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ABSTRACT
As new data and updates are constantly arriving, the results
of data mining applications become stale and obsolete over
time. Incremental processing is a promising approach to
refreshing mining results. It utilizes previously saved states
to avoid the expense of re-computation from scratch.

In this paper, we propose i2MapReduce, a novel incre-
mental processing extension to MapReduce, the most widely
used framework for mining big data. Compared with the
state-of-the-art work on Incoop, i2MapReduce (i) performs
key-value pair level incremental processing rather than task
level re-computation, (ii) supports not only one-step com-
putation but also more sophisticated iterative computation,
which is widely used in data mining applications, and (iii)
incorporates a set of novel techniques to reduce I/O over-
head for accessing preserved fine-grain computation states.
We evaluate i2MapReduce using a one-step algorithm and
three iterative algorithms with diverse computation charac-
teristics. Experimental results on Amazon EC2 show sig-
nificant performance improvements of i2MapReduce com-
pared to both plain and iterative MapReduce performing
re-computation.

1. INTRODUCTION
Today huge amount of digital data is being accumulated

in many important areas, including e-commerce, social net-
work, finance, health care, education, and environment. It
has become increasingly popular to mine such big data in
order to gain insights to help business decisions or to pro-
vide better personalized, higher quality services. In recent
years, a large number of computing frameworks [9, 25, 23,
18, 19, 17, 11, 7, 10, 28] have been developed for big data
analysis. Among these frameworks, MapReduce [9] (with its
open-source implementations, such as Hadoop) is the most
widely used in production because of its simplicity, gener-
ality, and maturity. We focus on improving MapReduce in
this paper.
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Big data is constantly evolving. As new data and updates
are being collected, the input data of a big data mining algo-
rithm will gradually change, and the computed results will
become stale and obsolete over time. In many situations, it
is desirable to periodically refresh the mining computation
in order to keep the mining results up-to-date. For exam-
ple, the PageRank algorithm [5] computes ranking scores of
web pages based on the web graph structure for supporting
web search. However, the web graph structure is constantly
evolving; Web pages and hyper-links are created, deleted,
and updated. As the underlying web graph evolves, the
PageRank ranking results gradually become stale, poten-
tially lowering the quality of web search. Therefore, it is
desirable to refresh the PageRank computation regularly.

Incremental processing is a promising approach to refresh-
ing mining results. Given the size of the input big data, it is
often very expensive to rerun the entire computation from
scratch. Incremental processing exploits the fact that the
input data of two subsequent computations A and B are
similar. Only a very small fraction of the input data has
changed. The idea is to save states in computation A, re-use
A’s states in computation B, and perform re-computation
only for states that are affected by the changed input data.
In this paper, we investigate the realization of this principle
in the context of the MapReduce computing framework.

A number of previous studies (including Percolator [22],
CBP [16], and Naiad [20]) have followed this principle and
designed new programming models to support incremental
processing. Unfortunately, the new programming models
(BigTable observers in Percolator, stateful translate opera-
tors in CBP, and timely dataflow paradigm in Naiad) are
drastically different from MapReduce, requiring program-
mers to completely re-implement their algorithms.

On the other hand, Incoop [4] extends MapReduce to sup-
port incremental processing. However, it has two main lim-
itations. First, Incoop supports only task-level incremen-
tal processing. That is, it saves and reuses states at the
granularity of individual Map and Reduce tasks. Each task
typically processes a large number of key-value pairs (kv-
pairs). If Incoop detects any data changes in the input of
a task, it will rerun the entire task. While this approach
easily leverages existing MapReduce features for state sav-
ings, it may incur a large amount of redundant computation
if only a small fraction of kv-pairs have changed in a task.
Second, Incoop supports only one-step computation, while
important mining algorithms, such as PageRank, require it-
erative computation. Incoop would treat each iteration as
a separate MapReduce job. However, a small number of in-
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put data changes may gradually propagate to affect a large
portion of intermediate states after a number of iterations,
resulting in expensive global re-computation afterwards.

We propose i2MapReduce, an extension to MapReduce
that supports fine-grain incremental processing for both one-
step and iterative computation. Compared to previous so-
lutions, i2MapReduce incorporates the following three novel
features:

• Fine-grain Incremental Processing using MRBG-
Store: Unlike Incoop, i2MapReduce supports kv-pair level
fine-grain incremental processing in order to minimize the
amount of re-computation as much as possible. We model
the kv-pair level data flow and data dependence in a MapRe-
duce computation as a bipartite graph, called MRBGraph.
A MRBG-Store is designed to preserve the fine-grain states
in the MRBGraph and support efficient queries to retrieve
fine-grain states for incremental processing. (cf. Sec-
tion 3)

• General-Purpose Iterative Computation with Mod-
est Extension to MapReduce API: Our previous work
proposed iMapReduce [28] to efficiently support iterative
computation on the MapReduce platform. However, it
targets types of iterative computation where there is a one-
to-one/all-to-one correspondence from Reduce output to
Map input. In comparison, our current proposal provides
general-purpose support, including not only one-to-one,
but also one-to-many, many-to-one, and many-to-many
correspondence. We enhance the Map API to allow users
to easily express loop-invariant structure data, and we
propose a Project API function to express the correspon-
dence from Reduce to Map. While users need to slightly
modify their algorithms in order to take full advantage of
i2MapReduce, such modification is modest compared to
the effort to re-implement algorithms on a completely dif-
ferent programming paradigm, such as in Percolator [22],
CBP [16], and Naiad [20]. (cf. Section 4)

• Incremental Processing for Iterative Computation:
Incremental iterative processing is substantially more chal-
lenging than incremental one-step processing because even
a small number of updates may propagate to affect a large
portion of intermediate states after a number of iterations.
To address this problem, we propose to reuse the con-
verged state from the previous computation and employ a
change propagation control mechanism. We also enhance
the MRBG-Store to better support the access patterns
in incremental iterative processing. To our knowledge,
i2MapReduce is the first MapReduce-based solution that
efficiently supports incremental iterative computation. (cf.
Section 5)

We implemented i2MapReduce by modifying Hadoop-1.0.3.
We evaluate i2MapReduce using a one-step algorithm (A-
Priori) and three iterative algorithms (PageRank, Kmeans,
GIM-V) with diverse computation characteristics. Experi-
mental results on Amazon EC2 show significant performance
improvements of i2MapReduce compared to both plain and
iterative MapReduce performing re-computation. For ex-
ample, for the iterative PageRank computation with 10%
data changed, i2MapReduce improves the run time of re-
computation on plain MapReduce by a 8 fold speedup. (cf.
Section 8)

2. MAPREDUCE BACKGROUND

Reduce

Map

Map

<K1, V1>

Input 

Data 

Blocks
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<K2, V2> <K3, V3>

Final 

Results

Figure 1: MapReduce computation.

A MapReduce program is composed of a Map function
and a Reduce function [9], as shown in Fig. 1. Their APIs
are as follows:

map(K1, V 1)→ [〈K2, V 2〉]

reduce(K2, {V 2})→ [〈K3, V 3〉]

The Map function takes a kv-pair 〈K1, V 1〉 as input and
computes zero or more intermediate kv-pairs 〈K2, V 2〉s. Then
all 〈K2, V 2〉s are grouped byK2. The Reduce function takes
a K2 and a list of {V 2} as input and computes the final out-
put kv-pairs 〈K3, V 3〉s.

AMapReduce system (e.g., Apache Hadoop) usually reads
the input data of the MapReduce computation from and
writes the final results to a distributed file system (e.g.,
HDFS), which divides a file into equal-sized (e.g., 64MB)
blocks and stores the blocks across a cluster of machines.
For a MapReduce program, the MapReduce system runs
a JobTracker process on a master node to monitor the job
progress, and a set of TaskTracker processes on worker nodes
to perform the actual Map and Reduce tasks.

The JobTracker starts a Map task per data block, and typ-
ically assigns it to the TaskTracker on the machine that holds
the corresponding data block in order to minimize communi-
cation overhead. Each Map task calls the Map function for
every input 〈K1, V 1〉, and stores the intermediate kv-pairs
〈K2, V 2〉s on local disks. Intermediate results are shuffled
to Reduce tasks according to a partition function (e.g., a
hash function) on K2. After a Reduce task obtains and
merges intermediate results from all Map Tasks, it invokes
the Reduce function on each 〈K2, {V 2}〉 to generate the fi-
nal output kv-pairs 〈K3, V 3〉s.

3. FINE-GRAIN INCREMENTAL PROCESS-
ING FOR ONE-STEP COMPUTATION

We begin by describing the basic idea of fine-grain in-
cremental processing in Section 3.1. In Section 3.2–3.3, we
present the main design, including the MRBGraph abstrac-
tion and the incremental processing engine. Then in Sec-
tion 3.4–3.5, we delve into two aspects of the design, i.e.
the mechanism that preserves the fine-grain states, and the
handling of a special but popular case where the Reduce
function performs accumulation operations.

3.1 Basic Idea
Consider two MapReduce jobs A and A′ performing the

same computation on input data set D and D′, respectively.
D′ = D+∆D, where ∆D consists of the inserted and deleted
input 〈K1, V 1〉s1. An update can be represented as a dele-
1We assume that new data or new updates are captured
via incremental data acquisition or incremental crawling [8,



Figure 2: MRBGraph.

tion followed by an insertion. Our goal is to re-compute only
the Map and Reduce function call instances that are affected
by ∆D.

