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Abstract—Networks are powerful instruments to study com-
plex phenomena, but they become hard to analyze in data that
contain noise. Network backbones provide a tool to extract the
latent structure from noisy networks by pruning non-salient
edges. We describe a new approach to extract such backbones.
We assume that edge weights are drawn from a binomial
distribution, and estimate the error-variance in edge weights using
a Bayesian framework. Our approach uses a more realistic null
model for the edge weight creation process than prior work. In
particular, it simultaneously considers the propensity of nodes
to send and receive connections, whereas previous approaches
only considered nodes as emitters of edges. We test our model
with real world networks of different types (flows, stocks, co-
occurrences, directed, undirected) and show that our Noise-
Corrected approach returns backbones that outperform other
approaches on a number of criteria. Our approach is scalable,
able to deal with networks with millions of edges.

I. INTRODUCTION

In this paper, we present a new algorithm to extract the
significant edge backbone from a noisy complex network.

Scientists studying complex phenomena have discovered
networks as a powerful tool for their analysis [2]. Examples
are the discovery of functional modules in networks [11], the
prediction of missing connections [22] and the modeling of
information cascades [7]. Such tools have been applied to
a vast and diverse set of applications, ranging from cultural
analysis [30] to viral marketing [9] and the improvement of
the efficiency of road networks [43].

However, these applications face a number of challenges.
One among the most prevalent ones concerns data quality.
In recent years, there has been an exponential increase in
production and recording of human data. This increase has
enabled the success of large scale network analysis in the
first place. However, the combination of data from disparate
sources with different measurement techniques and biases
means that connections retrieved from these data are noisy,
yielding networks in which many nodes have a large degree
such that the underlying structure becomes difficult to parse,
because all entities connect to each other.

This is the scenario that network backboning algorithms
address. A network backboning algorithm is an algorithm that
takes as input a dense and noisy network and returns a reduced
version of it. The reduction is performed with the aim of
highlighting the underlying structure of the network, removing
spurious connections. This network backbone can now be used
to provide a clearer image of the phenomenon the network
relates to, that can be studied by standard network analysis

Fig. 1. An example of network backbone.

tools, such as community discovery, link prediction, or other
network algorithms.

Consider Figure 1 as an example. This is a network with
only 151 nodes, where virtually every possible connection is
expressed in the data. However, the vast majority of these
connections are weak and do no represent a significant inter-
action between the nodes. In other words, these edges reflect
noise. The noisy connections are represented as thin black
lines. A network backboning algorithm aims at evaluating the
significance of each edge weight for the two nodes sharing
the connection. In the figure, the backbone is represented by
the wide red edges that were determined to be statistically
significant. Once we prune noisy edges from the network,
the underlying structure emerges more clearly, and it can be
used as input of network analysis algorithms. In this case
we used a community discovery algorithm that attempts to
retrieve the ground truth classes of the nodes, represented
by the node color. Such task cannot be performed in the
original network, because the density of connections leads the
community discovery algorithm to classify all nodes into the
same giant community.

As an example, we will consider the task of predicting
inter-occupational flows of jobs-switchers. A way to predict
these flows is to build a network that connects occupations
that require common skills and tasks. However, certain skills
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are so generic that they show up in most occupations, leading
to spurious connections. That is, the likelihood of having
such skills in common is large, even for random pairs of
occupations. A good backboning algorithm will drop these
random connections. The resulting backbone will then be a
better predictive tool for our task than the unfiltered network.

Current approaches to network backboning can be clas-
sified into two categories: generalist and specialized. In the
specialized class, the algorithm focuses on solving a specific
problem and it optimizes the backbone to fit the particular
problem definition. This paper provides a generalist back-
boning approach, where the algorithm is agnostic about the
specific application. However, it is particularly suited for ap-
plications in which edge strengths have a count-data structure.

Generalist network backboning algorithms can use one
of two approaches. In the first, the algorithm is defined
structurally: the algorithm trusts that there is no noise in the
edge weights and it prunes the edges according to a criterion
that lets the latent structure of the network emerge. Prominent
exponents of this class are the High Salience Skeleton (HSS)
[14] and the Doubly-Stochastic Transformation (DST) [37].
This paper belongs to the second category, where we want
to assess the statistical significance of an edge weight to
decide whether to prune the edge or not. The state of the
art methodology in this class is the Disparity Filter [34]. In
the Disparity Filter (DF), edge weights are tested against a
null model of the node emitting them: if an edge weight is
significant compared to the total outgoing weights of the node,
the edge is kept in the backbone.

In our approach, which we call Noise-Corrected (NC)
backbone, we assume edge weights are drawn from a binomial
distribution. Then, we estimate the probability of observing
a weight Nij connecting nodes i and j using a Bayesian
framework. This framework enables us to generate posterior
variances for all edges. This posterior variance allows us to
create a confidence interval for each edge weight. In practice,
we drop an edge if its weight is less than δ standard deviations
stronger than the expectation, where δ is the only parameter
of the NC algorithm. However, the confidence intervals the
algorithm produces can also be used more generally, for
instance to determine whether two edges differ significantly
from one another in strength.

Our approach improves over DF in several respects. First,
our null model does not only consider the propensity of the
origin node to send connections, but also the propensity of the
destination node to receive connections. In the DF, links con-
necting peripheral nodes to hubs are kept, because periphery-
hub connections always seem strong from the peripheral node’s
perspective, even though the strong attraction of the hub
makes it likely that such edges form randomly. However,
the much less-anticipated peripheral-peripheral connections
between nodes are more likely to be dropped in the DF
backbone. The NC backbone preserves the latter connections
at the expense of the former. Second, we will argue that we use
a more realistic null model for edge weights than DF. Finally,
the NC backbone outperforms the DF backbone in real world
applications.

