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Change-Point Detection in a Sequence of
Bags-of-Data

Kensuke Koshijima, Hideitsu Hino, Member, IEEE, and Noboru Murata

Abstract—In this paper, the limitation that is prominent in most existing works of change-point detection methods is addressed by
proposing a nonparametric, computationally efficient method. The limitation is that most works assume that each data point observed
at each time step is a single multi-dimensional vector. However, there are many situations where this does not hold. Therefore, a
setting where each observation is a collection of random variables, which we call a bag of data, is considered. After estimating the
underlying distribution behind each bag of data and embedding those distributions in a metric space, the change-point score is derived
by evaluating how the sequence of distributions is fluctuating in the metric space using a distance-based information estimator. Also,
a procedure that adaptively determines when to raise alerts is incorporated by calculating the confidence interval of the change-point
score at each time step. This avoids raising false alarms in highly noisy situations and enables detecting changes of various magnitudes.
A number of experimental studies and numerical examples are provided to demonstrate the generality and the effectiveness of our
approach with both synthetic and real datasets.

Index Terms—Change-point detection, Entropy Estimator, Earth Mover’s Distance, Anomaly detection.
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1 INTRODUCTION

S IGNIFICANT events occurring in the real world often
trigger changes in the data that one can acquire from

sources related to the event, and conversely, changes
in time-series data are often signs of important events
happening at that time. Therefore, detecting changes in
time-series data has long been a problem of great interest
for researchers from various areas [1], [2]. This technique,
which is often referred to as change-point detection, can be
directly applied to various situations such as intrusion
detection in computer networks [3], fault detection in
machines [4], and fraud detection in credit card use [5]. It
could also be employed to preprocess and segment time-
series data. For time-series prediction, dramatic changes
in the data would be detrimental to the performance of
the prediction model, and therefore, the data should be
segmented beforehand using a change-point detection
technique. Segmenting time-series data can also be used
for signal processing [6].

One approach to the problem of change-point detec-
tion is to fit a stochastic model to the sequence of data
and determine when the data deviates from the built
model [2], [7], [8]. For example, in [8], auto-regressive
models are employed to construct a sequence of prob-
ability density functions which describe the underlying
structure of the time-series data, and the deviation is
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evaluated by logarithmic loss. These methods rely on
parametric models, and their applicability is frequently
limited.

Therefore, in order to cope with situations where
parametric assumptions are not appropriate, many non-
parametric methods have recently been proposed. In
these methods, the common approach is to focus on two
subsets of data that arrive in intervals before and after
time t, which we call as the reference set and the test set
respectively, and to evaluate the dissimilarity between
the two sequences. The effectiveness and the perfor-
mance of change-point detection techniques depend on
how the two sequences are modeled, and how the two
models are compared. For example, in [9], two one-class
support vector machines are trained independently on
the reference set and the test set, and the two resulting
hyperplanes are compared in the feature space to eval-
uate the dissimilarity between the two sets. There are
also methods that focus on the subspace spanned by the
trajectory matrix of the sequence [10], [11], or methods
that focus on density ratio estimation [12].

Many of these methods have demonstrated great per-
formance in different settings. However, there is a down-
side that these methods have in common which is that
all of these methods assume that there is only one vector
associated with each time step.

We could easily think of situations where these as-
sumptions do not hold. One scenario would be where
each observation at each time step is a collection of
multi-dimensional vector, the size of which may vary
over time, and the interest lies in the behavior of the
group as a whole, and not each individual vector in
the collection. An example of this situation would be to
conduct a questionnaire survey periodically, and monitor
for any changes in the overall characteristic of the group.
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Another scenario is when the frequency of observation
is not constant. Suppose that the goal is to detect an
outbreak of a disease in a town, and that we are monitor-
ing for any changes in the characteristics of patients that
come to a hospital. The analysis is conducted every day
with the data collected from patients that come to the
hospital. Here again, we face the same problem that we
have discussed above. Multiple patients come each day,
and the number of patients that come each day varies.

In these situations, one could attempt to apply existing
methods by computing descriptive statistics from the
group at each time step, such as the sample mean, and
apply existing methods on the resulting sequence of the
descriptive statistics. However, the loss of information
associated with the summarization is not desirable.

To illustrate this, we present a simple example
in Fig. 1. Here, we have a sequence of data with change-
points at t = 50 and t = 100. Data observed at each time
step are generated from a single Gaussian distribution
from t = 1 to t = 50, a mixture of two Gaussian
distributions from t = 51 to t = 100, and a mixture of
three Gaussian distributions from t = 101 to t = 150.
There are about 300 instances at each step. Figure 1(b)
shows a sequence obtained by taking the sample mean
of data observed at each time step. Figure 1(c) shows the
results of three change-point detection methods applied
to this data. Our method, which we will discuss in detail
in later sections, is applied directly to data in Fig.1(a) and
it accurately detects the changes that occurred at t = 50
and t = 100. On the other hand, two existing methods
proposed in [8], [9] were applied to data in Fig.1(b). The
two methods exhibit scores that are totally unrelated to
the change-points, which is fairly obvious because the
sample mean sequence is losing too much information
and it clearly does not capture the change-points occur-
ring at t = 50 and t = 100. In later sections, we show
other numerical examples that are common in the real
world. In summary, when the analysis requires some sort
of aggregation (over groups of individuals in the first
scenario, and over time in the second scenario) resulting
in datasets of different sizes, existing methods may not
be appropriate.

In this paper, we propose a method to detect change
points in a stream of aggregated data with varying
sizes. In our setting, the observation at time t is not
a single random variable, but a collection of random
variables, which we call a bag of data. We estimate the
underlying distribution that generates each bag, embed
the distributions in a metric space, and then evaluate
how those distributions are fluctuating in the metric
space. Furthermore, we also incorporate a procedure that
automatically determines the appropriate threshold for
the change-point scores, which is a task that is often
overlooked in past works. We also demonstrate that our
method works for detecting changes in bipartite graphs
that have different numbers of nodes, using simple
statistics obtained from each node or edge.