Incremental computation for Map is straightforward. We
simply invoke the Map function for the inserted or deleted
〈K1, V 1〉s. Since the other input kv-pairs are not changed,
their Map computation would remain the same. We now
have computed the delta intermediate values, denoted ∆M ,
including inserted and deleted 〈K2, V 2〉s.

To perform incremental Reduce computation, we need to
save the fine-grain states of job A, denoted M , which in-
cludes 〈K2, {V 2}〉s. We will re-compute the Reduce func-
tion for each K2 in ∆M . The other K2 in M does not see
any changed intermediate values and therefore would gener-
ate the same final result. For a K2 in ∆M , typically only a
subset of the list of V 2 have changed. Here, we retrieve the
saved 〈K2, {V 2}〉 from M , and apply the inserted and/or
deleted values from ∆M to obtain an updated Reduce in-
put. We then re-compute the Reduce function on this input
to generate the changed final results 〈K3, V 3〉s.

It is easy to see that results generated from this incremen-
tal computation are logically the same as the results from
completely re-computing A′.

3.2 MRBGraph Abstraction
We use a MRBGraph (Map Reduce Bipartite Graph) ab-

straction to model the data flow in MapReduce, as shown
in Fig. 2 (a). Each vertex in the Map task represents an
individual Map function call instance on a pair of 〈K1, V 1〉.
Each vertex in the Reduce task represents an individual Re-
duce function call instance on a group of 〈K2, {V 2}〉. An
edge from a Map instance to a Reduce instance means that
the Map instance generates a 〈K2, V 2〉 that is shuffled to be-
come part of the input to the Reduce instance. For example,
the input of Reduce instance a comes from Map instance 0,
2, and 4.

MRBGraph edges are the fine-grain states M that we
would like to preserve for incremental processing. An edge
contains three pieces of information: (i) the source Map in-

21]. Incremental data acquisition can significantly save the
resources for data collection; it does not re-capture the whole
data set but only capture the revisions since the last time
that data was captured.

stance, (ii) the destination Reduce instance (as identified by
K2), and (iii) the edge value (i.e. V 2). Since Map input
key K1 may not be unique, i2MapReduce generates a glob-
ally unique Map key MK for each Map instance. Therefore,
i2MapReduce will preserve (K2, MK, V 2) for each MRB-
Graph edge.

3.3 Fine-grain Incremental Processing Engine
Fig. 3 illustrates the fine-grain incremental processing en-

gine with an example application, which computes the sum
of in-edge weights for each vertex in a graph. As shown at
the top of Fig. 3, the input data, i.e. the graph structure,
evolves over time. In the following, we describe how the en-
gine performs incremental processing to refresh the analysis
results.

Initial Run and MRBGraph Preserving. The initial
run performs a normal MapReduce job, as shown in Fig. 3
(a). The Map input is the adjacency matrix of the graph.
Every record corresponds to a vertex in the graph. K1 is
vertex id i, and V 1 contains “j1:wi,j1 ; j2:wi,j2 ; . . . ” where
j is a destination vertex and wi,j is the weight of the out-
edge (i, j). Given such a record, the Map function outputs
intermediate kv-pair 〈j, wi,j〉 for every j. The shuffling phase
groups the edge weights by the destination vertex. Then the
Reduce function computes for a vertex j the sum of all its
in-edge weights as

∑
i
wi,j .

For incremental processing, we preserve the fine-grain MR-
BGraph edge states. A question arises: shall the states be
preserved at the Map side or at the Reduce side? We choose
the latter because during incremental processing original in-
termediate values can be obtained at the Reduce side with-
out any shuffling overhead. The engine transfers the globally
unique MK along with 〈K2, V 2〉 during the shuffle phase.
Then it saves the states (K2,MK, V 2) in a MRBGraph file
at every Reduce task, as shown in Fig. 2 (b).

Delta Input. i2MapReduce expects delta input data that
contains the newly inserted, deleted, or modified kv-pairs
as the input to incremental processing. Note that identi-
fying the data changes is beyond the scope of this paper;
Many incremental data acquisition or incremental crawling
techniques have been developed to improve data collection
performance [8, 21].

Fig. 3 (b) shows the delta input for the updated applica-
tion graph. A ‘+’ symbol indicates a newly inserted kv-pair,
while a ‘-’ symbol indicates a deleted kv-pair. An update is
represented as a deletion followed by an insertion. For ex-
ample, the deletion of vertex 1 and its edge are reflected as
〈1, 2:0.4,‘-’〉. The insertion of vertex 3 and its edge leads to
〈3, 0:0.1,‘+’〉. The modification of the vertex 0’s edges are
reflected by a deletion of the old record 〈0, 1:0.3;2:0.3,‘-’〉
and an insertion of a new record 〈0, 2:0.6,‘-’〉.

Incremental Map Computation to Obtain the Delta
MRBGraph. The engine invokes the Map function for ev-
ery record in the delta input. For an insertion with ‘+’,
its intermediate results 〈K2,MK, V 2′〉s represent newly in-
serted edges in the MRBGraph. For a deletion with ‘-’, its
intermediate results indicate that the corresponding edges
have been removed from the MRBGraph. The engine re-
places the V 2′s of the deleted MRBGraph edges with ‘-
’. During the MapReduce shuffle phase, the intermediate
〈K2,MK, V 2′〉s and 〈K2,MK,‘-’〉s with the same K2 will
be grouped together. The delta MRBGraph will contain



Figure 3: Incremental processing for an application
that computes the sum of in-edge weights for each
vertex.

only the changes to the MRBGraph and sorted by the K2
order.

Incremental Reduce Computation. The engine merges
the delta MRBGraph and the preserved MRBGraph to ob-
tain the updated MRBGraph using the algorithm in Sec-
tion 3.4. For each 〈K2,MK,‘-’〉, the engine deletes the cor-
responding saved edge state. For each 〈K2,MK, V 2′〉, the
engine first checks duplicates, and inserts the new edge if no
duplicate exists, or else updates the old edge if duplicate ex-
ists. (Note that (K2,MK) uniquely identifies a MRBGraph
edge.) Since an update in the Map input is represented as
a deletion and an insertion, any modification to the inter-
mediate edge state (e.g., 〈2, 0, ∗〉 in the example) consists
of a deletion (e.g., 〈2, 0,‘-’〉) followed by an insertion (e.g.,
〈2, 0, 0.6〉). For each affected K2, the merged list of V 2 will
be used as input to invoke the Reduce function to generate
the updated final results.

3.4 MRBG-Store
The MRBG-Store supports the preservation and retrieval

of fine-grain MRBGraph states for incremental processing.
We see two main requirements on the MRBG-Store. First,
the MRBG-Store must incrementally store the evolving MR-
BGraph. Consider a sequence of jobs that incrementally re-
fresh the results of a big data mining algorithm. As input
data evolves, the intermediate states in the MRBGraph will
also evolve. It would be wasteful to store the entire MR-
BGraph of each subsequent job. Instead, we would like to
obtain and store only the updated part of the MRBGraph.
Second, the MRGB-Store must support efficient retrieval of
preserved states of given Reduce instances. For incremental
Reduce computation, i2MapReduce re-computes the Reduce

Chunk 0 

(K2a, {MK*, V*,a})

K2a K2b

Index

MRBGraph File

Read 

Cache

Append 

Buffer
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Main 
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K2b MK2 -

K2c MK7 V27,c
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...
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Figure 4: Structure of MRBG-Store.

Algorithm 1 Query Algorithm in MRBG-Store

Input queried key: k; the list of queried keys: L
Output chunk k
1: if ! read cache.contains(k) then
2: gap← 0, w← 0
3: i← k’s index in L // That is, Li = k
4: while gap < T and w + gap + length(Li) <

read cache.size do
5: w← w + gap+ length(Li)
6: gap← pos(Li+1)− pos(Li)− length(Li)
7: i← i+ 1
8: end while
9: starting from pos(k), read w bytes into read cache
10: end if
11: return read cache.get chunk(k)

instance associated with each changed MRBGraph edge, as
described in Section 3.3. For a changed edge, it queries the
MRGB-Store to retrieve the preserved states of the in-edges
of the associated K2, and merge the preserved states with
the newly computed edge changes.

Fig. 4 depicts the structure of the MRBG-Store. We de-
scribe how the components of the MRBG-Store work to-
gether to achieve the above two requirements.

Fine-grain State Retrieval and Merging. A MRB-
Graph file stores fine-grain intermediate states for a Reduce
task, as illustrated previously in Fig. 2 (b). In Fig. 4, we
see that the 〈K2,MK, V 2〉s with the same K2 are stored
contiguously as a chunk. Since a chunk corresponds to the
input to a Reduce instance, our design treats chunk as the
basic unit, and always reads, writes, and operates on entire
chunks.

The contents of a delta MRBGraph file are shown on the
bottom left of Fig. 4. Every record represents a change in the
original (last preserved) MRBGraph. There are two kinds
of records. An edge insertion record (in green color) con-
tains a valid V 2 value; an edge deletion record (in red color)
contains a null value (as marked by ‘-’).

