
Prediction-Based Task Assignment in Spatial
Crowdsourcing (Technical Report)

Peng Cheng#, Xiang Lian∗, Lei Chen#, Cyrus Shahabi†

#Hong Kong University of Science and Technology, Hong Kong, China
{pchengaa, leichen}@cse.ust.hk
∗Kent State University, Ohio, USA

xlian@kent.edu
†University of Southern California, California, USA

shahabi@usc.edu

Abstract—With the rapid advancement of mobile devices and
crowdsourcing platforms, spatial crowdsourcing has attracted
much attention from various research communities. A spatial
crowdsourcing system periodically matches a number of location-
based workers with nearby spatial tasks (e.g., taking photos or
videos at some specific locations). Previous studies on spatial
crowdsourcing focus on task assignment strategies that maximize
an assignment score based solely on the available information
about workers/tasks at the time of assignment. These strategies
can only achieve local optimality by neglecting the workers/tasks
that may join the system in a future time. In contrast, in this
paper, we aim to improve the global assignment, by considering
both present and future (via predictions) workers/tasks. In
particular, we formalize a new optimization problem, namely
maximum quality task assignment (MQA). The optimization
objective of MQA is to maximize a global assignment quality
score, under a traveling budget constraint. To tackle this problem,
we design an effective grid-based prediction method to estimate
the spatial distributions of workers/tasks in the future, and
then utilize the predictions to assign workers to tasks at any
given time instance. We prove that the MQA problem is NP-
hard, and thus intractable. Therefore, we propose efficient
heuristics to tackle the MQA problem, including MQA greedy and
MQA divide-and-conquer approaches, which can efficiently assign
workers to spatial tasks with high quality scores and low budget
consumptions. Through extensive experiments, we demonstrate
the efficiency and effectiveness of our approaches on both real
and synthetic datasets.

I. INTRODUCTION
Mobile devices not only bring convenience to our daily

life, but also enable people to easily perform location-based
tasks in their vicinity, such as taking photos/videos (e.g.,
street view of Google Maps [2]), reporting traffic conditions
(e.g., Waze [4]), and identifying the status of display shelves
at neighborhood stores (e.g., Gigwalk [1]). Recently, to
exploit these phenomena, a new framework, namely spatial
crowdsourcing [17], for requesting workers to perform spatial
tasks, has drawn much attention from both academia (e.g.,
MediaQ [18]) and industry (e.g., TaskRabbit [3]). A typical
spatial crowdsourcing system (e.g., gMission [7]) utilizes a
number of dynamically moving workers to accomplish spatial
tasks (e.g., taking photos/videos), which requires workers to
physically go to the specified locations to complete these tasks.

We first provide the following motivating example.
Example 1 (The Spatial Crowdsourcing Problem with
Multiple Time Instances) Consider a scenario of spatial

(a) assignment at timestamp p (b) assignment at timestamp (p+ 1)

Fig. 1. Locally Optimal Worker-and-Task Assignments in the Spatial
Crowdsourcing System.

crowdsourcing in Figure 1, where spatial tasks, t1 ∼ t3, are
represented by red circles, and workers, w1 ∼ w3, are denoted
by blue triangles. In particular, Figure 1(a) shows a worker,
w1, and two tasks, t1 and t2, which join the system at a
timestamp p (denoted by markers with solid border). Figure
1(b) depicts two more workers, w2 and w3, and one more task,
t3, which arrive at the system at a future timestamp (p + 1)
(denoted by markers with the dashed border).

Each worker wi (1 ≤ i ≤ 3) has a particular expertise to
perform different types of spatial tasks tj (1 ≤ j ≤ 3). Thus,
we assume that the competence of a worker wi to perform
task tj can be captured by a quality score qij (as shown in
Table I). Furthermore, each worker, wi, is provided with some
reward (e.g., monetary or points) to cover the traveling cost
from wi to tj , which is proportional to the traveling distance,
dist(wi, tj) (as depicted in Table I), where dist(x, y) is a
distance function from x to y. Thus, workers are persuaded
to perform tasks even if they are far away from the tasks’
locations, which improves the task completion rate, especially
for workers/tasks with unbalanced location distributions.

Given a maximum reward budget at each time instance, a
spatial crowdsourcing problem is to assign workers to tasks at
both current and future timestamps, p and (p+1), respectively,
such that the overall quality score of assignments is maximized
while the reward for workers is under an allocated budget.

In Example 1, the traditional spatial crowdsourcing ap-
proaches [9], [18] considered the worker-and-task assignments
only based on workers/tasks that are available in the system at
each time instance. For example, in the first time instance, p,
of Figure 1(a), only t1, t2, and w1 exist. Therefore, we assign

ar
X

iv
:1

51
2.

08
51

8v
5 

 [
cs

.D
B

] 
 2

0 
Fe

b 
20

17



TABLE I. DISTANCES AND QUALITY SCORES OF
WORKER-AND-TASK PAIRS

worker-and-task pair, 〈wi, tj〉 distance, dist(wi, tj) quality score, qij
〈w1, t1〉 1 3
〈w1, t2〉 2 2
〈w1, t3〉 4 2
〈w2, t1〉 1 4
〈w2, t2〉 3 2
〈w2, t3〉 2 1
〈w3, t1〉 5 2
〈w3, t2〉 3 1
〈w3, t3〉 1 2

worker w1 to task t1 (rather than task t2), since it holds that
dist(w1, t1) < dist(w1, t2) and q11 > q12 (i.e., worker w1 can
accomplish task t1 with lower budget consumption and higher
quality, compared with task t2, as given in Table I). Next, in
the second time instance of Figure 1(b), two new tasks, t2 and
t3, and two new workers, w2 and w3, become available in the
system at timestamp (p+1). Traditional spatial crowdsourcing
approaches would create assignment pairs 〈w2, t2〉 and 〈w3, t3〉
at this time instance (see lines in Figure 1(b)). As a result, such
an assignment strategy at two separate time instances leads to
the overall traveling cost 5 (= 1 + 3 + 1) and overall quality
score 7 (= 3 + 2 + 2).

Note that the assignment strategy above does not take
into account future workers/tasks that may join the system
at a later time instance. In [17], it is shown that an optimal
assignment strategy exists for a single time instance but this
local optimality may not yield a global optimal assignment
across all time instances. In our running example, at timestamp
p, a clairvoyant algorithm that knows the future workers/tasks
that arrive at timestamp (p + 1), may provide a better global
assignment strategy (i.e., with lower overall traveling cost and
higher overall quality score). Based on this observation, in
this paper, we will formulate a new optimization problem,
namely maximum quality task assignment (MQA) with the goal
of assigning moving workers to spatial tasks under a budget
constraint to achieve a better global assignment across multiple
time instances.
Example 2 (The Maximum Quality Task Assignment
Problem) In the example of Figure 1, the MQA problem
is to maximize the overall quality score of assignments
under traveling cost budget constraints across multiple time
instances. As shown in Figure 2, at timestamp p, we can
have the prediction-based assignments: 〈w2, t1〉, 〈w1, t2〉, and
〈w3, t3〉, which can achieve a better global assignment with
smaller traveling cost 4 (= 1 + 2 + 1) and higher quality
score 8 (= 4+2+2), compared to locally optimal assignments
(without prediction) in Figure 1 with the traveling cost, 5, and
the quality score 7.

As shown in [17] and from the example above, we can see
that even an optimal local assignment based on the currently
available tasks/workers at each time instance may not lead to
a global optimal solution. In [17] , some heuristics based on
past worker/task distributions (e.g., based on location entropy)
were proposed to address this challenge. Here, instead, we
strive to predict/estimate future task/worker distributions to
provide a better global assignment strategy. Moreover, in [17],
the objective was to maximize the number of assigned tasks
without considering the traveling budget constraint and the
quality score of task assignment. In contrast, the optimization
objective of MQA is to maximize the assignment quality score
under budget constraints.

