8 for illustration. For
an incoming point, say Point x, an ε-rectangle (Line 2 of
Procedure 8) is created to perform a window query on
Points IX to retrieve PointsSet (Line 3). PointsSet
corresponds to the points that are within epsilon from x,
e.g., {a3, c1, c2, c3, b1, b2}. Based on the semantics of SGB-
Any, CandidateGroups contains the groups that cover the
points in PointsSet. For instance, point a3 belongs to g1,
points {c1–c3} belong to g2, and points {b1–b2} belong
to group g3. Hence, CandidateGroups = {g1, g2, g3}.
Procedure GetGroups (Line 7) employs a Union-Find data
structure [19] to keep track of existing, newly created,
and merged groups (see Figure 8b) to efficiently construct
CandidateGroups given PointsSet.

7.2 Processing New Points

Procedure 9 gives the pseudocode for Process-
GroupingANY. Lines 1-6 identify the cases when
CandidateGroups is empty, or when it consists of one
group. In these cases, pi is inserted into a newly created

10

Procedure 8: FindCandidateGroups
Input: pi: data point, Points IX: spatial index, δ: distance

function, ε: similarity threshold
Output: CandidateGroups

1 CandidateGroups← NULL
2 Rpi ← CreateBoundingRectangle(pi, ε)
3 PointsSet←WindowQuery(pi, Rpi, Points IX)
4 if δ is L2 then
5 PointsSet← V erifyPoints(Points IX, δ, ε)
6 end
7 CandidateGroups← GetGroups(PointsSet)
8 insert pi into Points IX

Points_IX

c2

c1

c3

d2

d1

a1

a3a2

b2

b1

X

a1

a2

a3

b1

c1

X

b2

c2

c3

d1

d2

g1

g2 g4

g3
R1R2

R3

g1 g3 g2 g4

R2 R3

R1
...

...

a1 a2 a3 c1c2 c3 b1 b2 d1 d2

a1

a3a2 b2

b1

c2

c1

c3

d2

d1

X

g1 g2 g3

g4

Inserting x causes g1,

g2, and g3 to merge

(a) (b)

g-new

g4

Fig. 8: (a) SGB-Any: Performing a window query on
Points IXε = 4 using L∞ (b) The disjoint data structure
Union-Find is used to maintain existing groups.

group or into an existing group. Next, it handles the case
that occurs when pi is close to more than one group.
In the SGB-Any semantics, all candidate groups that pi
can join are merged into one group. Therefore, Procedure
MergeGroupsInsert (Line 8) handles merging candidate
groups and then inserts pi into the merged groups.
Referring to Figure 8b, Point x overlaps groups g1, g2, and
g3. Based on the semantics of SGB-Any, the overlapped
groups g1, g2, and g3 are merged into one encompassing
bigger group, termed G–new. In this case, the root
pointers of g1, g2 and x in the Union-Find data strucure
are redirected to Point a1.

8 COMPLEXITY, REALIZATION, AND
EVALUATION

8.1 Complexity Analysis

Table 1 summarizes the average-case running time of
SGB-All using the proposed optimizations for the L∞
distance metric. The All-Pairs algorithm corresponds to
naive FindCloseGroups in Procedure 1. Similarly, Bounds-
Checking and On-the-fly Indexing corresponds to the
Bounds-Checking and Index Bounds-Checking optimiza-
tions, where |G| is the number of output Groups and m is
the recursion depth for the ON-OVERLAP FORM-NEW. In
addition, the average-case running time of SGB-Any when

Procedure 9: ProcessGroupingANY
Input: pi: data point, CandidateGroups
Output: updates CandidateGroups

1 if CandidateGroups is Empty then
2 create a new group gnew

3 ProcessInsert(pi, gnew)
4 else if sizeof(CandidateGroups) == 1 then
5 insert into existing group gout
6 ProcessInsert(pi, gout)
7 else
8 MergeGroupsInsert(CandidateGroups, pi)
9 end

using the index is O(n log n). The worst-case and best-
case running times, and detailed analysis are given in the
Appendix.