The merging of the delta MRBGraph with the MRBGraph
file in the MRBG-Store is essentially a join operation using



K2 as the join key. Since the size of the delta MRBGraph is
typically much smaller than the MRBGraph file, it is waste-
ful to read the entire MRBGraph file. Therefore, we con-
struct an index for selective access to the MRBGraph file:
Given aK2, the index returns the chunk position in the MR-
BGraph file. As only point lookup is required, we employ
a hash-based implementation for the index. The index is
stored in an index file and is preloaded into memory before
Reduce computation. We apply the index nested loop join
for the merging operation.

Can we further improve the join performance? We observe
that the MapReduce shuffling phase will sort the interme-
diate keys. As seen in Section 3.3, the records in both the
delta MRBGraph and the MRBGraph file are in the order
generated by the shuffling phase. That is, the two files are
sorted in K2 order. Therefore, we introduce a read cache
and a dynamic read window technique for further optimiza-
tion. Fig. 4 shows the idea. Given a sequence of K2s, there
are two ways to read the corresponding chunks: (i) per-
forming an individual I/O operation for each chunk; or (ii)
performing a large I/O that covers all the required chunks.
The former may lead to frequent disk seeks, while the latter
may result in reading a lot of useless data. Fortunately, we
know the list of sorted K2s to be queried. Using the index,
we obtain their chunk positions. We can estimate the costs
of using a large I/O vs. a number of individual I/Os, and
intelligently determine the read window size w based on the
cost estimation.

Algorithm 1 shows the query algorithm to retrieve the
the chunk k given a query key k and the list of queried keys
L = {L1, L2, . . .}. If the chunk k does not reside in the read
cache (line 1), it will compute the read window size w by a
heuristic, and read w bytes into the read cache. The loop
(line 4–8) probes the gap between two consecutive queried
chunks (chunk Li and chunk Li+1). The gap size indicates
the wasted read effort. If the gap is less than a threshold
T (T = 100KB by default), we consider that the benefit of
large I/O can compensate for the wasted read effort, and
enlarge the window to cover chunk Li+1. In this way, the
algorithm finds the read window size w by balancing the
cost of a large I/O vs. a number of individual I/Os. It also
ensures that the read window size does not exceed the read
cache. Then the algorithm read the next w bytes into the
read cache (line 9) and retrieves the requested chunk k from
the read cache (line 11).

Incremental Storage of MRBGraph Changes. As
shown in Fig. 4, the outputs of the merge operation, which
are the up-to-date MRBGraph states (chunks), are used to
invoke the Reduce function. In addition, the outputs are
also buffered in an append buffer in memory. When the
append buffer is full, the MRBG-Store performs sequential
I/Os to append the contents of the buffer to the end of the
MRBGraph file. When the merge operation completes, the
MRBG-Store flushes the append buffer, and updates the in-
dex to reflect the new file positions for the updated chunks.
Note that obsolete chunks are NOT immediately updated
in the file (or removed from the file) for I/O efficiency. The
MRBGraph file is reconstructed off-line when the worker is
idle. In this way, the MRBG-Store efficiently supports in-
cremental storage of MRBGraph Changes.

As a result of the incremental storage, the MRBGraph
file may contain multiple segments of sorted chunks, each
resulting from a merge operation. This situation frequently

appears in iterative incremental computation, for which we
enhance the above query algorithm with a multi-window
technique to efficiently process the multiple segments. We
defer the in-depth discussion to Section 5.

3.5 Optimization for Special Accumulator Re-
duce

We study a special case that appears frequently in applica-
tions and is amenable to further optimization. Specifically,
the Reduce function is an accumulative operation ’⊕’:

f({V 20, V 21, ..., V 2k}) = V 20 ⊕ V 21 ⊕ · · · ⊕ V 2k,

which satisfies the distributive property:

f(D ∪∆D) = f(D) ⊕ f(∆D),

and the incremental data set ∆D contains only insertions
without deletions or updates. This property allows us to
process the two data set D and ∆D separately and then to
simply combine the results by the ’⊕’ operation to obtain
the full result. We call this kind of Reduce function accu-
mulator Reduce. For this special case, it is not necessary
to preserve the MRBGraph. The engine will optimize the
special case by only preserving the Reduce output kv-pairs
〈K3, V 3〉. Then it simply invokes the accumulator Reduce
to accumulate changes to the result kv-pairs.

ManyMapReduce algorithms employ accumulator Reduce.
A well-known example is WordCount. The Reduce function
of WordCount computes the count of word appearances us-
ing an integer sum operation, which satisfies the above prop-
erty. Other common operations that directly satisfy the dis-
tributive property include maximum and minimum. More-
over, some operations can be easily modified to satisfy the
requirement of accumulator Reduce. For example, average
is computed as dividing sum by count. While it is not pos-
sible to combine two averages into a single average, we can
modify the implementation to allow/produce a partial sum
and a partial count in the function input and the output.
Then the implementation can accumulate partial sums and
partial counts in order to compute the average of the full
data set.

To use this feature, a programmer should declare the ac-
cumulative operation ’⊕’ using a new interface Accumula-

torReducer in the MapReduce driver program (see Table
2).

4. GENERAL-PURPOSE SUPPORT FOR
ITERATIVE COMPUTATION

We first analyze several representative iterative algorithms
in Section 4.1. Based on this analysis, we propose a general-
purpose MapReduce model for iterative computation in Sec-
tion 4.2, and describe how to efficiently support this model
in Section 4.3.

4.1 Analyzing Iterative Computation
PageRank. PageRank [5] is a well-known iterative graph
algorithm for ranking web pages. It computes a ranking
score for each vertex in a graph. After initializing all rank-
ing scores, the computation performs a MapReduce job per
iteration, as shown in Algorithm 2. i and j are vertex ids,
Ni is the set of out-neighbor vertices of i, Ri is i’s ranking
score that is updated iteratively. ‘|’ means concatenation.



All Ri’s are initialized to one2. The Map instance on vertex
i sends value Ri,j = Ri/|Ni| to all its out-neighbors j, where
|Ni| is the number of i’s out-neighbors. The Reduce instance
on vertex j updates Rj by summing the Ri,j received from
all its in-neighbors i, and applying a damping factor d.

Algorithm 2 PageRank in MapReduce

Map Phase input: < i, Ni|Ri >
1: output < i, Ni >
2: for all j in Ni do
3: Ri,j = Ri

|Ni|

4: output < j, Ri,j >
5: end for

Reduce Phase input: < j, {Ri,j , Nj} >
6: Rj = d

∑
i
Ri,j + (1− d)

7: output < j, Nj |Rj >

Kmeans. Kmeans [15] is a commonly used clustering al-
gorithm that partitions points into k clusters. We denote
the ID of a point as pid, and its feature values pval. The
computation starts with selecting k random points as clus-
ter centroids set {cid, cval}. As shown in Algorithm 3, in
each iteration, the Map instance on a point pid assigns the
point to the nearest centroid. The Reduce instance on a
centroid cid updates the centroid by averaging the values of
all assigned points {pval}.

Algorithm 3 Kmeans in MapReduce

Map Phase input: < pid, pval|{cid, cval} >
1: cid← find the nearest centroid of pval in {cid, cval}
2: output < cid, pval >

Reduce Phase input: < cid, {pval} >
3: cval← compute the average of {pval}
4: output < cid, cval >

GIM-V. Generalized Iterated Matrix-Vector multiplication
(GIM-V) [13] is an abstraction of many iterative graph min-
ing operations (e.g., PageRank, spectral clustering, diame-
ter estimation, connected components). These graph mining
algorithms can be generally represented by operating on an
n × n matrix M and a vector v of size n. Suppose both
the matrix and the vector are divided into sub-blocks. Let
mi,j denote the (i, j)-th block of M and vj denote the j-
th block of v. The computation steps are similar to those
of the matrix-vector multiplication and can be abstracted
into three operations: (1) mvi,j = combine2(mi,j , vj); (2)
v′i = combineAlli({mvi,j}); and (3) vi = assign(vi, v

′
i).

We can compare combine2 to the multiplication between
mi,j and vj , and compare combineAll to the sum of mvi,j
for row i. Algorithm 4 shows the MapReduce implemen-
tation with two jobs for each iteration. The first job as-
signs vector block vj to multiple matrix blocks mi,j (∀i)
and performs combine2(mi,j , vj) to obtain mvi,j . The sec-
ond job groups the mvi,j and vi on the same i, performs
the combineAll({mvi,j}) operation, and updates vi using
assign(vi, v

′
i).

2The computed PageRank scores will be |N | times larger,
where |N | is the number of vertices in the graph.

Algorithm 4 GIM-V in MapReduce

Map Phase 1 input: < (i, j), mi,j > or < j, vj >
1: if kv-pair is < (i, j),mi,j > then
2: output < (i, j), mi,j >
3: else if kv-pair is < j, vj > then
4: for all i blocks in j’s row do
5: output < (i, j), vj >
6: end for
7: end if

Reduce Phase 1 input: < (i, j), {mi,j , vj} >
8: mvi,j = combine2(mi,j , vj)
9: output < i, mvi,j >, < j, vj >

Map Phase 2: output all inputs

Reduce Phase 2 input: < i, {mvi,j , vi} >
10: v′i ← combineAll({mvi,j})
11: vi ← assign(vi, v

′
i)

12: output < i, vi >

Two Kinds of Data Sets in Iterative Algorithms.
From the above examples, we see that iterative algorithms
usually involve two kinds of data sets: (i) loop-invariant
structure data, and (ii) loop-variant state data. Structure
data often reflects the problem structure and is read-only
during computation. In contrast, state data is the target
results being updated in each iteration by the algorithm.
Structure (state) data can be represented by a set of struc-
ture (state) kv-pairs. Table 1 displays the structure and state
kv-pairs of the three example algorithms.