Different from prior studies in spatial crowdsourcing,
the MQA problem requires designing an accurate prediction
approach for estimating future location distributions of

Fig. 2. Globally Optimal Assignments for the Maximum Quality Task
Assignment (MQA) Problem.

tasks and workers (and the quality distributions of worker-
and-task assignment pairs as well), and considering the
assignments over the estimated location/quality variables of
future tasks/workers, which is quite challenging. Furthermore,
in this paper, we prove that the MQA problem is NP-hard for
any given time instance, by reducing it from the 0-1 Knapsack
problem [25]. As a result, the MQA problem is not tractable.
Therefore, in order to efficiently tackle the MQA problem,
we will propose effective heuristics, including MQA greedy
and MQA divide-and-conquer approaches, over both current
and predicted workers/tasks, which can efficiently compute a
better global assignment with high quality scores under the
budget constraints.

Specifically, we make the following contributions.
• We formally define the maximum quality task assignment

(MQA) problem in Section II. We prove that the MQA
problem is NP-hard in Section II-D.

• We propose an effective grid-based prediction approach to
estimate location/quality distributions/statistics for future
tasks /workers in Section III.

• We design an efficient MQA greedy algorithm to
iteratively select one best assignment pair each time over
current/future tasks/workers in Section IV.

• We illustrate a novel MQA divide-and-conquer algorithm
to recursively divide the problem into subproblems and
merge assignment results in subproblems in Section V.

• We verify the effectiveness and efficiency of our proposed
MQA approaches with extensive experiments on real and
synthetic data sets in Section VI.

In addition to the contributions listed above, in this paper,
we review previous works in spatial crowdsourcing in Section
VII, and conclude in Section VIII.

II. PROBLEM DEFINITION
A. Dynamically Moving Workers

Definition 1: (Dynamically Moving Workers) Let Wp =
{w1, w2, ..., wn} be a set of n moving workers at timestamp
p. Each worker wi (1 ≤ i ≤ n) is located at position li(p) at
timestamp p, and freely moves with velocity vi.

In Definition 1, worker wi can dynamically move with
speed vi in any direction. At each timestamp p, worker wi
are located at positions li(p). Workers can freely join or leave
the spatial crowdsourcing system.

B. Time-Constrained Spatial Tasks
Definition 2: (Time-Constrained Spatial Tasks) Let Tp =

{t1, t2, ..., tm} be a set of time-constrained spatial tasks at
timestamp p. Each spatial task tj (1 ≤ j ≤ m) is located at
a specific location lj , and workers are expected to reach the
location of task tj before the deadline ej .

In Definition 2, a task requester creates a time-constrained
spatial task tj (e.g., taking a photo), which requires workers
to be physically at the specific location lj before the deadline



ej . In this paper, we assume that each spatial task can be
performed by a single worker.

C. The Maximum Quality Task Assignment Problem
In this section, we will formalize the problem of

maximum quality task assignment (MQA), which assigns time-
constrained spatial tasks to spatially scattered workers with
the objective of maximizing the overall quality score of
assignments under the traveling budget constraint.
Task Assignment Instance Set. Before we present the MQA
problem, we first introduce the notion of the task assignment
instance set.

Definition 3: (Task Assignment Instance Set, Ip) At
timestamp p, given a worker set Wp and a task set Tp, a
task assignment instance set, Ip, is a set of valid worker-and-
task assignment pairs in the form 〈wi, tj〉, where each worker
wi ∈ Wp is assigned to at most one task tj ∈ Tp, and each
task tj ∈ Tp is accomplished by at most one worker wi ∈Wp.

Intuitively, Ip in Definition 3 is one possible (valid) worker-
and-task assignment between worker set Wp and task set Tp.
A valid assignment pair 〈wi, tj〉 is in Ip, if and only if this pair
satisfies the condition that worker wi can reach the location lj
of task tj before the deadline ej .

The Reward of the Worker-and-Task Assignment Pair. As
discussed earlier in Section I, we assume that each worker-
and-task assignment pair 〈wi, tj〉 is associated with a traveling
cost, cij , which corresponds to the reward (e.g., monetary
or points) to cover the transportation fee from li(p) to lj
(e.g., cost of gas or public transportation). Without loss of
generality we assume that the reward, cij , is computed by:
cij = C ·dist(li(p), lj), where C is the unit cost per mile, and
dist(li(p), lj) is the distance between locations of worker wi
and task tj . For simplicity, we will use the Euclidean distance
function dist(li(p), lj) in this paper.

The Quality Score of the Worker-and-Task Assignment Pair.
Each worker-and-task assignment pair 〈wi, tj〉 is also
associated with a quality score, denoted as qij (∈ [0, 1]),
which indicates the quality of the task tj that is completed
by worker wi. Due to different types of tasks with various
difficulty levels (e.g., taking photos vs. repairing houses) and
different expertise or competence of workers in performing
tasks, we assume that different worker-and-task pairs 〈wi, tj〉
may be associated with diverse quality scores qij .
The MQA Problem. Next, we provide the definition of our
maximum quality task assignment (MQA) problem.

Definition 4: (Maximum Quality Task Assignment
(MQA) ) Given a set of time instances P and a maximum
reward budget B for each time instance, the problem of
maximum quality task assignment (MQA) is to assign the
available workers in Wp to tasks in Tp to provide a task
assignment instance set, Ip, at timestamp p ∈ P , such that:

1) at any timestamp p ∈ P , each worker wi ∈ Wp is
assigned to at most one spatial task tj ∈ Tp such that
his/her arrival time at location lj is before deadline ej ;

2) at timestamp p ∈ P , the total reward (i.e., the traveling
cost) of all the assigned workers does not exceed budget
B, that is,

∑
∀〈wi,tj〉∈Ip cij ≤ B; and

3) the overall quality score of the assigned tasks of all
timestamps in P is maximized, that is,

maximize
∑
∀p∈P

∑
∀〈wi,tj〉∈Ip

qij . (1)

TABLE II. SYMBOLS AND DESCRIPTIONS.

Symbol Description
Tp a set of m time-constrained spatial tasks tj at timestamp p
Wp a set of n dynamically moving workers wi at timestamp p
ŵi (or t̂j ) the predicted worker (or task)
w̃i (or t̃j ) the worker (or task) in either current or next time instance
Ip the task assignment instance set at timestamp p
ej the deadline of arriving at the location of task tj
li(p) the position of worker wi at timestamp p
lj the position of task tj
vi the velocity of worker wi

cij the traveling cost from the location of worker wi to that of task tj
qij the quality score of assigning worker wi to perform task tj
B the maximum reward budget (i.e., traveling cost) at each time instance
C the unit price of the traveling cost by workers
P a set of time instances
w the size of the sliding window to do the prediction

Intuitively, the MQA problem (given in Definition 4)
assigns workers to tasks at multiple time instances in P , such
that (1) at each time instance, an assignment pair 〈wi, tj〉 is
valid (i.e., satisfying the time constraints, ej); (2) at each time
instance, the total reward of assignment pairs is less than or
equal to the maximum budget B; and (3) the overall quality
score of assignments of all the time instances is maximized.

As discussed earlier in Section I, it may not be globally
optimal to simply optimize the assignments at each individual
time instance separately. The MQA approaches aim to provide
a better global assignment by taking into account tasks/workers
not only at the current timestamp p, but also at the future
timestamp (p+ i) ∈ P .