JOIN-ANY ELIMINATE FORM-NEW-GROUP
All-Pairs O(n2) O(n2) O(n3)

Bounds-Checking O(n|G|) O(n|G|)) O(mn|G|)
on-the-fly Index O(n log |G|) O(n log |G|) O(mn log |G|)

TABLE 1: SGB-All Complexity for the L∞ distance

Business Question: Retrieve large volume customers
GB1 Same as the TPCH-Q18

Business Question: Retrieve customers with similar buying power, account balance

SGB1
or
SGB2

SELECT max(ab), min(tb),max(tb), average(ab), array agg(R1.c custkey)
FROM (SELECT c custkey, c acctbal as ab FROM Customer
WHERE c acctbal >100) as R1
(SELECT o custkey, sum(o totalprice) as tp FROM Orders, Lineitem
WHERE o orderkey in (SELECT l orderkey FROM lineitem
GROUP BY Rl orderkey having sum(l quantity) >3000)
and o orderkey =l orderkey and o totalprice > 30000) as R2
WHERE R1.c custkey=R2.o custkey

GROUP BY ab,tp DISTANCE-ALL WITHIN ε USING lone/ltwo
on overlap join-any/form-new/eliminate
or GROUP BY ab,tp DISTANCE-ANY WITHIN ε USING lone/ltwo

Business Question:
Report profit on a given line of parts (by supplier nation and year)
GB2 Same as the TPCH-Q9

Business Question:
Report profit and shipment time of parts share similar profit and shipment date

SGB3
or
SGB4

SELECT count(),sum(tprof), sum(stime) FROM
(SELECT ps partkey as partkey, sum(l extendedprice * (1 - l discount)
- ps supplycost *l quantity) as tprof, sum(l receiptdate-l shipdate)
as stime FROM lineitem, partsupp,supplier WHERE ps partkey =
l partkey and s suppkey=ps suppkey GROUP BY ps partkey) as profit

GROUP BY tprof, stime DISTANCE-ALL WITHIN ε USING lone/ltwo
on overlap join-any/form-new/eliminate
or GROUP BY tprof, stime DISTANCE-ANY WITHIN ε USING lone/ltwo

Business Question:
Determines top supplier who contributed the most to the overall revenue for parts)
GB3 Same as the TPCH-Q15

Business Question:
Report supplier who contributed the similar profit and account balance

SGB5
or
SGB6

SELECT array agg(s suppkey), sum(r.trevenue), sum(s acctbal)
FROM (SELECT l suppkey as suppkey, sum(l extendedprice * (1 -
l discount)) as trevenue , sum(s acctbal) As acctbal FROM Lineitem
WHERE l shipdate > date ’[1995-01-01]’ and l shipdate < date
’[1996-01-01]’+ interval ’10’ month GROUP BY l suppkey)as r

GROUP BY r.trevenue, s acctbal DISTANCE-ALL WITHIN ε
USING lone/ltwo on overlap join-any/form-new/eliminate or GROUP
BY r.trevenue, s acctbal DISTANCE-ANY WITHIN ε USING lone/ltwo

TABLE 2: Performance Evaluation Queries on TPC-H

8.2 Implementation
We realize the proposed SGB operators inside PostgreSQL.
In the parser, the grammar rules, and actions related to

11

the “SELECT” statement syntax are updated with similarity
keywords (e.g., DISTANCE-TO-ALL and DISTANCE-TO-
ANY) to support the SGB query syntax. The parse and
query trees are augmented with parameters that contain
the similarity semantics (e.g., the threshold value and the
overlap action). The Planner and Optimizer routines use the
extended query-tree to create a similarity-aware plan-tree.
In this extension, the optimizer is manipulated to choose a
hash-based SGB plan.

