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Abstract—Similarity computations are crucial in various web
activities like advertisements, search or trust-distrust predictions.
These similarities often vary with time as product perception and
popularity constantly change with users’ evolving inclination.
The huge volume of user-generated data typically results in
heavyweight computations for even a single similarity update.

We present I-SI1M, a novel similarity metric that enables
lightweight similarity computations in an incremental and tem-
poral manner. Incrementality enables updates with low latency
whereas temporality captures users’ evolving inclination. The
main idea behind I-SIM is to disintegrate the similarity met-
ric into mutually independent time-aware factors which can
be updated incrementally. We illustrate the efficacy of I-SiMm
through a novel recommender (SWIFT) as well as through a
trust-distrust predictor in Online Social Networks (I-TRUST).
We experimentally show that I-SIM enables fast and accurate
predictions in an energy-efficient manner.

I. INTRODUCTION

The growth in the market for intelligent terminals like smart
phones or tablets is enabling more and more users to access
online services like e-commerce and social networks. The users
of these online services generate a huge volume of data: we
talk about a few quintillion (10'®) bytes per day. There is an
evident need for online services like personalization schemes,
namely recommenders as well as trust-distrust predictors.
Recommenders assist users in various web activities [1]. Trust
predictors enable users to select whom and what to trust while
navigating through the web [2]. Recommenders typically rely
on Collaborative Filtering (CF) techniques [1], [3] to suggest
relevant items to users such as the recommendation of photo
groups on Flickr, books on Amazon, and videos on Youtube.
At the heart of many practical CF techniques [4] lies the
computation of similarities between users, also known as like-
mindedness. Similarly, nearest neighbor graphs, used for trust-
distrust prediction in Online Social Networks (OSNs), also
leverage similarities between the nodes [2].

A. Motivation

The starting point of this paper is the observation that
existing similarity metrics were not designed to handle a
very large number of users with rapidly changing behavior.
The number of recommendation requests issued by users
today, is in the order of millions per day [4], which poses
a major scalability challenge. State-of-the-art scalable recom-
menders [5]-[7] employ batch processing and update their
recommenders at intervals of weeks. They indeed achieve low
latency recommendations, but ignore the temporal behavior
of users (temporal relevance [8], [9]), thereby leading to
relatively lower recommendation accuracy. For example, the
number of views of news articles saturates within a few
hours [10]: these articles should be recommended within this
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time span to be relevant. On the other hand, the very few
recommenders that account for temporal relevance [4], [8] do
not scale as they require heavyweight computations, inducing
high energy consumption which is becoming a key issue in
cloud computing [11].
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Fig. 1: Temporal effects in ML-1M dataset.

An interesting temporal effect that emerges from the
MovieLens (ML) dataset [12] is depicted in Figure 1. Users
typically provide their preferences for items in terms of
feedback like ratings. Figure 1(a) conveys the fact that the
moving global average rating fluctuates within the first 200
days. This fluctuation can be attributed to the initial user churn
(as shown in Figure 1(b)). However, when the number of users
is stable, we observe a downward trend in the average rating
which saturates at around 3.5. The primary reasons behind this
temporal behavior can be attributed to the users’ preference and
behavioral drifts.

Preference drift. Users’ preferences typically fluctuate over
time. For example, a change in the family structure can
drastically change shopping patterns. Figure 2(a) depicts the
preference distribution of an individual user over time. The
top genre preferences for this user on Day-1 were Adventure,
Horror and Sci-Fi whereas on Day-37 her preferences were
mostly Western, Romance and Drama. We also observe other
genre preferences that vary over the following days (e.g.
Thriller).

Behavioral drift. At another personalization level, a user’s
feedback (e.g. scores, ratings, votes) also fluctuates over time
possibly due to her varying behavior (e.g. mood). This feed-
back fluctuation results in a user bias. Given that a user u
provides a feedback s,; for an item ¢ at a time ¢ — & when
her average feedback was §,(t — 0), then the user is biased
towards this item by by;(t — §) = su; — Su(t — J). Sarwar
et al. empirically showed that including such a user bias in
the similarity computations, however in a static (non-temporal)
manner, leads to better recommendation quality [13]. The
change in this user bias (by;(t — &) — by;(t)) over time is the
change in the average feedback (s, (t) — $,,(t — 9)).

Figure 2(b) captures the change in the user bias (behavioral
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Fig. 2: Limitations of state-of-the-art similarity metrics with respect to temporal relevance and incremental updates. The
gray areas in the right subfigure indicate the similarities (S;;) that need to be updated within a time interval [t — J, t].

drift) which we quantify using a key user attribute (¢) defined
as follows: the average feedback of a user varies over time
in steps of a temporal parameter € between a time interval
[t — 0, t]. State-of-the-art incremental similarity metrics [4], [9]
do not take into account this attribute (Figure 2(c)I). Perform-
ing incremental updates based on the temporal parameter € is
non-trivial. Similarities until time ¢ — ¢ are also a function of
€ and thus also need to be adjusted at time ¢ (Figure 2(c)II).

Based on these observations, one can easily infer that
users’ temporal behavior can impact the prediction accuracy
significantly. However, designing an incremental similarity
metric that captures this temporal behavior is non-trivial.

B. Contributions

The main contribution of this paper is a novel similarity
metric, we call I-S1M, which enables lightweight similar-
ity computations incorporating the preference and behavioral
drifts. I-SIM can be considered as a ‘“temporalization” of
the adjusted cosine similarity [13] and hence of the cosine
similarity. Therefore, I-SIM can be easily integrated with
time-aware applications in OSNSs. In this paper, we primarily
focus on collaborative filtering due to space limitations but
nonetheless we also explore trust predictions in OSNs.

I-S1™ is lightweight in the sense that it can be updated
incrementally to achieve low latency and limited energy con-
sumption. In particular, I-SIM accounts for temporal relevance
through an exponential decrease in the weight of previous feed-
back over time. We formally prove that the time complexity'
of I-SIM is O(JAU|) where AU is the set of active users
within a given time interval (unlike the time complexity of
non-incremental metrics [13] which is O(|U|) where U is the
set of total users in the system).

First, we illustrate the power of I-SIM in personalization
applications by implementing a novel recommender lever-
aging I-S1M, which we call SWIFT (Scalable Incremental
Flexible Temporal recommender). SWIFT is interesting in its
own right, as it enables flexible switching between stream
processing and batch processing [14]. We demonstrate the
efficiency of I-SIM through an in-depth experimental eval-
uation of SWIFT. More precisely, we compare SWIFT
with recommenders using incremental similarity computations
(TENCENTREC [4]), matrix factorization techniques using
temporal relevance (TIMESVD [8]), Alternating Least Squares
(ALS [15]) and factored similarity models (FISM [16]), on
real-world traces in terms of latency, energy consumption, and
accuracy.