We provide evidence in favor of the last claim in the
experimental section. We believe that a good backbone satisfies

three properties. First, a good backbone must have a reasonable
network topology. What is “reasonable” is hard to define but,
arguably, it is desirable to prevent that nodes get isolated by
dropping the entirety of their connections. NC satisfies the
criterion in all networks by retaining, for a given number of
edges, a high number of nodes under most circumstances.
Second, a good backbone has to highlight the underlying prop-
erties of the original data, and therewith make modeling efforts
easier. We show that NC backbones improve the predictive
power of simple models in our network datasets, more so than
any alternative. Finally, a good backbone should be stable,
as the underlying phenomenon does not change drastically
between t and t + 1. The NC backbones have a stability
equivalent to the one of DF backbones. These tests have been
run on networks of countries, connected by: business travel,
trade, similarity in export baskets and so on. We chose this
application because country networks belong to different types
(flows, stocks, co-occurrences) and have different topological
properties (directed, undirected). Moreover, it is easier to
evaluate the quality of a backbone since we have reasonable
priors about which countries should be connected with which
others. Finally, country networks are widely used in a variety
of applications, e.g., economic development [17] and aid [11].
We start our analysis by showing on synthetic networks that
the NC backbone recovers the original network in presence of
large amounts of noise better than any alternative.

The NC backbone implementation is able to scale to
millions of edges in less than two minutes. This shows the
readiness of our method to be deployed to real world problems.
The implementation of the NC backbone is freely available
as a Python module1. To ensure result reproducibility, we
also release some of the country networks used in this paper.
Pursuant to contractual obligations we are unable to provide a
release of the full dataset.

II. RELATED WORK

Network backboning is a problem related to Principal
Component Analysis (PCA) [18]. PCA is used to reduce the
dimensionality of a matrix: to decompose it in a smaller
matrix that still represents the original data as well as possible.
A network backbone aims at doing the same for network
structures. The current network backboning approaches were
recently reviewed in [16]. The classic ways to do network
backboning are: establishing a naive threshold to prune edges
with low weights, calculate the maximum spanning tree, or
applying k-core decomposition, where nodes with degree lower
than k are recursively removed from the network [33].

We can divide network backboning methods into two
classes: generalist and specialized. In the generalist class we
have methods that reduce the dimensionality of the edge set
to let the underlying structure of the network emerge [15].
This is usually useful to simplify “hairballs” where the real
structure (be it community structure rather than core-periphery)
is hidden in noise. Under this category we find the Disparity
Filter [34], the Doubly-Stochastic transformation [37], and the
High Salience Skeleton [14]. This is the literature we are
addressing here, so these methods will be considered more
in depth in Section III-B.

1http://www.michelecoscia.com/?page id=287
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In the second class, we have methods that were developed
with a very specific problem definition in mind. Here, the
analyst is not interested in the overall general structure of the
network hidden behind the noise, but in a specific application
of an algorithm. For instance, one method sparsifies graphs for
the task of inferring the influential nodes in a social network
[23], sometimes known as “graph simplification” [6]. In other
cases, the backbone is discovered from the activities of nodes,
rather than from the edge weights [8]. Related methods focus
on graph compression, which also reduces the set of nodes
for very large graphs [38]. Graph sampling [21] can be used
for local-first algorithms and also carried out on data streams
[1]. Finally, there has been some work on defining backbones
in the emerging field of multilayer network analysis [12].
Multilayer networks are networks in which there are multiple
edge types [4], [19], and backbones have to also take the inter-
layer couplings into account.

To find the backbone of a network is very often the first
step of the entire network analysis framework. As such, the
application scenarios of network backboning are many, and di-
verse. We can find network backboning methods used in online
systems [42], cultural analysis [30], microbial co-occurrence
networks [10], query-dependent graph summarization [35], and
to boost clustering [32].

III. BACKGROUND

A. Problem Definition

The fundamental data structure in this paper is a weighted
graph G = (V, E , N), where V is the set of vertices; N ⊆ R+

is the set of non-negative real edge weights; and E is a set of
triples (i, j, n) with i, j ∈ V and n ∈ N . Each triple represents
an edge. Let Nij be the weight of the edge connecting nodes
i and j. Furthermore, let subscript “.” indicate a summation
over the omitted dimension, i.e.: Ni. =

∑
j Nij is the total

outgoing weights of i; N.j =
∑
j Nij is the total incoming

weights of j; and N.. =
∑
i,j Nij the total weights in the

network. Edges can be directed – meaning (i, j, n) 6= (j, i, n)
–, or undirected – meaning (i, j, n) = (j, i, n).

In this paper, we aim at solving the problem of extracting
the backbone from a dense complex network. A backbone
is informally defined as a subset of nodes and edges of the
original network that contains the largest possible subset of
nodes and the smallest possible subset of salient connections.
Formally:

Problem Definition Given a weighted graph G = (V, E , N),
find a graph G∗ = (V∗, E∗, N∗), such that E∗ ⊂ E , and:

• |IG∗ | ≈ |IG |, where IG is the set of isolates in graph
G (Coverage);

• f (E∗,V∗) > f (E ,V), where f (.) is the fit of a
prediction task (Quality);

• D (E∗1 , E∗2 , ) < D (E1, E2, ), where G1 and G2 are two
independent measurements of G and D (.) a distance
metric (Stability).