The executor modifies the hash-based aggregate group-
by routine. Typically, an aggregate operation is carried
out by the incremental evaluation of the aggregate func-
tion on the processed data. However, the semantics of
ON-OVERLAP ELIMINATE and ON-OVERLAP FORM-
NEW-GROUP can realize final groupings only after pro-
cessing the complete dataset. Therefore, the aggregate hash
table keeps track of the existing groups in the following
way. First, the aggregate hash table entry (AggHashEntry)
is extended with a TupleStore data structure that serves as a
temporary storage for the previously processed data points.
Next, referring to the Bounds-Checking FindCloseGroups
presented in Procedure 4, each group’s bounding rectangle
is mapped into an entry inside the hash directory. Bounds-
Checking FindCloseGroups linearly iterates over the hash
table directory to build the sets CandidateGroups and
OverlapGroups. The Index Bounds-Checking in Proce-
dure 5 employs a spatial index to efficiently look up
all existing groups a data point can join. Consequently,
we extend the executor with an in-memory R-tree that
efficiently indexes the existing groups’ bounding rectangles.

In the implementation of FindCloseGroupsAny in Proce-
dure 8, a spatial index is created to maintain the set of points
that have been processed and assigned to groups. Moreover,
we extend the executor with the Union-Find data structure
Disjoint-set forest to support the operations GetGroups
and MergeGroupsInsert.

8.3 Datasets

The goal of the experimental study is to validate the effec-
tiveness of the proposed SGB-All and SGB-Any operators
using the optimization methods discussed in Sections 6
and 7. The datasets used in the experiments are based
on the TPC-H benchmark1 [20], and two real-world social
checking datasets, namely Brightite2 and Gowalla3 [21].
Table 2 shows the queries used for performance evalua-
tion experiments on TPC-H data. The multi-dimensional
attribute is the combination of different tables. For ex-
ample, SGB queries, i.e., SGB1/SGB2, are combination
of Customer and Order Table, and the number of tuples
in the Customer and Order tables is 150K × SF and
1500K × SF , respectively, where the scale factor SF
ranges from 1 to 60. For Brightite and Gowalla data,
SGB queries follow Queries 1 and 3 to cluster users into

1. http://www.tpc.org/tpch/
2. https://snap.stanford.edu/data/loc-brightkite.html
3. https://snap.stanford.edu/data/loc-gowalla.html

groups by the corresponding users’ check-in information
(i.e., latitude and longitude).

The experiments are performed on an Intel(R) Xeon (R)
E5320 1.86 GHz 4-core processor with 8G memory running
Linux, and using the default configuration parameters in
PostgreSQL. At first, we focus on the time taken by SGB
and hence disregard the data preprocessing time, (e.g., the
inner join and filter predicates in Query 18). Furthermore,
to understand the overhead of new SGB query, we calculate
SGB response time with complicated queries (e.g., the SGB
Query 3 to 6). In the paper, we only give the execution time
of the L2 distance metric because the performance when
using the L∞ distance metric exhibits a similar behavior.

8.4 Effect of similarity threshold ε

The effect of the similarity threshold ε on the query
runtime is given in Figure 9 for SGB-Any and all three
overlap variants of SGB-All; JOIN-ANY, ELIMINATE and
FORM-NEW-GROUP. The experimental data consists of
0.5 million records. The similarity threshold ε varies from
0.1 to 0.9.

Consider an unskewed dataset, performing SGB-All us-
ing a smaller value of ε (e.g., 0.1 or 0.2) forms too many
output groups because the similarity predicate evaluates to
true on small groups of the data. Increasing the value of
ε forms large groups that decreases the expected number
of output groups. Thus, we observe in Figure 9a, 9b, 9c
that the runtime of SGB-All using the various semantics
decreases as the value of ε approaches 0.9 with the excep-
tion of ε of value 0.7. The slight increase in runtime in
the JOIN-ANY and FORM-NEW-GROUP semantics can
be attributed to the distribution of the experimental data.