Second, after demonstrating that trust relations in OSNs
exhibit temporal behavior, we illustrate the power of I-SIM
for trust predictions by implementing I-TRUST. We empiri-
cally show that I-TRUST significantly outperforms the non-
incremental alternative, both in terms of runtime and accuracy.

C. Roadmap

The rest of the paper is structured as follows. We recall
some preliminary concepts in § II. We introduce and analyze
[-S1M in § III. We present two applications of I-SiM (SWIFT
and I-TRUST) in § IV. We evaluate and demonstrate the
effectiveness of I-SIM on real-world traces in § V and then
review the related work in § VI. Finally, we conclude our
paper in § VII. We present the detailed proofs of the theorems
in our companion technical report [17]. Our code is available?.

II. PRELIMINARIES
A. Temporal Relevance

Temporal relevance [8], [9] is a popular notion in data
mining, commonly known as concept drift, a dynamic learning
problem over time. A typical example is the change in user’s
interests when following an online news stream. In such
domains (e.g. news, deals), the target concept (user’s interests)
depends on some temporal context (e.g. mood, financial state).
This constantly changing context can induce changes in the
target concepts, producing a concept drift. We now provide
the definition of temporal relevance at any given timestep as
follows where timestep is a logical time corresponding to the
current number of incremental updates.

Definition 1 (Temporal Relevance): Temporal relevance
measures the relevance of a feedback s,; for making
predictions at a timestep ¢t based on a time-decaying
parameter «. In the following, we denote the temporal
relevance of s,,; at a timestep ¢t by f2(¢) and assign a weight
to s,; depending on the interval since the timestep (¢,;) when
the actual feedback was provided.

m(t) = 7ttt )

Temporal relevance can be incrementally updated as fol-
lows: f&(t+ 1) = e *f2(t). This update relation is crucial
for designing our novel similarity metric (I-SiM) as we demon-
strate in § III.

We consider one decay factor (Equation 1). However,
multiple weighting factors like temporal regression [18] based
ones could also be considered in which case the corresponding
update relations should be re-formulated accordingly.

UIf not stated otherwise, we refer to the worst-case complexity.

2https://github.com/gdamaskinos/isim


https://github.com/gdamaskinos/isim

B. Collaborative Filtering

The goal of CF [1] is to suggest new items to users
by predicting scores on a set of items based on their rating
feedback, as well as the rating feedback of other users. Each
rating reflects the user’s explicit feedback for the corresponding
item. Alternative user behavior such as clicking, tagging or
liking, introduces a form of implicit feedback. In this paper,
we focus on explicit feedback, however, mapping techniques
like pseudoratings [19] could be leveraged to convert implicit
feedback to explicit ratings.

CF recommenders compare items and users for generating
predictions. One of the approaches to achieve such compar-
isons is the neighborhood method [20]. The goal is to find
similar objects (users or items) by exploring the relationships
between them. The techniques employed by recommenders to
explore these relationships can be divided into two categories:
user-based and item-based. A user-based technique predicts a
target user’s preference for an item by leveraging the rating
information aggregated from similar users. An item-based
technique applies the same approach, but utilizes similarities
between items instead of users. In this paper, we focus on
item-based CF as it is shown to perform better than the user-
based one [13]. Nevertheless, I-SIM can also be adapted to
user-based CF.

We now present the recommendation setting before intro-
ducing our novel metric in § III. We consider a database
consisting of AV ratings on a set of m items Z = {41, %2, .., im }
by a set of n users U = {uq,us, ..., u, } over time. The ratings
are sorted based on the time of the event. Each rating event
is in the form of a tuple: (u,,7y;, 74;) Which reflects the fact
that user u provided a rating r,,; for an item ¢ at a timestamp
Tui- Furthermore, L{f denotes the set of users who have rated
¢ until timestep t.

A standard item-based CF scheme typically includes three
phases as shown in Algorithm 1. We briefly describe each of
these phases as follows.

Similarity computation phase. This phase concerns the simi-
larity computation based on the observed ratings. We use the
adjusted cosine similarity as it was empirically demonstrated
to be superior to other metrics for item-based CF [13]. The
deviation from the average rating effectively captures the user’s
rating behavior. Moreover, the ratings provided by users that
generally give low (strict) or high (generous) ratings, have a
uniform effect on the similarities. The time complexity of this
step is O(m?n) as there are a total of m? possible item-item
similarities and each similarity computation has a complexity
of O(n).

Neighborhood computation phase. This phase deals with com-
puting the most similar items corresponding to a given item,
based on the computed similarities, and creating the item-
item network. For each item ¢, the top-K items, i.e. with
the K highest similarities, are selected as the neighbors. The
parameter K denotes the model size. The time complexity of
this step is O(m) as for each item the complexity for the
neighborhood computation is O(1) with the use of a max-heap.

Prediction phase. In this phase, the prediction scores are
computed for each item according to Equation 3. The time
complexity of this step is O(m) with the use of the max-
heap containing the predictions for each of the items. Note
that subtracting a user’s average rating r, compensates for

Algorithm 1 Standard Item-based CF

Require: 7: Item set; U: User set; U;: Set of users who rated
an item with item-id j; 7,: Average rating for user .
Ensure: R4: Top-N recommendations for a user Alice (A)

Phase 1 - Similarity computation: GetSimilars(;j,7)

Ensure: s;: Max-heap for item j with item-ids as keys and
similarities as values.

1: for 7 in Z do _ _
2 Z (Tui - Tu)(ruj - Tu)

sili] = ———— — ©
> (Tui — 7) > ('ruj - Tu)
u€eU; ueU;
3: end for

4: return: s;

Phase 2 - Neighborhood computation: KNN(j,7)
Ensure: N;: K most similar items to item j.

5. N; = nlargest(K, GetSimilars(j,T))

6: return: IV,

Phase 3 - Prediction: Top-N(7)

Require: S;;: similarity between two items 1, j.
Ensure: R,4: Top-N recommendations for Alice.
7: var Pred > Max-heap with predictions for Alice

8: for ¢ : item in 7 do B
Pred|i] = 7, + 7€ (2) 3)
S
o end f JEKNN(i,T)
10: end for

11: R4 = nlargest(N, Pred)
12: return: R4

differences in her rating scale thus making predictions more
accurate.

These three steps do not consider temporal information.
Designing an incremental update for the adjusted cosine metric
is not trivial due to the time-varying user bias (Figure 2(b)).
Including temporal relevance in this metric makes the problem
even more challenging.

C. Trust-distrust Relationship in Online Social Networks.

Trust-distrust relations between users play a vital role
in making decisions in OSNs like voting for administrators.
In practice, the available explicit trust relations are often
extremely sparse, therefore making the prediction task more
challenging. Weighted nearest neighbor algorithms are widely
used for predicting trust relations [2], [21]. Algorithm 2
demonstrates one such algorithm leveraging K -nearest neigh-
bors (KN N) to predict trust relations.