B. State of the Art

In this section we present the network backboning algo-
rithms with which we compare our proposed methodology
more in depth. We focus exclusively on methods for generic
backbone extractions, which are used more often in network
science. The main purpose of our method, as we describe in
Section IV, is an accurate estimation of the amount of noise in
the edge weights. Once noise is estimated, one can filter out
the edges whose weight is not sufficiently different from the
random benchmark, thus obtaining a noise-reduced backbone.

Facing the problem of filtering connections in dense net-
works, the simplest approach is to remove all edges whose
weight is lower than an arbitrary threshold δ. We call this the
“Naive” approach. The Naive approach has several downsides.
In most real-world weighted networks, weights are broadly dis-
tributed, locally correlated on edges incident to the same node,
and nontrivially coupled with topology [34], [3]. This is true
also for the networks we use in Section V. Broad distributions
imply the lack of a characteristic scale, rendering the choice
of δ meaningless; local correlations imply the possibility of
discarding valuable information by filtering out entire parts of
the network. For these reasons, the network science community
started developing alternative methodologies.

One such methodology is the calculation of the so-called
“Maximum Spanning Tree” (MST). A MST is the spanning
tree of a connected, undirected graph whose total weighting for
its edges is maximum. A spanning tree is a tree connecting all
vertices of the graph. If T is the MST of G, @T ′s.t.

∑
N∗T ′ >∑

N∗T . Maximum spanning trees are usually extracted with
the Kruskal algorithm [20]. Given its definition, it is easy to
see that the MST satisfies the first condition of our backbone
extraction problem definition: it preserves all nodes and there is
no way to select the same number of edges with a higher sum
of weights. However, maximum spanning trees have several
shortcomings. First, if there are repeated edge weights in the
graph, there could be multiple MSTs. Second, by definition,
a MST is a tree, which might omit fundamental properties of
real world networks such as transitivity and communities [5].

An alternative to Naive and MST backboning was de-
veloped with a two-step algorithm [37]. In the first step the
adjacency matrix of the network is transformed into a doubly-
stochastic matrix by alternatingly normalizing the row and col-
umn values with their respective sums. Then edges are sorted
in descending normalized weight. Edges are added to the back-
bone from strongest to weakest, until the backbone contains all
original nodes in V in a single connected component. We call
this the “Doubly-Stochastic” (DS) method. The DS method
has three downsides. First, it requires the adjacency matrix to
be square, thus excluding bipartite networks. Second, it is not
always possible to transform any arbitrary square matrix into
a doubly-stochastic one [36]. Third, it provides no theoretical
foundation for dealing with noisy weight estimations.

Two of the most used algorithms recently developed in
network science are the Disparity Filter [34] and the High
Salience Skeleton [14] (HSS). The HSS is defined structurally.
For each node, [14] calculates the shortest path tree (SPT)
connecting the node to all other nodes in the network. Then,
the HSS is the linear superposition of all SPTs, i.e. HSS =∑
v∈V

SPT (v). Also the HSS does not explicitly estimate the



noise in the edge weight estimation, and thus noisy edges could
degenerate the final HSS.

The Disparity Filter (DF) determines whether an edge
carries a significant share of the total edge weights that enter
or depart from a given node. It does so node by node. The
significance of an edge is hence determined with respect to
a single node, as opposed to a node-pair. Edges are first
expressed as shares of a node’s total incoming edge weights.
Next, these shares are compared to a null-model, yielding p-
values for how far a share exceeds its null-model’s prediction.
The null-model assumes that the distribution of node’s k
edge shares are generated by a random process where k − 1
points are randomly drawn from a uniform distribution. These
points divide the unit interval into k pieces. The length of
each piece now represents one of the edge weights. Note that
this is equivalent to assuming that edge weights are drawn
from an exponential distribution. For each edge, the filter
determines how likely it is that the k − 1 other edges would
leave sufficient edge-weight-share for the edge to assume the
weight it has or more. This likelihood acts as a p-value for
how significantly an edge weight deviates from the null-model
prediction. These p-values are then used to prune insignificant
edges. In practice, an edge is tested twice to verify whether
its weight is significant for either of the connected nodes
as emitters or receivers. However, the null-model ignores the
interaction between source and target node.

IV. METHODS

We refer to our method as Noise-Corrected (NC) backbone.
The method is based on [25], which uses the null-model
described here to deal with attenuation biases that arise from
measurement errors in the context of regression analysis. When
comparing to the state of the art in network backboning, the
NC backbone most closely relates to the Disparity Filter. As in
the DF, we compare edge weights to a null model, but we for-
mulate this null model at the level of node pairs, not individual
nodes. The NC is constructed in three steps. First, we transform
edge weights such that they are expressed in deviation from
their null-model prediction. Second, we calculate a standard
deviation for these transformed edge weights. Third, we use
these standard deviations to construct p-values that are then
used to prune edges.

Let us think of edge weights as the sum of unitary interac-
tions that occur with constant, edge-specific, probability Pij .
Furthermore, take the total interactions emitted and received
by a node (i.e., a node’s summed incoming or outgoing edge
weights) as given. Using “ˆ” to denote observed quantities,
the expected number of interactions in node pair (i, j) can be
written as:

E[Nij ] = N̂i.
N̂.j

N̂..

That is, we assume that each interaction that starts from
node i finds destination node j with a probability that equals
the share of total interactions in the network received by j. We
compare the observed to expected edge weights to calculate
an edge weight’s lift [40]:

Lij =
N̂ij

E[Nij ]

The lift tells us how unexpectedly high an edge weight is
given the weights of i and j. When lift equals one it means that
the edge has the expected weight. Values from one to infinity
indicate a stronger than expected connection, from one to zero
a weaker than expected connection. As one can see, the lift is
an asymmetric skewed measure, where a value of 0.1 is equally
far from one on the left as 10 is from the right. We therefore
transform Lij , using the following monotonic mapping:

L̃ij =
Lij − 1

Lij + 1
=
κN̂ij − 1

κN̂ij + 1
(1)

where κ = 1
E[Nij ]

. The transformation in Eq. 1 ensures
that the lift becomes a symmetric measure centered on zero.
In our example, .1 becomes equal to −0.81 and 10 becomes
equal to 0.81.

