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Abstract—Microaggregation is a technique for disclosure limitation aimed at protecting the privacy of data subjects in microdata
releases. It has been used as an alternative to generalization and suppression to generate k-anonymous data sets, where the identity
of each subject is hidden within a group of k subjects. Unlike generalization, microaggregation perturbs the data and this additional
masking freedom allows improving data utility in several ways, such as increasing data granularity, reducing the impact of outliers and
avoiding discretization of numerical data. k-Anonymity, on the other side, does not protect against attribute disclosure, which occurs if
the variability of the confidential values in a group of k subjects is too small. To address this issue, several refinements of k-anonymity
have been proposed, among which t-closeness stands out as providing one of the strictest privacy guarantees. Existing algorithms to
generate t-close data sets are based on generalization and suppression (they are extensions of k-anonymization algorithms based
on the same principles). This paper proposes and shows how to use microaggregation to generate k-anonymous t-close data sets.
The advantages of microaggregation are analyzed, and then several microaggregation algorithms for k-anonymous t-closeness are
presented and empirically evaluated.

Index Terms—Data privacy, microaggregation, k-anonymity, t-closeness
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1 INTRODUCTION

G ENERATING an anonymized data set that is suitable
for public release is essentially a matter of finding

a good equilibrium between disclosure risk and infor-
mation loss. Releasing the original data set provides the
highest utility to data users but incurs the greatest disclo-
sure risk for the subjects in the data set. On the contrary,
releasing random data incurs no risk of disclosure but
provides no utility.

k-Anonymity [23], [29] is the oldest among the so-
called syntactic privacy models. Models in this class
address the trade-off between privacy and utility by
requiring the anonymized data set to follow a specific
pattern that is known to limit the risk of disclosure. Yet,
the method to be used to generate such an anonymized
data set is not specified by the privacy model and must
be selected to maximize data utility (because satisfying
the model already ensures privacy). k-Anonymity, in
particular, seeks to make record re-identification un-
feasible by hiding each subject within a group of k
subjects. To this end, k-anonymity requires each record
in the anonymized data set to be indistinguishable from
another k − 1 records as far as the quasi-identifier at-
tributes are concerned (see Section 2 for a classification of
attributes into identifiers, quasi-identifiers, confidential
attributes and other attributes).

Although k-anonymity protects against identity dis-
closure (the subject to whom a record corresponds can-
not be successfully re-identified with probability greater
than 1/k), disclosure can still happen if the variability
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of the confidential attribute values in the group of k
records is small. This is known as attribute disclosure.
Several refinements of the k-anonymity model have been
proposed to protect against attribute disclosure; they all
seek to guarantee at least a certain amount of variability
of the confidential attribute values within each group
of indistinguishable records. In this paper we focus on
the notion of t-closeness [16], whose privacy guarantee
is probably the strictest among k-anonymity-like mod-
els. In fact, t-closeness has been shown in [27], [8] to
be related to the major alternative to k-anonymity-like
models, namely ε-differential privacy [10]. t-Closeness
requires that the distribution of the confidential attribute
values within each group of indistinguishable records be
similar to the distribution of the confidential attribute
values in the entire data set.

The dominant approach to obtain an anonymized data
set satisfying k-anonymity or any of its refinements is
based on generalization (recoding) and suppression. The
goal of generalization-based approaches is to find the
minimal generalization that satisfies the requirements
of the underlying privacy model. These algorithms can
be adapted to the above-mentioned k-anonymity refine-
ments: it is simply a matter of introducing the additional
constraints of the target privacy model when checking
whether a specific generalization is viable.

Generalization-based approaches suffer from some
drawbacks identified in [9] and reviewed in Section 4
below. Microaggregation was shown in [9] to be an
alternative approach to generate k-anonymous data sets
while avoiding some of these drawbacks.
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Contribution and plan of this paper

A first contribution of this paper is to identify the strong
points of microaggregation to achieve k-anonymous t-
closeness. The second contribution consists of three
new microaggregation-based algorithms for t-closeness,
which are presented and evaluated.

In Section 2 we review some concepts used
throughout the paper: k-anonymity, t-closeness, re-
coding/generalization and microaggregation. In Sec-
tion 4, we identify the advantages of microaggregation
over generalization/suppression for k-anonymity and
hence for t-closeness as well; then we sketch three
microaggregation-based algorithms for t-closeness that
are detailed in the next sections. Section 5 presents
an algorithm for t-closeness based on standard mi-
croaggregation followed by cluster merging. Section 6
presents an algorithm that embeds t-closeness into the
microaggregation process: each cluster is generated to
satisfy k-anonymity and then it is refined to achieve
t-closeness. Section 7 also embeds t-closeness in the
microaggregation process, but in this case each cluster
is generated to satisfy simultaneous k-anonymity and
t-closeness from the very beginning. In Section 8 we
evaluate the previously proposed algorithms on real data
sets. Conclusions are gathered in Section 9.

2 BACKGROUND

A microdata set can be modeled as a table where
each row contains data on a different subject and each
column contains information about a specific attribute.
Let T (A1, . . . , Am) be a microdata set with n records
r1, . . . , rn, each of them with information about attributes
A1, . . . , Am.

The attributes in a microdata set can be classified
according to their disclosiveness into several (perhaps
non-disjoint) classes (see [11] for more details on the fol-
lowing classification): identifiers, quasi-identifiers, confi-
dential attributes, and non-confidential attributes.

Disclosure risk limitation (a.k.a. statistical disclosure
control) seeks to restrict the capability of an intruder
with access to the released data set to associate a piece of
confidential information to a specific subject in the data
set. To this end, a masked version T ′(A1, . . . , An) of the
original data set T (A1, . . . , An) is released. We use the
term anonymized data set to refer to T ′(A1, . . . , An).

2.1 k-Anonymity

An intruder re-identifies a record in an anonymized
data set when he can determine the identity of the
subject to whom the record corresponds. In case of re-
identification, the intruder can associate the values of
the confidential attributes in the re-identified record to
the identity of the subject, thereby violating the subject’s
privacy.
k-Anonymity [23], [29] seeks to limit the capability of

the intruder to perform successful re-identifications.

Definition 1 (k-anonymity). Let T be a data set and QIT
be the set of quasi-identifier attributes in it. T is said to
satisfy k-anonymity if, for each combination of values of
the quasi-identifiers in QIT , at least k records in T share
that combination.

In a k-anonymous data set, no subject’s identity can
be linked (based on the quasi-identifiers) to less than k
records. Hence, the probability of correct re-identification
is, at most, 1/k. In what follows, we use the terms k-
anonymous group or equivalence class to refer to a set of
records that share the quasi-identifier values.

2.2 t-Closeness
Even though k-anonymity protects against identity dis-
closure, it is a well-known fact that k-anonymous data
sets are vulnerable to attribute disclosure. Attribute dis-
closure occurs when the variability of a confidential
attribute within an equivalence class is too low. In that
case, being able to determine the equivalence class of
a subject may reveal too much information about the
confidential attribute value of that subject.