Table II summarizes the commonly used symbols.

D. Hardness of the MQA Problem
In order to give a sense on the size of the solution space,

with n dynamically moving workers and m time-constrained
spatial tasks, in the worst case, there are an exponential number
of possible worker-and-task assignment strategies, which leads
to high time complexity (i.e., O((m+ 1)n)). Then, we prove
that the MQA problem is NP-hard, by reducing it from a well-
known NP-hard problem, 0-1 Knapsack problem [25].

Lemma 2.1: (Hardness of the MQA Problem) The
maximum quality task assignment (MQA) problem is NP-hard.

Proof: Please refer to Appendix A.
From Lemma 2.1, we can see that the MQA problem is NP-

hard, and thus intractable. Alternatively, we will later design
efficient heuristics to tackle the MQA problem and achieve
better global assignment strategies.
E. Framework

Figure 3 illustrates a general framework, namely procedure
MQA Framework, for solving the MQA problem, which
assigns workers with spatial tasks at multiple time instances
in P , based on the predicted location/quality distributions of
workers/tasks.

Specifically, at timestamp p, we first retrieve a set, Tp, of
available spatial tasks, and a set, Wp, of available workers
(lines 1-3). Here, the task set Tp (or worker set Wp) contains
both tasks (or workers) that have not been assigned at the last
time instance and the ones that newly arrive at the system after
the last time instance (note: those workers who finished tasks in
previous time instances are also treated as “new workers” that
join the system, thus the workers can continuously contribute
to the platform). In order to achieve better global assignments,
we need to predict workers and tasks at a future timestamp
(p+ 1) that newly join the system, and obtain two sets Wp+1

and Tp+1, respectively (line 4).



TABLE III. EXAMPLE OF GRID-BASED PREDICTION
Cell Previous Worker Numbers Predicted Worker Number
C1 [4, 3, 4] 4
C2 [2, 3, 3] 3
C3 [0, 1, 0] 0
C4 [1, 1, 1] 1

Subsequently, with both current and future sets of
tasks/workers (i.e., Tp/Wp and Tp+1/Wp+1, respectively), we
can apply our proposed algorithms in this paper (including
MQA greedy and MQA divide-and-conquer), and retrieve better
assignment pairs in assignment instance set Ip (line 5). Finally,
we notify each worker wi to do his/her task tj (lines 6-7).

Procedure MQA Framework {
Input: a set of time instances P
Output: a worker-and-task assignment strategy across the time instances in P
(1) for time instance p ∈ P
(2) retrieve all the available spatial tasks in set Tp

(3) retrieve all the available workers in set Wp

(4) predict new future tasks/workers in Tp+1 and Wp+1 at the next time instance
(5) apply the MQA greedy or MQA divide-and-conquer approach to obtain a

assignment instance set, Ip, w.r.t. Tp, Wp, Tp+1 and Wp+1

(6) for each pair 〈wi, tj〉 in Ip
(7) inform worker wi to perform task tj}

Fig. 3. A Framework for Tackling the MQA Problem.

III. THE GRID-BASED WORKER/TASK
PREDICTION APPROACH

In order to achieve better global assignments in our MQA
problem, we need to accurately predict the future status
of workers/tasks that newly join the spatial crowdsourcing
system. Specifically, in this section, we will introduce a grid-
based worker/task prediction approach, which can efficiently
and effectively estimate the number of future workers/tasks,
location distributions of future workers/tasks, and quality score
distributions w.r.t. future worker-and-task pairs (and their
existence probabilities as well).

A. The Grid-Based Prediction Algorithm
In this section, we discuss how to predict the number

of tasks /workers, and their location distributions in a 2-
dimensional data space U = [0, 1]2. In particular, we consider
a grid index, I, over tasks and workers, which divides the data
space U into γ2 cells, each with the side length 1/γ, where the
selection of the best γ value can be guided by a cost model
in [9]. Next, we estimate the potential workers/tasks that may
fall into each cell at a future timestamp, which is inferred from
historical data of the most recent sliding window of size w.

In particular, our grid-based prediction algorithm first
predicts the future numbers of workers/tasks from the latest w
worker/task sets in each cell, then generates possible worker
(or task) samples in Wp+1 (or Tp+1) for each cell of the grid
index I.

First, we initialize a worker set Wp+1 and a task set Tp+1 at
the future time instance with empty sets. Subsequently, within
each cell celli, we can obtain its w latest worker counts,
|W (i)

p−w+1|, |W
(i)
p−w+2|, ..., and |W (i)

p |, which form a sliding
window of a time series (with size w). Due to the temporal
correlation of worker counts in the sliding window, in this
paper, we utilize the linear regression [19] over these w worker
counts to predict the future number, |W (i)

p+1|, of workers in cell,
celli, that newly join the system at timestamp (p+1). Note that
other prediction methods can be also plugged into our grid-
based prediction framework, which we plan to study in our
future work. Similarly, we can estimate the number, |T (i)

p+1|, of
tasks in celli at timestamp (p+ 1).

According to the predicted numbers of workers/tasks, we
can uniformly generate |W (i)

p+1| worker samples (or |T (i)
p+1| task

Fig. 4. Example of Predicted Workers.
samples) within each cell celli, and add them to the predicted
worker set Wp+1 (or task set Tp+1). We use sampling with
replacement to generate worker/task samples, which means
two samples can be generated at the same location. For the
pseudo code of the MQA prediction algorithm, please refer to
Appendix B.

Example 3 (The Grid-Based Prediction) Consider that a
space is divided into 4 cells, C1 to C4, as shown in Figure 4.
Based on the historical records on the number of workers in
each cell Ci, we want to predict the workers that will appear
in Ci at the next time instance. Table III presents the number of
workers for each cell in current time instance p and previous
two time instances p − 1 and p − 2. For example, there 4
workers at time p− 2, 3 workers at time p− 1 and 4 workers
at time p in cell C1. Then, we predict the number of workers
in cell C1 at time p+ 1 is 4. We uniformly generate 4 worker
samples. After generating predicted workers for each cell, we
can capture the distribution of workers as shown in Figure 4.
Location Distributions of the Predicted Workers/Tasks. As
each cell is small, from the global view, the distributions of
tasks/workers in the entire space are approximately captured.
However, in each cell, discrete samples may be of small sample
sizes, which may lead to low prediction accuracy. For example,
if the sample size is only 1, then different possible locations of
this one single sample (generated in the cell) may dramatically
affect our MQA assignment results.

Inspired by this, instead of using discrete samples
predicted, in this paper, we will alternatively consider
continuous probability density function (pdf) for location
distributions of workers/tasks. Specifically, we apply the
kernel density estimation over samples in each cell to
describe the distributions of samples’ locations. That is,
centered at each sample si generated in celli, we can obtain
the continuous pdf function of this worker/task sample,
f(x) =

∏2
r=1

(
1
hr
K
(
x[r]−s[r]

hr

))
, where hr (∈ (0, 1)) is

the bandwidth on the r-th dimension, and function K(·) is a
uniform kernel function [14], given by K(u) = 1

2 ·1(|u| ≤ 1).
Here, 1(|u| ≤ 1) = 1, when |u| ≤ 1 holds. Note that the choice
of the kernel function is not significant for approximation
results [14], thus, in this paper, we use uniform kernel
function K(·). From the pdf function f(x) of each sample
si ∈ celli, each dimension r can be bounded by an interval
[si[r]− hr, si[r] + hr].