We now need to compute the variance of L̃ij , which is
given by:

V
[
L̃ij

]
= V

[
κN̂ij − 1

κN̂ij + 1

]
.

Applying the delta method, we get:

V
[
L̃ij

]
= V [N̂ij ]

2
(
κ+ N̂ij

dκ
dN̂ij

)
(
κN̂ij + 1

)2


2

with

dκ

dN̂ij
=

1

N̂i.N̂.j
− N̂..

N̂i. + N̂.j(
N̂i.N̂.j

)2 .
We now have to estimate V [N̂ij ]. Given that we have

interpreted edge weights as the sum of independent unitary
interactions, Nij follows a Binomial distribution with variance:

V [Nij ] = N..Pij (1− Pij) (2)

Pij is unknown, but can be estimated as the observed
frequency with which interactions occur:

P̂ij =
N̂ij

N̂..
.

A problem arises when N̂ij = 0. That is, when edge
weights are zero for certain node pairs. Given that many real-
world networks are sparse, this situation is quite common.
For these node pairs, V [Nij ] = 0, which would suggest that
measurement error is absent in these edges. However, in reality,
there is simply too little information to estimate P̂ij with



sufficient precision. This affects not only cases where edge
weights are zero, but also where information is sparse, i.e.,
when focusing on the interactions among nodes of low degree.
To improve on this, we estimate P̂ij in a Bayesian framework.
That is:

Pr [Nij = nij |N.. = n.., Pij = pij ] =

(
n..
nij

)
p
nij

ij (1− pij)n..−nij

Using Bayes’ law, we get:

Pr [Pij = pij |N.. = n.., Nij = nij ] =

Pr[Nij=nij |N..=n..,Pij=pij ]Pr[Pij=pij |N..=n.. ]∫ 1
0
Pr[Nij=nij |N..=n..,Pij=qij ]Pr[Pij=qij |N..=n.. ]dqij

(3)

Choosing a BETA [α, β] distribution, the conjugate prior
of the Binomial distribution, as a prior for Pij , the posterior
distribution is also a BETA distribution. In particular, the
posterior distribution of Pij becomes:

Pij ∼ BETA [nij + α, n.. − nij + β] . (4)

We still have to choose values for α and β that would
give plausible prior expectations for the mean and variance
of Pij . To do so, assume that the total weight of i and j
is given. In other words, think of edge weights as arising
from a process in which, each time node i increases its total
weight by one, it draws a node j at random from the pool
of possible nodes. That is, edge weight generation follows
a hypergeometric distribution. This gives the following prior
means and variances for Pij :

E [Pij ] = E

[
Nij
N..

]
=

1

N..
E [Nij ] :=

1

N..

Ni.N.j
N..

V [Pij ] =
1

N2
..

V [Nij ] :=
1

N2
..

Ni.N.j (N.. −Ni.) (N.. −N.j)
N2
.. (N.. − 1)

.

The := equality indicates where we make our assumptions.
From the BETA [α, β] distribution, we get:

E [pij ] = µ =
α

α+ β
(5)

V [pij ] = σ2 =
αβ

(α+ β)
2
(α+ β + 1)

(6)

Solving for α and β, we get:

α =
µ2

σ2
(1− µ)− µ (7)

β = µ

(
(1− µ)2

σ2
+ 1

)
− 1 (8)

Eqs. 4, 5, 6, 7 and 8 now define a posterior expectation for
Pij for each node pair. We can use this posterior expectation
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Fig. 2. Two examples of threshold setting for the Country Space (left) and
Business (right) networks, which will be presented in Section V-B.
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Fig. 3. A toy example of the difference between the Noise-Corrected and
the Disparity Filter backbones.

of Pij instead of P̂ij to recalculate variances of edge weights
in Eq. 2. Because the posterior expectation of Pij is always
strictly larger than zero, variance estimates do not degenerate.

At this point we have an estimation of the expected
variance of the edge weight L̃ij : V [cij ]. An edge is kept if and

only if its observed weight is higher than δ

√
V
[
L̃ij

]
. i.e. it

surpasses the expectation by δ standard deviations. δ is the only
parameter of the NC backbone. It has to be set accordingly
to the tolerance to noise that the particular application can
have. To visualize the effect of δ, consider Figure 2. Here

we show the distribution of L̃ij − δ

√
V
[
L̃ij

]
for different

δ values (one to three). Higher δs shift the distribution to the
left. The vertical black bar at zero shows the boundary between
accepted and rejected edges. The acceptance area lies to the
right. Since this is roughly equivalent to a one-tailed test of
statistical significance, common values of δ are 1.28, 1.64, and
2.32, which approximate p-values of 0.1, 0.05, and 0.012.