Several refinements of k-anonymity have been pro-
posed to deal with attribute disclosure. For exam-
ple, p-sensitive k-anonymity [30], l-diversity [18], t-
closeness [16], and (n, t)-closeness [17]. As explained in
Section 1, in this paper we focus on t-closeness because
of its strict privacy guarantee (although the methods we
propose are easily adaptable to (n, t)-closeness).

t-Closeness seeks to limit the amount of information
that an intruder can obtain about the confidential at-
tribute of any specific subject. To this end, t-closeness
requires the distribution of the confidential attributes
within each of the equivalence classes to be similar to
their distribution in the entire data set.

Definition 2. An equivalence class is said to satisfy t-
closeness if the distance between the distribution of the
confidential attribute in this class and the distribution
of the attribute in the whole data set is no more than a
threshold t. A data set (usually a k-anonymous data set)
is said to satisfy t-closeness if all equivalence classes in
it satisfy t-closeness.

The specific distance used between distributions is
central to evaluate t-closeness, but the original def-
inition does not advocate any specific distance. The
Earth Mover’s distance (EMD) [22] is the most common
choice (and the one we will adopt in this paper), al-
though other distances have also been explored [21], [27],
[8]. EMD(P,Q) measures the cost of transforming one
distribution P into another distribution Q by moving
probability mass. EMD is computed as the minimum
transportation cost from the bins of P to the bins of Q, so
it depends on how much mass is moved and how far it
is moved. For numerical attributes the distance between
two bins is based on the number of bins between them.
If the numerical attribute takes values {v1, v2, . . . , vm},
where vi < vj if i < j, then ordered distance(vi, vj) =
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|i − j|/(m − 1). Now, if P and Q are distributions over
{v1, v2, . . . , vm} that, respectively, assign probability pi
and qi to vi, then the EMD for the ordered distance can
be computed as

EMD(P,Q) =
1

m− 1

m∑
i=1

∣∣∣∣∣∣
i∑

j=1

pj − qj

∣∣∣∣∣∣
2.3 Microaggregation
Microaggregation is a family of perturbative methods for
statistical disclosure control of microdata releases. One-
dimensional microaggregation was introduced in [3] and
multi-dimensional microaggregation was proposed and
formalized in [5]. The latter is the one that is useful for
k-anonymity and t-closeness. It consists of the following
two steps:
• Partition: The records in the original data set are par-

titioned into several clusters, each of them contain-
ing at least k records. To minimize the information
loss, records in each cluster should be as similar as
possible.

• Aggregation: An aggregation operator is used to
summarize the data in each cluster and the original
records are replaced by the aggregated output. For
numerical data, one can use the mean as aggregation
operator; for categorical data, one can resort to the
median or some other average operator defined in
terms of an ontology (e.g. see [7]).

The partition and aggregation steps produce some infor-
mation loss. The goal of microaggregation is to minimize
the information loss according to some metric. A com-
mon information loss metric is the SSE (sum of squared
errors). When using SSE on numerical attributes, the
mean is a sensible choice as the aggregation operator,
because for any given partition it minimizes SSE in the
aggregation step; the challenge thus is to come up with
a partition that minimizes the overall SSE. Finding an
optimal partition in multi-dimensional microaggregation
is an NP-hard problem [19]; therefore, heuristics are
employed to obtain an approximation with reasonable
cost.

The limitations to re-identification imposed by k-
anonymity can be satisfied without aggregating the val-
ues of the quasi-identifier attributes within each equiv-
alence class after the partition step. It is less utility-
damaging to break the relation between quasi-identifiers
and confidential attributes while preserving the original
values of the quasi-identifiers. This is the approach to
attain k-anonymity-like guarantees taken in [31], [26].

3 RELATED WORK

Same as for k-anonymity, the most common way to at-
tain t-closeness is to use generalization and suppression.
In fact, the algorithms for k-anonymity based on those
principles can be adapted to yield t-closeness by adding
the t-closeness constraint in the search for a feasible

minimal generalization: in [16] the Incognito algorithm
and in [17] the Mondrian algorithm are respectively
adapted to t-closeness. SABRE [2] is another interesting
approach specifically designed for t-closeness. In SABRE
the data set is first partitioned into a set of buckets and
then the equivalence classes are generated by taking
an appropriate number of records from each of the
buckets. Both the buckets and the number of records
from each bucket that are included in each equivalence
class are selected with t-closeness in mind. One of the
algorithms proposed in our paper uses a similar princi-
ple. However, the buckets in SABRE are generated in an
iterative greedy manner which may yield more buckets
than our algorithm (which analytically determines the
minimal number of required buckets). A greater number
of buckets leads to equivalence classes with more records
and, thus, to more information loss.

In [21] an approach to attain t-closeness-like privacy is
proposed which, unlike the methods based on general-
ization/suppression, is perturbative. Also, [21] guaran-
tees the threshold t only on average and uses a distance
other than EMD. Another computational approach to t-
closeness is presented in [8], [27] which aims at connect-
ing t-closeness and differential privacy; [8], [27] also use
a distance different from EMD but their method is non-
perturbative (the truthfulness of the data is preserved).

Most of the approaches to attain t-closeness have been
designed to preserve the truthfulness of the data. In this
paper we evaluate the use of microaggregation, a pertur-
bative masking technique. In k-anonymity the relation
between the quasi-identifiers and the confidential data
is broken by making records in the anonymized data set
indistinguishable in terms of quasi-identifiers within a
group of k records. Microaggregation, when performed
on the projection on quasi-identifier attributes, produces
a k-anonymous data set [9]. Microaggregation was also
used for k-anonymity without naming it in [15]: cluster-
ing was used with the additional requirement that each
cluster must have k or more records.

While microaggregation has been proposed to sat-
isfy another refinement of k-anonymity (p-sensitive k-
anonymity, [25]), no attempt has been made to use it for
t-closeness.

4 k-ANONYMITY/t-CLOSENESS AND
MICROAGGREGATION

Microaggregation has several advantages over general-
ization/recoding for k-anonymity that are mostly related
to data utility preservation:
• Global recoding may recode some records that do

not need it, hence causing extra information loss. On
the other hand, local recoding makes data analysis
more complex, as values corresponding to various
different levels of generalization may co-exist in
the anonymized data. Microaggregation is free from
either drawback.
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• Data generalization usually results in a significant
loss of granularity, because input values can only be
replaced by a reduced set of generalizations, which
are more constrained as one moves up in the hierar-
chy. Microaggregation, on the other hand, does not
reduce the granularity of values, because they are
replaced by numerical or categorical averages.

• If outliers are present in the input data, the need
to generalize them results in very coarse general-
izations and, thus, in a high loss of information.
For microaggregation, the influence of an outlier in
the calculation of averages/centroids is restricted
to the outlier’s equivalence class and hence is less
noticeable.