The runtime and speedup in Figure 9a, 9b, 9c validate
the advantage of the optimizations for Bounds-Checking
and on-the-fly Index over All-Pairs. The on-the-fly Index
approach shows two orders of magnitude speedup over
All-Pairs, and Bounds-Checking approach wins one order
magnitude faster than that of All-Pairs. The reason is that
All-Pairs realizes similarity grouping by inspecting all pairs
of data points in the input, and its runtime is bounded
by the input size. In contrast, Bounds-Checking defines
group bounds in conjunction with the similarity threshold
to avoid excessive runtime while grouping. Therefore, the
runtime of Bounds-Checking is bounded by the number of
output groups. Lastly, indexing output groups using on-
the-fly Index alleviates the effect of the number of output
groups on the overall runtime and makes it steady across
the various ON-OVERLAP options.

The effect of the similarity threshold ε on the query
runtime for the SGB-Any query is given in Figure 9d. The
experiment illustrates that the runtime for All-Pairs SGB-
Any decreases as the value of ε increases. Furthermore, the
runtime of the on-the-fly Index method slightly changes.
As a result, the speedup between the All Pairs and the
on-the-fly Index methods slightly decreases. The runtime
result validates that the performance of the on-the-fly Index
method is stable as we vary the value of ε. The reason

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

10
5

Similarity Threshold: ε

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

Bounds-Checking

on-the-fly Index

(a) SGB-All:JOIN-ANY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

Similarity Threshold: ε

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

Bounds-Checking

on-the-fly Index

(b) SGB-All:ELIMINATE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

10
5

Similarity Threshold: ε

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

Bounds-Checking

on-the-fly Index

(c) SGB-All:FORM-NEW-GROUP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

Similarity Threshold: ε

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

on-the-fly Index

(d) SGB-ANY

Fig. 9: The effect of similarity threshold ε on the SGB-All variants and SGB-ANY

0 10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

Data Size(GB)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

Bounds-Checking

on-the-fly Index

(a) SGB-All:JOIN-ANY

0 10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

Data Size(GB)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

Bounds-Checking

on-the-fly Index

(b) SGB-All:ELIMINATE

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

Data Size(GB)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

Bounds-Checking

on-the-fly Index

(c) SGB-All:FORM-NEW-GROUP

0 5 10 15 20 25 30
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

Data Size(GB)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

on-the-fly Index

(d) SGB-ANY

Fig. 10: The effect of increasing data size on the SGB-All variants and SGB-ANY

is that the Union-Find data structure efficiently finds and
merges the candidate groups. Figure 9d verifies that, for all
values of ε, the runtime performance of the on-the-fly Index
method for SGB-Any is two orders of mangitude faster than
the All-Pairs SGB-Any.

8.5 Speedup

Figure 10a, 10b and 10c give the performance and speedup
of the Bounds-Checking and on-the-fly Index methods for
large datasets with scale factor up to 60. The similarity
threshold ε is fixed to 0.2. We do not show the re-
sults for the naive approach All-Pairs because its runtime
increases quadratically as the data size increases. From
Figure 10a, 10b and 10c, we observe that the runtime
of the Bounds-Checking method increases as the number
and size of groups increases. The on-the-fly Index Bounds-
Checking method finds the sets CandidateGroups and
OverlapGroups efficiently using the R-tree index, and the
runtime of on-the-fly Index Bounds-Checking method in-
creases steadily and is consistently lower than the Bounds-
Checking methods. We observe that the speedup of the
on-the-fly Index Bounds-Checking method is one order of
magnitude better than that of Bounds-Checking.

Figure 10d gives the effect of varying the data size on
the runtime of SGB-Any when ε is fixed to 0.2. The TPC-H
scale factor (SF) ranges from 1 to 32. We observe that, as
the data size increases, the runtime of the All-Pairs method
increases quadratically, while the runtime of the on-the-fly
Index method has a linear speedup. Moreover, the speedup
results in the figure demonstrate that the on-the-fly Index
method is approximately three orders of magnitude faster
than All-Pairs SGB-Any as the data size increases.