We denote the trust level of user w for a user v as R,,,.
Given n classes with labels Cy, C4,..., C,, which reflect the
different levels of trust/distrust [22] between two users, we
define a mapping function ¢ such that ¢(R,,) = C; and
0 < i < n. We then define Score(w,v,C;) as follows.

1 ¢(va) = C’L

Score(w,v,C;) = {
Since trust relation between users is asymmetric, it iS pos-
sible to have Score(w,v,C;) # Score(v,w,C;) when
R'ZU’U # R’U’ll}'



Algorithm 2 Trust Prediction

Require: /: User set; U,,: Set of users who trusted/distrusted
another user with user-id w.
Ensure: R,,: Trust level of user w for a user v.

Phase 1 - Similarity computation: GetSimilars(v, /)

Ensure: s,: Max-heap for user v with user-ids as keys and
similarities as values.
1: for w in U do

2: euznu Rwu R'Uu
u w v
sp[w] = 4)
> Ry, | X RE
UEUy, uEU,
3: end for

4: return: s,

Phase 2 - Neighborhood computation: KNN(v, U{)
Ensure: N,: K most similar users to user v.

5. Ny = nlargest(K, GetSimilars(v,U))

6: return: NN,

Phase 3 - Prediction: PredictTrust(w, v)

Ensure: Trust prediction of user w for a user v.

7: return: argmax > c ey () Score(l v, C)
ce{Co,....Cn} ’

These three phases resemble the ones in Algorithm 1.
The first phase (similarity computation) employs the standard
cosine similarity between users. The second phase is similar
to the one in Algorithm 1 and derives the K NN set for a
given user. Finally, the last phase predicts the trust relation
between two users based on the K NN graph constructed in
the previous two phases.

III. I-SIM: A NOVEL SIMILARITY

In this section, we first pose the similarity computation
problem more formally and then present our I-SIM similarity
metric before analyzing it. We then show how I-SIM enables
incremental updates (for item-item similarities) over time.

A. Problem Definition

Let U be a set of users, Z be a set of items, and S;;(t) be
the similarity between items ¢, j € Z till timestep . We define
the similarity function as follows.

Sy(t) = ———u ()

V@Qi(t) - v/Qy

&)
V/Q;(t)

where n is a positive integer, P is a function of the item
vectors 4, j, and () is a function of each individual item
vector. For example, if we take the standard cosine similarity
(Equation 4), then n is 2, P is the dot product of item vectors
i and j whereas @ is the squared L?-norm of each individual
item vector. Note that the similarity function definition is
formulated for the similarity metrics designed for sparse data
(e.g. cosine, jaccard, pearson correlation). For sparse data,
which often contains asymmetric data, similarity depends more
on attributes that are shared, rather than attributes that are
lacking.
For an incremental similarity computation, each of these
terms (P, ) could be incrementally updated as follows.
Pyj(t) = APy (t) + Pi(t — 1)
Qi(t) = AQi(t) + Qi(t — 1)

This incremental update seems straightforward when each
of the P and () functions could be expressed as a summation
term independent of any time-varying parameter (Figure 2(c)I).
Nevertheless, for more precise similarity metrics, like adjusted
cosine similarity, each timestep depends on some time-varying
parameter like the average rating of users. Therefore, the P and
@ values, computed in all previous ¢ — 1 timesteps, need to be
updated (Figure 2(c)II).

In this paper, we solve this non-trivial problem by essen-
tially caching some additional terms. We break the update
computation into two components: standard (P°,Q*®) and
adjustment (P®, Q%) components as follows.

Pit)y=P3t) + Pt
SN—— SN——

standard component  adjustment component
Qit)= Qi) + Qi)
S—~— N—~—

standard component  adjustment component
More precisely, the standard component incorporates the
preference drift (Figure 2(a)) whereas the adjustment compo-

nent incorporates the behavioral drift (Figure 2(b)).

B. I-SI™M

We now describe our I-SIM metric which temporalizes
adjusted cosine similarity (Equation 2). Given m items and
n users, the overall time complexity of the similarity update
for standard techniques (Algorithm 1) is O(m?n) per timestep.
Naively augmenting the standard adjusted cosine with temporal
relevance would require computing item-item similarities at
each batch update leveraging all the ratings (Figure 2(c)II). The
resulting time complexity (O(m?n) per batch update) would
be prohibitive for an online recommender.

We first rewrite the adjusted cosine similarity (Equation 2),
incorporating temporal relevance (Equation 1), in terms of
pre-normalized correlation (Pj;) and normalization factors
(Qi, Q;) following the pattern presented in Equation 5.

Py(t)

Sii(t) = ——m————t—— 6
N GXONGI0) ©
where
Pyt)= > faO)ra —ra®) 50 (re — ) (D
ueUfmU]t.
Qi(t) = D (fas)(rus — 7(t)))” ®)
uEUf

Next, we show that the functions P;;(t) and Q;(t) can
be incrementally updated with a time complexity O(|AU]).
Thus S;;(t) can also be incrementally computed on-the-fly.
Additionally, this incremental feature reduces the time com-
plexity drastically, enabling lightweight model updates with
incoming streams of data. The active users at any given time
interval are the users who provide ratings in that interval.
Figure 3(a) compares the total number of users (|U|) at any
given time with the number of active users (|AU|) during the
last 5 days. Figure 3(b) indicates that the computation time
required for the similarity update of our incremental approach
on a single machine is a few orders of magnitude lower than
a non-incremental one. We also observe that the computation
time for the incremental approach (Figure 3(b)) corresponds
to the number of active users (Figure 3(a)) at any given time.

Before providing the incremental update relations, we
introduce two adjustment terms (L, M). These adjustment
terms incorporate the behavioral drift captured by e(t).
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Fig. 3: Comparison between incremental (I-S1M) and non-
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Lij(t) = Y e®) fa@) fas 0)[(rui — () + (rug — ()],

uelU};
Li(t) =2 ) e(t)faf (D) (rui — 7u(t) ©)
ueU}
Mij(t) = Y e(t)” - fos(0)fe(t), Ma(t) = Y e(t)” - far'(t)
ueUfj ueUf
(10)

where €(t) £ 7, (t) — 7 (t — 1).

Theorem 1 (P;j incremental update): Let AU} denote the
set of users who newly rated 7 at timestep ¢, i.e. AUl =
UL\ U7, then the time complexity for updating Pi;(t) is
O(AU| + [AUj)).