• For numerical attributes, generalization discretizes
input numbers to numerical ranges and thereby
changes the nature of data from continuous to dis-
crete. In contrast, microaggregation maintains the
continuous nature of numbers.

In [23], [29] it was proposed to combine local suppres-
sion with recoding to reduce the amount of recoding.
Local suppression has several drawbacks:

• It is not known how to optimally combine general-
ization and local suppression.

• There is no agreement in the literature on how
suppression should be performed: one can suppress
at the record level (entire record suppressed), or
suppress particular attributes in some records; fur-
thermore, suppression can be done by either blank-
ing a value or replacing it by a neutral value (i.e.
some kind of average).

• Last but not least, and no matter how suppression is
performed, it complicates data analysis (users need
to resort to software dealing with censored data).

Some of the above downsides of generalization and
suppression motivated proposing microaggregation for
k-anonymity in [9]. They also justify that we investigate
here the use of microaggregation for t-closeness.

The adaptation of microaggregation for k-anonymity
was pretty straightforward: by applying the microag-
gregation algorithm (with minimum cluster size k) to
the quasi-identifiers one generates groups of k records
that share the quasi-identifier values (the aggregation
step replaces the original quasi-identifiers by the cluster
centroid). In microaggregation one seeks to maximize
the homogeneity of records within a cluster, which is
beneficial for the utility of the resultant k-anonymous
data set.

In t-closeness one has the additional constraint that
the distance between the distribution of the confidential
attribute within each of the clusters (generated by mi-
croaggregation) and the distribution in the entire data
set must be less than t. This makes attaining t-closeness
more complex, because we have to reconcile the pos-
sibly conflicting goals of maximizing the within-cluster
homogeneity of the quasi-identifiers and fulfilling the
condition on the distance between the distributions of

the confidential attributes.
In the next three sections, we propose three different

algorithms to reconcile these conflicting goals. The first
algorithm is based on performing microaggregation in
the usual way, and then merging clusters as much as
needed to satisfy the t-closeness condition. This first
algorithm is simple and it can be combined with any
microaggregation algorithm, yet it may perform poorly
regarding utility because clusters may end up being
quite large. The other algorithms modify the microaggre-
gation algorithm for it to take t-closeness into account, in
an attempt to improve the utility of the anonymized data
set. Two variants are proposed: k-anonymity-first (which
generates each cluster based on the quasi-identifiers and
then refines it to satisfy t-closeness) and t-closeness-
first (which generates each cluster based on both quasi-
identifier attributes and confidential attributes, so that it
satisfies t-closeness by design from the very beginning).

5 STANDARD MICROAGGREGATION AND
MERGING

Generating a t-close data set via generalization is essen-
tially an optimization problem: one must find a minimal
generalization that satisfies t-closeness. A common way
to find a solution is to iteratively generalize one of the
attributes (selected according to some quality criterion)
until the resulting data set satisfies t-closeness. Our
first proposal to attain t-closeness via microaggregation
follows a similar approach. We microaggregate and then
merge clusters of records in the microaggregated data
set; we use the distance between the quasi-identifiers of
the microaggregated clusters as the quality criterion to
select which groups are to be merged.

Initially, the microaggregation algorithm is run on the
quasi-identifier attributes of the original data set; this
step produces a k-anonymous data set. Then, clusters of
microaggregated records are merged until t-closeness is
satisfied. We iteratively improve the level of t-closeness
by: i) selecting the cluster whose confidential attribute
distribution is most different from the confidential at-
tribute distribution in the entire data set (that is, the
cluster farthest from satisfying t-closeness); and ii) merg-
ing it with the cluster closest to it in terms of quasi-
identifiers. See Algorithm 1 for a detailed description of
the algorithm.

Note that Algorithm 1 always returns a t-close data
set. In the worst case, all clusters are eventually merged
into a single one and the EMD becomes zero.

The computational cost of Algorithm 1 is the sum
of the cost of the initial microaggregation and the cost
of merging clusters. Although optimal multivariate mi-
croaggregation is NP-hard, several heuristic approxi-
mations exist with quadratic cost on the number n
of records of X (e.g. MDAV [9], V-MDAV [24]). For
the merging part, the fact that computing the EMD
for numerical data has linear cost turns the merging
quadratic. More precisely, the cost of Algorithm 1 is
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Algorithm 1 t-Closeness through microaggregation and
merging of microaggregated groups of records.

Data: X : original data set
k: minimum cluster size
t: t-closeness level

Result Set of clusters satisfying k-anonymity and t-
closeness

X ′=microaggregation(X , k)
while EMD(X ′, X) > t do

C = cluster in X ′ with the greatest EMD to X
C ′ = cluster in X ′ closest to C in terms of QIs
X ′ = merge C and C ′ in X ′

end while
return X ′

max{O(microaggregation), n2/k}. If MDAV is used for
the microaggregation, the cost is O(n2/k).

6 t-CLOSENESS AWARE MICROAGGREGA-
TION: k-ANONYMITY-FIRST

Algorithm 1 consists of two clearly defined steps: first
microaggregate and then merge clusters until t-closeness
is satisfied. In the microaggregation step any standard
microaggregation algorithm can be used because the
enforcement of t-closeness takes place only after mi-
croaggregation is complete. As a result, the algorithm
is quite clear, but the utility of the anonymized data
set may be far from optimal. If, instead of deferring the
enforcement of t-closeness to the second step, we make
the microaggregation algorithm aware of the t-closeness
constraints at the time of cluster formation, the size of
the resulting clusters and also information loss can be
expected to be smaller.

Algorithm 2 microaggregates according to the above
idea. It initially generates a cluster of size k based on the
quasi-identifier attributes. Then the cluster is iteratively
refined until t-closeness is satisfied. In the refinement,
the algorithm checks whether t-closeness is satisfied and,
if it is not, it selects the closest record not in the cluster
based on the quasi-identifiers and swaps it with a record
in the cluster selected so that the EMD to the distribution
of the entire data set is minimized.

Instead of replacing the records already added to
a cluster, we could have opted for adding additional
records until t-closeness is satisfied. This latter approach
was discarded because it led to large clusters when the
dependence between quasi-identifiers and confidential
attributes is high. In this case, clusters homogeneous
in terms of quasi-identifiers tend to be homogeneous
in terms of confidential attributes, so the within-cluster
distribution of the confidential attribute differs from its
distribution in the entire data set unless the cluster is
(nearly) as big as the entire data set.