Typically, in the literature [14], we set hr =
σ̂Cv(k)n−1/(2v+1), where σ̂ is the standard deviation of
samples (derived from current worker/task statistics), v is the
order of the kernel (v is set to 2 here), and Cv(k) = 1.8431

(= 2
(
π1/2(v!)3R(k)
2v(2v)!k2

v(k)

)1/(2v+1)

, for kv(k) = 1/3, R(k) = 1/2

with Uniform kernel functions).

B. Statistics of the Predicted Workers/Tasks
For the ease of the presentation, in this paper, we denote

those future workers wi and tasks tj that are predicted as ŵi
and t̂j , respectively.

Due to the predicted future workers/tasks, in our PB-SC
problem, we need to consider worker-and-task assignment



pairs that may involve predicted workers/tasks. That is, we
have 3 cases, 〈ŵi, tj〉, 〈wi, t̂j〉, and 〈ŵi, t̂j〉, where ŵi and
t̂j are the predicted worker and task samples, respectively,
following uniform distributions represented by kernel functions
K(·) (as mentioned in Section III-A).

Due to the existence of these predicted workers/tasks, the
traveling costs and the quality scores of assignment pairs now
become random variables (rather than fixed values). In this
section, we will discuss how to obtain statistics (e.g., mean and
variance) of traveling costs, quality scores, and confidences,
associated with assignment pairs.
The Traveling Cost of Pairs with the Predicted Work-
ers/Tasks. The traveling cost, ĉij , of worker-and-task pairs
involving the predicted workers/tasks (i.e., 〈ŵi, tj〉, 〈wi, t̂j〉,
or 〈ŵi, t̂j〉) can be given by C · dist(ŵi, tj), C · dist(wi, t̂j),
or C · dist(ŵi, t̂j), respectively.

We discuss the general case of computing statistics of
variable ĉij = C ·dist(ŵi, t̂j). Since it is nontrivial to calculate
the statistics of the Euclidean distance between variables ŵi
and t̂j , we alternatively consider statistics (mean and variance)
of the squared Euclidean distance variable Z2 = dist2(ŵi, t̂j)
(=
∑2
r=1(ŵi[r]− t̂j [r])2), where ŵi and t̂j are two variables

uniformly residing in a 2D space.
The Computation of Mean E(Z2). Let variable Zr =

ŵi[r] − t̂j [r], for r = 1, 2, whose mean E(Zr) and variance
V ar(Zr) can be easily computed (i.e., E(Zr) = si[r]− sj [r]
and V ar(Zr) =

(hr(ŵi[r]))
2+(hr(t̂j [r]))2

3 respectively).
Then, we have Z2 = Z2

1 +Z2
2 . Thus, the mean E(Z2) can

be given by: E(Z
2
) = E(Z

2
1 ) + E(Z

2
2 ). (2)

The Computation of Variance V ar(Z2). Moreover, for
variance V ar(Z2), it holds that:

V ar(Z
2
) = E(Z

4
)− (E(Z

2
))

2 (3)

= E((Z
2
1 + Z

2
2 )

2
)− (E(Z

2
))

2

= E(Z
4
1 ) + 2 · E(Z

2
1 ) · E(Z

2
2 ) + E(Z

4
2 )− (E(Z

2
))

2
.

From Eqs. (2) and (3) above, the remaining issues are to
compute E(Z2

r ) and E(Z4
r ) (for r = 1, 2).

The Computation of E(Z2
r ). For E(Z2

r ), since Zr =

ŵi[r]− t̂j [r], we have:
E(Z

2
r ) = V ar(Zr) + (E(Zr))

2 (4)

= V ar(ŵi[r]) + V ar(t̂j [r]) + (E(ŵi[r])− E(t̂j [r]))
2
.

The Computation of E(Z4
r ). For E(Z4

r ), we can derive
that:

E(Z
4
r ) = E((ŵi[r]− t̂j [r])

4
)

= E(ŵi[r]
4
)− 4 · E(ŵi[r]

3
) · E(t̂j [r])

+6 · E(ŵi[r]
2
) · E(t̂j [r]

2
)− 4 · E(ŵi[r]) · E(t̂j [r]

3
)

+E(t̂j [r]
4
). (5)

In Eq. (5), variable ŵi[r] follows the uniform distribution
within bound [lb w, ub w] (for the r-th dimension of uniform
kernel function K(·) in Section III-A). We can thus infer that:

E(ŵi[r]
4
) =

∫ ub w

lb w

x
4 1

ub w − lb w
dx =

ub w5 − lb w5

5(ub w − lb w)
,

E(ŵi[r]
3
) =

∫ ub w

lb w

x
3 1

ub w − lb w
dx =

ub w4 − lb w4

4(ub w − lb w)
,

E(ŵi[r]
2
) =

∫ ub w

lb w

x
2 1

ub w − lb w
dx =

ub w3 − lb w3

3(ub w − lb w)
,

where [lb w, ub w] = [si[r]− hr(ŵi[r]), si[r] + hr(ŵi[r])].

Similarly, we can also obtain E(t̂j [r]
4), E(t̂j [r]

3), and
E(t̂j [r]

2) for task t̂j [r]. We omit it here.
This way, by substituting Eqs. (4) and (5) into Eqs. (2) and

(3), we can obtain mean E(Z2) and variance V ar(Z2) of the
squared Euclidean distance between two Uniform distributions.
Quality Scores of Pairs with the Predicted Workers/Tasks.
We consider the three cases to compute statistics of quality
score distributions.

Case 1: 〈ŵi, tj〉. In this case, at the current timestamp
p, we can obtain all the ni workers wi that can reach task
tj . Then, we use quality scores, qij , of their corresponding
worker-and-task pairs 〈wi, tj〉 as samples (each with proba-
bility 1/ni), which can describe/estimate future distributions
of quality scores. Correspondingly, with these samples, we
can obtain mean and variance of quality scores between the
predicted worker ŵi and the current task tj .

Case 2: 〈wi, t̂j〉. Similar to Case 1, we can obtain mj

spatial tasks tj that can be reached by worker wi. Then, we
obtain mj quality score samples from valid pairs 〈wi, tj〉 (each
sample with probability 1/mj), whose mean and variance can
be used to capture the quality score distribution between the
current worker wi and a predicted task t̂j .

Case 3: 〈ŵi, t̂j〉. Since both worker ŵi and task t̂j have
predicted distributions, we cannot directly obtain quality score
distributions. Thus, our basic idea is to infer future quality
scores by existing workers wi and tasks tj at the current
timestamp p. That is, at the current time instance, we collect
quality scores qij of all pairs 〈wi, tj〉 as samples, and use them
to represent probabilistic distributions of quality scores of both
worker ŵi and task t̂j at the future time instance.
Existence Probabilities of Pairs with the Predicted
Workers/Tasks. Some assignment pairs that involve the
predicted worker/task may not be valid, due to the time
constraints of spatial tasks tj or t̂j (i.e., deadline ej). Thus, we
will associate each pair (with either worker or task in future)
with an existence probability, p̂ij .

For pair 〈ŵi, tj〉, we let p̂ij = min{ ni

|Wp| , 1}, where ni
is the number of valid workers who can reach task tj at
the current timestamp p, and |Wp| is the total number of
(estimated) workers at timestamp p.

Similarly, for pair 〈wi, t̂j〉, we can obtain: p̂ij =
min{ mj

|Tp| , 1}, where mj is the number of valid tasks that
worker wi can reach before the deadlines, and |Tp| is the total
number of (estimated) tasks at timestamp p.

For pair 〈ŵi, t̂j〉, let uij be the total number of valid pairs
between Wp and Tp at timestamp p. Then, we can estimate
the existence probability of pair 〈ŵi, t̂j〉 by: p̂ij =

uij

|Wp|·|Tp| .