8.6 Runtime Comparison with Clustering Algo-
rithms

We compared the runtime of our SGB operators with three
clustering algorithms, namely, K-means [9], DBSCAN [10],
and BIRCH [12]. Specifically, we use the state-of-the-art
implementation of DBSCAN with an R-tree from [22],
the similarity threshold ε for both DBSCAN and SGB is
set i 0.2, and the parameter K of K-means is set to 20
and 40, respectively. Figure 11 shows the proposed SGB
operations significantly outperform DBSCAN, BIRCH and
K-means by 1 to 3 order of magnitude on the real-world
data respectively. The main reason is that the clustering
algorithms scan the data more than once for convergence.
On the contrary, SGB operations compute groups on-the-
fly, and use group bounda and a spatial index to reduce the
overhead of distance computation with processed tuples. In
addition, clustering algorithms have to read data from the
database system making them slower than our built-in SGB
operations.

8.7 Overhead of SGB

Figure 12 illustrates the effect of the various data sizes on
the runtime of similarity-based groupings and traditional
Group-By queries while varying the scale factor from
1G to 20G. The similarity threshold ε is fixed to 0.2.
The semantics of the ON-OVERLAP clause plays a key
role on the runtime of SGB-All. For instance, the JOIN-
ANY variant achieves the best runtime among the SGB-
All variants as it places overlapped elements into arbitrarily
chosen groups. On the contrary, the FORM-NEW-GROUP
incurs additional runtime cost while placing overlapped
elements into new groups. The ELIMINATE semantics
drops all overlapped elements causing the size of the
output groups to shrink. Furthermore, the performance of

13

0.5 1 1.5 2 2.5 3

10
1

10
2

10
3

10
4

Data Size(Million)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

DBSCAN

BIRCH

K−means(40)

K−means(20)

SGB−All−Form−New

SGB−All−Eliminate

SGB−All−Join−Any

SGB−Any

(a) Runtime on Brightkite

0.5 1 1.5 2 2.5 3

10
1

10
2

10
3

10
4

Data Size(Million)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

DBSCAN

BIRCH

K−means(40)

K−means(20)

SGB−All−Form−New

SGB−All−Eliminate

SGB−All−Join−Any

SGB−Any

(b) Runtime on Gowalla

Fig. 11: SGB vs Clustering Algorithm

(a) GBY2 vs SGB3 and SGB4 (b) GBY3 vs SGB5 and SGB6

Fig. 12: The effect of the data size on SGB vs. SQL GBY.

traditional Group-by operator is comparable to the SGB-
All and SGB-Any variants when using the on-the-fly Index.
For instance, The SGB-All ON-OVERLAP JOIN-ANY
shows better performance than that of traditional Group-By.
The SGB-All ON-OVERLAP ELIMINATE, SGB-All ON-
OVERLAP FORM-NEW and SGB-Any shows 15 percent,
40 percent and 20 percent overhead than the traditional
Group-By, respectively.

9 CONCLUSION

In this paper, we address the problem of similarity-based
grouping over multi-dimensional data. We define new simi-
larity grouping operators with a variety of practical and use-
ful semantics to handle overlap. We provide an extensible
algorithmic framework to efficiently implement these oper-
ators inside a relational database management system under
a variety of semantic flavors. The performance of SGB-
All performs up to three orders of magnitude better than
the naive All-Pairs grouping method. Moreover, the per-
formance of the optimized SGB-Any performs more than
three orders of magnitude better than the naive approach.
Finally, the performance of the proposed SGB operators is
comparable to that of standard relational Group-by.

REFERENCES
[1] J. Han, M. Kamber, and J. Pei, Data mining: concepts and tech-

niques. Morgan kaufmann, 2006.
[2] Y. N. Silva, W. G. Aref, P.-A. Larson, S. S. Pearson, and M. H. Ali,

“Similarity queries: their conceptual evaluation, transformations, and
processing,” The VLDB Journal, vol. 22, no. 3, pp. 395–420, 2013.

[3] S. Adali, P. Bonatti, M. L. Sapino, and V. Subrahmanian, “A multi-
similarity algebra,” in ACM Sigmod Record, vol. 27, no. 2. ACM,
1998, pp. 402–413.