Sketch: The incremental update relation of F;; is:

Pij(t) = APy (t) + e [Pyt — 1) — Lij(t — 1) + My;(t — 1)]
where AP;;(t) is defined as follows.
AP;(t)= Tu(t)) fug () (Tug

veAutnui T

>
weu! " naut

o)
uEAUFNAUYL
The summation terms in AP;;(¢) have a time complexity of

O AU | + AL,

— 7u(t))

(Tui -
fa (@) (rui = ru(t)) (rug — ru(t))

7u () (ruj — ru(t))

(Tui -

Note that if P;;(¢) was updated non-incrementally then
the time complexity would be O(|U N U}[). With each time
step, the number of new ratings for i (JAU}|) tends to be
significantly smaller than the total number of ratings for i
(|?)). The difference is huge even for the average case as [U! |
can be of the order of all users in the system (Figure 3). For
example, following the long tail distribution (Figure 13(a)) the
popular items (20% of all the items) would be rated by nearly
80% of the users in the system.

Theorem 2 (Q; incremental update): Given that AZ/{f de-
notes the set of users who newly rated ¢ at timestep t, i.e.
AU = U\UITY, then the time complexity for updating @ (t)
is O(AUL)).

Sketch: The incremental update relation of @); is:

Qi(t) = AQi(t) + e **[Qu(t — 1) — La(t — 1) + Mi(t — 1)]

where AQ);(t) is defined as follows.
AQuH) = 3 (rui — (1)’
uGAU:

The incremental term (AQ;(¢)) has a time complexity of
O(|AU})). Note that the complexity for the non-incremental
update is again O(|U}]). |

Hence, the final incremental relations for the adjusted
cosine similarity are as follows.

Pij(t) = AP (1) + e Pyt — 1) — e **[Lij(t = 1) — My(t — 1)]

standard component adjustment component

(11
Qi(t) = AQi(t) + e *Qi(t — 1) — e **[Li(t — 1) — Mi(t — 1)]

adjustment component

standard component

(12)
Lij(t) = ALij (t) + 672(1[[/1']' (t - 1) — 2Mi'(t — 1)] (13)
M;j(t) = AM;;(t) + e > M (t — 1) (14)

The I-SIM values (S5;;) can thus be computed on-the-
fly, leveraging the incrementally updated P;;(¢) and Q;(¢)
values. We only need to store the P, L, M and () values
which requires O(m?) space. Unlike classical non-incremental
algorithms [13], we require extra storage for the adjustment
terms (L, M). The non-incremental algorithms [13], [23]
also require O(m?) space for storing the item-item simi-
larities. Nonetheless, incremental as well as non-incremental
algorithms could benefit from sparse data structures as well
as count sketches [24] for significantly reducing the storage
requirements.

We now provide a variant of I-S1M we call I-SIM.—q which
temporalizes pure cosine similarity. Adjusted cosine similarity
leads to a pure cosine one if the average rating (77,) is set to 0 in
Equation 2. More precisely, a lack of behavioral drift leads to
L;; and M;; being 0 in equations 11 and 12 due to €(t) being
0. The final incremental relations for pure cosine similarity are
as follows and do not require any additional storage due to the
absence of adjustment terms.

Pij(t) = AP;(t) + e **Py(t — 1) (15)

Qi(t) = AQi(t) + e **Qi(t — 1) (16)

I-S1M also applies to the case of static neighborhood based
algorithms (i.e. without using temporal relevance by setting o

to 0 in the update equations). Such algorithms are often utilized
during the cold-start phase of a system.

IV. I-SIM APPLICATIONS
A. SWIFT: A Novel Recommender

To illustrate the efficiency of I-SIM, we plug it in a
novel recommender we design and implement, called SWIFT
(Scalable Incremental Flexible Temporal recommender). In
the following, we present SWIFT and highlight some opti-
mization techniques that speed up its computations, as we later
demonstrate through our evaluations.

Framework. We choose Apache Spark® as our cloud comput-
ing framework. As we pointed out, practical recommenders
today need to deal with millions of recommendation requests
per day, leading to billions of computations. Additionally, the
recommendation service must be fault-tolerant. Spark performs
fast in-memory computations by efficiently distributing tasks

3http://spark.apache.org/
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to a set of computation units commonly known as Executors.
Data is stored in Resilient Distributed Datasets (RDDs) which
provide the required level of fault-tolerance for our recom-
mender. Entertainment services like Netflix use Spark for real-
time stream processing in the context of online recommen-
dations and data monitoring. We choose Apache Cassandra*
for our permanent storage requirements as it enables fast
interactions on big chunks of data. The architecture of SWIFT
consists of a front-end and back-end as illustrated in Figure 4.

Front-end. The front-end accumulates new ratings in micro-
batches and then leverages the available information to provide
recommendations to users with low latency. The front-end
consists of two sub-components implementing the recommen-
dation functionality efficiently. These sub-components perform
their tasks independently and hence can execute in parallel. In
detail, these sub-components’ tasks are as follows.

e Orchestrator. This sub-component receives the new micro-
batch of rating events along with the recommendation
requests. The new ratings are cached temporarily on the
front-end server. Next, for each recommendation request,
the orchestrator sends a response containing the recommen-
dations to the corresponding client machine. The orches-
trator then transmits the set of cached new ratings to the
back-end server.

e Upgrader. This sub-component is responsible for receiving
the set of updated recommendations from the back-end
server and updating the set of locally-stored recommen-
dations, to be used by the orchestrator.

The front-end provides fast recommendations, with lower
time complexity, based on possibly stale similarity values (i.e.
from previous updates). Nevertheless, the difference from the
actual updated similarity values is negligible, as item similar-
ities tend not to vary significantly in short time intervals [23],
thus converging to the K -nearest neighbors. The recommen-
dations are thus still accurate despite using moderately stale
similarity values.

Back-end. SWIFT’s back-end is built on Apache Spark and
consists of a driver process deployed on a master node along
with a set of executor processes deployed on worker nodes.
The back-end computes the similarity updates for each micro-
batch.

The back-end also hosts a Cassandra cluster for storing the
aggregated information (Table I) as key-value tuples, utilized
to compute the updates and the recommendations. A Spark-
Cassandra connector API provides a mapping between RDDs
and Cassandra tables thus allowing Spark to perform cassandra
query operations on RDDs.

“http://cassandra.apache.org/

Table Key Value
UserProfiles User_id Rating feedback
ItemInfo Item_id; L;, M;, Q;
ItemPairlrgfo (Item_id;, Item_idj) L’ij’ Mij: P,
TopK Item_id K -nearest neighbors
TopN User_id Top-IN recommendations

TABLE I: Back-end storage on Cassandra.

The back-end performs two majors tasks: sampling and
update as shown in Figure 4. The information that SWIFT
utilizes to perform the recommendations is distributed in
five tables, represented as blue cylinders in Figure 4. The
stored information is incrementally updated in five phases
corresponding to each of the described tables. Finally, the
back-end sends the updated recommendations derived from the
TopN table to the front-end upgrader.