Dependency Types between State and Structure Data.
There are various types of dependencies between state and
structure data, as listed in Table 1. PageRank sees one-to-
one dependency: every vertex i is associated with both an
out-neighbor set Ni and a ranking score Ri. In Kmeans, the
Map instance of every point requires the set of all centroids,
showing an all-to-one dependency. In GIM-V, multiple ma-
trix blocks ∀j,mi,j are combined to compute the ith vector
block vi, thus the dependency is many-to-one.

Generally speaking, there are four types of dependencies
between structure kv-pairs and state kv-pairs as shown in
Fig. 5: (1) one-to-one, (2) many-to-one, (3) one-to-many,
(4) many-to-many. All-to-one (one-to-all) is a special case
of many-to-one (one-to-many). PageRank is an example of
(1). Kmeans and GIM-V are examples of (2). We have not
encountered applications with (3) or (4) dependencies. (3)
and (4) are listed only for completeness of discussion.

In fact, for (3) one-to-many case and (4) many-to-many
case, it is possible to redefine the state key to convert them
into (1) one-to-one and (2) many-to-one dependencies, re-
spectively, as show in the right part of Fig. 5. The idea is
to re-organize the MapReduce computation in an applica-
tion or to define a custom partition function for shuffling so
that the state kv-pairs (e.g, DK1 and DK2 in the figure)
that Map to the same structure kv-pair (e.g., SK1 in the
figure) are always processed in the same task. Then we can
assign a key (e.g., DK1,2) to each group of state kv-pairs,
and consider each group as a single state kv-pair. Given this
transformation, we need to focus on only (1) one-to-one and
(2) many-to-one cases. Consequently, each structure kv-pair



Table 1: Structure and state kv-pairs in representative iterative algorithms.
Algorithm Structure Key (SK) Structure Value (SV) State Key (DK) State Value (DV) SK ↔ DK

PageRank vertex id i out-neighbor set Ni vertex id i rank score Ri one-to-one
Kmeans point id pid point value pval unique key 1 centroids {〈cid, cval〉} all-to-one
GIM-V matrix block id (i, j) matrix block mi,j vector block id j vector block vj many-to-one
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Figure 5: Dependency types between structure and
state kv-pairs. (3)/(4) can be converted into (1)/(2).

is interdependent with ONLY a single state kv-pair. This
is an important property that we leverage in our design of
i2MapReduce.

4.2 General-Purpose Iterative MapReduce Model
A number of recent efforts have been targeted at improv-

ing iterative processing on MapReduce, including Twister [10],
HaLoop [7], and iMapReduce [28]. In general, the improve-
ments focus on two aspects:

• Reducing job startup costs: In vanilla MapReduce, every
algorithm iteration runs one or several MapReduce jobs.
Note that Hadoop may take over 20 seconds to start a job
with 10–100 tasks. If the computation of each iteration is
relatively simple, job startup costs may consist of an overly
large fraction of the run time. The solution is to modify
MapReduce to reuse the same jobs across iterations, and
kill them only when the computation completes.

• Caching structure data: Structure data is immutable dur-
ing computation. It is also much larger than state data
in many applications (e.g., PageRank, Kmeans, and GIM-
V). Therefore, it is wasteful to transfer structure data over
and over again in every iteration. An optimization is to
cache structure data in local file systems to avoid the cost
of network communication and reading from HDFS.

For the first aspect, we modify Hadoop to allow jobs to
stay alive across multiple iterations.

For the second aspect, however, a design must separate
structure data from state data, and consider how to match
interdependent structure and state data in the computa-
tion. HaLoop [7] uses an extra MapReduce job to match
structure and state data in each iteration. We would like to
avoid such heavy-weight solution. iMapReduce [28] creates
the same number of Map and Reduce tasks, and connects
every Reduce task to a Map task with a local connection
to transfer the state data output from a Reduce task to the
corresponding Map task. However, this approach assumes

Figure 6: Iterative model of i2MapReduce.

one-to-one dependency for join operation. Thus, it cannot
support Kmeans or GIM-V.

In the following, we propose a design that generalizes
previous solutions to efficiently support various dependency
types.

Separating Structure and State Data in Map API.
We enhance the Map function API to explicitly express
structure vs. state kv-pairs in i2MapReduce:

map(SK, SV,DK,DV )→ [〈K2, V 2〉]

The interdependent structure kv-pair 〈SK,SV 〉 and state
kv-pair 〈DK,DV 〉 are conjointly used in the Map function.
A Map function outputs intermediate kv-pairs 〈K2, V 2〉s.
The Reduce interface is kept the same as before. A Reduce
function combines the intermediate kv-pairs 〈K2, {V 2}〉s
and outputs 〈K3, V 3〉:

reduce(K2, {V 2})→ 〈K3, V 3〉

Specifying Dependency with Project. We propose a
new API function, Project. It specifies the interdependent
state key of a structure key:

project(SK)→ DK

Note that each structure kv-pair is interdependent with a
single state kv-pair. Therefore, Project returns a single value
DK for each input SK.

Iterative Model. Fig. 6 shows our iterative model. By
analyzing the three representative applications, we find that
the input of an iteration contains both structure and state
data, while the output is only the state data. A large number
of iterative algorithms (e.g., PageRank and Kmeans) em-
ploys a single MapReduce job in an iteration. Their compu-
tation can be illustrated using the simplified model as shown
in Fig. 6 (b). In general, one or more MapReduce jobs may
be used to update the state kv-pairs 〈DK,DV 〉, as shown
in Fig. 6 (a). Once the updated 〈DK,DV 〉s are obtained,
they are matched to the interdependent structure kv-pairs
〈SK,SV 〉s with the Project function for next iteration. In
this way, a kv-pair transformation loop is built. We call the



first Map phase in an iteration the prime Map and the last
Reduce phase in an iteration as the prime Reduce.

4.3 Supporting Diverse Dependencies between
Structure and State Data

Dependency-aware Data Partitioning. To support par-
allel processing in MapReduce, we need to partition the
data. Note that both structure and state kv-pairs are re-
quired to invoke the Map function. Therefore, it is impor-
tant to assign the interdependent structure kv-pair and state
kv-pair to the same partition so as to avoid unnecessary
network transfer overhead. Many existing systems such as
Spark [25] and Stratosphere [11] have applied this optimiza-
tion. In i2MapReduce, we design the following partition
function (1) for state and (2) for structure kv-pairs:

partition id = hash(DK, n) (1)

partition id = hash(project(SK), n) (2)

where n is the desired number of Map tasks. Both func-
tions employ the same hash function. Since Project returns
the interdependent DK for a given SK, the interdependent
〈SK, SV 〉s and 〈DK,DV 〉s will be assigned to the same par-
tition. i2MapReduce partitions the structure data and state
data as the preprocessing step before an iterative job.

Invoking Prime Map. i2MapReduce launches a prime
Map task per data partition. The structure and state kv-
pairs assigned to a partition are stored in two files: (i) a
structure file containing 〈SK,SV 〉s and (ii) a state file con-
taining 〈DK,DV 〉s. The two files are provided as the input
to the prime Map task. The state file is sorted in the or-
der of DK, while the structure file is sorted in the order of
project(SK). That is, the interdependent SKs and DKs
are sorted in the same order. Therefore, i2MapReduce can
sequentially read and match all the interdependent struc-
ture/state kv-pairs through a single pass of the two files,
while invoking the Map function for each matching pair.

Task Scheduling: Co-locating Interdependent Prime
Reduce and Prime Map. As shown in Fig. 6, the prime
Reduce computes the updated state kv-pairs. For the next
iteration, i2MapReduce must transfer the updated state kv-
pairs to their corresponding prime Map task, which caches
their dependent structure kv-pairs in its local file system.

The overhead of the backward transfer can be fully re-
moved if the number of state kv-pairs in the application
is greater than or equal to n, the number of Map tasks
(e.g., PageRank and GIM-V). The idea is to create n Reduce
tasks, assign Reduce task i to co-locate with Map task i on
the same machine node, and make sure that Reduce task i
produces and only produces the state kv-pairs in partition i.
The latter can be achieved by employing the hash function
of the partition functions (1) and (2) as the shuffle function
immediately before the prime Reduce phase. The Reduce
output can be stored into an updated state file without any
network cost. Interestingly, the state file is automatically
sorted in DK order thanks to MapReduce’s shuffle imple-
mentation. In this way, i2MapReduce will be able to process
the prime Map task of the next iteration.

Supporting Smaller Number of State kv-pairs. In
some applications, the number of state keys is smaller than
n. Kmeans is an extreme case with only a single state kv-
pair. In these applications, the total size of the state data is

typically quite small. Therefore, the backward transfer over-
head is low. Under such situation, i2MapReduce does not
apply the above partition functions. Instead, it partitions
the structure kv-pairs using MapReduce’s default approach,
while replicating the state data to each partition.

5. INCREMENTAL ITERATIVE PROCESS-
ING

In this section, we present incremental processing tech-
niques for iterative computation. Note that it is not suffi-
cient to simply combine the above solutions for incremental
one-step processing (in Section 3) and iterative computation
(in Section 4). In the following, we discuss three aspects that
we address in order to achieve an effective design.