[4] S. Atnafu, L. Brunie, and H. Kosch, “Similarity-based operators
and query optimization for multimedia database systems,” in IDEAS,
2001, pp. 346–355.

[5] B. Braunmuller, M. Ester, H.-P. Kriegel, and J. Sander, “Multiple
similarity queries: A basic dbms operation for mining in metric
databases,” KDE, vol. 13, no. 1, pp. 79–95, 2001.

[6] J. Y. Chen and J. V. Carlis, “Similar join: extending dbms with a
bio-specific operator,” in SAC, 2003, pp. 109–114.

[7] H. L. Razente, M. C. N. Barioni, A. J. Traina, and C. Traina Jr,
“Aggregate similarity queries in relevance feedback methods for
content-based image retrieval,” in SAC, 2008, pp. 869–874.

[8] P. Berkhin, “A survey of clustering data mining techniques,” in
Grouping multidimensional data. Springer, 2006, pp. 25–71.

[9] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient k-means clustering algorithm:
Analysis and implementation,” PAMI, vol. 24, no. 7, pp. 881–892,
2002.

[10] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient
data clustering method for very large databases,” in ACM SIGMOD
Record, vol. 25, no. 2, 1996, pp. 103–114.

[11] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering
algorithm for large databases,” in SIGMOD, vol. 27, no. 2. ACM,
1998, pp. 73–84.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in KDD, vol. 96, 1996, pp. 226–231.

[13] E. Schallehn, K.-U. Sattler, and G. Saake, “Efficient similarity-based
operations for data integration,” Data & Knowledge Engineering,
vol. 48, no. 3, pp. 361–387, 2004.

[14] C. Zhang and Y. Huang, “Cluster by: a new sql extension for spatial
data aggregation,” in GIS, 2007, p. 53.

[15] M. C. N. Barioni, H. Razente, A. Traina, and C. Traina Jr, “Siren: A
similarity retrieval engine for complex data,” VLDB, pp. 1155–1158,
2006.

[16] D. Guliato, E. V. de Melo, R. M. Rangayyan, and R. C. Soares,
“Postgresql-ie: An image-handling extension for postgresql,” Journal
of digital imaging, vol. 22, no. 2, pp. 149–165, 2009.

[17] A. Guttman, R-trees: A dynamic index structure for spatial search-
ing. ACM, 1984, vol. 14, no. 2.

[18] M. De Berg, O. Cheong, M. van Kreveld, and M. Overmars,
Computational geometry. Springer, 2008.

[19] R. E. Tarjan and J. van Leeuwen, “Worst-case analysis of set union
algorithms,” J. ACM, vol. 31, no. 2, pp. 245–281, Mar. 1984.

[20] “TPC-H Version 2.15.0.” [Online]. Available: http://www.tpc.org/
tpch/

[21] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
User movement in location-based social networks,” in Proceedings
of the 17th ACM SIGKDD. ACM, 2011, pp. 1082–1090.

[22] E. Achtert, H.-P. Kriegel, E. Schubert, and A. Zimek, “Interactive
data mining with 3d-parallel-coordinate-trees,” ser. SIGMOD ’13.
ACM, 2013, pp. 1009–1012.

[23] M. J. Atallah, “Computing the convex hull of line intersections,” J.
Algorithms, vol. 7, no. 2, pp. 285–288, 1986.

APPENDIX

We analyze the runtime of SGB-All and SGB-Any. Let n, k,
|G|, |Gc|, |Gv| be the data cardinality, the expected number
of points per group, the number of existing groups, the
size CandidateGroups, and the size of OverlapGroups,
respectively, where k ≤ n and |G| ≤ n as each point can
belong to only one group.