A key advantage of this front-end, back-end design is
parallelism, separating the two different functionalities of
SWIFT, namely recommendation request handling (front-end)
and incremental update (back-end). The information between
the front-end and back-end is transferred via the network in a
compressed gzip format in order to avoid an additional energy
overhead.

This design also provides flexibility to our system as the
size of the micro-batch can be tuned. The service provider
that hosts SWIFT can choose the frequency of the updates
depending on the available resources. A small start-up com-
pany using SWIFT can aim for a medium-sized micro-batch
(say around 100 events per micro-batch) to trade the additional
costly updates for relatively less accurate similarity values.
By setting a micro-batch size value of 1, SWIFT performs
stream processing (similar to TENCENTREC [4]). The micro-
batch size can also be automatically set by the front-end
based on the rate of incoming events as well as the estimated
latency of the back-end such that bigger mini-batches can
be used at peak usage times. Additionally, the front-end can
temporarily increase the mini-batch size to allow for some
back-end maintenance. The ability to trade between stream
and micro-batch processing of new ratings, depending on the
users’ demands, highlights the flexibility of our approach.

Biased sampling. Calculating all the similarity pairs for every
new update would lead to a prohibitive O(|Z|? * |AU|) time
complexity for each update where Z denotes the set of all items
and AU denotes the set of users who provided new ratings. In
the average case, a small fraction of the total similarity pairs is
significantly affected after an update. Therefore, updating the
similarities only for the aforementioned small fraction of item
pairs and using stale values for the rest would notably reduce
time complexity without compromising the recommendation
accuracy. A sampling method is required for carefully selecting
the item pairs to be updated, balancing the trade-off between
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the number of updates and the recommendation accuracy.

We apply an incremental biased sampling technique to
address this issue. Our sampling technique is applied in an
item-based manner as item-item similarities are more sta-
ble than user-user similarities [25]. This biased sampling
technique is illustrated in Figure 5(a). The black item 3
is the most recently rated item. Region 1 contains the K-
nearest neighbors of ¢ which we will reference to as one-hop
neighbors (knn ) Region 2 contains K2 two-hop neighbors

of 4 (knnz(» )). Finally, region 3 contains K random items
(Rand(K)), thus creating the candidate set® of maximum size:
1+K+K*K+K = (K+1)? items. The random neighbors are
required in order to update the similarities for some items that
are not in the two-hop neighborhood. Therefore, the function
for selecting the K -nearest neighbors is not stuck at a local
minimum. This technique results in a convergence to neighbors
of good quality® within a few updates and eventually converges
to the optimal top-K (Figure 5(b)).

Theorem 3 (Biased sampling): The incremental biased
sampling eventually converges to the optimal top- K neighbors.

Sketch: First, we mathematically denote the candidate set
at timestep t: cand;(t) = {knngl)(t -1DHU knnl@)(t -1HU
Rand(k)}. Our biased sampling technique results in a directed
graph Gy (t) that connects each item with a set of items

kjnnz(-l)(t) that maximizes the similarity function S;;(¢):

k (1) _ Sz
nn, (2) m<Z 0

After T iterations, the scanned items consist of |J cand;(t).
t=1
T T—o00
Moreover, we have |J cand;(t) ——— Z where 7 is the set
t=1
of all items. Hence, our biased sampling technique eventually
converges to the optimal top-K neighbors. ]

Figure 5(b) depicts the fast convergence of our biased
sampling as compared to a random sampling technique where
the candidate set does not include the two-hop neighbors
(cand;(t) = {knn (t — 1)U Rand(k)}). The view similarity
denotes the average similarity of the top-K neighbors at any
given update step.

SWIFT’s sampling technique improves the incremental
update time complexity to O((K + 1)% x |AU|) = O(|AU|).
Note that there are other sampling techniques used to speedup
K -nearest neighbor computation like the one in TENCENTREC

5The candidate set consists of all the items for which the information (i.e.
P,Q, L, M) is incrementally updated by SWIFT’s back-end.
%Good quality neighbors are the neighbors with relatively high similarity.

with O(|Z| = |AU|) time complexity for each incremental up-
date which makes our sampling technique significantly faster.

Recommendation. We implement item-based CF (Algo-
rithm 1), introduced in § II-B, by executing the following
phases in SWIFT.

e We substitute the similarity computation phase by leverag-
ing our novel I-SIM metric.

e The neighborhood computation phase leverages the can-
didate set selected using our item-based biased sampling
technique to reduce the time complexity of the K -nearest
neighbor search. More precisely, we replace the item set
with the candidate set in the GetSimilars function within
Phase 2 of Algorithm 1.

e For the prediction phase, we apply the prediction score
function, shown in Equation 3, to generate the final pre-
dictions. We reduce the computations by predicting only
for the top 10% of the items sorted by popularity. We
then compute the top-N recommendations by sorting the
prediction scores.

One general problem for a recommender is the cold-start,
when recommendations are required for new items (i.e. items
with no previous ratings in the database). In SWIFT, we
initially assign the K most popular items as neighbors for
the new item. Neighbors converge to the K -nearest ones after
a few iterations for this item as we demonstrate in Figure 5(b).

B. I-TRUST: Trust-distrust Predictor in OSNs

To demonstrate the efficiency of I-SIM in trust-distrust
predictions, we plug I-SIM.—g in a trust-distrust prediction
application which we call I-TRUST.

Temporal behavior also exists in trust-distrust relationship
in OSNs. For example, the trust between an elector and voters
might change over time. One such behavior is demonstrated in
the Wiki-Elections trace [26]. We observe a decreasing trend in
the number of votes on Wiki-Elections as shown in Figure 6.
More intuitively, this shows that during the first election, the
voters’ trust for this wikipedia administrator decreases with
time due to more negative votes (distrust).
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Fig. 6: Voters’ trust in an administrator during a Wiki-
Election

We design a trust predictor which captures these temporal
effects. We employ Algorithm 2 for two classes (Cy: Trust, C:
Distrust) to predict the trust relationships. We plug I-SiM.—¢
in the similarity computation phase. Based on equations 15
and 16, we update the similarity computations incrementally
after some given number of events during which O(|AU|)
users were active. The time complexity of each update step
then decreases from O(|U|) to O(|AU|) as shown in § III.
As we demonstrate later in our experimental evaluation, I-
TRUST’s incrementality improves the latency significantly
whereas its temporality improves the prediction accuracy.



V. EXPERIMENTAL EVALUATION

In this section we report on the performance of our two
applications (SWIFT and I-TRUST) in terms of accuracy,
latency and energy consumption. Then, we compare them with
state-of-the-art alternatives on real-world traces.

A. Experimental Setup

We first describe our experimental environment along with
our methodology for obtaining the results.