IV. THE MQA GREEDY APPROACH
In this section, we propose an efficient MQA greedy

algorithm (GREEDY) to solve the MQA problem, which
iteratively finds one “best” worker-and-task assignment pair,
〈wi, tj〉, each time, with the highest increase of the quality
score and under the budget constraint of high confidences.
Here, in order to achieve high total quality scores, GREEDY is
applied over both current and predicted future workers/tasks.

After all assignment pairs (involving current/future work-
ers/tasks) are selected, we will only insert into the set Ip
those pairs, 〈wi, tj〉, with both workers and tasks at current
timestamp p (i.e., wi ∈Wp and tj ∈ Tp).



A. The Comparisons of the Quality Score Increases / Traveling
Cost Increases

Since MQA greedy algorithm needs to select one worker-
and-task assignment pair, 〈w̃i, t̃j〉, at a iteration with the
highest increase of the total quality score, in this section,
we will first formalize the increase of the quality score,
∆q(w̃i, t̃j), for a pair 〈w̃i, t̃j〉, and then compare the increases
of overall quality scores between two pairs 〈w̃i, t̃j〉 and
〈w̃a, t̃b〉, where w̃i, t̃j , w̃a, and t̃b can be either current or
predicted workers/tasks.
The Calculation of the Quality Score Increase, ∆q(w̃i, t̃j).
Based on Eq. (1), the overall quality score is given by summing
up all quality scores of the selected assignment pairs. Thus,
when we choose a new assignment pair 〈w̃i, t̃j〉, the increase
of the quality score, ∆q(w̃i, t̃j), is exactly equal to the quality
score of this new pair 〈w̃i, t̃j〉, denoted as q̃ij . That is,

∆q(w̃i, t̃j) = q̃ij , (6)

where q̃ij is a fixed value, if both w̃i and t̃j are current
worker and task, respectively; otherwise, q̃ij is a random
variable whose distribution can be given by samples discussed
in Section III-B.
The Comparisons of the Quality Score Increase Between
Two Pairs 〈w̃i, t̃j〉 and 〈w̃a, t̃b〉. Next, we discuss how to
decide which worker-and-task assignment pair is better, in
terms of the quality score increase, between two pairs 〈w̃i, t̃j〉
and 〈w̃a, t̃b〉.

Specifically, if both pairs have workers/tasks at current
timestamp p, then the quality score increases, q̃ij and ˜qab
(given in Eq. (6)), are fixed values. In this case, the pair with
higher quality score increase is better.

On the other hand, in the case that either of the two
pairs involves the predicted workers/tasks, their corresponding
quality score increases, that is, q̃ij and/or ˜qab, are random
variables. To compare the two quality score increases, we can
compute the probability, Pr∆q(w̃i,t̃j), that pair 〈w̃i, t̃j〉 has the
increase greater than that of the other one. That is, by applying
the central limit theorem (CLT) [13], [15], we have:

Pr∆q(w̃i,t̃j) = Pr{∆q(w̃i, t̃j) > ∆q(w̃a t̃b)} (7)

= Pr{q̃ij > ˜qab}
= 1− Pr{q̃ij ≤ ˜qab}

= 1− Pr
{
q̃ij − ˜qab − (E(q̃ij)− E( ˜qab))

V ar(q̃ij) + V ar( ˜qab)

≤
−(E(q̃ij)− E( ˜qab))

V ar(q̃ij) + V ar( ˜qab)

}
= 1− Φ

( −(E(q̃ij)− E( ˜qab))

V ar(q̃ij) + V ar( ˜qab)

)
,

where Φ(·) is the cumulative density function (cdf) of a
standard normal distribution.

With Eq. (7), we can compute the probability, Pr∆q(w̃i,t̃j),
that pair 〈w̃i, t̃j〉 is better than (i.e., with higher score than) pair
〈w̃a, t̃b〉. If it holds that Pr∆q(w̃i,t̃j) > 0.5, then we say that
pair 〈w̃i, t̃j〉 is expected to have higher quality score increase;
otherwise, pair 〈w̃a, t̃b〉 has higher quality score increase.
The Comparisons of the Traveling Cost Increase Between
Two Pairs 〈w̃i, t̃j〉 and 〈w̃a, t̃b〉. Similar to the quality score,
we can also compute the probability, Pr∆c(w̃i,t̃j), that the
increase of the traveling cost for pair 〈w̃i, t̃j〉 is smaller than
that of pair 〈w̃a, t̃b〉. That is, we can obtain:

Pr∆c(w̃i,t̃j) = Pr{∆c(w̃i, t̃j) ≤ ∆c(w̃a, t̃b)} (8)

= Pr{c̃ij ≤ ˜cab}

= Φ

( −(E(c̃ij)− E( ˜cab))

V ar(c̃ij) + V ar( ˜cab)

)
.

B. The Pruning Strategy
As discussed in Section IV-A, one straightforward method

for selecting a “good” assignment pair at a iteration is
as follows. We sequentially scan each valid worker-and-
task pair 〈w̃i, t̃j〉, and compare its quality score increase,
∆q(w̃i, t̃j), with that of the best-so-far pair 〈w̃a, t̃b〉, in terms
of the probability Pr∆q(w̃i,t̃j). If the pair 〈w̃i, t̃j〉 expects to
have higher quality score (and moreover satisfy the budget
constraint), then we consider it as the new best-so-far pair.

The straightforward method mentioned above considers
all possible valid assignment pairs, and computes their
comparison probabilities, which requires high time complexity,
that is, O(m′ · n′), where m′ and n′ are the numbers of
tasks and workers at both current and future time instances,
respectively. Therefore, in this section, we will propose
effective pruning methods to quickly discard those false alarms
of assignment pairs, with both high traveling costs and low
quality scores.
Pruning with Bounds of Quality and Traveling Cost.
Without loss of generality, for each pair 〈w̃i, t̃j〉, assume that
we can obtain its lower and upper bounds of the traveling
cost, c̃ij , and quality score, q̃ij , where c̃ij and q̃ij are either
fixed values (if w̃i and t̃j are worker/task at the current
time instance) or random variables (if worker and/or task
are from the future time instance). That is, we denote c̃ij ∈
[lb c̃ij , ub c̃ij ] and q̃ij ∈ [lb q̃ij , ub q̃ij ].

This way, in a 2D quality-and-travel-cost space, each
worker-and-task assignment pair, 〈w̃i, t̃j〉, corresponds to a
rectangle, [lb q̃ij , ub q̃ij ] ×[lb c̃ij , ub c̃ij ]. Then, based on
the idea of the skyline query [5], we can safely prune those
pairs that are dominated by candidate pairs, in terms of the
traveling cost and quality score.

Lemma 4.1: (The Dominance Pruning) Given a candidate
pair 〈w̃a, t̃b〉, a valid worker-and-task pair 〈w̃i, t̃j〉 can be
safely pruned, if and only if it holds that: (1) ub ˜cab < lb c̃ij ,
and (2) lb ˜qab > ub q̃ij .

Proof: Since it holds that c̃ij ∈ [lb c̃ij , ub c̃ij ] and
q̃ij ∈ [lb q̃ij , ub q̃ij ], by lemma assumptions and inequality
transition, we have:

˜cab ≤ ub ˜cab < lb c̃ij ≤ c̃ij , and

˜qab ≥ lb ˜qab > ub q̃ij ≥ q̃ij .