The remainder of this paper is organized as follows.
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(c) Change Point Scores

Fig. 1. An example of a situation where the proposed
method is advantageous over existing methods. (a) At
each time step, about 300 one-dimensional vectors are
observed. At t = 50 and t = 100, the underlying dis-
tribution changes from a single Gaussian distribution to
a mixture of two Gaussian distributions, and then to a
mixture of three Gaussian distributions. (b) The sample
mean of each set of observations are taken so that
existing methods can be applied. (c) Existing methods
can not detect the changes that occurred at t = 50 and
t = 100.

In Section 2, we formulate our problem setting and
discuss the differences of our setting compared to the
setting considered in past works. In Section 3, we explain
how the change-point scores are derived. In Section 4,
we discuss how the confidence intervals of the change-
point scores are estimated, and how they are used to
adaptively determine where significant changes actually
took place. Section 5 shows numerical examples using
both simulated data and real data which include two
of the most common examples of real world applica-
tions: the problem of detecting changes in collections of
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random variables and the problem of detecting changes
in a sender-receiver bipartite network. Section 6 gives
concluding remarks. A short and preliminary version of
this paper appeared in [13].

2 PROBLEM FORMULATION

In the typical problem setting of change-point detection,
we observes an xt at each time step t where xt is a
multi-dimensional vector, i.e. xt ∈ Rd, generated from
some stochastic process. Typically, we consider two sets
of data around time step t each having τ , τ ′ data points;
the reference (past) data set X (τ)

ref and the test (future)
data set X (τ ′)

test , each of which is written as below:

X (τ)
ref := {xt−τ ,xt−τ+1, . . . ,xt−1}, (1)

X (τ ′)
test := {xt,xt+1, . . . ,xt+τ ′−1}. (2)

For the sake of notational simplicity, we omit τ and τ ′

hereafter, unless needed. Letting PXref and PXtest represent
the underlying probability distributions behind Xref and
Xtest respectively, the objective here is to evaluate the
difference between PXref and PXtest and raise an alarm if
there is enough difference in the two underlying models.

As is shown in Fig. 2(a), this approach assumes that
each data point is a single multi-dimensional vector.
There are many situations where this condition does not
hold. Often, data is obtained in groups, sometimes of
different sizes, in which case we would have to deal
with a collection of multi-dimensional vectors at each
time step. Another situation would be when data points
arrive randomly and analysis is done on a regular basis,
such as daily or weekly. Here, the number of data points
associated with each time step is the number of data
points that arrive in the same time window.

In order to deal with the above issues, we formulate
the problem in a different way. In our setting, obser-
vation at time t is not a single random variable, but a
collection of random variables, which we call a bag of
data (Fig. 2(b)),

Bt =
{
x
(t)
i

}nt

i=1
, (3)

where x
(t)
i ∈ Rd, and nt is the number of observations

at time t, which can be different over time. The goal is
to detect changes in the sequence of bags, and therefore,
our interest lies in the behavior of the bags themselves
and not the individual vectors in the bags.

3 DERIVATION OF CHANGE-POINT SCORES

Let PBt represent the underlying distribution that gen-
erates the elements of Bt, i.e. x(t)

i
iid∼ PBt ,∀i. Similar to

the ordinary approach that we discussed in Section 2,
we consider a reference set and a test set as

Bref := {Bt−τ , Bt−τ+1, . . . , Bt−1}, (4)
Btest := {Bt, Bt+1, . . . , Bt+τ ′−1}. (5)

xt+3 xt+4xt+1 xt+2xtxt−4 xt−3 xt−2 xt−1

t t+ 1 t+ 2 t+ 3 t+ 4t− 1t− 2t− 3t− 4

(a) Ordinary problem setting

t t+ 1 t+ 2 t+ 3 t+ 4t− 1t− 2t− 3t− 4

(b) Our problem setting

Fig. 2. The concept of our problem setting. In both of the
figures, each circle represents a multi-dimensional vector.
We want to know if there is a change-point at time step
t. (a) One observes a single multi-dimensional vector at
each time step and then attempts to evaluate the disparity
between the underlying distribution behind the reference
set and the test set. (b) We are considering a setting in
which one has to deal with multiple vectors at each time
step, where the number of vectors could differ over time.
This is a situation that often arises in the real world.

Here, the objective is to evaluate the difference between
the underlying distributions behind each of the bags in
the reference set and each of the bags in the test set.

In a nut-shell our method works as follows. First,
we embed distributions PBt in an appropriate metric
space M with a distance measure between distribu-
tions (see Fig. 3). Then, we examine the fluctuation
of the sequence of PBt in that metric space by using
a distance-based information estimator. Intuitively, we
consider evaluating the disparity between two sets of
distributions, as opposed to the ordinary setting where
only two distributions are compared. We will go into the
details in the following sections.

3.1 Modeling distributions of each bag

There are two approaches in modeling PBt : parametric
or non-parametric. If we could model PBt parametrically,
we can reduce the problem to the ordinary change-
point detection problem of the parameters of each PBt .
Parametric approaches are known to perform better in
situations where data come from a specific family of dis-
tributions, and are also known to work well with a small
amount of data. However, applicability of parametric
models are limited in real-world situations since real-
world data often do not follow any standard parametric
models or distributions. Therefore, we propose a non-
parametric approach to this problem. It would allow us
to estimate distributions in more general settings.

More specifically, we propose to represent the densities
PBt for each time step t using signatures, which we
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metric space M

Fig. 3. The overall illustration of our approach. The un-
derlying distributions for all of the bags in the reference
set and the test set are estimated, and then are em-
bedded in a metric space. Then, the fluctuation of these
distributions are evaluated; the change-point scores are
computed based on how much the reference set (distri-
butions surrounded by the dashed lines) and the test set
(distributions surrounded by the dotted lines) are different,
in a statistical sense, from each other.

denote as St. Signature St takes the form

St =
{(

u
(t)
k , w

(t)
k

)}K

k=1
(6)

and it is a result of quantizing vectors in each bag using
methods such as k-means, k-medoids, or learning vector
quantization [14]. In other words, u(t)

k ∈ Rd are vectors
that represent the cluster centers of the vectors in Bt,
and w

(t)
k are the number of observations that belong to

the cluster of u(t)
k . This is a common approach especially

taken in the area of computer vision [15], and it also
follows the motivation described in [16], where they use
histograms, which is a special case of signatures, as a
means to represent the underlying distribution of a bag
of data.