Now that we have formally defined our method, we can
directly compare it to the Disparity Filter on a toy example.
Consider Figure 3. Here we have a hub connected to five
nodes. Two of them are also connected to each other. The
edges are undirected and their width is proportional to their
weight. The black edges are selected by both the DF and our
NC backbones. The DF backbone furthermore selects the blue
dashed edges connecting the hub (node 1) to the peripheral
nodes. From the perspective of the hub these edges should
be dropped, given that they are expected to arise even under
random edge formation, but when considering the perspective
of the other nodes as emitters, the strength of the connections
to the hub makes them highly unanticipated. On the other hand,

2An alternative approach, implemented in the python package, is to skip the
transformation step described above. p-values follow directly from the null-

model’s Binomial distribution, using N.. as the number of draws and N̂i.N̂.j

N̂2
..

as probability of success. However, in this way we are not able to estimate
the standard deviation of the estimate. This makes impossible, for instance,
to determine if two edges are significantly different from each other.



the NC backbone finds the connection between nodes 2 and
3 more important than connections to node 1. That is because
connecting to node 1 is not extraordinary, given its propensity
to connect to everything, and to dispense high weighted edges.
However, even though the connections 1-2 and 1-3 are stronger
than 2-3, the latter is more unanticipated, because nodes 2 and
3 tend to have low edge weights in general. Hence, the fact
that these weak nodes connect to each other strongly suggests
that this edge represents a deviation from randomness.

We publicly release our implementation as the
backboning Python module. The module contains also the
implementations of the Disparity Filter [34], the High Salience
Skeleton [14], the Doubly Stochastic transformation [37], as
well as Maximum Spanning Tree and naive thresholding.
These are the methods to which we compare the NC backbone
in the following experiment section. The module is available
at the link provided in Section I.

V. EXPERIMENTS

In this section we perform a series of experiments to show
the effectiveness of the Noise-Corrected backbones. We start
by building synthetic networks with added noise, showing how
the NC backbone is able to recover the original edge set in
presence of high levels of noise (Section V-A). Then, we
focus on real-world networks. The data comes from a series of
country-country networks presented in Section V-B. We start
by showing that our edge weight variance estimation correlates
with the actual variance of the edge weight as observed in
the real world, validating our assumed null model (Section
V-C). Then, we compare the NC method with the state of the
art over three criteria of success. As stated in the problem
definition, a good backbone is a backbone that: (a) produces
the largest possible node coverage of the network (Topology –
Section V-D); (b) improves the usefulness of the network data
for prediction tasks (Quality – Section V-E); and (c) reduces
topology fluctuations in time (Stability – Section V-F). We
validate the scalability of our approach in Section V-G.

A. Synthetic Networks

In this section we test the performance of each method
in recovering the backbone of synthetic networks. In this
scenario, we have perfect information about which edge is
part of the actual network and which edge reflects noise.
We generate several Barabasi-Albert random networks with
average degree 3 and 200 nodes. We set η as our noise
parameter. Each actual edge in the Barabasi-Albert network
carries the following weight:

Nij = (ki + kj)× U(η, 1),

where ki is the degree of node i, and U(η, 1) is a number
extracted from a uniform distribution with minimum η and
maximum 1. In practice, we use a fraction of at least η of the
sum of the degrees of the connected nodes. In this way, we
ensure broad edge weight distributions locally correlated with
the network topology. Then, the complement of the adjacency
matrix is filled with noisy edge weights, which are defined
with the same formula, only changing the uniform element
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Fig. 4. Recovery of the true backbone of synthetic Barabasi-Albert networks.

with U(0, η). In practice, a noisy edge can have at most a
fraction η of the degrees of i and j.

For all methods we set the parameters (if any) so that
the backbone will return the same number of edges as the
underlying actual network. Our quality target is the Jaccard
coefficient between the set of edges of the original non-noisy
network and the backbone. It is equal to one if the two edge
sets are identical, and to zero if they do not share a single
common edge.

Figure 4 reports the results. For very low amount of noise,
the two best performing solutions are the Disparity Filter
and the naive thresholding. However, our Noise-Corrected
backbone is more resilient to increasing noise with the best
overall performance, while also performing very well in low-
noise environments. As noise increases, there is no significant
difference between DF and naive thresholds.

B. Data

Our test set includes six networks. In all networks, nodes
are countries and connections are relationships among them,
calculated in six different ways. The six networks, in alpha-
betical and discussion order, are as follows.

• Business: two countries are connected through the
number of corporate credit cards issued in one country
(origin) that are utilized for expenditures in another
(destination). This is a directed flow network, observed
in the years 2012, 2013 and 2014. Anonymized and
aggregated data from Mastercards Center for Inclusive
Growth.3.

• Country Space: two countries are connected with the
number of products they both export in significant
quantities. This is an undirected co-occurrences net-
work, observed in the years 2011, 2012 and 2013.
Trade data comes from [13]. To determine whether
exports are significant we use the same criterion of
[17], based on the concept of Revealed Comparative
Advantage.

• Flight: two countries are connected through the ex-
isting passenger capacity in flights from airports in
one country (origin) to another (destination). This is

3http://mastercardcenter.org/

http://mastercardcenter.org/
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a directed flow network, observed in the years 2010
and 2014. Proprietary data from OAG4.

• Migration: two countries are connected through the
number of total migrants from one country (origin)
currently living in another (destination). This is a
directed stock network, observed in the years 1990,
2000, 2010 and 2013. Data from the UN [39].

• Ownership: two countries are connected through the
number of total establishments in a country (destina-
tion) reporting to a global headquarter in a different
country (origin). This is a directed stock network, ob-
served in the years 2008, 2011 and 2014. Proprietary
data from Dun & Bradstreet5.

• Trade: two countries are connected through the total
dollar value of all products exported by one country
(origin) and imported by another (destination). This is
a directed flow network, observed in the years 2011,
2012 and 2013. Trade data have been cleaned with the
same procedure outlined in [17].

Additional edge attribute tables used in prediction tasks
record: the distance between two countries as the weighted
average distance between all pairs of major cities in these
countries [24]; population data for all countries from the World
Development Indicators of the World Bank6.