Platform. We select the Grid5000 testbed’ as our experimental
platform. Each cluster on Grid5000 has a set of nodes with
specific resources. We measure the energy consumption of
our implementations using Grid5000’s customized Wattmeter
which monitors the power consumption.

Unless stated otherwise, we deploy our implementations on
a Spark cluster consisting of four nodes. Each node consists of
two six-core Intel Xeon E5-2630 v3 CPUs, 128 GB of memory
along with 600 GB disk storage. We tune our Spark cluster
optimally in order to achieve the best possible performance
in terms of the number of partitions and executors per node.
We empirically found that the optimal performance, in terms
of latency, is obtained by using one executor per machine and
setting the number of partitions for all RDDs approximately
equal to the total number of physical cores in the Spark cluster.

Datasets. We use publicly available real-world datasets. More
specifically, we use MovieLens datasets [12]: ML-1M and ML-
20M. The ML-1M dataset consists of 1,000,209 ratings from
6040 users on 4000 movies. The ML-20M dataset consists
of 20,000,263 ratings from 138,493 users on 27,278 movies.
Rating density denotes the fraction of actual ratings collected
among all possible ratings. To evaluate the effect of increasing
the rating density, we use a densified® Flixster dataset by em-
ploying the method introduced in [9] which leads to 5,105,850
ratings from 10,000 most active users on 4000 most popular
movies. Finally, for evaluating I-TRUST we employ the Wiki-
Elections dataset [26] containing 114,029 votes from 6210
users on 2391 editors.

Metrics. We evaluate both our applications from various
aspects. We describe below the metrics used in our evaluation.

Click-Through-Rate (CTR). We adopt this metric to test the
accuracy of the recommendations. Given that H,, is the set of
recommended items that were clicked by a user u (hits), and
R is the set of items recommended to u, we denote the CTR
for u by CTR,, and define it as follows: CTR,, = |H.|/|Ru|

The overall CTR over the whole test set is the average
over the CTR values for all users in the test set. Note that
a recommended item is considered as a hit, if the user rates
that item anytime later than the time of the recommendation.
Ideally, CTR for e-commerce services varies between 1%-5%
depending on the type of service [27].

Recall. We use this metric to capture the sensitivity of a
recommender to the frequency of updates. Given that C, is
the set of items clicked by a user u, we denote the recall for
u by Recall, and define it as follows: Recall, = |H,|/|Cul.
The overall recall is the average over the recall values for all
the users in the test set.

Thttps://www.grid5000.fr/
8The density for ML20M is 0.0053, for ML1M 0.045, and for Flixster
0.128.

Classification accuracy. We use this metric to test the accuracy
of trust-distrust predictions in OSNs. More precisely, the
classification accuracy is the fraction of correct predictions
among all the predictions.

Mean Absolute Error (MAE). We employ this metric to ensure
a fair comparison with model-based alternatives which opti-
mize for low prediction error. The MAE is defined as follows:
MAFE = Y |Ry; — Ruil/|S|, where R,; denotes the rating
u,i€S

prediction for user » and item ¢, R,,; denotes the actual rating
and S denotes the set of test rating events. Since MAE captures
how close the predictions are to the actual ratings, the lower
the error, the higher the model prediction accuracy.

Latency. This metric quantifies the delay observed to complete
a single task. This delay consists of three main parts: CPU
time, I/O time, and communication delay (e.g. if data is
scattered on multiple nodes). For a set of tasks, we show the
minimum, median and 99th-percentile 1atency9.

Energy-per-click. This metric quantifies the amount of energy
required for performing computations for a single user click.
This metric intuitively evaluates the impact of a single click
on the consumed energy. More precisely, we measure the
aggregated energy consumption of the entire cluster, on which
we deploy our experiments, for the operations that a single
recommendation task (click) triggers. Given that P denotes
the average cluster power consumption throughout the compu-
tation time of a click (denoted as t), the energy consumption
is computed as follows: EE = P xt. We measure the energy-
per-click in terms of watt-hour (Wh).

Evaluation scheme. The datasets include the timestamp for
each event. We replay the dataset, ordered by the timestamp,
to capture the same temporal behavior as the original one.
Furthermore, we split the dataset into training, validation and
test sets. Based on the benchmark for evaluating stream-based
recommenders [28], our test set consists of the most recent
1000 ratings. The validation set consists of the last 1000 ratings
from the training set and is used for parameter tuning. For the
non-incremental competitors we train the model on the training
set until it converges and then we evaluate the trained model
on the test set.

B. SWIFT Evaluation

SWIFT is designed to provide accurate recommendations
with low latency in an energy-efficient manner. In this section,
we evaluate SWIFT’s performance for varying parameter set-
tings and then compare it with state-of-the-art incremental and
non-incremental competitors.

To compare with incremental recommenders, we consider
TENCENTREC’s practical item-based CF (which we refer to
as TENCENTREC). Compared to SWIFT, TENCENTREC’s
practical algorithm employs incremental approximate cosine
similarity (instead of I-SIM) with real-time pruning (instead
of biased sampling) and real-time personalized filtering while
predicting only for the top 10% of the items sorted by
popularity similar to SWIFT (Phase 3 in Algorithm 1).

For the non-incremental alternatives, we compare with a
standard matrix factorization based recommender using tem-
poral relevance (TIMESVD [8]) as well as with the factored
similarity models (FISM [16]), both of which are publicly

9The latency observed by 99% of the tasks is below this value.
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Fig. 7: Impact of model size (K) and recommendations-per-click (INV) on accuracy.

available in the LIBREC!? library for reccommenders. Addition-
ally, we compare with the distributed alternating least squares
(ALS) algorithm available in Spark’s MLlIib.

We train SWIFT using the training set and then provide
recommendations for each rating event in the test set. More
precisely, for the training set, SWIFT computes the required
information (P, Q, L, M) based on the equations 7 to 10 of
the adjusted-cosine similarity (Equation 6). For the test set,
SWIFT updates this information using equations 11 to 14 and
then provides recommendations using the updated information.
Depending on the flexibility mode, the back-end is invoked for
the update operations either per click (stream processing) or
per micro-batch (batch processing). In the stream processing
mode, the front-end responds to the clients’ requests only after
receiving the updated recommendations from the back-end.

Accuracy. The following experiments demonstrate the ef-
fect of SWIFT’s parameters on the recommendation accu-
racy, namely: model size (K), recommendations-per-click (N),
micro-batch size (L) and temporal relevance (c).

Model size. We measure the CTR while varying the model
size (K) which is the number of neighbors in the item-item
network. We observe in Figure 7 that after a certain model
size any further increase in the model size reduces the CTR.
This decrease in CTR is due to the inclusion of less similar
neighbors in the neighborhood of an item. These less similar
neighbors add noise to the predictions.