5.1 Running an Incremental Iterative Job
Consider a sequence of jobs A1, ... Ai, ... that incremen-

tally refresh the results of an iterative algorithm. Incoming
new data and updates change the problem structure (e.g.,
edge insertions or deletions in the web graph in PageRank,
new points in Kmeans, updated matrix data in GIM-V).
Therefore, structure data evolves across subsequent jobs.
Inside a job, however, structure data stays constant, but
state data is iteratively updated and converges to a fixed
point. The two types of data must be handled differently
when starting an incremental iterative job:

• Delta structure data: We partition the new data and up-
dates based on Equation (2), and generate a delta struc-
ture input file per partition.

• Previously converged state data: Which state shall we use
to start the computation? For job Ai, we choose to use
the converged state data Di−1 from job Ai−1, rather than
the random initial state D0 (e.g., random centroids in
Kmeans) for two reasons. First, Di−1 is likely to be very
similar to the converged state Di to be computed by Ai

because there are often only slight changes in the input
data. Hence, Ai may converge to Di much faster from
Di−1 than from D0. Second, only the states in the last
iteration of Ai−1 need to be saved. If D0 were used, the
system would have to save the states of every iteration in
Ai−1 in order to incrementally process the corresponding
iteration in Ai. Thus, our choice can significantly speed
up convergence, and reduce the time and space overhead
for saving states.

To run an incremental iterative job Ai, i
2MapReduce treats

each iteration as an incremental one-step job as shown pre-
viously in Fig. 3. In the first iteration, the delta input is
the delta structure data. The preserved MRBGraph re-
flects the last iteration in job Ai−1. Only the Map and
Reduce instances that are affected by the delta input are
re-computed. The output of the prime Reduce is the delta
state data. Apart from the computation, i2MapReduce re-
freshes the MRBGraph with the newly computed interme-
diate states. We denote the resulting updated MRBGraph
as MRBGraph1.

In the j-th iteration (j ≥ 2), the structure data remains
the same as in the (j − 1)-th iteration, but the loop-variant
state data have been updated. Therefore, the delta input is
now the delta state data. Using the preserved MRBGraphj−1,
i2MapReduce re-computes only the Map and Reduce in-
stances that are affected by the input change. It preserves
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Figure 7: An example of reading a sequence
of chunks with key 0,1,3,4,9,. . . by using multi-
dynamic-window.

the newly computed intermediate states in MRBGraphj . It
computes a new delta state data for the next iteration.

The job completes when the state data converges or cer-
tain predefined criteria are met. At this moment, i2MapReduce
saves the converged state data to prepare for the next job
Ai+1.

5.2 Extending MRBG-Store for Multiple Iter-
ations

As described previously in Section 3.4, MRBG-Store ap-
pends newly computed chunks to the end of the MRBGraph
file and updates the chunk index to reflect the new positions.
Obsolete chunks are removed offline when the worker ma-
chine is idle. In an incremental iterative job, every iteration
will generate newly computed chunks, which are sorted due
to the MapReduce shuffling phase. Consequently, the MRB-
Graph file will consist of multiple batches of sorted chunks,
corresponding to a series of iterations. If a chunk exists in
multiple batches, a retrieval request returns the latest ver-
sion of the chunk (as pointed to by the chunk index). In the
following, we extend the query algorithm (Algorithm 1) to
handle multiple batches of sorted chunks.

We propose a multi-dynamic-window technique. Multi-
ple dynamic windows correspond to multiple batches (iter-
ations). Fig. 7 illustrates how the multi-dynamic-window
technique works via an example. In this example, the MR-
BGraph file contains two batches of sorted chunks. It is
queried to retrieve five chunks as shown from left to right in
the figure. Note that the chunk retrieval requests are sorted
because of MapReduce’s shuffling operation. The algorithm
creates two read windows, each in charge of reading chunks
from the associated batch. Since the chunks are sorted, a
read window will only slide downward in the figure. The
first request is for chunk 0. It is a read cache miss. Although
chunk 0 exists in both batches, the chunk index points to
the latest version in batch 2. At this moment, we apply the
analysis of Line 4–8 in Algorithm 1, which determines the
size of the I/O read window. The only difference is that we
skip chunks that do not reside in the current batch (batch
2). As shown in Fig. 7, we find that it is profitable to use
a larger read window so that chunk 4 can also be retrieved

into the read cache. The request for chunk 1 is processed
similarly. Chunk 0 is evicted from the read cache because
retrieval requests are always non-decreasing. The next two
requests are for chunk 3 and chunk 4. Fortunately, both of
the chunks have been retrieved along with previous requests.
The two requests hit in the read cache. Finally, the last re-
quest is satisfied by reading chunk 9 from batch 1. Since
there are no further requests, we use the smallest possible
read window in the I/O read.

Even though MRBG-Store is designed to optimize I/O
performance, the MRBGraph maintenance could still result
in significant I/O cost. The I/O cost might outweigh the
savings of incremental processing. For example, for appli-
cations with accumulator Reduce, MRBGraph is not nec-
essary for incremental Reduce computation, and therefore
it is advisable to turn off MRBGraph maintenance. More-
over, for Kmeans computation, a single state value contains
all the centroids. Therefore, any updates in the input data
will result in the change in the state data, which will lead
to global re-computation in the subsequent iterations. In
this case, maintaining MRBGraph is wasteful. It is better
to only use iterative processing engine without using MRB-
Graph. By analyzing the iterative computation’s property,
users have the option to turn on or turn off the MRBGraph
maintenance functionality.

For incremental processing, i2MapReduce maintains MR-
BGraph by default. However, the framework is able to
detect the over-costly situation and automatically turn off
MRBGraph maintenance. Consider an sequence of iterative
computations 1, 2, . . . , i− 1 that converge at iteration i− 1.
The converged state Di−1 and the converged intermediate
computation state MRBGraphi−1 are preserved for future
usage. Recall that (Section 5.1), as the structure data are
changed (reflected in the delta input), we start incremen-
tal iteration i by using Di−1 and MRBGraphi−1. Only the
Map and Reduce instances that are affected by the delta in-
put are re-computed. The output of the prime Reduce is the
delta state data ∆Di, which is a part of the whole updated
state data Di. In the next iteration, the delta input be-
comes the delta state data ∆Di. i

2MapReduce re-computes
the Map and Reduce instances that are affected by ∆Di.
Therefore, the proportion of the delta state data size to the

entire state data size, i.e., P∆ = |∆Di|
|Di−1∪∆Di|

implies the

amount of recomputations. The larger P∆ the more recom-
putations. i2MapReduce detects the size proportion P∆ and
turns off MRBGraph maintenance when P∆ is larger than
a threshold (50% by default). For example, the Kmeans
computation leads to P∆ = 100%. The framework will turn
off MRBGraph maintenance and perform computation with
only iterative processing support.

5.3 Reducing Change Propagation
In incremental iterative computation, changes in the delta

input may propagate to more and more kv-pairs as the com-
putation iterates. For example, in PageRank, a change that
affects a vertex in a web graph propagates to the neighbor
vertices after an iteration, to the neighbors of the neigh-
bors after two iterations, to the three-hop neighbors after
three iterations, and so on. Due to this effect, incremen-
tal processing may become less effective after a number of
iterations.

To address this problem, i2MapReduce employs a change
propagation control technique, which is similar to the dy-



namic computation in GraphLab [17]. It filters negligible
changes of state kv-pairs that are below a given thresh-
old. These filtered kv-pairs are supposed to be very close
to convergence. Only the state values that see changes
greater than the threshold are emitted for next iteration.
The changes for a state kv-pair are accumulated. It is possi-
ble a filtered kv-pair may later be emitted if its accumulated
change is big enough.

The observation behind this technique is that iterative
computation often converges asymmetrically: Many state
kv-pairs quickly converge in a few iterations, while the re-
maining state kv-pairs converge slowly over many iterations.
Low et al. has shown that in PageRank computation the
majority of vertices require only a single update while only
about 3% of vertices take over 10 iterations to converge [17].
Our previous work [26] has also exploited this property to
give preference to the slowly converged data items.

While this technique might impact result accuracy, the
impact is often minor since all “influential” kv-pairs would
be above the threshold and thus emitted. This is indeed con-
firmed in our experiments in Section 8.5. If an application
has high accuracy requirement, the application programmer
has the option to disable the change propagation control
functionality.

6. FAULT TOLERANCE AND LOAD BAL-
ANCING

6.1 Fault Tolerance
Vanilla MapReduce reschedules the failed Map/Reduce

task in case task failure is detected. However, the inter-
dependency of prime Reduce tasks and prime Map tasks in
i2MapReduce requires more complicated fault-tolerance so-
lution. i2MapReduce checkpoints the prime Reduce task’s
output state data and MRBGraph file on HDFS in every
iteration.

Upon detecting a failure, i2MapReduce recovers by con-
sidering task dependencies in three cases. (i) In case a prime
Map task fails, the master reschedules the Map task on the
worker where its dependent Reduce task resides. The prime
Map task reloads the its structure data and resumes com-
putation from its dependent state data (checkpoint). (ii) In
case a prime Reduce task fails, the master reschedules the
Reduce task on the worker where its dependent Map task
resides. The prime Reduce task reloads its MRBGraph file
(checkpoint) and resumes computation by re-collecting Map
outputs. (iii) In case a worker fails, the master reschedules
the interdependent prime Map task and prime Reduce task
to a healthy worker together. The prime Map task and Re-
duce task resume computation based on the checkpointed
state data and MRBGraph file as introduced above.