One of the main reasons for using a sophisticated back-
boning method instead of a naive threshold is the broad and
locally correlated distribution of edge weights. This has been
observed in many weighted networks [3], and it is also the
case in the country-country networks used here. We report
the cumulative edge weight distributions of all six networks
in Figure 5. Figure 5 shows that all the studied networks
have broad degree distributions (although neither of them is a
power-law), with the possible exception of the Country Space
network. For instance, in the Ownership network the median
non-zero edge weight is 1.5, while the top 1% of non-zero
edges have weights larger than 50k. The Trade network edge
weights span ten orders of magnitude.

The edge weights are also locally correlated. We calculate
the log-log Pearson correlation between the weight of an edge
and the average weight of the edges connected to either of

4http://www.oag.com/
5http://www.dnb.com/
6http://data.worldbank.org/indicator/SP.POP.TOTL

Network NC Corr
Business .590
Country Space .627
Flight .613
Migration .064
Ownership .872
Trade .162

TABLE I. THE CORRELATION COEFFICIENTS BETWEEN PREDICTED
AND OBSERVED VARIANCE FOR THE NC AND DF BACKBONES.

its nodes. Figure 6 plots the average and variance of neighbor
edge weights against an edge’s own weight. The correlation is
weakest in the Flight network, but at a value of .42 still highly
statistically significant (p < 10−15). The strongest correlation
– in the Country Space network – equals to .75.

C. Validation

Before looking at the quality of the actual backbone, we
validate our methodology against real world data. The Noise-
Corrected backbone aims at correctly estimating V

[
L̃ij

]
, i.e.

the variance of the transformed edge weights. Since we observe
all the country networks in several points in time, we can
compare our expectation of V

[
L̃ij

]
with the actual (observed)

variance.

Table I reports the calculated correlation coefficients. All
correlation coefficients are significant with p < 10−9.

D. Topology

As the first quality criterion, we focus on the topology
of the backbone. In general, backbones ideally isolate as few
nodes as possible: each node dropped by the backbone is a
node for which we will not have any result from the network
analysis. Thus, we define the Coverage as the ratio between
non-isolated nodes in the backbone over non-isolated nodes in
the original network, or:

Coverage =
|V| − |I∗G|
|V| − |IG|

.

Figure 7 reports the number of nodes preserved in each
backbone as a function of the share of edges that was pre-
served. Note that the Doubly Stochastic method is present
only for the networks Country Space, Migration and Trade, as
for the other networks the stochastic transformation was not
possible. Note that DS and MST do not require any parameter,
so they appear in the plot as a point rather than as a line.

Many data points overlap because in many instances all
methods were able to preserve the entirety of the node set.
However, it is easy to detect the cases in which a particular
method was not able to achieve perfect coverage. MST, DS
and HSS achieve perfect coverage by definition (the latter
fails only for very strict parameter choices). There is no clear
winner between NC and DF, as in some networks one achieves
better coverage than the other, while the converse is true for
others. However, the DF is the only method underperforming
the naive method in one case (the Ownership network), which
is a critical failure.

http://www.oag.com/
http://www.dnb.com/
http://data.worldbank.org/indicator/SP.POP.TOTL
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Fig. 6. Edge weight vs average neighboring edge weight. From left to right: (top) Business, Country Space, Flight, (bottom) Migration, Ownership and Trade.
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Fig. 7. Coverage per backbone for varying threshold values. From left to right: (top) Business, Country Space, Flight; (bottom) Migration, Ownership, Trade.

E. Quality

In this section we argue that a good backbone lets the
underlying properties of the data emerge from the noisy data.
To prove this point we create a series of models for OLS
regressions. These models all have the same structure:

log(Nij + 1) = βXij + εij .

Here, Nij is the edge weights of the network, Xij is a
collection of variables that are supposedly good predictors of
Nij , and ε is the error term. In practice, we propose a model to
explain the connection strength between countries. Then, for
each backbone methodology we run two regressions. In the
first regression Mfull, we use the complete set of observations.

In the second model Mbb, we restrict the observations edges
that are contained in the network backbone. Quality is then
defined as:

Quality =
R2
Mbb

R2
Mfull

,

which is the ratio of the quality prediction (the R2 of the
OLS model) obtained using the backbone to restrict observa-
tions over the baseline quality that uses all edges. A value of
1 means that the two regressions have equivalent predictive
power, while a value higher than 1 means we improve over
the full network.

To allow for a fair comparison of different backbone



Method Business Country Space Flight Migration Ownership Trade
Doubly Stochastic n/a 2.0975 n/a 1.5153 n/a 0.9287
Naive Threshold 0.7766 0.6834 0.5196 1.1616 1.2384 0.3935
Disparity Filter 0.9315 1.4082 0.8569 2.0715 0.5374 0.9024
High Salience Skeleton 1.1341 1.6549 0.9447 1.2597 0.9744 0.8662
Maximum Spanning Tree 1.1183 1.9180 0.7981 1.0036 0.9288 0.9532
Noise-Corrected 1.1767 2.2437 1.4676 2.1493 1.4165 1.1037

TABLE II. THE IMPROVEMENT IN PREDICTIVE POWER WHEN USING BACKBONES IN OUR SIX NETWORKS.

methodologies, we fix the number of edges we include in the
backbone. We usually choose the number of edges obtained
with low threshold values for the High Salience Skeleton,
because it is the most strict backbone methodology in our
collection, always returning the fewest number of edges. Note
that this does not apply to the MST and DS backbones, since
they do not have parameters and thus the number of edges
cannot be tuned.