It may happen that the records in the data set are ex-
hausted before t-closeness is satisfied. This is most likely

Algorithm 2 k-Anonymity-first t-closeness aware mi-
croaggregation algorithm.

function k-ANONYMITY-FIRST
Data: X : original data set

k: minimum cluster size
t: t-closeness level

Result Set of clusters satisfying k-anonymity and
t-closeness

Clusters = ∅
X ′ = X
while X ′ 6= ∅ do

xa = average record of X ′

x0 = most distant record from xa in X ′

C = GenerateCluster(x0, X ′, X , k, t)
X ′ = X ′ \ C
Clusters = Clusters ∪ {C}
if X ′ 6= ∅ then

x1 = most distant record from x0 in X ′

C = GenerateCluster(x1, X ′, X , k, t)
X ′ = X ′ \ C
Clusters = Clusters ∪ {C}

end if
end while
return Clusters

end function
function GENERATECLUSTER(x, X ′, X , k, t)

Data: x: source record for the cluster
X ′: remaining unclustered records of X
X : original data set
k: minimum cluster size
t: desired t-closeness level

Result t-close cluster of k (or more) records
if |X ′| < 2k then

C = X ′

else
C = k closest records to x in X ′ (including x

itself)
X ′ = X ′ \ C
while EMD(C,X) > t and X ′ 6= ∅ do

y = record in X ′ that is closest to x
y′ = record C that minimizes EMD(C∪{y}\

{y′}, X)
if EMD(C ∪ {y} \ {y′}, X) < EMD(C,X)

then
C=C ∪ {y} \ {y′}

end if
X ′ = X ′ \ {y}

end while
end if
return C

end function
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when the number of remaining unclustered records is
small (for instance, when the last cluster is formed).
Thus, Algorithm 2 alone cannot guarantee that t-closeness
is satisfied. A way to circumvent this shortcoming is to use
Algorithm 2 as the microaggregation function in Algorithm 1.
By taking into account t-closeness at the time of cluster
formation (as Algorithm 2 does), the number of cluster
mergers in Algorithm 1 can be expected to be small and,
therefore, the utility of the resulting anonymized data set
can be expected to be reasonably good.

Algorithm 2 makes an intensive use of the EMD
distance. Due to this and to the cost of computing EMD,
Algorithm 2 may be rather slow. More precisely, it has
order O(n3/k) in the worst case, and order O(n2/k) in
the best case (when no record swaps are required).

7 t-CLOSENESS AWARE MICROAGGREGA-
TION: t-CLOSENESS-FIRST

In Section 6 we modified the microaggregation algorithm
for it to build the clusters in a t-closeness aware manner.
The clustering algorithm, however, kept the focus on
the quasi-identifiers (records were selected based on
the quasi-identifiers) and did not guarantee that every
cluster satisfies t-closeness. The algorithm proposed in
this section prioritizes the confidential attribute, thereby
making it possible to guarantee that all clusters satisfy
t-closeness.

We assume in this section that the values of the
confidential attribute(s) can be ranked, that is, be ordered
in some way. For numerical or categorical ordinal at-
tributes, ranking is straightforward. Even for categorical
nominal attributes, the ranking assumption is less restric-
tive than it appears, because the same distance metrics
that are used to microaggregate this type of attributes
can be used to rank them (e.g. the marginality distance
in [7], [28]).

We start by evaluating some of the properties of the
EMD distance with respect to microaggregation. To min-
imize EMD between the distributions of the confidential
attribute within a cluster and in the entire data set, the
values of the confidential attribute in the cluster must be
as spread as possible over the entire data set. Consider
the case of a cluster with k records. The following
proposition gives a lower bound of EMD for such a
cluster.

Proposition 1. Let T be a data set with n records, A be a
confidential attribute of T whose values can be ranked and C
be a cluster of size k. The earth mover’s distance between C
and T with respect to attribute A satisfies EMDA(C, T ) ≥
(n+k)(n−k)/(4n(n−1)k). If k divides n, this lower bound
is tight.

Proof. The EMD can intuitively be seen as the amount of
work needed to transform the distribution of attribute
A within C into the distribution of A over T . The
“amount of work” includes two factors: (i) the amount
of probability mass that needs to be moved and (ii) the

n/k 2n/k 3n/k        ... n(k-1)n/k

c
1

c
2

c
3

c
k

Fig. 1. t-Closeness first, case k divides n. Confiden-
tial attribute values {c1, c2, . . . , ck} of the cluster C that
minimizes the earth mover’s distance to T . When the
confidential attribute values in T are grouped in k subsets
of n/k values, ci is the median of the i-th subset for
i = 1, · · · , k.

distance of the movement. When computing EMD for t-
closeness, the distance of the movements of probability
mass for numerical attributes is measured as the ordered
distance [16], that is, the difference between the ranks of
the values of A in T divided by n− 1.

For the sake of simplicity, assume that k divides n.
If that is not the case, the distance will be slightly
greater, so the lower bound we compute is still valid. The
probability mass of each of the values of A is constant
and equal to 1/n in T , and it is constant and equal to
1/k in C. This means that the first factor that determines
the EMD (the amount of probability mass to be moved)
is fixed. Therefore, to minimize EMD we must minimize
the second factor (the distance by which the probability
mass must be moved). Clearly, to minimize the distance,
the i-th value of A in the cluster must lie in the middle
of the i-th group of n/k records of T . Figure 1 illustrates
this fact.

In Figure 1 and using the ordered distance, the earth
mover’s distance can be computed as k times the cost of
distributing the probability mass of element c1 among
the n/k elements in the first subset:

min(EMD) = k ×
n/k∑
i=1

1

n

|i− n/k+1/2|
n− 1

=
(n+ k)(n− k)

4n(n− 1)k

(1)
Formula (1) takes element (n/k + 1)/2 as the middle
element of a cluster with n/k elements. Strictly speaking,
this is only possible when n/k is odd. When n/k is even,
we ought to take either b(n/k + 1)/2c, the element just
before the middle, or d(n/k+1)/2e, the element just after
the middle. In any case, the EMD ends up being the same
as the one obtained in Formula (1).

Note that, once n and t are fixed, Proposition 1 determines
the minimum value of k required for EMD to be smaller than
t. An issue with the construction of the k values c1, · · · ,
ck depicted in Figure 1 is that it is too restrictive. For
instance, for given values of n and t, if the minimal EMD
value computed in Proposition 1 is exactly equal to t,
then only clusters having as confidential attribute values
c1, · · · , ck satisfy t-closeness (there may be only one such
cluster). Any other cluster having different confidential
attribute values does not satisfy t-closeness. Moreover, in
the construction of Figure 1, the clusters are generated
based only on the values of the confidential attribute,
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n/k 2n/k 3n/k        ... n(k-1)n/k

c
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c
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3

c
k

c
4

Fig. 2. t-Closeness first, case k divides n. Confiden-
tial attribute values {c1, c2, . . . , ck} of the cluster C that
maximizes the earth mover’s distance to T . When the
confidential attribute values in T are grouped in k subsets
of n/k values, ci is taken as the minimum value of the i-th
subset for i = 1, · · · , k.

which may lead to a large information loss in terms of
the quasi-identifiers.