Another very simple way to make signatures is to
make them as histograms. In other words, the signa-
tures could be obtained simply by partitioning Rd into
distinct bins of fixed width and then count the number
of observations that fall in each bin. This would be a
common approach especially when the vectors x are 1-
dimensional vectors.

Similar to descriptive statistics like centroids, signa-
tures are a form of summarization and, to some extent,
they involve loss of information. However, signatures
allow us to capture the shape of PBt , which is some-
thing that can not be accomplished by using descriptive
statistics like centroids.

3.2 Embedding signatures in a metric space

An appropriate distance measure of signatures is nec-
essary in order to embed the signatures in a metric
space. Here, we employ the Earth Mover’s distance

(EMD) [17]. The EMD is a useful, efficiently calculated
metric between two distributions which is known to
behave naturally in terms of human perception. It is also
known to be mathematically equivalent to the Wasser-
stein/Mallows distance [18].

Given two signatures written as St and St′ , where

St′ =
{
(v

(t′)
l , w

(t′)
l )

}L

l=1
, and the ground distance dkl,

which is an arbitrarily given measure that gives the
dissimilarity between u

(t)
k and v

(t′)
l , the EMD is obtained

by solving for the optimal flow fkl through the following
transportation problem:

f∗kl = argmin
fkl

K∑
k=1

L∑
l=1

fkldkl (7)

subject to the following constraints.

fkl ≥ 0, 1 ≤ k ≤ K, 1 ≤ l ≤ L, (8)
L∑

l=1

fkl ≤ w
(t)
k , 1 ≤ k ≤ K, (9)

K∑
k=1

fkl ≤ w
(t′)
l , 1 ≤ l ≤ L, (10)

K∑
k=1

L∑
l=1

fkl = min

(
K∑

k=1

w
(t)
k ,

L∑
l=1

w
(t′)
l

)
. (11)

Once the solution to Eq. (7) is obtained, the EMD be-
tween St and St′ is defined as

EMD(St, St′) =

∑K
k=1

∑L
l=1 f

∗
kldkl∑K

k=1

∑L
l=1 f

∗
kl

. (12)

Intuitively speaking, as shown in Fig. 4, the EMD mea-
sures the minimum amount of work needed to make one
signature out of the other signature.

Fig. 4. Earth Mover’s distance. Here St is drawn with the
gray circles, and St′ is drawn with the white circles with
dashed lines. The size of the circle represent the number
of observations that belong to each cluster center. Given
dkl (dashed gray lines), the goal is to find the optimal flow
f∗kl which reconstructs one signature out of the other one.
Once the solution is obtained (gray arrows), the EMD is
calculated according to Eq. (12).
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3.3 Assessing fluctuations in the metric space

Once the distributions corresponding to each bag are
embedded in a metric space, we would want to consider
how the distributions are fluctuating in the metric space.
We would expect to see a large difference between the
reference set and the test set in the metric space if there
is a change, and vice versa. To measure the statistical
difference between the two sets, we adopt the distance-
based information estimators proposed in [19].

In [19], three types of computationally efficient in-
formation estimators for weighted data that are calcu-
lated using distance measures between data points are
proposed. Using the signatures that we have obtained
in Eq. (6), we define the weighted dataset that we
consider as S := {(Si, ψi); i = 1, . . . , n}, which is a set
of signatures each associated with weight coefficients ψi

that satisfy
∑

i ψi = 1 and ψi ≥ 0. Details about ψi will
be given later. Then, using the Earth Mover’s distance,
which we denote as EMD(·, ·), we obtain the following
quantities:

• Information content of a signature S with respect to
S ′(S ′ := {(S′

j , ψ
′
j); j = 1, . . . ,m}):

I(S;S ′) = c+ d
m∑
j=1

ψ′
j logEMD(S′

j , S).

• Auto-entropy of S:

H(S) = c+ d
n∑

i=1

m∑
j=1,j ̸=i

ψiψj

1− ψi
logEMD(Si, Sj).

• Cross-entropy between S and S ′:

H(S;S ′) = c+ d
n∑

i=1

m∑
j=1

ψiψ
′
j logEMD(Si, S

′
j).

Here, c is a constant and d represents the dimension
of S in the metric space which, theoretically, would be
infinite. However, we make an assumption that the dis-
tributions have in common a finite effective dimension.
This would be a reasonable assumption to make because
N points in a metric space can be isometrically embed-
ded to a Euclidean space of at most N − 1 dimensions.
Furthermore, the change-point scores that we compute
takes the difference of the values written above and not
the values themselves, and thus d is not essential.

Following Eq. (4) and Eq. (5), we will denote the
reference set and the test set of the signatures as

Sref := {(St−τ , ψt−τ ), . . . , (St−1, ψt−1)} , (13)
Stest := {(St, ψt), . . . , (St+τ ′−1, ψt+τ ′−1)} . (14)

We could make use of the weights ψi to reflect discount-
ing to give more importance on data that is closer to the
inspection point, e.g.

ψi ∝
1

|t− i|
(for Sref), ∝ 1

|t− i+ 1|
(for Sref). (15)

This is a common scheme in time series analysis or time
signal processing. Otherwise, we could simply make
ψi = 1/τ or 1/τ ′.