One predictor used in each network is geographical dis-
tance: nearby countries are assumed to be more connected. For
almost all networks (except Country Space and Ownership) we
also use population-size as a control: since we are recording
flows and stocks, large countries are expected to have larger
connections. Finally, we add the following network-specific
predictors: Business: trade between the countries. Trading
partners are expected to maintain a high intensity of business
travels. Country Space: economic complexity (ECI [17]) of
the two countries. Two countries with similar technology levels
are expected to export similarly advanced products. Flight:
no additional variable. Country size and distance suffice for
a typical gravity model: we expect many travelers between
nearby large countries. Migration: cultural variables like com-
mon language and common history [24]. More migrants are
expected if the destination country has the same language
and customs as the origin country. Ownership: foreign direct
greenfield investments7 (FDIs). Each greenfield establishment
in a foreign country has been created with FDI, thus total dollar
investment between the countries should predict the number
of establishments. Trade: business travels between countries.
Two countries that visit each other for business are expected
to trade frequently with each other.

Table II reports the results. We highlight the best perform-
ing methodology in boldface. Note that in some cases the
doubly stochastic transformation was not possible, thus we
label these instances as “n/a”. In all cases, the NC backbone
performs better than any other backbone. What is more, the NC
backbone is also the only method that always returns a quality
value higher than one, meaning that the backbone outperforms
the original, unfiltered, network in all cases.

F. Stability

Finally, we are interested in the stability of a backbone.
Because most of our networks should be relatively stable, we
consider wild year-on-year fluctuations in an edge’s weight
as a sign that the edge weight is imprecisely measured. Our
backbone should contain fewer noisy edges and therefore
be more stable than the orginal network. The stability of a
backbone method can be calculated as:

Stability = corr(N t
ij , N

t+1
ij ),

7https://www.fdimarkets.com/
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where corr is the Spearman correlation coefficient between
the two vectors. In principle, any distance metric is appropriate
for this task, but we prefer the nonparamatric nature of the
Spearman coorelation, which mimics our task of ranking edges
according to their significance. We calculate the correlation
using only the edges present in the backbones. This means
that a perfectly stable backbone will have a stability of 1,
while a value of 0 implies that there is no relation between
the backbones of time t and t+1. We calculate stability across
different thresholds.

Figure 8 depicts the results. There is no clear winner in this
quality criterion. All backbones are very stable, with stability
always exceding .84.

G. Scalability

We implemented the NC backbone using the pandas8

Python library. In this section we provide a quantification of
the running time of this naive implementation, showing that it
is ready for real world tasks. We generate a set of Erdös-Rényi
graphs, with uniform random weights. We set the average
degree of a node to three and we generate networks from 25
thousand to 6.5 million nodes. For each network size, we repeat
the backbone computation ten times and report the average.

Figure 9 depicts the time complexity scaling in terms of
number of edges. Running time increases only slightly super-
linearly with the number of edges. Empirically, we estimate the
time complexity of our implementation to be ∼ O(|E|1.14).
The average running time of the algorithm for a network
containing 20 million edges was 82 seconds on a Xeon(R)
CPU E5-2630 at 2.30GHz.

For completeness, we compare with equivalent implemen-
tations of the other methods. The NC backbone scales with a
rate indistinguishable from the linear naive thresholding and
DF, which differ only by a constant multiplicative factor. Other
methods such as HSS and DS are much less time efficient and

8http://pandas.pydata.org/

https://www.fdimarkets.com/
http://pandas.pydata.org/


Noise-Corrected Disparity Filter High-Salience Skeleton Doubly-Stochastic Maximum Spanning Tree Naive Threshold

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.01 0.1 1

S
ta

b
ili

ty

Share of Edges in Backbone

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.01 0.1 1

S
ta

b
ili

ty

Share of Edges in Backbone

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.01 0.1 1

S
ta

b
ili

ty

Share of Edges in Backbone

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.01 0.1 1

S
ta

b
ili

ty

Share of Edges in Backbone

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.01 0.1 1

S
ta

b
ili

ty

Share of Edges in Backbone

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.001 0.01 0.1 1

S
ta

b
ili

ty

Share of Edges in Backbone

Fig. 8. Stability per backbone for varying threshold values. From left to right: (top) Business, Country Space, Flight; (bottom) Migration, Ownership, Trade.

we could not run them on networks larger than a few thousand
edges.

VI. CASE STUDY

In this section we provide a more in-depth discussion of
an application of the network backboning techniques. The aim
is to show how an analysis task can be improved by filtering
out noisy connections from a network. The topic we study is
the estimation of skill relatedness [26]. In [26], the authors
connected cells in an industry space with the aim of capturing
similarities in industry skill requirements, assuming that such
similarities would be reflected in inter-industry labor flows.

Here we explore the validity of this assumption. We
investigate the relationship between a skill-co-occurrence net-
work and inter-occupational labor flows. Next, we restrict the
connections, using a backboning technique and show how this
improves the quality of predictions. There are a few differences
between this case study and [26] that should be noted. First,
we use occupations instead of industries as nodes. Second, in
[26], the authors use a confidential dataset from Sweden that
cannot be shared. For this reason, we follow [41] in using data
for the US. The measurement of skill relatedness is based on
O*Net data [28]. O*Net records the use of hundreds of skills
and tasks in hundreds of occupations [29]. The labor flows
between occupations in the US are derived from the Census
Bureau’s Current Population Survey9. Both datasets are public
and shared at the URL provided in Section I.