Given the limitations pointed out above, our goal
is to guarantee that the EMD of the clusters is below
a specific value but allowing the clustering algorithm
enough freedom to select appropriate records (in terms
of quasi-identifiers) for each of the clusters. The ap-
proach that we propose is similar to the one of Figure 1:
we group the records in T into k subsets based on
the confidential attribute and we then generate clusters
based on the quasi-identifiers with the constraint that
each cluster should contain one record from each of the k
subsets (the specific record is selected based on the quasi-
identifier attributes). Proposition 2 gives an upper bound
on the level of t-closeness that we attain. To simplify the
derivation and the proof, we assume in the proposition
that k divides n.

Proposition 2. Let T be a data set with n records and let A
be a confidential attribute of T whose values can be ranked.
Let S = {S1, . . . , Sk} be a partition of the records in T into
k subsets of n/k records in ascending order of the attribute
A. Let C be a cluster that contains exactly one record from
each of the subsets Si, for i = 1, · · · , k. Then EMD(C, T ) ≤
(n− k)/(2(n− 1)k).

Proof. The factors that determine EMD are: (i) the
amount of probability mass that needs to be moved and
(ii) the distance by which it is moved. The first factor
is fixed and cannot be modified: each of the records in
T has probability mass 1/n, and each of the records in
C has probability mass of 1/k. As to the second factor,
to find an upper bound to EMD, we need to consider a
cluster C that maximizes EMD: the records selected for
inclusion into C must be at the lower (or upper) end of
the sets Si for i = 1, · · · , k. This is depicted in Figure 2.
(Note the analogy with the proof of Proposition 1: there
we took the median of each Si to minimize EMD.)

EMD for the case in Figure 2 can be computed as k
times the cost of distributing the probability mass of c1
among the n/k elements of S1:

max(EMD) = k ×
n/k∑
i=1

1

n

i− 1

n− 1
=

n− k

2(n− 1)k
(2)

With the upper bound on EMD given by Proposition 2,
we can determine the cluster size required in the mi-
croaggregation: just replace EMD(C, T ) by t on the left-
hand side of the bound and solve for k to get a lower
bound for k. For a data set containing n records and
for a required level of t-closeness and k-anonymity, the
cluster size must be

max{k, d n

2(n− 1)t+ 1
e} (3)

To keep things simple, so far we have assumed that k
divides n. However, the algorithm to generate t-close
data sets must work even if that is not the case. If
discarding some records from the original data set is a
viable option, we could discard records until k divides
the new n, and proceed as described above. If records
cannot be discarded, some of the clusters would need to
contain more than k records. In particular, we may allow
some clusters to have either k or k + 1 records.

If we group the records into k sets with bn/kc records,
then r = n mod k records remain. We propose to assign
the remaining r records to one of the subsets. Then,
when generating the clusters, two records from this
subset are added to the first r clusters. This is only
possible if r ≤ bn/kc (the number of remaining records
is not greater than the number of generated clusters);
otherwise, there will be records not assigned to any
cluster. Note, however, that using a cluster size k with
r ≥ bn/kc makes no sense: since all clusters receive more
than k records, what is reasonable is to adapt to reality
by increasing k. Specifically, to avoid having r ≥ bn/kc,
k is adjusted as

k = k + b(n mod k)/bn/kcc. (4)

Adding two records from one of the subsets to a
cluster increases the EMD of the cluster. To minimize
the impact over the EMD, we need to reduce the work
required to distribute the probability mass of the extra
record across the whole range of values. Hence, the extra
record must be close to the median record of the data set.
Figure 3 illustrates the types of clusters that we allow
when k is odd (there is a single subset in the middle), and
Figure 4 illustrates the types of clusters that we allow
when k is even (there are two subsets in the middle).
Essentially, when k is odd, the additional records are
added to S(k+1)/2 (the subset in the middle); then, we
generate clusters with size k and clusters with size k+1,
which take two records from S(k+1)/2. When k is even,
the additional records are split between S(k−1)/2 and
S(k+1)/2 (the subsets in the middle); then, we generate
clusters with size k and clusters with size k + 1, some
with an additional record from S(k−1)/2 and some from
Sk/2.

Just as we did in Proposition 2, we can compute an
upper bound for the EMD of the clusters depicted in
Figures 3 and 4. The EMD of a cluster C measures the
cost of transforming the distribution of C to the distri-
bution of the data set. The cost of the probability mass
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Fig. 3. t-Closeness first, case k does not divide n. Types
of clusters when k is odd. Top row, the data set is split into
k subsets. Central row, cluster with k + 1 records. Bottom
row, cluster with k records.

Fig. 4. t-Closeness first, case k does not divide n. Types
of clusters when k is even. Top row, the data set is split
into k subsets. Central rows, clusters with k + 1 records
(one with two records from S(k−1)/2 and the other with two
records from S(k+1)/2). Bottom row, cluster with k records.

redistribution can be computed in two steps as follows.
First, we want the weight of each subset S1, . . . , Sk in
cluster C (the proportion of records in C coming from
each subset) to be equal to the weight of the subset in
the data set; to this end, we redistribute the probability
mass of the cluster between subsets. This redistribution
cost, cost0, equals the EMD between the cluster and the
data set when the distributions have been discretized to
the subsets. Then, for each subset Si ∈ {S1, . . . , Sk}, we
compute costi, an upper bound of the cost of distributing
the probability mass |Si|/n assigned to the subset among
its elements (this is analogous to the mass distribution
in the proof of Proposition 2). The EMD is the sum
cost0 + cost1 + . . .+ costk. The fact that there are subsets
with different sizes and there are clusters with different
sizes makes formulas quite tedious and unwieldy, even
though the resulting bounds on EMD are very similar
to the one obtained in Proposition 2. For these reasons,
we will use the latter as an approximation even when k
does not divide n; in particular, we will determine the
cluster size using Expression (3).

Algorithm 3 formalizes the above described procedure
to generate a k-anonymous t-close data set. It makes use
of Expressions (3) and (4) to determine and adjust the
cluster size, respectively.

In terms of computational cost, Algorithm 3 has a
great advantage over Algorithms 1 and 2: when run-
ning Algorithm 3, we know that by construction the
generated clusters satisfy t-closeness, so there is no need
to compute any EMD distance. Algorithm 3 has cost
O(n2/k), the same cost order as MDAV (on which it
is based). Actually, Algorithm 3 is even slightly more
efficient than MDAV: all operations being equal, some
of the computations that MDAV performs on the entire
data set are performed by Algorithm 3 just on one of the
subsets of n/k records.

Algorithm 3 t-Closeness-first microaggregation algo-
rithm. Distances between records are computed in terms
of the quasi-identifiers.