Based on these estimators, we propose two change-
point scores as follows:

• Change-point score based on log likelihood ratio:

scoreLR(St) = log

(
p
(
St;Stest \ St

)
p (St;Sref)

)
= I (St;Sref)− I (St;Stest \ St) . (16)

• Change-point score based on symmetrized KL di-
vergence:

scoreKL(St) =
DKL

(
Sref||Stest

)
+DKL

(
Stest||Sref

)
2

=
1

2

(
H
(
Sref;Stest

)
−H

(
Sref
)

+H
(
Sref;Stest

)
−H

(
Stest

))
. (17)

The change-point score based on symmetrized KL diver-
gence tends to be more conservative and robust, but at
the same time insensitive to minor changes. On the other
hand, the change-point score based on log likelihood
ratio tends to behave in the opposite way.

4 ADAPTIVE THRESHOLDING OF CHANGE-
POINT SCORES

The change-point score described in the previous sec-
tion, as with change-point scores proposed in existing
works, indicates the degree of change occurring at each
inspection point, but do not offer a clear signal of where
a significant, anomalous change has actually taken place.
In practice, this is a crucial problem because one would
need to be certain, to some extent, that an anoma-
lous change has happened before taking action against
the anomaly. Despite its importance, this is a problem
that is overlooked in most existing works. In most
cases, a threshold σ is assumed to be given beforehand,
and one is instructed to simply compare the obtained
change-point score with σ and raise an alarm whenever
the change-point score goes above the predetermined
threshold value. However, this approach is far from
being reliable. In situations where the observed time-
series is highly noisy or where the underlying distribu-
tion is constantly changing, high values in the change-
point scores may not be true indications of a significant
change. Therefore, it is important that the threshold σ is
determined adaptively in a data-centric way.

4.1 Testing for significant changes

In order to determine if the change-point score obtained
by Eq. (16) or Eq. (17) is indicating a true significant
change or not, we propose to perform a statistical test
at each time step. More specifically, letting γt denote
the test statistic for time step t, we determine that the
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change-point score at time step t indicates a significant
change if

γt > 0. (18)

We compute γt by using confidence intervals of the
change-point scores. The confidence intervals of the
change-point scores are calculated for each time step
using the Bayesian bootstrap method [20], which we will
discuss further in the next section. Given a prespecified
significance level η, the 100(1− η)% confidence interval
of the change-point score at time t, which we denote as(
ξ
(t)
lo , ξ

(t)
up

)
, is obtained such that

Pr
(
ξ
(t)
lo < score(t) < ξ(t)up

)
= 1− η. (19)

Once
(
ξ
(t)
lo , ξ

(t)
up

)
is obtained, γt is computed as follows.

γt = ξ
(t)
lo − ξ(t−τ ′)

up . (20)

Intuitively, γt considers the overlap between the confi-
dence interval at time t and the confidence interval at
time t− τ ′, as in Fig. 5. Note that τ and τ ′ were defined
as the number of bags in the reference set and the test
set, respectively. The reason for comparing the ξ(t)lo with
ξ
(t−τ ′)
up is that we want to make sure that the test set for

the two confidence intervals do not share the same bags.
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Fig. 5. An example of a sequence of change-point scores
calculated with τ ′ = 3. At both t = 7 and t = 16,
we observe high change-point scores. We conclude that
there is a significant change at t = 16 since there is no
overlap between the confidence intervals, i.e. γ16 > 0. On
the other hand, we do not conclude that there is a change-
point at t = 7 because here γ7 < 0.

Taking advantage of the fact that our proposed
change-point scores take account of the weights asso-
ciated with each signature, we propose to compute the
confidence interval of the change-point scores using the
Bayesian bootstrap method. In the next section, we will
give a brief explanation of the Bayesian bootstrap and
the method to compute the confidence interval, and then
discuss about the advantages of the Bayesian bootstrap
over standard bootstrap methods.

4.2 Computing confidence intervals using the
Bayesian bootstrap

The bootstrap is a computer-based method used for
evaluating the properties of a statistic ϕ̂ that is calculated
based on a set of samples obtained from an unknown
probability function F . One application in using the
bootstrap is to compute the confidence interval of ϕ̂. In
our setting, we wish to evaluate the confidence interval
for the change-point score calculated at each time step.

The Bayesian bootstrap is the Bayesian analogue of
the bootstrap [20]. As opposed to the standard bootstrap,
which simulates the estimated sampling distribution of
a statistic, the Bayesian bootstrap simulates the posterior
distribution of the parameter.

One advantage of using the Bayesian bootstrap instead
of the standard bootstrap method is that the Bayesian
bootstrap is able to generate a smooth distribution of the
statistic ϕ even when the number of samples is small.
When applying our change-point detection method, it
may often occur that τ and τ ′, which are the number
of bags in the reference set and the test set respectively,
are set to small numbers, depending on the situation
considered. The Bayesian bootstrap would therefore be
a better choice.

The procedure is as follows. For T times, the weight
coefficients are resampled from Dirichlet distributions
with different parameters.

{ψt−τ , . . . , ψt−1} ∼ Dir(τψt−τ , . . . , τψt−1), (21)
{ψt, . . . , ψt+τ ′−1} ∼ Dir(τ ′ψt, . . . , τ

′ψt+τ ′−1). (22)

With each sample of {ψt−τ , . . . , ψt−1} and
{ψt, . . . , ψt+τ ′−1}, the change-point scores in Eq. (16)
or Eq. (17) are calculated, resulting in T values of
change-point scores for time step t. Then, ξ(t)lo and ξ

(t)
up

are determined as the η/2 quantile point and the 1−η/2
quantile point, respectively, of the T change-point
scores. More on the derivation and the theoretic aspect
of this procedure is written in the Appendices A and
B. Appendix A and B explain about using the Bayesian
bootstrap for unweighted and weighted data as in (15),
respectively.

5 NUMERICAL EXAMPLES

We conduct several experiments to demonstrate the
effectiveness of our approach. First, we demonstrate
the validity of the confidence interval generated by
the Bayesian bootstrap method by studying how the
confidence interval behaves in different settings. Next,
we apply our method to the PAMAP human activity
dataset [21]. Finally, we demonstrate that our method
could also be applied to detect changes in time-series
sequence of bipartite graphs using simple statistics. For
all of the results presented in this section, the signatures
are weighted equally.
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5.1 Behavior of confidence intervals
Suppose that at each time step t we observe a bag of
two dimensional vectors Bt = {x(t)

i }nt
i=1 (xi ∈ R2), where

the number of vectors in each bag nt follows a Poisson
distribution with λ = 50. We consider five different
situations; all xi are sampled from normal distributions,
i.e. xi ∼ N (µ,Σ), with different parameters used for
different datasets. Here, each sequence is consisted of 20
bags. For all the datasets, we make both the reference set
and the test set to have five bags each, i.e. τ = τ ′ = 5.