Following the design, we implement the fault tolerance
mechanism. The failure recovery exploits the interdepen-
dency between prime Map tasks and prime Reduce tasks.
The task scheduler on the master maintains the interdepen-
dency and the task-to-tracker3 assignment in a hash table.
A task failure will be detected first by the TaskTracker, who
will notify the master via heartbeat message (every 3 sec-
onds by default). Upon receiving a task failure notification,

3In Hadoop, TaskTracker is a process running on each slave
node. It is in charge of executing each assigned Map/Reduce
task.

the task scheduler on the master node looks up the task-
to-tracker hash table and reassigns the failed task on the
same TaskTracker. In case a worker (TaskTracker) fails, the
task scheduler reassigns the interdependent prime Map task
and prime Reduce task to another healthy worker. The re-
assigned task along with its current iteration information
will be re-launched using the checkpointed data. The prime
Map task reloads its structure data and resumes computa-
tion from its dependent state data (checkpoint). The prime
Reduce task reloads its MRBGraph file (checkpoint) and
resumes computation by re-collecting Map outputs.

6.2 Load Balancing
Skewed structure data can lead to skewed workloads across

workers. To deal with this problem, we can integrate online
skew migration technique [14] to balance the workload. Basi-
cally, it first identifies the task with the greatest expected re-
maining processing time through probing. The unprocessed
input data of this straggling task is then proactively repar-
titioned in a way that fully utilizes the nodes in the cluster
and preserves the ordering of the input data so that the
original output can be reconstructed by concatenation. In
order to integrate online skew migration into i2MapReduce,
the key challenge is to split and move the task state (i.e.,
MRBGraph file) in an efficient way. The load balancing
mechanism is out of the scope of this paper and will be left
for future work.

7. API CHANGES TO MAPREDUCE
We implement a prototype of i2MapReduce by modifying

Hadoop-1.0.3. In order to support incremental and iterative
processing, a few MapReduce APIs are changed or added.
We summarize these API changes in Table 2. We briefly
explain the key APIs and their usage in this section.

• For incremental one-step processing, programmers need to
specify the delta input, in which the inserted and deleted
input kv-pairs are marked with ‘+’ and ‘−’, respectively.

• For the special case of accumulator reduce, an accumulate

function needs to be specified, which aggregates reducer
input values with the same key.

• For iterative computation, programmers must specify the
structure kv-pairs 〈SK, SV 〉, the state kv-pairs 〈DK,DV 〉,
and the Project function. Besides, a new mapper inter-
face should be implemented, and the new map function
will take both the structure and state kv-pairs as input.
The initial state value DV should also be set.

• For the incremental iterative computation, in addition to
specifying the delta structure input, programmers can turn
on the change propagation control mechanism by setting
the filter threshold and specifying how to compute the
change of a kv-pair given the current and previous result
values (DVcurr and DVprev). Code examples of various
algorithms can be found on the project homepage4.

8. EXPERIMENTS
In this section, we perform real-machine experiments to

evaluate i2MapReduce.

8.1 Experiment Setup
4http://code.google.com/p/incr-iter-hadoop/



Table 2: API changes to Hadoop MapReduce
Job Type Functionality Vanilla MapReduce (Hadoop) i2MapReduce

Incremental One-Step input format input: 〈K1, V 1′〉 delta input: 〈K1, V 1, ‘ +′ /‘−′〉
Accumulator Reduce Reducer class reduce(K2,{V 2})→ 〈K3, V 3〉 accumulate(V 2old, V 2new)→ V 2

Iterative

input format mixed input: 〈K1, V 1′〉
structure input: 〈SK, SV 〉
state input: 〈DK,DV 〉

Projector class
project(SK)→ DK
setProjectType(ONE2ONE)

Mappper class map(K1, V 1)→ [〈K2, V 2〉] map(SK,SV ,DK,DV )→ [〈K2, V 2〉]
init(DK)→ DV

Incremental Iterative
input format input: 〈K1, V 1′〉 delta structure input: 〈SK,SV, ‘ +′ /‘−′〉
change propagation
control

job.setFilterThresh(thresh)
difference(DVcurr,DVprev)→ diff

8.1.1 Solutions to Compare
Our experiments compare four solutions: (i) PlainMR re-

comp, re-computation on vanilla Hadoop; (ii) iterMR re-
comp, re-computation on Hadoop optimized for iterative
computation (as described in Section 4); (iii) HaLoop re-
comp, re-computation on the iterative MapReduce frame-
work HaLoop [7], which optimizes MapReduce by provid-
ing a structure data caching mechanism; (iv) i2MapReduce,
our proposed solution. To the best of our knowledge, the
task-level coarse-grain incremental processing system, In-
coop [4], is not publicly available. Therefore, we cannot com-
pare i2MapReduce with Incoop. Nevertheless, our statistics
show that without careful data partition, almost all tasks see
changes in the experiments, making task-level incremental
processing less effective.

8.1.2 Experimental Environment
All experiments run on Amazon EC2. We use 32 m1.medium

instances. Each m1.medium instance is equipped with 2
ECUs, 3.7GB memory, and 410GB storage.

8.1.3 Applications
We have implemented four iterative mining algorithms,

including PageRank (one-to-one correlation), Single Source
Shortest Path (SSSP, one-to-one correlation), Kmeans (all-
to-one correlation), and GIM-V (many-to-one correlation).
For GIM-V, we implement iterative matrix-vector multipli-
cation as the concrete application using GIM-V model.

We also implemented a one-step mining algorithm, APri-
ori [3], for mining frequent item sets. The APriori algorithm
is used to compute the occurrence counts of frequent word
pairs of a Twitter data set. After generating the candidate
list of frequent word pairs in a preprocessing job, APriori
runs a MapReduce job to count the frequency of each word
pair. The Map task loads this list into memory, and ini-
tializes a local count per pair. Then, each input tweet is
processed by the Map function to identify any candidate
pairs and accumulate the associated local counts. After this,
the Map task sends 〈word pair, local count〉 as intermedi-
ate kv-pairs. Finally, the Reduce task aggregates the local
counts into the global frequency for each pair. Note that
Apriori satisfies the requirements in Section 3.5. Hence, we
employ the accumulator Reduce optimization in incremental
processing.

8.1.4 Data Sets
Table 5 describes the data sets for the five applications.

Table 3: Data sets
algorithm data set size description
APriori Twitter 122 GB 52,233,372 tweets

PageRank ClueWeb 36.4 GB
20,000,000 pages
365,684,186 links

SSSP ClueWeb2 70.2 GB
20,000,000 pages
365,684,186 links

Kmeans BigCross 14.4 GB
46,481,200 points
57 dimensions

GIM-V WikiTalk 5.4 GB
100,000 rows

1,349,584 non-0 entries

The Twitter dataset data set is crawled from Aug. 1,
2011 to Sep. 30, 2011. It contains 52,233,372 tweets in
JSON format and the size is about 122 GB. The APriori
algorithm is performed to mine the frequent word pairs of
the tweets.

The ClueWeb data set is a semi-synthetic data set gener-
ated from a base real-world data set 5. The original data set
consists of 1,040,809,705 nodes (web pages) and 7,944,351,835
links, and its size is 71GB. Due to the high complexity re-
sulted from the large number of nodes and links, we can-
not complete the PageRank computation in a reasonable
time period. Thus, we extracted 20,000,000 nodes and their
365,684,186 links from the original data set to form a smaller
graph (6 GB). Further, we substituted all node identifiers
with longer strings to make the structure data larger with-
out changing the graph structure. The extended ClueWeb
data set is 36.4 GB.

The ClueWeb2 data set is generated from the ClueWeb
data set. Since SSSP application runs on a weighted graph,
we modify the ClueWeb graph by adding each edge with a
random weight following gaussian distribution. Finally, the
resulted ClueWeb2 data set is 70.2 GB.

The BigCross data set is a semi-synthetic data set gener-
ated from a high-volume and high-dimensional real data set
6 . The original data set consists of 11,620,300 individuals
and each is with 57 dimensions, the total size of which is
3.6 GB. We generate the BigCross data set by repeating the
original data set four times to make it larger, so the size is
14.4 GB. We randomly pick 64 points from the whole data
set as 64 initial centers.

5http://lemurproject.org/clueweb09/
6http://www.cs.uni-paderborn.de/en/fachgebiete/ag-
bloemer/research/clustering/streamkmpp
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The WikiTalk data set is also a semi-synthetic data set
generated from a real world WikiTalk network data set 7.
The original WikiTalk network contains all the users and
discussion from the inception of Wikipedia till January 2008.
Nodes in the network represent Wikipedia users and a di-
rected edge from node i to node j represents that user i at
least once edited a talk page of user j. Therefore, we can gen-
erate a matrix data set based on the real world data, which
is used in GIM-V (matrix-vector) computation. The original
data set consists of 2,394,385 rows and 5,021,410 non-zero
entries, and the size is 66.5 MB. Due to the high complexity
of matrix-vector computation, we extracted 100,000 nodes
and 1,349,584 non-zero entries from the original data set to
form a smaller matrix. We also substituted all point iden-
tifiers with longer strings to make the data set larger. The
extended WikiTalk data set is 5.4 GB.