Data: X : original data set
n: size of X
k: minimum cluster size
t: t-closeness level

Result Set of clusters satisfying k-anonymity and t-
closeness

k = max{k, d n
2(n−1)t+1e}

k = k + d(n mod k)/bn/kce
Clusters = ∅
Split X into S1, . . . , Sk subsets with bn/kc records in
ascending order of the confidential attribute, with any
remaining (n mod k) records assigned to the central
subset(s)
while X 6= ∅ do

xa = average record of X
x0 = most distant record from xa in X
C = ∅
for i = 1, . . . , k do

x = closest record to x0 in Si

C = C ∪ {x}
Si = Si \ {x}
X = X \ {x}
. Take second record from Si if it contains extra

records and no extra record has been already added
to C

if |Si| > |S1| and |C| = i then
x = closest record to x0 in Si

C = C ∪ {x}
Si = Si \ {x}
X = X \ {x}

end if
end for
Clusters = Clusters ∪ {C}
if X 6= ∅ then

x1 = most distant record from x0 in X
C = ∅
for i = 1, . . . , k do

x = closest record to x1 in Si

C = C ∪ {x}
Si = Si \ {x}
X = X \ {x}
if |Si| > |S1| and |C| = i then

x = closest record to x1 in Si

C = C ∪ {x}
Si = Si \ {x}
X = X \ {x}

end if
end for
Clusters = Clusters ∪ {C}

end if
end while
return Clusters
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8 EMPIRICAL EVALUATION

In this section we empirically evaluate and compare
the proposed algorithms using several data sets and
according to different metrics: actual cluster size, speed
and scalability, and data utility preservation.

8.1 Actual cluster size
In a first battery of tests we used as evaluation data
the Census data set [1], which is usual to test pri-
vacy protection methods [32], [12], [6] and contains
1,080 records with numerical attributes. Similar to [6],
we took attributes TAXINC (Taxable income amount)
and POTHVAL (Total other persons income) as quasi-
identifiers, and FEDTAX (Federal income tax liability)
and FICA (Social Security retirement payroll deduction)
as confidential attributes.

Because k-anonymity and t-closeness pursue different
goals (the former clusters records with similar quasi-
identifiers while the latter requires clusters with a dis-
tribution of confidential attributes similar to the one of
the entire data set), we defined two data sets according
to the correlation between the values of quasi-identifier
and confidential attributes:
• Moderately correlated data set (MCD). It consists of

1,080 records with TAXINC and POTHVAL as quasi-
identifier attributes, and FEDTAX as confidential
attribute. The correlation between both types of
attributes is 0.52. This represents the most usual
scenario in which quasi-identifiers and confidential
attributes show some correlation.

• Highly correlated data set (HCD). It uses the same
quasi-identifiers as MCD, but it takes FICA as confi-
dential attribute. The correlation between both types
of attributes is 0.92. This highly correlated data set
represents a worst-case scenario for our algorithms
because, to fulfill a certain t-closeness level (i.e., to
ensure a certain distribution of confidential values),
we are likely to be forced to microaggregate records
with significantly diverse quasi-identifier values,
thereby incurring more information loss than in the
MCD data set.

By applying the three algorithms to these two data sets
for different values of k and t, we will show how close
to k are the sizes of clusters formed by each algorithm
for each value of t to be enforced. To minimize information
loss, the closer all cluster sizes to k, the better. The k values
have been taken in the range 2-30, which covers the
most usual k-anonymity values (e.g. k is taken between
3 and 10 in [4]), whereas the t values have been taken
in the range 0.01-0.25 (where 0.25 is the upper bound of
t-closeness for this data set for the lowest k, that is k = 2,
according to Proposition 2).

We start by analyzing the behavior of Algorithm 1,
in which records are first microaggregated in clusters of
size k that are thereafter merged until t-closeness is ful-
filled. Table 1 shows the actual level of microaggregation
that results from the merging process: minimum, that is,

the size of the smallest cluster (which determines the
actual k-anonymity level achieved), and average, that is,
the average size of the merged clusters.

It can be seen that, in many cases, the actual level of
microaggregation is significantly higher than the value
of k. This is undesirable because the larger the clusters,
the higher the information loss. We also see that the size
of the clusters tends to increase for both data sets as:
• i) the parameter t of t-closeness decreases: since clusters

have been created without considering the desired
t-closeness, it is unlikely that they satisfy it as t gets
smaller. Thus, to decrease, if necessary, the distance
between the distribution of confidential attributes
within each cluster and over the entire data set,
the algorithm merges the already created clusters
(thereby increasing their cardinality); in the worst
case (i.e., t around 0.01-0.05), this implies grouping
all 1,080 records in a single cluster.

• ii) the initial level of k-anonymity increases: the coarser
the initial microaggregation, the more effort (i.e.,
merging) is needed to achieve a certain t-closeness
level.

We also observe a noticeable difference between the
minimum and average cardinality of the clusters, which
suggests that the microggregation of records that we
obtain in practice is far from optimal.

Table 2 shows the results for Algorithm 2. With this
algorithm, we observe that the actual microaggregation
levels are significantly smaller than in the previous case
for the same values of k and t, and so is the difference
between the minimum and average cardinality of the
clusters. Now t-closeness is enforced after creating each
cluster rather than after creating all clusters. Thus, once
a cluster is created, some of the k records in that cluster
may be replaced by unclustered records until t-closeness
is satisfied; doing so does not increase the cardinality of
the cluster, even though it may end up clustering records
with less homogeneous quasi-identifiers and thereby
yielding a higher loss of information. Only if the replace-
ment does not satisfy the desired t-closeness, the clusters
are merged like in Algorithm 1, thereby increasing the
microaggregation level (in fact, as suggested in Section 6,
we use Algorithm 2 as the microaggregation function
of Algorithm 1). The results shown in Table 2 suggest
that this process occurs for the smallest t-closeness val-
ues (i.e., 0.01-0.05), which are the ones that impose the
strictest constraint.

The differences between the two data sets are more
noticeable if we look at the average cardinality of the
clusters: the HCD data set results in a larger average car-
dinality, because the initial clusters present more homo-
geneous confidential values (these are very correlated to
the more homogeneous quasi-identifier values obtained
for the first clusters) and tend to require more effort (i.e.,
replacements and mergers) to attain t-closeness.