• Dataset 1: All xi are generated from a normal distri-
bution with a large variance. For all time steps, xi

are generated from the following parameters, and
there are no change points.

∀t, i, µ = 0,Σ = 15I2.

• Dataset 2: Approximately 80% of xi are generated
from a standard normal distribution. The remaining
20% are generated to simulate noise. There are no
change points.

∀t,

{
µ = 0,Σ = I2 (1 ≤ i < 4

5nt),

µ ∼ N (0, 20I2),Σ = 5I2 (otherwise).

• Dataset 3: Here, µ moves in a circular path and
Σ = I2. This is a simulation of situations where the
distribution is constantly going through a gradual
change. There are no significant change points.

∀t, i, µ =
√
3

(
cos(

(t− 0.5)π

5
) sin(

(t− 0.5)π

5
)

)⊤

.

• Dataset 4: There is a significant change at t = 11
where µ moves from (3,0) to (-3,0).

∀i,

{
µ = (3 0)

⊤
,Σ = I2 (1 ≤ t ≤ 10),

µ = (−3 0)
⊤
,Σ = I2 (11 ≤ t ≤ 20).

• Dataset 5: The rate of change in µ changes. Starting
from t = 11, µ starts to move faster.

µ = ϵ

(
cos(

(t− 0.5)π

5
) sin(

(t− 0.5)π

5
)

)⊤

,Σ = I2

where

{
ϵ =

√
3 (1 ≤ t ≤ 10),

ϵ = 3 (11 ≤ t ≤ 20).

The results are shown in Fig. 6. The values of EMD are
shown on the left. To offer an intuitive understanding of
the datasets, the bags are mapped to a two dimensional
space using multi-dimensional scaling. On the right, the
change-point scores along with the confidence intervals
are plotted. From the results, we could first see that our
method did not raise any alarms for datasets that have
no significant change points. We could also take note of
the fact that the width of the confidence interval is larger
for datasets 2, 3, and 5, which supports the fact that our
method can reduce the risk of raising false alarms in
highly noisy or unstationary situations. As for datasets
that have a significant change point, our method was

able to raise alerts successfully for dataset 4, but not for
Dataset 5.

5.2 PAMAP Dataset

In order to evaluate the performance of our method,
we experimented our method on the PAMAP2 physical
activity monitoring dataset [21], which can be found at
the UCI Machine Learning Repository. This is a dataset
that contains data of 18 different physical activities,
performed by nine subjects wearing three inertial mea-
surement units and a heart rate monitor. Following a
protocol, the nine subjects performed the activities listed
in Table 1. Our objective is to detect when the subject
changes his or her activity based on the data collected
from the four sensors.

TABLE 1
Activities and their IDs.

Activity ID Activity ID
lying 1 descending stairs 7
sitting 2 walking 8
standing 3 Nordic walking 9
ironing 4 cycling 10
vacuum cleaning 5 running 11
ascending stairs 6 rope jumping 12

Due to the slight difference in the sampling frequen-
cies of the inertial measurement units, and other hard-
ware faults such as connection loss or system crash,
the number of observations recorded for each second is
different throughout the whole dataset. Therefore, this is
a situation where it is suitable to use bags to analyze the
time-series data.

The time-series sequence of data recorded at each
sensor is splitted every 10 seconds, which means that
all the data that was observed in the same 10 second
interval belong to the same bag. As a result, the data for
each subject is separated in 251.8 bags in average with
a standard deviation of 32.5. We set both the reference
set and the test set to have five bags, i.e. τ = τ ′ = 5. The
average number of records in each bag is 947.8 with a
standard deviation of 162.3.

We present our results in Fig. 7. We present the results
for three of the nine subjects whose changes were easier
to see. For all subjects, the change points were detected
with a plausible accuracy. Although alerts were not
raised for all of the change points, we could still see a
raise in the change-point scores when there is a change.
Also, we could take note of the fact that no alerts were
raised when the change-point score is oscillating rapidly.
This is one of the advantageous effects of using confi-
dence intervals to test for significant changes. Another
advantage is that we could accurately raise alerts even
when the change-point score is lower compared to those
of other change points. This would not be achievable if
we were to fix the threshold value σ to a single value.
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(a) Dataset 1

5 10 15 20

5
10

15
20

Bag Number

B
ag

 N
um

be
r

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Axis 1

A
xi

s 
2 1

2
3

4

5
6 7

8
9

10 11
1213

14
15

16
17

18
19

20

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time Index

C
ha

ng
e 

P
oi

nt
 S

co
re

(b) Dataset 2
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(c) Dataset 3
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(d) Dataset 4
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(e) Dataset 5

Fig. 6. The result of our method applied to five synthetic datasets. Left: a symmetric matrix whose ij elements is the
EMD between bag i and bag j where darker color indicates further distance. Center: using the distance values on
the left, the bags are mapped to a two dimensional space using multi-dimensional scaling. The number of the bag is
indicated. The first ten bags are drawn with circles, and the next ten bags are drawn with triangles. Right: the change
point scores are plotted. The black solid line is the change-point score, the gray shades are the 95% confidence
intervals, and the cross mark shows where an alert was raised.
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1 2 3 4 5 6 6 8 9 10 11 12
7 7

(a) Subject 1

1 2 3 4 5 6 6 8 9 10 11
7 7

(b) Subject 2

1 2 3 4 5 6 6 8 9 10 11 12
7 7

(c) Subject 3

Fig. 7. Results for the PAMAP Dataset. The activity IDs
are indicated on the horizontal axis. Gray vertical dashed
lines indicate where the change points are, and the cross
marks indicate where our method raised alarms.