As a result, we can see that, compared to pair 〈w̃a, t̃b〉, pair
〈w̃i, t̃j〉 has both higher traveling cost c̃ij and lower quality
score q̃ij . Since our GREEDY algorithm only selects one best
pair each iteration (which can maximally increase the quality
score and minimally increase the traveling cost), pair 〈w̃i, t̃j〉
is definitely worse than 〈w̃a, t̃b〉 in both quality and traveling
cost dimensions, and thus can be safely pruned.
Pruning with the Increase Probability. Lemma 4.1 utilizes
the lower/upper bounds of the quality score and traveling cost
to enable the dominance pruning. If a pair cannot be simply
pruned by Lemma 4.1, we will further consider a more costly
pruning method, by consider the probabilistic information.

Lemma 4.2: (The Increase Probability Pruning) Given a
candidate pair 〈w̃a, t̃b〉, a valid pair 〈w̃i, t̃j〉 can be safely



Procedure MQA Greedy {
Input: current and predicted workers w̃i in W , current and predicted tasks t̃j

in T , and the maximum possible budget Bmax

Output: a worker-and-task assignment instance set, Ip
(1) Ip = ∅;
(2) obtain a list, L, of valid worker-and-task pairs for w̃i ∈ W and t̃j ∈ T
(3) for k = 1 to min{|W |, |T |}
(4) Sp = ∅;
(5) for each valid assignment pair 〈w̃i, t̃j〉 ∈ L
(6) if 〈w̃i, t̃j〉 has lb c̃ij greater than the remaining budget, then continue;
(7) if pair 〈w̃i, t̃j〉 cannot be pruned w.r.t. Sp by Lemma 4.1
(8) if pair 〈w̃i, t̃j〉 cannot be pruned w.r.t. Sp by Lemma 4.2
(9) add 〈w̃i, t̃j〉 to Sp

(10) prune other candidate pairs in Sp with 〈w̃i, t̃j〉
(11) select one best assignment pair 〈w̃i, t̃j〉 in Sp satisfying the budget

constraint Bmax in Eq. (9) and with the highest probability
Prq,max(〈w̃i, t̃j〉) in Eq. (10)

(12) add the selected pair 〈w̃i, t̃j〉 to Ip
(13) remove all those valid pairs 〈w̃i,−〉 or 〈−, t̃j〉 from L
(14) remove those worker-and-task pairs with the predicted workers/tasks from Ip
(15) return Ip}

Fig. 5. The MQA Greedy Algorithm.
pruned, if and only if it holds that: (1) Pr∆q(w̃i,t̃j) (w.r.t.
〈w̃a, t̃b〉) is greater than 0.5, and (2) Pr∆c(w̃i,t̃j) (w.r.t.
candidate pair 〈w̃a, t̃b〉) is greater than 0.5 , where Pr∆q(w̃i,t̃j)

and Pr∆c(w̃i,t̃j) are given by Eqs. (7) and (8), respectively.
Intuitively, Lemma 4.2 filters out those pairs 〈w̃i, t̃j〉 that

have higher probabilities to be inferior to other candidate pairs
〈w̃a, t̃b〉, in terms of both traveling cost and quality score.

Based on Lemmas 4.1 and 4.2, we can obtain a set, Sp, of
candidate pairs that cannot be dominated by other pairs.
Selection of the Best Pair Among Candidate Pairs. Given
a number of candidate pairs in set Sp, GREEDY still needs to
identify one “best” pair with a high quality score and under
the budget constraint. Specifically, we will first filter out those
false alarms in Sp with high traveling costs (i.e., violating the
budget constraint), and then return one pair with the highest
probability to have larger quality score than others in Sp.

Assume that in GREEDY, we have so far selected L
pairs, denoted as 〈w̃a, t̃b〉. Then, with a new assignment pair
〈w̃i, t̃j〉 ∈ Sp, if it holds that:

Pr


 ∑
∀〈w̃a,t̃b〉

˜lb cab

+ c̃ij ≤ Bmax

 ≤ δ, (9)

then pair 〈w̃i, t̃j〉 ∈ Sp can be safely ruled out from candidate
set Sp, where δ is a user-specified confidence level that the
selected assignment satisfies the budget constraint Bmax for
both (remaining) current- and next- time instance budgets.
Eq. (9) can be computed via CLT [13], [15].

Next, in the remaining candidate pairs in Sp, we
will select one pair 〈w̃i, t̃j〉 with the highest probability,
Prq,max(〈w̃i, t̃j〉), of having the largest high quality. That is,
we have:

Prq,max(〈w̃i, t̃j〉) =
∏

∀〈w̃a,t̃b〉

Pr∆q(w̃i,t̃j)(〈w̃a, t̃b〉) (10)

where Pr∆q(w̃i,t̃j)(〈w̃a, t̃b〉) is the probability of quality score
increase, compared with pair 〈w̃a, t̃b〉, given by Eq. (7).

Finally, among all the remaining candidate pairs in set Sp,
we will choose the one, 〈w̃i, t̃j〉, with the highest probability
Prq,max(〈w̃i, t̃j〉), which will be included as a selected best
assignment pair in GREEDY.

C. The MQA Greedy Algorithm
In this subsection, we propose MQA greedy algorithm,

which iteratively assigns a worker to a spatial task greedily that
can obtain a high the overall quality score under the budget
constraint each iteration.

Figure 5 presents the pseudo code of our MQA greedy
algorithm, namely MQA Greedy, which obtains one best
worker-and-task assignment pair each time over both current
and predicted future workers and tasks, where the selected pair
satisfies the budget constraint Bmax and has the largest quality
score with high confidence, where Bmax is the available
budget in both current and next time instances.

We first initialize the worker-and-task assignment instance
set Ip with an empty set (line 1). Then, we obtain a list, L,
of valid worker-and-task assignment pairs, which may involve
either current or future workers/tasks, that is, w̃i ∈ W and
t̃j ∈ T (line 2). Next, for each iteration, we find one best
assignment pair with high quality score and low traveling cost
(satisfying the budget constraint) (lines 3-13). In particular, we
check each valid assignment pair 〈w̃i, t̃j〉 in the list L (line 5).
If this pair has the lower bound, lb c̃ij , of the traveling cost
greater than (the upper bound of) the remaining budget (w.r.t.
Ip and Bmax), then it does not satisfy the budget constraint,
and we can continue to check the next assignment pair (line
6). Then, if the pair 〈w̃i, t̃j〉 cannot be pruned by dominance
and increase probability pruning methods in Lemmas 4.1 and
4.2, respectively, then 〈w̃i, t̃j〉 is a candidate pair, and we
include in an initially empty candidate set Sp (lines 7-9). In
addition, we can also use candidate pair 〈w̃i, t̃j〉 to prune other
pairs in set Sp (line 10). After that, we can insert the best
pair from the candidate set Sp into set Ip (lines 11-12), such
that the budget constraint Bmax is satisfied in Eq. (9) and
the probability Prq,max(〈w̃i, t̃j〉) in Eq. (10) is maximized.
Since each worker can be assigned with at most one task and
each task is accomplished by at most one worker, we remove
those valid pairs from L that contains either worker w̃i or task
t̃j (line 13). Finally, we remove those worker-and-task pairs
involving future workers/tasks from Ip, and return the set Ip
as the solution of the MQA greedy algorithm (lines 14-15).

V. THE MQA DIVIDE-AND-CONQUER APPROACH
In this section, we propose an efficient MQA divide-and-

conquer algorithm (D&C), which partitions the MQA problem
into g subproblems, recursively conquers the subproblems, and
merges assignment results from subproblems. In this paper,
we will divide the MQA problem with m′ current/future tasks
into g subproblems, each involving dm′/ge tasks. The D&C
process continues, until the subproblem sizes become 1 (i.e.,
with one single spatial task in subproblems, which can be
easily solved by GREEDY). We will later discuss how to
utilize a cost model to estimate the best g value that can
achieve low MQA processing cost.