Finally, Table 3 shows the results for Algorithm 3.
Figures in this table show that Algorithm 3 is the one
achieving an actual microaggregation level closest to the
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TABLE 1
Algorithm 1: actual microaggregation (minimum and average size of the clusters, respectively) resulting for several

values of k and t for the MCD and HCD data sets

t = 0.01 t = 0.05 t = 0.09 t = 0.13 t = 0.17 t = 0.21 t = 0.25
MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD

k = 2 1080/1080 1080/1080 56/120 36/98 20/42 16/31 8/20 8/52 4/10 4/9 4/7 4/7 2/8 2/5
k = 5 1080/1080 1080/1080 385/540 200/216 40/154 40/60 20/47 20/80 10/24 10/21 10/17 10/15 5/12 5/11
k = 10 1080/1080 1080/1080 1080/1080 1080/1080 110/270 180/216 40/108 40/190 20/57 20/47 20/35 20/31 10/24 10/20
k = 15 1080/1080 1080/1080 1080/1080 495/540 135/360 195/270 45/90 60/270 30/64 30/68 30/45 30/54 15/33 15/33
k = 20 1080/1080 1080/1080 380/540 240/360 160/216 180/216 80/154 60/140 40/83 40/72 40/54 40/60 20/37 20/40
k = 25 1080/1080 1080/1080 1080/1080 1080/1080 1080/1080 230/360 455/540 50/250 50/180 50/98 50/90 50/72 25/72 25/48
k = 30 1080/1080 1080/1080 540/540 1080/1080 270/360 330/540 120/180 150/390 60/98 60/108 60/77 60/90 30/57 30/57

TABLE 2
Algorithm 2: actual microaggregation (minimum and average size of the clusters, respectively) resulting for several

values of k and t for the MCD and HCD data sets.

t = 0.01 t = 0.05 t = 0.09 t = 0.13 t = 0.17 t = 0.21 t = 0.25
MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD

k = 2 164/216 156/360 8/10 8/11 4/7 4/7 4/6 4/4 2/3 2/3 2/3 2/3 2/3 2/3
k = 5 40/64 80/154 10/16 10/10 5/7 5/8 5/7 5/8 5/7 5/7 5/7 5/8 5/6 5/7
k = 10 40/108 80/135 10/17 10/17 10/17 10/17 10/15 10/16 10/15 10/14 10/13 10/14 10/12 10/12
k = 15 30/57 30/60 15/28 15/30 15/25 15/26 15/23 15/23 15/23 15/22 15/19 15/21 15/16 15/17
k = 20 40/54 40/49 20/37 20/43 20/35 20/36 20/32 20/32 20/31 20/29 20/26 20/28 20/22 20/23
k = 25 50/51 50/51 25/51 25/51 25/43 25/43 25/39 25/39 25/40 25/37 25/32 25/35 25/28 25/26
k = 30 30/57 60/64 30/68 30/64 30/54 30/54 30/49 30/47 30/47 30/43 30/37 30/42 30/34 30/34

TABLE 3
Algorithm 3: actual microaggregation (minimum and average size of the clusters, respectively) resulting for several

values of k and t for the MCD and HCD data sets.

t = 0.01 t = 0.05 t = 0.09 t = 0.13 t = 0.17 t = 0.21 t = 0.25
MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD MCD HCD

k = 2 49/49 49/49 10/10 10/10 6/6 6/6 4/4 4/4 3/3 3/3 3/3 3/3 2/2 2/2
k = 5 49/49 49/49 10/10 10/10 6/6 6/6 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
k = 10 49/49 49/49 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
k = 15 49/49 49/49 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15
k = 20 49/49 49/49 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20
k = 25 49/49 49/49 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25
k = 30 49/49 49/49 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

desired k. Moreover, since the cardinality of the data sets
(1,080 records) is a multiple of the values of k, all clusters
can be formed with the same cardinality k (i.e., clusters
are perfectly balanced). Indeed, as stated in Section 7,
Algorithm 3 seeks the smallest clusters whose cardinality
is at least k and which satisfy a pre-specified level of
t-closeness. To do so, it prioritizes the fulfillment of t-
closeness over the homogeneity of quasi-identifiers in
cluster formation. Because of this strategy, there are no
differences between the MCD and HCD data sets; in fact,
we can see that for most parameter choices and for both
data sets the minimum and average cluster sizes are k.

In comparison with Algorithm 2, we observe that,
even though in some cases (e.g., for t = 0.05 and
k = 2) the minimum cardinality is greater with Algo-
rithm 3, the average cardinality is always smaller with
this algorithm. This is a consequence of the more precise
microaggregation implemented by Algorithm 3.

8.2 Speed and scalability

The second part of the evaluation focuses on measuring
the speed and scalability of the three algorithms with a
larger data set.

To that end, we took a higher-dimensional data set
from the the Patient Discharge Data for year 2010 of
Californian hospitals, which are provided by Califor-
nia’s Office of Statewide Health Planning and Develop-
ment [20]. We took the data set with the largest number
of entries (Cedars Sinai Medical Center, with 55,668
patient records). From these, we removed records with
missing attribute values and obtained a final data set
with 23,435 records. Each record consists of 7 quasi-
identifier attributes (e.g., patient’s age, zip code, ad-
mission date, etc.) plus one confidential attribute that
specifies the amount charged for the patient’s stay in
the hospital. The correlation between the quasi-identifier
attributes and the confidential one is just 0.129.

The run time of the three algorithms for the Patient
Discharge data set is shown in Figure 5 as a function of
the value of t to be attained. We set k = 2 in order to
give maximum freedom to the algorithms in adapting
the microaggregation to the desired value of t (again
between 0.01 and the maximum upper bound of 0.25),
and force them to create the greatest number of clusters
(which the is worst case from the run time perspective).

Run time figures are coherent with the theoretical
analysis of computational costs for the three algorithms.
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Patient discharge dataset

Fig. 5. Run time (in seconds with log10 scale) for the three
algorithms with k = 2 and values of t between 0.02 and
0.25 for the Patient Discharge data set

Algorithms 1 and 3 are significantly more efficient
than Algorithm 2 (note the logarithmic scale of the Y-
axis), because the former have just the quadratic cost of
the underlying microaggregation algorithm, whereas the
latter has a cubic cost resulting from the rearrangement
of records required to fulfill t-closeness after the creation
of each cluster. Indeed, Algorithm 2 may not scale well
for large data sets, whereas the other two algorithms
scale as well as the underlying microaggregation. At a
closer look, Algorithm 3 is significantly more efficient
than Algorithm 1 for low values of t. The reason is
that, although the cost of both algorithms is O(n2/k),
Algorithm 3 optimally updates the value of k in terms
of the actual t: for small values of t, the value of k is large
(see Equation 3), which reduces the computational cost.
In contrast, Algorithm 1 only takes t into account after
the entire microaggregation has been performed. Finally,
the run time of Algorithm 2 tends to decrease for large t
because, in this case, clusters are more likely to (nearly)
fulfill t-closeness, thus requiring less rearrangement of
records after each iteration.