For each pair of occupations we have the number of
workers who changed jobs from one occupation in 2009 to
another occupation in 2010. Job switchers who did not change
occupation are counted in the diagonal of the matrix. The skill
relatedness between occupations is assessed as follows. O*Net
provides estimates of the relevance of each skill and task to an
occupation using both domain experts and worker surveys. The

9http://www.census.gov/programs-surveys/cps.html

database links an occupation to a skill or task with two scores:
how important the skill or task is to perform the occupation
and at which level the skill must be mastered (expert, medium,
beginner). We keep the occupation-skill association if both
scores are higher than the average importance and level of
the skill or task across all occupations. Next, the similarity
of two occupations is derived from the number of skills
the occupations have in common. This yields a weighted
undirected co-occurrence network.

We calculate two backbones of this co-occurrence network.
Figure 10 depicts the backbone extracted with our NC method,
while Figure 11 shows the one generated with the Disparity
Filter. High Salience Skeleton and Doubly Stochastic are not
reported, because the DS transformation was not possible, and
the HSS could not generate the backbone in a reasonable time.
Each node is an occupation. Nodes are connected if they have
a significant number of skills and tasks in common, using
the different backboning criteria to filter connections. The two
networks have roughly the same number of connections. The
nodes are colored using the first digit of the occupation clas-
sification. Node size is proportional to the amount of people
working in an occupation. Edge colors are proportional to the
significance of the link according to the backbone technique,
from black (very significant) to gray (least significant).

Note how the DF backbone in Figure 11 looks, and indeed
is, more dense. The reason is that the DF dropped more nodes
than NC, around fifty – a significant part of the network. This
is further proof that NC methodology extracts backbones of a
higher quality topology.

From the figures we can see that the NC backbone is
able to capture an underlying structure in the data. The DF
backbone has two dishomogeneous clusters, where seemingly
connections are established between almost any pair of occupa-
tions. In the NC backbone, we can clearly identify a number
of potential modules, which seem to be correlated with the
occupation classification.

http://www.census.gov/programs-surveys/cps.html


Fig. 10. The occupation co-occurence NC backbone.

Fig. 11. The occupation co-occurence DF backbone.

This is not an artifact of the visualization: the Infomap
community discovery algorithm [31] was able to compress the
NC backbone with a codelength 15.0% smaller than without
communities (from 7.97 bits to 6.78), against the 9.3% gain
obtained with the DF backbone (from 7.69 bits to 6.98). More-
over, given that the classification is made by experts grouping
occupations, occupations belonging to the same class should be
related to one another. In line with this, the modularity [27]
of the partition using the first two digits of the occupation
code as community is higher for the NC backbone (0.192)
than for the DF backbone (0.115). Also the normalized mutual
information between the backbone communities and the two
digit occupation classification is higher for the NC backbone
(0.423) than for the DF backbone (0.401). This means that
the communities found by Infomap on the NC backbone are a
better predictor of the first two digits of the occupation code
than the communities found in the DF backbone.

Coming to the prediction task, our model assumes that
the more skills two occupations have in common, the more
people will switch between them. This is implemented in the
following simple model:

Fij = β1Cij + β2Si· + β3S·j + εij ,

where Fij is the number of people switching from i to

j, Cij is the number of skills and tasks i and j have in
common, and S indicates the size of i as an origin (Si·),
and of j as destination (S·j) in terms of the total number of
occupation switches. We consider the direction of the switch,
so Fij records together people moving i→ j, and Fj,i records
together people moving j → i.

When testing this relationship using all (i, j) pairs, we
obtain a correlation of 0.390. When we restrict to only the
(i, j) pairs included in the DF backbone, we obtain a higher
correlation, equal to 0.431. This means that the flows between
the occupational pairs that were left after filtering out noisy
connections are easier to predict. Our NC backbone increases
the correlation further to 0.454. This means that the NC
backbone was able to capture even better which pairs are
similar both in terms of their skill relatedness and in the eyes
of occupation switchers.

VII. CONCLUSION

In this paper we focus on the problem of detecting the
backbone of a complex network. A backbone is a subset of a
network that contains the largest possible subset of nodes and
the smallest possible subset of edges, such that the substantive
and topological characteristics of the network are preserved.
We focus on generic network backboning as a common first
step in a network analysis task, without considering specialized
applications. We compare our method mainly to the Disparity
Filter and the High Salience Skeleton, which are the current
state of the art in generic network backboning. Our Noise-
Corrected backbone starts from a null model in which edge
weights are drawn from a binomial distribution. We estimate
an expectation and variance of edge weights, simultaneously
considering the propensity of the origin node to emit and the
destination node to receive edges. This improves over the null
model underlying the Disparity Filter, which considers origin
and desitination nodes separately instead of bilaterally. Exper-
iments show that the Noise-Corrected backbone performs well
on three critical evaluation criteria. NC backbones can handle
low and high amounts of noise, as shown in synthetic network
experiments. NC backbones have comparable coverage and
stability with the state of the art. NC backbones are of high
quality, being able to improve the performance of edge weight
predictive models, also in real-world scenarios, as our case
study shows. Moreover, the methodology scales almost linearly
in number of edges, scaling to million of edges in minutes.

This paper paves the way for further developments in
network backboning. First, since we are introducing a new way
to remove noise from network connections, we can investigate
how noise affects classical network science results in depth.
For instance, we plan to study whether it is possible to distin-
guish real from spurious changes in networks. If so, we can ex-
plore how noise impacts studies that look at contagion, shortest
paths, clustering, and so on. Second, our method is at present
only defined for networks with a single relationship type.
We can extend the NC methodology to consider multilayer
networks, where nodes in different layers are coupled together
and where these couplings influence the backbone structure.
Finally, we can explore improvements in the implementation
of the NC backbone, exploiting optimizations that could lead
to its potential application to networks with billions of edges.
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