A. The Decomposition of the MQA Problem
Decomposing the MQA Problem. Specifically, assume that
the original MQA problem involves m′ current/future spatial
tasks for both current and next time instances. Our goal is to
divide this problem into g subproblems Ms (for 1 ≤ s ≤ g),
such that each subproblem Ms involves a disjoint subgroup
of dm′/ge spatial tasks, t̃j , each of which is associated with
potentially valid worker(s) w̃i (i.e., with valid worker-and-task
assignment pairs 〈w̃i, t̃j〉).

After the decomposition, each subproblem Ms contains
all valid pairs, 〈w̃i, t̃j〉, w.r.t. the decomposed dm′/ge tasks.
Since tasks in different subproblems may be reachable by the
same workers, different subproblems may involve the same
(conflicting) workers, whose conflictions should be resolved



(a) The MQA Problem (b) The Decomposed Subproblems

Fig. 6. Illustration of Decomposing the MQA Problem.

when we merge solutions (the selected assignment pairs) to
these subproblems (as discussed in Section V-B).

Example 4 (The MQA Problem Decomposition) Figure
6 shows an example of decomposing the MQA problem (as
shown in Figure 6(a)) into 3 subproblems (as depicted in
Figure 6(b)), where each subproblem contains one single
spatial task (i.e., subproblem size = 1), associated with its
related valid workers. Here, the dashed border indicates the
predicted future workers (i.e., w4 and w5) or task (i.e., t3). In
this example, the first subproblem in Figure 6(b) contains task
t1, which can be reached by workers w1 and w4. Different
tasks may have conflicting workers, for example, tasks t1 and
t2 from subproblems M1 and M2, respectively, share the same
(conflicting) worker w1.
The MQA Decomposition Algorithm. Figure 7 illustrates the
pseudo code of our MQA decomposition algorithm, namely
MQA Decomposition, which decomposes the MQA problem
(with m′ tasks), and returns g MQA subproblems, Ms (each
having dm′/ge tasks).

Specifically, we first initialize g empty subproblems, Ms,
where 1 ≤ s ≤ g (lines 1-2). Then, we find all valid
worker-and-task assignment pairs 〈w̃i, t̃j〉 for both current and
predicted workers/tasks in sets W and T , respectively (line 3).

Next, we want to iteratively retrieve g subproblems, Ms,
from the original MQA problem (lines 4-8). That is, for the s−
th iteration, we first obtain an anchor task t̃j and its (dm/ge−
1) nearest tasks, and add them to set T (s)

p (line 5), where
anchor tasks t̃j are chosen in a sweeping style (starting with
the smallest longitude, or mean of the longitude for future
tasks; in the case that multiple tasks have the same longitude,
we choose the one with smallest latitude).

For each task t̃j ∈ T (s)
p , we obtain all its related workers w̃i

who can reach task t̃j , and add pairs 〈w̃i, t̃j〉 to subproblem Ms

(lines 6-8). Finally, we return the g decomposed subproblems
Ms (for 1 ≤ s ≤ g) (line 9).

B. The MQA Merge Algorithm
As mentioned earlier, we can execute the decomposition

algorithm to recursive divide the MQA problem, until each
subproblem only involves one single task (which can be easily
processed by the greedy algorithm). After we obtain solutions
to the decomposed MQA subproblems (i.e., a number of
selected assignment pairs in subproblems), we need to merge
these solutions into the one to the original MQA problem.
Resolving Worker-and-Task Assignment Conflicts. During
the merge process, some workers are conflicting, that is, they
are assigned to different tasks in the solutions to distinct
subproblems at the same time. This contradicts with the
requirement that each worker can only be assigned with at most
one spatial task at each time instance. Thus, to merge solutions
of these conflicting subproblems, we resolve the conflicts.

Procedure MQA Decomposition {
Input: n′ current/future workers w̃i in W , m′ current/future spatial tasks t̃j

in T , and the number of subproblems g
Output: the decomposed MQA subproblems, Ms (for 1 ≤ s ≤ g)
(1) for s = 1 to g
(2) Ms = ∅
(3) compute all valid worker-and-task pairs 〈w̃i, t̃j〉 from W and T
(4) for s = 1 to g
(5) add an anchor task t̃j and find its (dm′/ge − 1) nearest tasks to set T (s)

p

// the task, t̃j , whose longitude (or mean of the longitude) is the smallest
(6) for each current/future task t̃j ∈ T (s)

p

(7) obtain all valid workers w̃i that can reach task t̃j
(8) add these pairs 〈w̃i, t̃j〉 to subproblem Ms

(9) return subproblems M1, M2, ..., and Mg}

Fig. 7. The MQA Problem Decomposition Algorithm.

Next, we use an example to illustrate how to resolve the
conflicts between two (or multiple) pairs 〈w̃i, t̃j〉 and 〈w̃i, t̃b〉
(w.r.t. the conflicting worker w̃i), by selecting one “best” pair
with low traveling cost and high quality score.

Example 5 (The Merge of Subproblems) In the example
of Figure 6(b), assume that in subproblems M1 and M2, we
selected pairs 〈w1, t1〉 and 〈w1, t2〉 as the best assignment,
respectively, which contains the conflicting worker w1. When
we merge the two subproblems M1 and M2, we need to resolve
such a conflict by deciding which task should be assigned
to the conflicting worker w1. By using Lemmas 4.1 and 4.2,
we can first prune pairs that are not dominated by others.
Then, among the remaining candidate pairs, we can select one
best pair satisfying Eq. (9) and maximizing Eq. (10). In this
example, assume that pair 〈w1, t1〉 dominates pair 〈w1, t2〉 by
Lemma 4.1. Then, we will assign worker w1 with task t1 (since
〈w1, t1〉 is the best pair), and find another worker (e.g., w2)
with the largest quality score under the budget constraint to
do task t2. This way, after solving conflicts, we obtain two
updated pairs 〈w1, t1〉 and 〈w2, t2〉 for subproblems M1 and
M2, respectively.
The MQA Merge Algorithm. Figure 8 illustrates the MQA
merge algorithm, namely MQA Merge, which resolves the
conflicts between the current assignment instance set Ip (that
we have merged subproblems M ) and that, I(s)

p , of subproblem
Ms, and returns a merged set without conflicts.

First, we obtain a set, Wc, of conflicting workers between
Ip and I

(s)
p (line 1), which are assigned with different tasks

in different subproblems, M and Ms. Then, in each iteration,
we select one conflicting worker w̃i ∈ Wc with the highest
traveling cost in I

(s)
p , and choose one best pair between

〈w̃i, t̃j〉 ∈ Ip and 〈w̃i, t̃k〉 ∈ I
(s)
p , in terms of budget and

quality score (which can be achieved by checking Lemmas
4.1 and 4.2, and finding the one that satisfies Eq. (9) and
maximizes Eq. (10) (lines 2-4). When 〈w̃i, t̃k〉 in subproblem
Ms is selected as the best pair, we can resolve the conflicts
by replacing 〈w̃i, t̃j〉 with 〈w̃′i, t̃j〉 in Ip; otherwise, we can
replace 〈w̃i, t̃k〉 with 〈w̃′′i , t̃k〉 in I

(s)
p (lines 5-8). Then, we

remove worker w̃i from set Wc (line 9).
After resolving all conflicting workers in Wc between Ip

and I(s)
p , we can merge them together, and return an updated

merged set Ip (lines 10-11).