5.3 Sequence of bipartite graphs: synthetic data

There have been numerous works on detecting changes
in a stream of bipartite graphs. In [22], Sun et al. take an
information theoretic approach to discover communities
and detect changes in dynamic networks in an online
manner. In [23], [24], dissimilarity measures of bipartite
graphs are proposed by comparing the so-called “be-
havior” (or “activity”) vectors, which is the principal
eigenvector of the correlation matrix (or dependency
matrix in the latter case). All of these works assume
that the graphs that they deal with have the same nodes
throughout the whole sequence. In other words, they
focus on detecting anomalous changes in how the nodes
communicate with each other in a community whose
members do not change. This becomes a bottleneck when
the size of the network is overly massive since it becomes
practically impossible to analyze the whole network.

In these situations, an alternative approach would be
to observe the network for a fixed amount of time, and
then analyze the network that was observed in that time
window. For example, if the task were to monitor a large
e-mail network, like the one in the Enron dataset [25], we
might consider analyzing the time-series on a daily basis,
in which case we work with a bipartite graph whose
source and destination nodes are comprised of people
who sent and received e-mails on that day, respectively.
Obviously, this would mean that the bipartite graphs for
different days have different nodes of different numbers.

Here, we will demonstrate that our method could be

applied to detect changes in a time-series sequence of
bipartite graphs that have different numbers of nodes.
More specifically, we extract features from each node
or edge and then consider the feature vectors obtained
for each bipartite graph as a bag, and then apply our
method. Our rationale for doing this is that changes
in the underlying communication patterns of bipartite
graphs often cause changes in features obtained at each
node. Our method does not have the capability of
discovering communities as in [22] or specifying the
nodes that largely contribute to the detected change as
in [23], but if the task is solely to detect changes, our
method would often suffice. Also, the method in [22]
requires that all of the nodes in the network are known
beforehand and that the network is always comprised
of the same members. This assumption is unrealistic to
make for many situations in the real world.

First, we evaluate our method with synthetic data
simulating several situations. As mentioned above, we
consider a situation where we are continuously observ-
ing communication among senders and receivers. We
split the sequence with a fixed time window, and for
each subset of data in each window, we form a bipartite
graph. Therefore, each bipartite graph that we work with
is a representation of communication that took place in
the respective time windows.

When monitoring dynamic bipartite graphs, one’s in-
terest lies in discovering changes in two things: a change
in the amount of traffic in the network and a change
in how the source nodes and the destination nodes are
forming groups, or clusters. Therefore, we design our
synthetic data to simulate both situations. An example
is shown in Fig. 8(a). It is a representation of a bipartite
graph that has 24 source nodes and 20 destination nodes.
Its ij element is the weight of the edge between the ith
source node and jth destination node, which represents
the number of queries that went from source node i
to destination node j. Darker colors indicate heavier
weights. We think of a setting where we can assume
that both the source nodes and the destination nodes are
comprised of clusters. We will use the word community
to refer to groups of source nodes and destination nodes
that are communicating in a similar way. For example, if
we rearrange the nodes in Fig. 8(a), we obtain Fig. 8(b).
Here, we can clearly see that the source nodes and the
destination nodes are comprised of 3 and 2 clusters,
respectively, and that there are 6 communities.

In our experiment, we consider bipartite graphs that
have two source node clusters and two destination node
clusters. Let ns and nd denote the number of source
nodes and destination nodes, respectively. At each time
step, both ns and nd are generated from a Poisson
distribution of λ = 200, meaning that the number of
source nodes and destination nodes vary over time. For
each community, we assume that the weight of the edges
follows a Poisson distribution, and we will denote the
parameter of the Poisson distribution for the community
comprised by source node cluster k and destination node



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

(a) Observed (b) Rearranged

Fig. 8. An illustrative representation of the bipartite graph.
(a) When observed, the clusters of nodes that are formed
in a bipartite graph may not be obvious. (b) When re-
arranged, we could see that the source nodes and the
destination nodes are formed in groups.

Fig. 9. An example of a bipartite graph that shows five
source nodes sending queries to four destination nodes.
The numbers of the nodes are labeled in the circle. The
numbers in the boxes are the weights of the edges.

cluster l as λk,l. We will also denote the number of source
nodes in each partition as αns and (1−α)ns (0 ≤ α ≤ 1),
and the number of destination nodes in each partition
as βnd and (1− β)nd (0 ≤ β ≤ 1). The initial state is set
to λ1,1 = 10, λ1,2 = 3, λ2,1 = 1, λ2,2 = 5, α = 0.5, β = 0.5.
We observe 200 points in total, and for every 20 points
we alter the parameters to simulate a change point.
The magnitude of the changes gradually becomes larger
in later time steps, making the changes more obvious
and easier to detect at later time steps. We will change
parameters λ1,1, λ1,2, λ2,1, λ2,2, α, β in several different
ways as described below to simulate different situations.

• Dataset 1: The partitioning of the source nodes and
the destination nodes do not change, but the total
amount of traffic changes.

∀k, l, λk,l =

{
a+ 1 (t = ta,1, . . . , ta,2),

1 (otherwise),

where ta,1 = 20(a+ 1) + 1 and ta,2 = 20(a+ 1) + 20,
and a = 1, . . . , 5. Here, α and β do not change.

• Dataset 2: The partitioning of the source nodes and
the destination nodes changes. The total amount of
traffic also changes since λk,l do not change.

α = β =

{
0.5 + 0.1a(−1)ν (t = ta,1, . . . , ta,2),

0.5 (otherwise),

where ta,1 = 20(a + 1) + 1, ta,2 = 20(a + 1) +
20, a = 1, . . . , 5, and ν ∈ {0, 1} is a random variable
which takes one of the two values with the same
probability. Here, λk,l do not change.