.1 SGB-All

The runtime for SGB-All is output-sensitive and is influ-
enced by several factors e.g., the ON-OVERLAP options,
and the runtimes of FindCloseGroups and Process-
Overlap. These factors vary with ε and with the data
distribution. For instance, the number of Groups |G| can
vary from 1 to n depending on the value of ε. For example,
when ε is very small, |G| = n. Next, we analyze the runtime
complexity for Bounds-Checking and, the on-the-fly index

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

14

for Bounds-Checking using the various ON-OVERLAP
options.

SGB-All Join-Any. Refer to Procedure 4 Bounds-
Checking. It finds the groups CandidateGroups by lin-
early testing all existing groups (Lines 4-6) to determine
if point pi can join Group gj . Each test takes constant
time. Thus, the runtime of ON-OVERLAP JOIN-ANY is
bounded by the number of groups, i.e., O(n |G|).

Refer to Procedure 5. Groups IX is an on-the-fly R-tree
that indexes the bounding rectangles of all existing groups.
Given a new data point, say pi, a window query of size 2ε
on Groups IX finds the groups CandidateGroups that
pi can join. Thus, the runtime for Procedure 5 (Line 4)
is O(log |G|) and the overall runtime of ON-OVERLAP
JOIN-ANY is O(n log |G|). When |G| = n (the number
of inputs tuples), the worst-case runtime of the on-the-fly
Index for Bounds-Checking ON-OVERLAP JOIN-ANY is
no better than O(n log n). In contrast, when |G| is constant,
e.g., 1, the best-case runtime is O(n). Finally, the average-
case runtime of the on-the-fly index for Bounds-Checking
is O(n log |G|).

SGB-All Eliminate. The semantics of ON-OVERLAP
ELIMINATE incurs additional (k |Gv|) time while in-
specting Set OverlapGroups to retrieve the subset that
satisfies the similarity predicate (Lines 8-10) in Proce-
dure 4 and (Lines 10-12) in Procedure 5). In addition,
ProcessEliminate (Line 13) in Procedure 3 incurs ad-
ditional cost of |Gc| to update the bounds of the candidates
groups after removing the overlapped points. Thus, the
runtime of Bounds-Checking ON-OVERLAP ELIMINATE
is O(n (|G|+|Gc|+|Gv| k)) while the runtime of on-the-fly
Index for Bounds-Checking ON-OVERLAP ELIMINATE is
O(n (log |G| + |Gc| + |Gv| k)). Naturally, k = n/|G|,
so the runtime of on-the-fly Index for Bounds-Checking
ON-OVERLAP ELIMINATE is O(n (log |G| + |Gc| +
n |Gv|/|G|)). In the worst-case, |G| = n, |Gc| = |G|
and |Gv|/|G| = constant, and the corresponding runtime
of on-the-fly Index for Bounds-Checking ON-OVERLAP
ELIMINATE is O(n2). In contrast, the best-case runtime
is O(n) when the sizes |G| = |Gv| = |Gc| = 1. The
average-case runtime is O(n log |G|) when the sizes
of OverlapGroups |Gv| � n and CandidateGroups
|Gc| � n.

SGB-All FORM-NEW-GROUP. Procedures Process-
NewGroup and ProcessOverlapNewGroup insert the
overlapped points into a temporary set S′. Upon finding
all points in S′, SGB-All recursively performs a new
round of Form-NEW-GROUP while grouping the contents
of S′ until S′ is empty. Let m be the recursion counter
that is initially 0, and S′m be the set S′ at recursion
stage m. Then, S′0 is the input dataset where the size
of S′0 i.e., |S′0| = n. The time cost for each round is
tm= O(|S′m| O(FindCloseGroupsALL) + O(Process-
Overlap)) that is tm=O(|S′m| (|Gm|+ |Gmc |+ |Gmv | km),
where |Gm|, |Gmc | and |Gmv | are the number of existing
groups, CandidateGroups, and OverlapGroups at each
round m, respectively. Thus, the overall runtime of SGB-
All FORM-NEW-GROUP is the sum of tm from recursion

depth 0 to DP , where tm is the cost at Recursion Depth
m. Then, the complexity of Bounds-Checking is

∑DP
m=0 tm

=
∑d
m=0O(|S′m| (|Gm| + |Gmc | + |Gmv | km)). Similarly,

the time complexity of the on-the-fly index for Bounds-
Checking is

∑d
m=0O(S′m (log |Gm|+ |Gmc |+ |Gmv | km)).