8.3 Data utility preservation

So far, the comparison between algorithms has been
made only in terms of cluster sizes and run time.
Let us now examine to what extent each algorithm
preserves the data utility for a certain privacy level.
Indeed, the different microaggregation strategies and the
actual levels of microaggregation achieved by the three
algorithms have a direct influence on the utility of the
anonymized results. In the literature, the utility of an
anonymized output is evaluated in terms of information
loss, that is, the discrepancies between the original and
the anonymized data set. The Sum of Squared Errors
(SSE) is a well-known information loss measure, which is
well-suited to capture the impact of creating equivalence
classes by means of k-anonymous microaggregation. SSE
is defined as the sum of squares of attribute distances

between records in the original data set X and their
versions in the anonymized data set. However, since
SSE provides absolute error values, we normalized it
to obtain a measure that is independent of the data set
size (number of records and attributes) and the ranges
of attribute values:

SSE =
1

n

∑
xj∈X

1

m

∑
ai
j∈xj

(NED(aij , (a
i
j)
′))2 (5)

where n is the number of records, m is the number of
attributes, aij is the value of the i-th attribute for the j-th
original record, (aij)

′ represents its anonymized version
and NED(·, ·) corresponds to the Normalized Euclidean
Distance. Notice that with a high SSE, that is, a high
information loss, a lot of data uses are severely damaged,
like for example subdomain analyses (analyses restricted
to parts of the data set).

To fairly and clearly compare the three algorithms, we
first took k = 2 for k-anonymity with t values between
0.01 and 0.25 for t-closeness. In this manner, any actual
cluster size k > 1 is feasible and the algorithms have the
greatest freedom to microaggregate records to fulfill the
desired t-closeness. SSE values for each value of t are
shown in Figure 6 for the three data sets.

All graphs show that Algorithm 2 improves on Al-
gorithm 1 and, in turn, Algorithm 3 improves on Al-
gorithm 2. Thus, we can see that the earlier we consider
the fulfillment of t-closeness in the microaggregation step, the
more utility is preserved in the output. This may seem para-
doxical, because a t-closeness aware microaggregation
that prioritizes the distribution of confidential values
(such as the one in Algorithm 3) is likely to cluster
records with heterogeneous quasi-identifier values, and
thereby incur higher information loss. Some of this is
apparent in Figure 6: Algorithm 3 improves much more
on the other two algorithms for the MCD and Patient
Discharge than for the HCD data set, because cluster
homogeneity for HCD is harder to reconcile with the
t-closeness requirement due to the higher correlation
of quasi-identifiers and the confidential attribute. How-
ever, on the other hand, the fact that the k-anonymous
microaggregation is aware of the level of t-closeness
that should be satisfied also produces smaller clusters
(of size closer to the desired k), which is beneficial to
keep SSE low. In contrast, the other algorithms, and
especially Algorithm 1, prioritize quasi-identifier values
in the k-anonymous microaggregation and, hence, they
require a lot of cluster merging and/or manipulation to
attain t-closeness. This tends to produce larger clusters
(as shown by the experiments on cluster sizes), whose
aggregation incurs a greater loss of information, which
is nonetheless fairly independent of the correlation be-
tween quasi-identifiers and confidential attributes; this is
especially noticeable for the Patient Discharge data set,
in which Algorithm 1 behaves significantly worse than
the other two.

To sum up, the increase of information loss that the lower
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Highly correlated dataset

Moderately correlated dataset

Patient discharge dataset

Fig. 6. Normalized SSE values for the three algorithms
with k = 2 and values of t between 0.02 and 0.25 for the
HCD (top), MCD (middle) and Patient Discharge (bottom)
data sets

cluster homogeneity of t-closeness aware microaggregation
might cause is more than compensated by the information loss
reduction resulting from smaller clusters.

Finally, we also evaluated the evolution of the normal-
ized SSE as a function of both k and t. As a reference,
Figure 7 shows this evolution for the three algorithms
with the MCD data set.

First, we can see that some of the advantages of
Algorithm 3 are diminished when a higher k is required.

Fig. 7. Normalized SSE for the three algorithms for k
between 2 and 30 and t between 0.02 and 0.25 for the
MCD data set
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As shown in Proposition 2, the actual cluster size will be
the maximum between the desired k and the minimum
size required to fulfill t-closeness. Thus, because of the
optimal updating of k by Algorithm 3, this algorithm is
the one for which SSE increases the most as a result of the
larger k. Algorithms 1 and 2, on the other hand, are more
immune to large values of k. Indeed, since they prioritize
the k-anonymous microaggregation, the larger clusters
obtained for large values of k have a greater chance to
already fulfill t-closeness without the posterior merging
step; since k-anonymous clusters are created in order to
minimize the SSE, the smaller number of merging steps
required to fulfill t-closeness helps to maintain cluster
homogeneity and avoid increasing SSE. In any case, for
any value of k, the SSE for these algorithms is still higher
than for Algorithm 3.

For Algorithms 1 and 2, it is also interesting to observe
the spikes that occur for certain values of k, which are
more noticeable for Algorithm 1. Spikes occur when k
is not a divisor of the data set size n (i.e., 1,080); that is,
when it is not possible to group all records in clusters of
size k. In such cases, the microaggregation algorithm is
forced to distribute the remaining r = n mod k records
among already created clusters, which deteriorates clus-
ter homogeneity and thus increases SSE. On the contrary,
Algorithm 3 is more immune to this situation, because
clusters are created to satisfy t-closeness, rather than to
minimize the SSE.

9 CONCLUSIONS AND RESEARCH DIREC-
TIONS

We have proposed and evaluated the use of microaggre-
gation as a method to attain k-anonymous t-closeness.

The a priori benefits of microaggregation vs general-
ization/recoding and local suppression have been dis-
cussed. Global recoding may recode more than needed,
whereas local recoding complicates data analysis by
mixing together values corresponding to different levels
of generalization. Also, recoding produces a greater loss
of granularity of the data, is more affected by outliers,
and changes numerical values to ranges. Regarding local
suppression, it complicates data analysis with missing
values and is not obvious to combine with recoding in
order to decrease the amount of generalization. Microag-
gregation is free from all the above downsides.

We have proposed and evaluated three different
microaggregation based algorithms to generate k-
anonymous t-close data sets. The first one is a simple
merging step that can be run after any microaggregation
algorithm. The other two algorithms, k-anonymity-first
and t-closeness-first, take the t-closeness requirement
into account at the moment of cluster formation during
microaggregation. The t-closeness-first algorithm consid-
ers t-closeness earliest and provides the best results:
smallest average cluster size, smallest SSE for a given
level of t-closeness, and shortest run time (because the
actual microaggregation level is computed beforehand

according to the values of k and t). Thus, considering the
t-closeness requirement from the very beginning turns out to
be the best option.

Since connections have been demonstrated between t-
closeness and ε-differential privacy of data sets [27], [8],
exploring how microaggregation could be leveraged to
implement the latter model in the case of data releases
is a natural continuation of this work. Moreover, we
will also study the adaptation of the algorithms to
support categorical data by: i) defining an EMD suitable
to compare categorical values of different nature (e.g.,
ordinal values such as colors, which can be sorted within
a range, or nominal values such as jobs, hobbies, diag-
noses, etc., which require interpreting their underlying
semantics), ii) defining aggregation operators to compute
cluster centroids (i.e., the categorical value that mini-
mizes the distance to other values in the same cluster),
and iii) properly managing records with numerical and
categorical attributes in an integrated manner.
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