• Dataset 3: This is a variant of dataset 2. The par-
titions are changed in the same way, but the total
amount of traffic stays the same. Here, instead of
sampling from Poisson distributions with param-
eters λ1,1, λ1,2, λ2,1, λ2,2, we fix the total weight of
the edges to 100,000 and assign them to each com-
munity according to the ratio of the parameters
λ1,1, λ1,2, λ2,1, λ2,2. In each community, the weights
of the edges are distributed randomly.

• Dataset 4: Here, we do not change α and β, so
the partitioning does not change. Instead, we inter-
change the values of λ1,1, λ1,2, λ2,1, λ2,2 in different
ways.

For each bipartite graph that we observe, we obtain
the seven features listed below. We will try to detect the
changes using these features.

1) Degrees of source nodes:
For each source node, the number of destination
nodes that are connected to that node is counted.
For example, in Fig. 9, source node 1 is connected
to 2 destination nodes, so its degree is 2.

2) Degrees of destination nodes:
For each destination node, the number of source
nodes that are connected to that node is counted.
In Fig. 9, destination node 1 is connected to 2 source
nodes, so its degree is 2.

3) Second degrees of source nodes:
For each source node, we count the number of
source nodes connected to that node via a desti-
nation node. In Fig. 9, source node 1 is connected
to destination nodes 1 and 3, which are connected
to source nodes 2, and source nodes 4 and 5,
respectively. Therefore, its second degree is 3.

4) Second degrees of destination nodes:
For each destination node, we count the number
of destination nodes connected to that node via
a source node. In Fig. 9, destination node 1 is
connected to source node 1, which is connected to
destination node 3. Therefore, its second degree is
1. Note that source node 2 connects to destination
node 1, but does not connect to any other destina-
tion nodes.

5) Total weight of the edges coming out from a source
node:
For each source node, we take the total weight of
the edges coming out from that node. In Fig. 9, it
would be 20 for source node 1, and 9 for source
node 4.

6) Total weight of the edges going in to a destination
node:
For each destination node, we take the total weight
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of the edges coming into that node. In Fig. 9, it
would be 14 for destination node 1, and 26 for
destination node 3.

7) Weight of each edge:
Here, we simply take the weight of each edge.

Since each of the statistics are computed for each
node or edge and the number of nodes and edges differ
for each graph, we analyze each graph using bags.
The change-point scores calculated using Eq. (17) for
datasets 1, 2, 3, and 4 are shown in Fig. 10. The change-
points are indicated with dashed lines and the alerts are
indicated with cross marks. In all situations, the changes
are accurately detected when using statistics 5 and 6
as the features. This is even true for change-points in
earlier stages where the magnitude of changes are small.
Statistics 3 and 4 do not seem to be working in this
case since the synthetic data that we produced do not
consider the correspondence between the source nodes
and the destination nodes.

5.4 Case study: ENRON corpus
Next, we examine the effectiveness of our method using
the ENRON Corpus [25]. This is a dataset that contains
all the email communications in Enron Inc. from January
1999 to July 2002. This was right before the collapse of
Enron Inc. and we could expect to see some dramatic
change points in how people communicated each other
using emails. Following [25], we cleaned the dataset for
use in this experiment by removing duplicate emails
and computer-generated messages. We also focused our
experiment on records from July 1, 2000 to May 31,
2002 since the amount of emails before and after this
period was very scarce. The resulting corpus included
278,274 messages. We constructed the bipartite graphs
on a weekly basis. The duration of the reference set and
the test set are five weeks and three weeks, respectively.

For each bipartite graph, we computed the same seven
statistics that we used in the previous section. The
change-point scores calculated with Eq. (17) are shown
in Fig. 11 along with the dates of critical events that
involved Enron Inc. labeled with dashed lines. From
the results, we could see that the change-point scores
coincide with many of the important events. Also, note
that there are two columns with X’s in the table next
to the graph. The X’s in the left column indicate that
the corresponding events were detected by our method
with at least one of the seven features, and the X’s in
the right column indicate that the events were detected
by [22]. We were able to detect most of the events that
were detected in [22] along with some extras that were
not detected in [22]. It is most likely valid in saying that
we have detected the changes in communication patterns
that happened along with these events.

6 CONCLUDING REMARKS
In this paper, we proposed a scheme for nonparametric
change-point detection in the setting where each ob-
servation is a bag of data, i.e. a collection of random

variables. By modeling each bag in the form of signa-
tures, and employing EMD as a distance measure, the
change-point scores are efficiently calculated using the
distance-based information estimators. To test for the sig-
nificance of the changes, we used the Bayesian bootstrap
to construct confidence intervals of each change-point
score. Through experimental studies, we have shown
that our method could be applied to a wide range
of datasets, even for detecting changes in a stream of
bipartite graphs. Although we did not discuss about it
in this paper, we have used this method to detect cyber
attacks in a darknet, and it has performed very well.

An important future challenge would be to implement
an online feature selection algorithm. It might often
occur that only a couple of dimensions of x are rele-
vant to changes, while the other features are completely
irrelevant. There could also be an underlying structure
in a lower dimension d′ < d that separates normal and
abnormal behaviors more correctly. Using data that have
the class labels (“change” or “no change”) for each time
step, which could be obtained in an online manner, we
could think of learning a mapping and apply it on all
x before constructing signatures in order to improve the
accuracy of this change-point detection scheme.

Also, another future work might be to consider a
situation where the elements in each bag are correlated.
In time-series analysis, signals are often preprocessed
by removing the predictable component. The resulting
innovation time series is an i.i.d. sequence [26], and
this is the assumption we have made in this paper.
However, considering correlation in the data could be
an interesting topic for additional research.

APPENDIX A
BAYESIAN BOOTSTRAP

Suppose we have a sample x = (x1, x2, . . . , xn), which
is viewed as n i.i.d. realizations of a random variable X .
The Bayesian bootstrap can be used when the compu-
tation of the statistic of our interest involves the “prob-
ability” (or the “weight”) associated with each value in
x. An example of this is the sample mean µ̂. In the stan-
dard bootstrap setting, if we let fi be the proportion of
times xi is drawn in a bootstrap replication, the sample
mean for that bootstrap replication can be computed as∑n

j=1 fjxj . Here, each fi can be viewed as the probability
associated with each xi which is obtained as a result of
each resampling process. In the Bayesian bootstrap, on
the other hand, we evaluate the same statistic by directly
assigning a probability to each xi.