Recommendations-per-click. The number of recommendations
provided per click, is another important parameter that affects
the CTR as too few will be insufficient whereas too many will
reduce the interest of users in the recommendations. Hence,
it is important to highlight that in practical recommenders,
the recommendations-per-click (N) should not exceed 20.
For example, IMDB uses Top-12 list to suggest movies and
Last.fm uses Top-5 list to suggest songs. We observe a steady
behavior in CTR with increasing N as shown in Figure 7.
This behavior can be attributed to the fact that the size of the
recommendation hits grows proportionally to the size of the
recommended items.

Micro-batch size. Recall that SWIFT provides a flexible back-
end as mentioned in § IV-A. More precisely, SWIFT provides
recommendations treating each stream of rating events as a
micro-batch. Hence, SWIFT can provide stream processing
with the micro-batch size set to 1 whereas the micro-batch
size can be set to few hundreds of rating events for batch
processing. Note that this flexibility is an important feature
for practical recommenders, as depending on the available
resources (due to limited operational costs) or the network
traffic (due to multiple recommendation requests), the micro-
batch size can be adjusted by the service provider hosting

10nhttp://www.librec.net/

SWIFT.

We now evaluate the impact of the flexibility mode on
accuracy. Practically, many recommenders like Amazon or
eBay repeat certain recommendations similar to SWIFT. Such
repeated recommendations are less frequent in the stream
processing mode (more frequent updates in top-N recommen-
dations) but occur more often as the micro-batch size increases.
Therefore, the denominator of the CTR (number of recom-
mended items) decreases as the micro-batch size increases. On
the contrary, the denominator of the recall (number of clicked
items) is independent of the micro-batch size. More updated
recommendations (smaller micro-batch size) lead to more hits
and thus result in an increase in the numerator. Hence, we
employ the recall to capture the difference in accuracy for
varying micro-batch sizes.!!
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Fig. 8: Impact of flexibility mode on accuracy for ML-1M.

More precisely, Figure 8 illustrates this trade-off between

accuracy and micro-batch size. Compared to the stream pro-
cessing mode (micro-batch size set to 1), there is an impact
on the recommendation accuracy, in terms of recall, for the
batch processing mode. Furthermore, there is a steep decrease
in the recall with increasing micro-batch size. This behavior is
due to less frequent updates leading to more temporally stale
similarities.
Temporal relevance. We analyze the effect of temporal rele-
vance on the quality of recommendations in terms of CTR.
For these experiments, we increase the test set to the last
10,000 events as the drift in the users’ interests is more evident
over longer test periods. We set the micro-batch size to 100
and tune the degree of temporal relevance by regulating the
temporal weight parameter a. We observe an improvement
in the CTR while increasing the value of « as shown in
Figure 9. Moreover, we also observe that the CTR starts
decreasing at some point. This outcome occurs due to the fact
that many of the users rated very few items and our item-based
approach leverages the items in the profile of the user. Hence,
an increased value of « results in degrading the already few
ratings in the user profile leading to a cold-start scenario for
the given user. Note that we can also vary « specifically for
each user profile; this is left for future work.

1Note that all the experiments leveraging the CTR metric have a fixed
micro-batch size.
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Fig. 9: Impact of temporal relevance («) on accuracy. Setting o to 0 deactivates SWIFT’s temporal feature.

Table II compares SWIFT with incremental recom-
menders (TENCENTREC) as well as with non-incremental ones
(TIMESVD, ALS, FISM) in terms of mean absolute error in
predictions. We observe that SWIFT outperforms the others
on the more sparse datasets (ML-1M, ML-20M) whereas ALS
performs best on a relatively dense dataset (Flixster).

Dataset |\ v | mr-20M | Fiixster
Approach
FISM 0.731 0.873 0713
TIMESVD 0.806 0.892 0.73
ALS 0.707 0.746 0.629
SWIFT 0.636 0.662 0.669
TENCENTREC 0.784 0.721 0.684

TABLE II: Model comparison (MAE) between incremental
and non-incremental alternatives.

Latency. SWIFT’s latency is primarily affected by the model
size (K), micro-batch size (L) and cluster size parameters.
We now provide the results concerning SWIFT’s latency for
different settings for these parameters.

Model size. SWIFT’s biased sampling depends on the model
size (K). An increase in the model size generates larger candi-
date sets (O(K?) size) thereby leading to more computations.
Figure 10 depicts that the increase in the computations is
more evident for large and sparse datasets like ML-20M. This
behavior is due to the fact that the larger amount of items in
the database combined with the sparsity leads to more diverse
items in a candidate set. Hence, the amortized complexity of
our biased sampling increases. In this specific case, the biased
sampling does not reduce the computations with large values
of K, thereby having a significant impact on latency (as shown
in Figure 10 for ML-20M and K = 200).

Flixster ez
12 ML-1M Ez=EEm
ML-20M

Fig. 10: Impact of model size (K) on latency (stream
processing).

Micro-batch size. We evaluate the flexibility of SWIFT by
varying the micro-batch size. Figure 11 shows the recom-
mendation and update latency of SWIFT’s front-end and
back-end respectively for K = 50. The update latency is
increasing with the micro-batch size as the information for
more items’ candidate sets needs to be updated. Nevertheless
the recommendation time is nearly the same for varying micro-
batch size. The latency observed between a click and the

generation of the recommendations is a few milliseconds. Note
that in the batch processing mode, the similarities are updated
only after the system receives a micro-batch of L fresh ratings.

100 update-latency —e—
recommendation-latency

Latency (sec)

—1

1 10 100 1000 10000
micro-batch size (L)

Fig. 11: Impact of batch processing on latency for ML-1M.

Cluster size. We deploy SWIFT and ALS on the same cluster
while increasing the cluster size (number of nodes in the clus-
ter) and compare the improvement in terms of median latency
(which we quantify as speedup). Figure 12 demonstrates that
SWIFT (stream processing mode with the model size set to
200) achieves a better speedup than ALS. Furthermore, an
increase in the micro-batch size leads to an increase in the
speedup for SWIFT. Therefore, the increase in the update
latency, shown in Figure 11, can be mitigated by employing
more nodes due to SWIFT’s scalability.

The scalability saturates after a certain cluster size (b
nodes) due to the communication time with Cassandra as well
as the sequential dependencies among SWIFT’s tasks. The
communication overhead with Cassandra could be possibly
mitigated by using a distributed Cassandra cluster and tuning it
to maximize the benefits from locality whereas the sequential
dependencies could be reduced by pipelining the tasks to ex-
ploit more parallelism. It is important to note that the observed
bottleneck is implementation specific and not a limitation of
I-S1Mm.
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Fig. 12: Scalability comparison for ML-20M.