The best-case behavior of Index Bounds-Checking for
FORM-NEW-GROUP occurs when set OverlapGroups is
empty and the size of CandidateGroups is constant. Then,
the best-case runtime is O(n). In contrast, if the recursion
depth is almost n, the worst-case runtime is O(n3). On
average, the recursion counter m = constant � n and
|S′m| � n, and the complexity is O(m n log(|G|)).

The Convex Hull Test in Section 6.4 forms a convex
hull for each group gj to filter out the false-positive points.
The expected size of the convex hull for one group gj is
h, where h = log k [23], where k is the expected number
points in gj . Refer to Procedure 6. It takes O(log h) to
test if a point is inside the convex hull (Line 2). Moreover,
given a point, say pi, located outside the convex hull, it
takes O(log h) to obtain the farthest point from pi (Line
5). Thus, for a group of points, gj , the time to test if pi
can join gj is O(log h + log h); that is O(log log k).
ConvexHullTest is performed for each group that passes
the PointInRectangle test with O(log k) cost (using
L∞). Thus, the computation cost to extend Procedures 4
and 5 with ConvexHullTest is O(n |G| log k) for Bounds-
Checking and O(n log |G| log k) for the on-the-fly Index
for Bounds-Checking. Finally, the average-case runtime of
the on-the-fly Index for Bounds-Checking when using L2

is O(n log |G| log k). Notice that the actual running time
is faster than the average-case because the convex hull test
is executed only if a new point has passed the Group gj’s
rectangle test.

.2 SGB-Any
Refer to Procedure 8. For each new input point pi, the
window query returns the processed points that are within
ε from pi. Given a set of n points, the complexity of
the window query is O(n log n). Moreover, Procedures
getGroups and MergeGroupsInsert use Union-Find to
keep track of new, existing, and merged groups. The amor-
tized runtime of Union-Find for n points is O(m′α(n))
[19], where m′ is the total operations to build new groups,
m′ = |G|, α(n) is a very slowly growing function, and
α(n) ≤ 4. Therefore, the average case of Union-Find
running time is O(n), where m′ ≤ n. Hence, the average-
case runtime of SGB-Any usinpg an on-the-fly index is
O(n log n) + O(n), that is O(n log n). Also, using L2

requires an additional step (verifyPoints) to filter out
the points that do not satisfy the similarity predicate in
OverlapGroups (Line 7) with a cost k′ per point, where k′

is the expected number of points within a window query.
Consequently, the runtime cost of SGB-Any using L2 is
O(n log n+ n k′). k′ is influenced by ε. Thus, the worst-
case runtime when using L2 is n2, when k′ ≈ n. If k′

is constant, the average-case runtime is O(n log n). The
average-case runtime of the on-the-fly Index for SGB-Any
is O(n log n) for both L∞ and L2.

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Similarity Group-By Operators
	4.1 Similarity Group-By ALL (SGB-All)
	4.2 Similarity Group-By Any (SGB-Any)

	5 Applications
	6 Algorithms for SGB-All
	6.1 Framework
	6.2 Finding Candidate and Overlap Groups
	6.2.1 Processing New Points
	6.2.2 Handling Overlapped Points

	6.3 The Bounds-Checking Approach
	6.4 Handling False Positives L2

	7 Algorithms for SGB-Any
	7.1 Finding Candidate Groups
	7.2 Processing New Points

	8 Complexity, Realization, and Evaluation
	8.1 Complexity Analysis
	8.2 Implementation
	8.3 Datasets
	8.4 Effect of similarity threshold
	8.5 Speedup
	8.6 Runtime Comparison with Clustering Algorithms
	8.7 Overhead of SGB

	9 Conclusion
	References
	Appendix
	A SGB-All
	B SGB-Any