Let v = (v1, . . . , vK) be the vector of all possible
distinct values of X , and let θ = (θ1, . . . , θK) be the
corresponding vector of probabilities, i.e.,

P (X = vk|θ) = θk,
∑
k

θk = 1.

Let x be an i.i.d. sample and let nk be the number of xi
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Fig. 10. Results for synthetic datasets of bipartite graphs. The artificial change-points are indicated with vertical dashed
lines, and the alerts are indicated with cross marks. All the change-points are accurately detected with at least one of
the features, regardless of the magnitude of the changes. In some cases, the change-point scores take high values
when there is no change, but the confidence intervals are properly functioning to avoid raising false alerts.
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Fig. 11. Results for ENRON Corpus. Some important events are indicated with vertical dashed lines, and the specific
dates are listed on the right. We could see that the change-point scores coincide with many of the events.

equal to vk. Then we have,

P (x|θ) ∝
K∏

k=1

θnk

k . (23)

Letting the prior distribution of θ be

P (θ) ∝
K∏

k=1

θlkk , (24)

the posterior distribution of x becomes

P (θ|x) ∝
K∏

k=1

θ
(nk+lk)
k . (25)

By letting all nk = 1 and lk = −1, which means that the
prior distribution in Eq. (24) would be an improper prior,
P (θ|x) becomes Dir(1, 1, . . . , 1). As a result, the Bayesian
bootstrap produces the posterior probability gi for each
xi, i.e. {g1, . . . , gn} ∼ Dir(1, 1, . . . , 1), and then computes
the statistic using this probability, e.g.

∑n
j=1 gjxj in the

sample mean case. The rationale for making all nk =
1 is that probabilities corresponding to the same value
would be added up. Also, by making all lk = −1, we
can guarantee that the mean, variance, and correlation
of fi and gi would be very similar.

E[fi] = E[gi] =
1

n
,

var[fi] = var[gi] ·
n+ 1

n
=
n− 1

n3
,

cor[fi, fj ] = cor[gi, gj ] = − 1

n− 1
.

APPENDIX B
BAYESIAN BOOTSTRAP FOR WEIGHTED DATA

Let wi be the weights assigned to each xi in x. In the
standard bootstrap setting, instead of sampling from
x randomly, we would want to draw samples from x
according to the weights wi. In other words, the prob-
ability of drawing xi from x would be wi/w0, where
w0 =

∑n
i=1 wi. Since the number of times xi is drawn

in each bootstrap sample, say mi, follows a multinomial
distribution, i.e.

P (m1,m2, . . . ,mn) =
1

Z

n∏
i=1

ρmi
i

where ρi = wi/w0, the mean and the variance of the
proportion of times xi is drawn in a bootstrap sample
(which we will again denote as fi) would be as follows.

E[fi] = ρi, var[fi] =
ρi(1− ρi)

n
.

On the other hand, the mean and the variance of a
Dirichlet distribution with parameters α = (α1, . . . , αn),
i.e. {g1, . . . , gn} ∼ Dir(α1, . . . , αn), are given as follows.

E[gi] =
αi

α0
,

var[gi] =
αi(α0 − αi)

(α0)2(α0 + 1)
=
E[gi](1− E[gi])

α0 + 1
,
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where α0 =
∑n

i=1 αi. Therefore, if we let αi = nρi, we
would have the following relation.

E[fi] = E[gi] = ρi,

var[fi] = var[gi] ·
n+ 1

n
=
ρi(1− ρi)

n
,

cor[fi, fj ] = cor[gi, gj ] = −
√
ρiρj√

(1− ρi)(1− ρj)
.

ACKNOWLEDGMENTS

The authors would like to express our special thanks to
the editor and reviewers whose comments led to valu-
able improvements of the manuscripts. We are also grate-
ful to Ken Takano and Takahiro Nukushina for helping
programming. Part of this work was supported by JSPS
KAKENHI No. 25120009, 25870811, and 26120504, and
by Proactive Response Against Cyber-attacks Through
International Collaborative Exchange (PRACTICE), Min-
istry of Internal Affairs and Communications, Japan.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, p. 15,
2009.

[2] M. E. Basseville and I. V. Nikiforov, “Detection of abrupt changes:
theory and application,” 1993.

[3] A. Patcha and J.-M. Park, “An overview of anomaly detection
techniques: Existing solutions and latest technological trends,”
Computer Networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[4] R. Fujimaki, T. Yairi, and K. Machida, “An approach to space-
craft anomaly detection problem using kernel feature space,” in
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM, 2005, pp. 401–410.

[5] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland,
“Data mining for credit card fraud: A comparative study,” De-
cision Support Systems, vol. 50, no. 3, pp. 602–613, 2011.

[6] M. Davy and S. Godsill, “Detection of abrupt spectral changes
using support vector machines an application to audio signal
segmentation,” in Acoustics, Speech, and Signal Processing (ICASSP),
2002 IEEE International Conference on, vol. 2. IEEE, 2002, pp. II–
1313.

[7] F. Gustafsson, “The marginalized likelihood ratio test for de-
tecting abrupt changes,” Automatic Control, IEEE Transactions on,
vol. 41, no. 1, pp. 66–78, 1996.

[8] J. Takeuchi and K. Yamanishi, “A unifying framework for detect-
ing outliers and change points from time series,” IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 4, pp. 482–492, 2006.

[9] F. Desobry, M. Davy, and C. Doncarli, “An online kernel change
detection algorithm,” Signal Processing, IEEE Transactions on,
vol. 53, no. 8, pp. 2961–2974, 2005.

[10] V. Moskvina and A. Zhigljavsky, “An algorithm based on singular
spectrum analysis for change-point detection,” Communications in
Statistics-Simulation and Computation, vol. 32, no. 2, pp. 319–352,
2003.
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