Energy Consumption. We evaluate the energy consumed
by the computations induced due to a user click. In other
words, we estimate the impact of a single click on energy
consumption. Recall that our goal is to reduce the energy
consumption by reducing the time complexity. We analyze
the energy consumption corresponding to the clicks for three
representative items: most popular, least popular and 80"



percentile'?. The ratings provided by users follow a long tail
distribution (Figure 13(a)) where 80% of the users rate only
20% of the items. Hence, we choose our 80" percentile item
along with the most popular and unpopular items as shown in
Figure 13(a).

Figure 13(b) depicts the energy consumption of SWIFT
(K = 100) for clicks corresponding to these three items. The
unpopular items are not strongly correlated to their neighbors
due to the relatively small number of ratings provided for
each of them. Therefore, the items in their candidate sets
have less overlap compared to those in the candidate sets
of the more popular items. Thus, there is an increase in
the computation time for the unpopular items leading to an
increase in the energy-per-click. We deploy ALS on the same
Spark cluster for benchmarking the energy consumption of a
single update on this cluster (Figure 13(b)). Note that ALS is
non-incremental and therefore requires significantly more time
for one update than SWIFT, thus leading to higher energy

consumption.
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Fig. 13: Impact of item popularity on energy consumption
for ML-20M.

C. I-TRUST Evaluation

We now evaluate the effectiveness of I-TRUST in providing
accurate predictions with low latency. We denote the classical
predictor implementing Algorithm 2 as C-TRUST. For the
experiments, we set the model size (K) to 150 for C-TRUST to
achieve the optimal quality. We have the same model size with
the temporal parameter («) as 0.3 for I-TRUST. We deploy
these experiments on a single node. While training I-TRUST,
we update the similarities incrementally after a fixed micro-
batch of training events whereas for C-TRUST the similarities
are computed using all the training events in a non-incremental
manner.

Runtime. We measure the total runtime for updating the
similarities needed for constructing the K -nearest neighbor
graph using all the training events. This graph is then used
to predict the trust relations as shown in Algorithm 2 (Phase
3). For I-TRUST, we set the micro-batch update for similarity
computations to 1000 voting events. From Table III, we
observe that the runtime improves by 36 times.

Accuracy. Table III confirms I-TRUST’s superiority in terms
of accuracy. I-SIM.—( incorporates the time-varying trust
relations between an administrator and the voters, in the
similarity values. Therefore, the k-nearest neighbor graph is
temporally more accurate and leads to better predictions. The
improvement is reflected in the difference with C-TRUST for
the voting classification task.

12The 80" percentile popular item is the one with popularity higher than
80% of the items.

Approach Runtime Classification Accuracy
C-TRUST | 421.2's 79.21%
I-TRUST 11.66 s 80.75%

TABLE III: Runtime and accuracy comparisons for I-
TRUST and C-TRUST.

VI. RELATED WORK

Collaborative filtering. CF algorithms can be generally di-
vided into two categories: memory-based and model-based.
Memory-based algorithms employ user-item ratings to com-
pute the predictions and then generate relevant recommenda-
tions. These algorithms can be either user-based [20] or item-
based [13]. Our work focuses on the item-based CF technique
which has been shown to provide more accurate recommen-
dations compared to the user-based one [13]. In contrast to
memory-based techniques, model-based ones build parametric
models by learning iteratively on the training datasets and then
leverage the learned model to generate predictions. Different
types of models are typically used, including matrix factor-
ization [8] and factored item similarity models [16]. Standard
model-based techniques require to update their learned models
by employing all the ratings, including the new ones, and hence
are not incremental in nature.

Real-time recommenders. These have recently attracted a lot
of attention. Huang et al. presented TENCENTREC, a real-time
stream recommender [4] which uses an incremental version
of approximate cosine similarity. We demonstrate in § V that
by trading storage (to store the L and M information), I-ST™M
performs better in terms of accuracy compared to the similarity
metric leveraged by TENCENTREC. Furthermore, SWIFT’s
biased sampling is significantly faster than TENCENTREC’s
real-time pruning as we explained in Section IV. Whilst Yang
et al. [29] presented a scalable item-based CF method by using
incremental update, they did not however address the problem
of temporal relevance.

Temporal relevance. Few approaches have addressed the
problem of temporal relevance in the context of CF. One simple
heuristic to capture the temporal behavior of a user, applicable
to any recommender, is to consider only the most recent
ratings in her profile for generating the recommendations [4],
[30], [31]. In our work, we focus on the temporal relevance
in the context of similarity computations. Ding et al. [32]
exploited the timestamps of ratings to adapt the item-based CF
technique. They incorporated time-based weights in the score
prediction stage but did not adapt the similarity computations,
hence leading to higher time complexity. Lathia et al. [33]
analyzed the effect of temporal relevance by varying the
neighborhood size over time. Koren et al. [8] designed a matrix
factorization model that considers the temporal behavior of
users. However, their model has a higher time complexity
as they employ multiple time dependent parameters. Liu et
al. [9] introduced an incremental version of cosine similarity
that provides temporal relevance. However, Sarwar et al. [13]
empirically showed that an item-based CF technique provides
more accurate recommendations by leveraging the adjusted
cosine metric (compared to the classical cosine one). I-SIM
provides incremental updates for the adjusted cosine similarity
while incorporating the temporal relevance feature.

Energy-efficiency. Despite a large amount of work on large-
scale CF [13], [34], [35], none of the existing approaches
focuses on reducing the time complexity. The main focus



has been so far to design distributed algorithms which can
decentralize the computations over multiple nodes leading
to better scalability. This strategy leads to more resource
utilization and thereby higher energy requirements. However,
energy consumption is currently a major concern in data
centers [36]. Energy costs are quickly rising in large-scale
data centers and are soon projected to overtake the cost of
hardware. Energy-efficiency is the new holy grail of data
management systems research [37]. We address this energy-
efficiency issue by designing incremental computations with
lower time complexity.

Trust-distrust in OSNs. Trust inference algorithms rely on
users’ feedback to predict future trust relations. However, trust
relations are assumed to be static in existing literature [2],
[21]. In this paper, we first demonstrate that trust relations
can be time-varying and then present how to capture these
dynamic trust relations by leveraging I-SiM and thus enabling
lightweight incremental similarity updates.

VII. CONCLUDING REMARKS

We present I-S1M, a novel similarity metric that enables
similarity computations in an incremental and temporal man-
ner. We illustrate through two applications the effectiveness
of I-SIM in practice: (a) SWIFT incorporating I-S1M for
recommendation and (b) I-TRUST incorporating I-STM.—¢ for
trust prediction. We empirically show that I-SIM leads to
better accuracy and lower latency along with energy efficiency
compared to state-of-the-art alternatives. Moreover, I-SIM can
be leveraged to incorporate time-awareness in similarity-based
applications, for example, trust recommendation in mobile ad-
hoc networks [21] or predictive blacklisting against malicious
traffic on the Internet [38].
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