8.1.5 Delta Input, and Converged States
For incremental processing, we generate a delta input from

each data set. For APriori, the Twitter dataset is collected
over a period of two months. We choose the last week’s
messages as the delta input, which is 7.9% of the input. For
the four iterative algorithms, the delta input is generated
by randomly changing 10% of the input data unless oth-
erwise noted. To make the comparison as fair as possible,
we start incremental iterative processing from the previously
converged states for all the four solutions.

8.2 Overall Performance
Incremental One-Step Processing. We use APriori to
understand the benefit of incremental one-step processing
in i2MapReduce. MapReduce re-computation takes 1608
seconds. In contrast, i2MapReduce takes only 131 seconds.
Fine-grain incremental processing leads to a 12x speedup.

Incremental Iterative Processing. Fig. 8 shows the
normalized runtime of the four iterative algorithms while
10% of input data has been changed. “1” corresponds to the
runtime of PlainMR recomp.

For PageRank, iterMR reduces the runtime of PlainMR
recomp by 56%. The main saving comes from the caching
of structure data and the saving of the MapReduce startup
costs. i2MapReduce improves the performance further with
fine-grain incremental processing and change propagation
control (CPC), achieving a speedup of 8 folds (i2MR w/o

7http://snap.stanford.edu/data/wiki-Talk.html
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Figure 9: Run time of individual stages in PageR-
ank.

CPC). We also show that without change propagation con-
trol the changes it will return the exact updated result but
at the same time prolong the runtime (i2MR w/o CPC). The
change propagation control technique is critical to guaran-
tee the performance. Section 8.5 will discuss the effect of
CPC in more details. On the other hand, it is surprising
to see that HaLoop performs worse than plain MapReduce.
This is because HaLoop employs an extra MapReduce job
in each iteration to join the structure and state data [7].
The profit of caching cannot compensate for the extra cost
when the structure data is not big enough. Note that the
iterative model in i2MapReduce avoids this overhead by ex-
ploiting the Project function to co-partition structure and
state data. The detail comparison with HaLoop is provided
in Section 8.6.

For SSSP, the performance gain of i2MapReduce is similar
to that for PageRank. We set the filter threshold to 0 in the
change propagation control. That is, nodes without any
changes will be filtered out. Therefore, unlike PageRank,
the SSSP results with CPC are precise.

For Kmeans, small portion of changes in input will lead
to global re-computation. Therefore, we turn off the MR-
BGraph functionality. As a result, i2MapReduce falls back
to iterMR recomp. We see that HaLoop and iterMR ex-
hibit similar performance. They both outperform plainMR
because of similar optimizations, such as caching structure
data.

For GIM-V, both plainMR and HaLoop run two MapRe-
duce jobs in each iteration, one of which joins the struc-
ture data (i.e., matrix) and the state data (i.e., vector). In
contrast, our general-purpose iterative support removes the
need for this extra job. iterMR and i2MapReduce see dra-
matic performance improvements. i2MapReduce achieves
a 10.3x speedup over plainMR, and a 1.4x speedup over
HaLoop.

8.3 Time Breakdown Into MapReduce Stages
To better understand the overall performance, we report

the time8 of the individual MapReduce stages (across all
iterations) for PageRank in Fig. 9.

8The resulted time does not include the structure data par-
tition time, while both the iterMR time and i2MR time in
Fig. 8 include the time of structure data partition job for
fairness.



Table 4: Performance optimizations in MRBG-Store
technique # reads rsize(GB) time (s)

index-only 5519910 34.2 718
single-fix-window 1263680 10512.6 1361
multi-fix-window 1188420 337.8 513
multi-dynamic-window 2418809 153.6 467

For the Map stage, IterMR improves the run time by 51%
because it separates the structure and state data, and avoids
reading and parsing the structure data in every iteration.
i2MapReduce further improves the performance with fine-
grain incremental processing, reducing the plainMR time by
98%. Moreover, we find that the change propagation con-
trol mechanism plays a significant role. It filters the kv-pairs
with tiny changes at the prime Reduce, greatly decreasing
the number of Map instances in the next iteration. (cf. Sec-
tion 8.5)

For the shuffle stage, iterMR reduces the run time of
PlainMR by 74%. Most savings result from avoiding shuf-
fling structure data from Map tasks to Reduce tasks. More-
over, compared to iterMR, i2MapReduce shuffles only the in-
termediate kv-pairs from the Map instances that are affected
by input changes, thereby further improving the shuffle time,
achieving 95% reduction of PlainMR time.

For the sort stage, i2MapReduce sorts only the small num-
ber of kv-pairs from the changed Map instances, thus remov-
ing almost all sorting cost of PlainMR.

For the Reduce stage, iterMR cuts the run time of PlainMR
by 88% because it does not need to join the updated state
data and the structure data. Interestingly, i2MapReduce
takes longer than iterMR. This is because i2MapReduce
pays additional cost for accessing and updating the MRB-
Graph file in the MRBG-Store. We study the performance
of MRBG-Store in the next subsection.

8.4 Performance Optimizations in MRBG-Store
As shown in Table 4, we enable the optimization tech-

niques in MRBG-Store one by one for PageRank, and report
three columns of results: (i) total number of I/O reads in
Algorithm 1 (which likely incur disk seeks), (ii) total num-
ber of bytes read in Algorithm 1, and (iii) total elapsed time
of the merge operation. (i) and (ii) are across all the work-
ers and iterations, and (iii) is across all the iterations. Note
that the MRBGraph file maintains the intermediate data
distributively, the total size of which is 572.4 GB in the ex-
periment.

First, only the chunk index is enabled. For a given key,
MRBG-Store looks it up in the index to obtain the exact
position of its chunk, and then issues an I/O request to read
the chunk. This approach reads only the necessary bytes but
issues a read for each chunk. As shown in Table 4, index-
only has the smallest read size (rsize), but incurs the largest
number of I/O reads.

Second, with a single fix-sized read window, a single I/O
read may cover multiple chunks that need to be merged, thus
significantly saving disk seeks. However, since PageRank is
an iterative algorithm and multiple sorted batches of chunks
exist in the MRBGraph file (cf. Section 5.2), the next to-
be-accessed chunk might not reside in the same batch. Con-
sequently, this approach often wastes time reading a lot of
obsolete chunks. Its elapsed time gets worse.
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Figure 10: Effect of change propagation control.

Third, we use multiple fix-sized windows for iterative com-
putation. This approach addresses the weakness of the sin-
gle fix-sized window. As shown in Table 4, it dramatically
reduces the number of I/O reads and the bytes read from
disks, achieving an 1.4x improvement over the index-only
case.

Finally, our solution in i2MapReduce optimizes further by
considering the positions of the next chunks to be accessed
and making intelligent decisions on the read window sizes.
As a result, multi-dynamic-window reads smaller amount of
data. It achieves a 1.6x speedup over the index-only case.

8.5 Effect of Change Propagation Control
We run PageRank on i2MapReduce with 10% changed

data while varying the change propagation filter threshold
from 0.1, 0.5, to 1. (Note that, in all previous experiments,
the filter threshold is set to 1.) Fig. 10 (a) shows the run
time, while Fig. 10 (b) shows the mean error of the kv-pairs,
which is the average relative difference from the correct value
(computed offline).

The change propagation control technique filters out the
kv-pairs whose changes are less than a given threshold. These
filtered kv-pairs are considered very close to convergence. As
expected, the larger the threshold, the more kv-pairs will be
filtered, and the better the run time. On the other hand,
larger threshold impacts the result accuracy with a larger
mean error. Note that “influential” kv-pairs that see sig-
nificant changes will hardly be filtered, and therefore result
accuracy is somewhat guaranteed. In the experiments, all
mean errors are less than 0.2%, which is small and accept-
able. For applications that have high accuracy requirement,
users have the option to turn off change propagation control.

In order to see the effect of change propagation control
in each iteration, we show the number of propagated (non-
converged) kv-pairs and the runtime per iteration with and
without change propagation control. We evaluate PageRank
using the ClueWeb data set. To clearly see the increasing
number of propagated kv-pairs, we randomly update only
1% of the ClueWeb data set, which means that there are
200,000 changed structure kv-pairs before the incremental
computation starts (iteration 0). During the incremental
processing, we record the number of propagated kv-pairs
(prop. kv-pairs) and the per-iteration-runtime after each
iteration.

We first run PageRank on i2MapReduce without change
propagation control (i.e., w/o CPC). The number of propa-
gated kv-pairs of each iteration is depicted in Fig. 11a, and
the runtime of each iteration is depicted in Fig. 11b. We
can see that the changes are quickly propagated to all the
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Figure 11: Effect of change propagation control.

kv-pairs (20 × 106) after three iterations (i.e., all the Map-
pers and Reducers should be re-executed). As a result, the
runtime per iteration is greatly prolonged. Further, due to
the overhead of MRBGraph maintenance, the per-iteration-
runtime is steadily increasing. The total runtime (3859s) is
just a little bit shorter than the vanilla MapReduce (4140s).
This is because that MRBGraph maintains all the inter-
mediate computation state, which will lead to additional
maintenance cost (accessing/update cost). If all the Map-
pers/Reducers are re-executed, it is better to re-start com-
putation from the previously converged state with iterative
processing engine but without using MRBGraph.

We also run PageRank on i2MapReduce with change prop-
agation control varying the filter threshold (i.e., FT=1, FT=0.5,
FT=0.1). Fig. 11a depicts the number of propagated kv-
pairs of each iteration, and Fig. 11b depicts the runtime of
each iteration. We can see that the number of non-converged
kv-pairs first increases and then decreases steadily. The up-
date of the structure data will change the previously con-
verged result and spread the change widely in the early
stage. But the incremental update will not change the con-
verged value significantly. Consequently, the change propa-
gation control technique will filter the kv-pairs with minor
changes and reduce the per-iteration-runtime iteration by
iteration. Note that, i2MapReduce needs to merge the delta
MRBGraph and the preserved MRBGraph in the first iter-
ation, so the runtime of the first iteration is longer.

8.6 HaLoop vs. iterMR
As mentioned in Section 4.2, HaLoop [7] is one of the

recent efforts that aim to improve iterative processing on
MapReduce. The other efforts include Twister [10] and
iMapReduce [28]. These efforts mainly focus on two aspects:
reducing job startup costs and caching structure data. Our
iterative processing engine (iterMR) also integrates these
previous optimization techniques. Compared to HaLoop,
i2MapReduce can automatically capture dependencies be-
tween structure kv-pairs and state kv-pairs (by a user de-
fined function Project). On the other hand, HaLoop employs
an extra MapReduce job in each iteration to join the struc-
ture and state data. That is, HaLoop requires two MapRe-
duce jobs in each iteration.

We show the implementation of PageRank under HaLoop
in Algorithm 5. In HaLoop, the structure and state data
are considered as two separated input data sets (i.e., map
input kv-pair is 〈i, Ri〉 or 〈i,Ni〉). We can see that HaLoop
employs an extra MapReduce job in each iteration to join
the ranking scores < i, Ri > and the out-edges < i,Ni >

Algorithm 5 PageRank in HaLoop

Map Phase 1: output all inputs < i,Ri > or < i,Ni >

Reduce Phase 1: input: < i, Ri|Ni >
1: for all j in Ni do
2: Ri,j = Ri

|Ni|

3: output < j,Ri,j >
4: end for

Map Phase 2: output all inputs < j,Ri,j >

Reduce Phase 2: input: < j, {Ri,j} >
5: Rj = d

∑
i
Ri,j + (1− d)

6: output < j,Rj >

Table 5: Data Sets for PageRank
data set size # pages # links

ClueWeb-xs 168 MB 100,000 1,650,050
ClueWeb-s 1.9 GB 1,000,000 18,945,222
ClueWeb-m 18.5 GB 10,000,000 181,571,298
ClueWeb-l 36.4 GB 20,000,000 365,684,186

of each vertex. HaLoop provides caching mechanism for
the structure data < i,Ni > in Reduce Phase 1 to improve
performance. It improves performance with the assumption
that each iteration of PageRank algorithm is implemented
in two MapReduce jobs.

In comparison, each iteration of PageRank can be imple-
mented in a single MapReduce job as depicted in Algorithm
2. Unlike HaLoop, the structure and state data are provided
together in the input (e.g., map input kv-pair is 〈i,Ni|Ri〉).
Further, by exploring the dependencies between structure
kv-pairs and state kv-pairs, i2MapReduce can automatically
join these two kinds of data, and at the same time exploit
caching optimization to further improve performance.

8.7 Spark vs. iterMR
In this section, we compare i2MapReduce with Spark [25]

for supporting PageRank computation.
Spark was developed to optimize large-scale interactive

computation. It uses caching techniques and operatesmemory-
resident read-only objects to improve performance. The
main abstraction in Spark is resilient distributed dataset
(RDD). An RDD is a read-only data set that supports only
bulk processing (i.e. an operation on RDD will be applied to
each data item in the set). Spark typically maintains inter-
mediate data sets across the memory of multiple machines,
and performs linkage based re-computation to recover from
failures.

Unlike disk-based systems (e.g., Hadoop, HaLoop, i2MapReduce),
Spark relies on memory for fast iterative computation. A
Spark program can separate the loop-variant state data from
loop-invariant structure data by using partitionBy and join

interfaces. However, since RDDs are read-only, Spark will
generate a new RDD for the state data in each iteration.
Hence, Spark will

We use Spark 1.1.0 in our experiment. Each Spark worker
node is configured with 2.7 GB memory (3.7 GB - 1.0 GB by
default), and the total memory capacity of the cluster is 85.2
GB. The data sets used in this experiment are described in
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Table 5. The web graphs are generated based on the same
approach described in Section ??.

We perform PageRank on vanilla Hadoop (PlainMR), iterMR
(i2MapReduce with iterative processing engine), and Spark.
The results are shown in Fig. 12. We can see that Spark is
really fast when processing small data sets (e.g., ClueWeb-
xs). However, as the input data gets larger (e.g., ClueWeb-s
and ClueWeb-m), Spark and iterMR exhibit similar perfor-
mance, which is 2.5x faster than PlainMR. However, when
processing the ClueWeb-l data set, Spark is not as good as
iterMR. This is because the input data and the intermediate
data are too large, resulting degraded Spark performance.
Therefore, the in-memory system Spark outperforms other
file-based systems if memory resource is plentiful. However,
when processing large data set that could exhaust the mem-
ory heap space, the performance of Spark is not satisfactory.

8.8 Evaluation of Fault Tolerance
We test the fault recovery strategy in the context of PageR-

ank computation. The PageRank computation is performed
on the ClueWeb dataset with 32 EC2 medium instances. We
configure the PageRank job with 64 prime Map tasks and
64 prime Reduce tasks. We manually and randomly inject
some errors in these tasks. Figure 13 depicts the execution
progress of the 64 map/reduce tasks in the first 7 iterations.
The length of each line indicates the runtime of each map/re-

duce task. We can see that there are 3 errors occurred: (1)
map task 7 of iteration 3 fails at 323s; (2) reduce task 39 of
iteration 6 fails at 799s; (3) map task 58 of iteration 7 fails
at 812s. All the failed task can recover from failure within
12 seconds and do not impact the overall performance a lot.
The failures of map task 7 and map task 58 actually do
not prolong the computation process since these tasks finish
earlier than the slowest tasks in a synchronization barrier.

9. RELATED WORK
Iterative Processing. A number of distributed frame-
works have recently emerged for big data processing [17,
19, 11, 23, 26, 27]. We discuss the frameworks that improve
MapReduce. HaLoop [7], a modified version of Hadoop, im-
proves the efficiency of iterative computation by making the
task scheduler loop-aware and by employing caching mecha-
nisms. Twister [10] employs a lightweight iterative MapRe-
duce runtime system by logically constructing a Reduce-
to-Map loop. iMapReduce [28] supports iterative process-
ing by directly passing the Reduce outputs to Map and
by distinguishing variant state data from the static data.
i2MapReduce improves upon these previous proposals by
supporting an efficient general-purpose iterative model.

Unlike the above MapReduce-based systems, Spark [25]
uses a new programming model that is optimized formemory-
resident read-only objects. Spark will produce a large amount
of intermediate data in memory during iterative computa-
tion. When input is small, Spark exhibits much better per-
formance than Hadoop because of in-memory processing.
However, its performance suffers when input and intermedi-
ate data cannot fit into memory. Our experimental results
shown in Section 8.7 shows that i2MapReduce achieves bet-
ter performance when input data is large.

Pregel [18] follows the Bulk Synchronous Processing (BSP)
model. The computation is broken down into a sequence of
supersteps. In each superstep, a Compute function is in-
voked on each vertex. It communicates with other vertices
by sending and receiving messages and performs computa-
tion for the current vertex. This model can efficiently sup-
port a large number of iterative graph algorithms. Open
source implementations of Pregel include Giraph [1], Hama [2],
and Pregelix [6]. Compared to i2MapReduce, the BSPmodel
in Pregel is quite different from the MapReduce program-
ming paradigm. It would be interesting future work to ex-
ploit similar ideas in this paper to support incremental pro-
cessing in Pregel-like systems.

Incremental Processing for One-Step Application.
Besides Incoop [4], several recent studies aim at supporting
incremental processing for one-step applications. Stateful
Bulk Processing [16] addresses the need for stateful dataflow
programs. It provides a groupwise processing operator Trans-
late that takes state as an explicit input to support incre-
mental analysis. But it adopts a new programming model
that is very different from MapReduce. In addition, several
research studies [24, 12] support incremental processing by
task-level re-computation, but they require users to manip-
ulate the states on their own. In contrast, i2MapReduce
exploits a fine-grain kv-pair level re-computation that are
more advantageous.

Incremental Processing for Iterative Application. Na-
iad [20] proposes a timely dataflow paradigm that allows
stateful computation and arbitrary nested iterations. To



support incremental iterative computation, programmers have
to completely rewrite their MapReduce programs for Naiad.
In comparison, we extend the widely used MapReduce model
for incremental iterative computation. Existing MapReduce
programs can be slightly changed to run on i2MapReduce
for incremental processing.

10. CONCLUSION
We have described i2MapReduce, a MapReduce-based frame-

work for incremental big data processing. i2MapReduce
combines a fine-grain incremental engine, a general-purpose
iterative model, and a set of effective techniques for incre-
mental iterative computation. Real-machine experiments
show that i2MapReduce can significantly reduce the run
time for refreshing big data mining results compared to re-
computation on both plain and iterative MapReduce.
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