C. The D&C Algorithm
Up to now, we have discussed how to decompose and

merge subproblems. In this section, we will illustrate the
detailed MQA divide-and-conquer (D&C) algorithm, which
partitions the original MQA problem into subproblems,
recursively solves each subproblem, and merges assignment



Procedure MQA Merge {
Input: the current assignment instance set, Ip, of the merged subproblems M ,

and the assignment instance set, I(s)
p , of subproblem Ms

Output: a merged worker-and-task assignment instance set, Ip
(1) let Wc be a set of conflicting workers between Ip and I(s)

p

(2) while Wc 6= ∅
(3) choose a worker w̃i ∈ Wc with the highest traveling cost in I(s)

p

// assume w̃i is assigned to t̃j in Ip and to t̃k in I(s)
p

(4) select one best pair between 〈w̃i, t̃j〉 ∈ Ip and 〈w̃i, t̃k〉 ∈ I(s)
p

// by using Lemmas 4.1 and 4.2, and finding the one satisfying
// Eq. (9) and maximizing Eq. (10)

(5) if pair 〈w̃i, t̃k〉 in subproblem Ms is selected
(6) find another best worker w̃′i in M and substitute 〈w̃′i, t̃j〉 in Ip
(7) else
(8) find another best worker w̃′′i in Ms and substitute 〈w̃′′i , t̃k〉 in I(s)

p

(9) Wc = Wc − {w̃i}
(10) Ip = Ip ∪ I(s)

p

(11) return Ip}

Fig. 8. The Merge Algorithm.

results of subproblems by resolving conflicts and adjusting the
assignments under the budget constraint.

Figure 9 shows the pseudo code of our D&C algorithm,
namely procedure MQA D&C. We first initialize an empty
set rlt, which is used for store candidate pairs chosen
by our D&C algorithm (line 1). Then, we utilize a novel
cost model (discussed in Appendix C to estimate the best
number of the decomposed subproblems, g, with respect
to current/future sets, W and T , of workers and tasks,
respectively (line 2). With this parameter g, we can invoke
the MQA Decomposition algorithm (as mentioned in Figure
7), and obtain g subproblems Ms (line 3).

For each subproblem Ms, if Ms involves more than 1
task, then we can recursively call procedure MQA D&C (·) to
obtain the best assignment pairs from subproblem Ms (lines
4-6). Otherwise, if subproblem Ms only contains one single
spatial task t̃j , then we apply the greedy algorithm (in Figure
5) to select one “best” worker for task t̃j (lines 7-8). Here,
the best worker means, the corresponding pair has the highest
quality score under the budget constraint Bmax.

After that, the selected assignment pairs in the s-th
subproblem are kept in set rlt(s), where 1 ≤ s ≤ g. Then,
we can invoke procedure MQA Merge (·) to merge these g
sets rlt(s) into a set rlt, by resolving the conflicts (lines 9-11).

Due to the budget constraint Bmax, we may still need
to adjust assignment pairs in set rlt such that the total
traveling cost is below the maximum budget Bmax. If the
upper bound of the traveling cost in set rlt does not
exceed budget Bmax, then we can directly return rlt as
Ip (lines 12-13). Otherwise, similar to GREEDY, we need
to select “best” assignment pairs from set rlt that are
under the budget constraint Bmax (maximizing the total
quality score), and add them to the set Ip, by calling
procedure MQA Budget Constrained Selection (lines 14-
15). In particular, to adjust the budget, we select a “best”
pair from set rlt each time that satisfies the budget constraint
Bmax and with the highest quality score. Please refer to details
of procedure MQA Budget Constrained Selection in lines
17-28 of Figure 9.
Discussions on Estimating the Best Number, g, of
the Decomposed Subproblems. In order to reduce the
computation cost in our D&C algorithm, we aim to select
a best g value that minimizes the processing cost, in light
of our proposed cost model. Specifically, we formally model
the computation cost, costD&C , of the D&C algorithm, with
respect to g, take the derivative of costD&C over g, and then

Procedure MQA D&C {
Input: n′ current/future workers in W , and m′ current/future spatial tasks

in T , and a maximum budget Bmax

Output: an assignment instance set, Ip, with current/future workers/tasks
(1) rlt = ∅
(2) estimate the best number of subproblems, g, w.r.t. W and T
(3) invoke MQA Decomposition(W,T, g), and obtain g subproblems Ms

(4) for s = 1 to g
(5) if the number of tasks in subproblem Ms is greater than 1
(6) rlt(s) = MQA D&C(W (Ms), T (Ms), Bmax)
(7) else
(8) rlt(s) = MQA Greedy(W (Ms), T (Ms), Bmax)
(9) for s = 1 to g
(10) find the next subproblem, Ms

(11) rlt = MQA Merge (rlt, rlt(s))
(12) if the upper bound of the traveling cost of rlt ≤ Bmax

(13) return rlt
(14) else
(15) Ip = MQA Budget Constrained Selection (rlt, Bmax)
(16) return Ip}

Procedure MQA Budget Constrained Selection {
Input: candidate pairs in rlt and a maximum budget Bmax

Output: a worker-and-task assignment instance set, Ip, under the budget constraint
(17) Ip = ∅;
(18) for k = 1 to |rlt|
(19) Sp = ∅
(20) for each assignment pair 〈w̃i, t̃j〉 ∈ rlt
(21) if 〈w̃i, t̃j〉 has lb c̃ij greater than the remaining budget, then continue;
(22) if pair 〈w̃i, t̃j〉 cannot be pruned w.r.t. Sp by Lemma 4.1
(23) if pair 〈w̃i, t̃j〉 cannot be pruned w.r.t. Sp by Lemma 4.2
(24) add 〈w̃i, t̃j〉 to Sp

(25) prune other candidate pairs in Sp with 〈w̃i, t̃j〉
(26) select one best assignment pair 〈w̃i, t̃j〉 in Sp satisfying the budget

constraint Bmax in Eq. (9) and with the highest probability
Mq,max(〈w̃i, t̃j〉) in Eq. (10)

(27) add the selected pair 〈w̃i, t̃j〉 to Ip
(28) return Ip}

Fig. 9. The Divide-and-Conquer Algorithm.
let the derivative be 0. This way, we can find the best g value
that minimizes the cost of the D&C algorithm. For details,
please refer to Appendix C.

VI. EXPERIMENTAL STUDY

Real/Synthetic Data Sets. We tested our proposed MQA
processing algorithms over both real and synthetic data sets.
Specifically, for real data sets, we used two check-in data
sets, Gowalla [10] and Foursquare [20]. In the Gowalla data
set, there are 196,591 nodes (users), with 6,442,890 check-
in records. In the Foursquare data set, there are 2,153,471
users, 1,143,092 venues, and 1,021,970 check-ins, extracted
from the Foursquare application through the public API. Since
most assignments happen in the same cities, we extract check-
in records within the area of San Francisco (with latitude
from 37.709◦ to −122.503◦ and longitude from 37.839◦

to −122.373◦), which has 8,481 Foursquare check-ins, and
149,683 Gowalla check-ins for 6,143 users. We use check-in
records of Foursquare to initialize the location and arrival time
of tasks in the spatial crowdsourcing system, and configure
workers using the check-ins records from Gowalla. In other
words, we have 6,143 workers and 8,481 spatial tasks in the
experiments over real data. For simplicity, we first linearly map
check-in locations from Gowalla and Foursquare into a [0, 1]2

data space, and then scale the arrival times of workers/tasks
in the real data accordingly. In order to generate workers/tasks
for each time instance, we evenly divide the entire time span
of check-ins from two real data sets into R subintervals
(∈ P ), and utilize check-ins in each subinterval to initialize
workers/tasks for the corresponding time instance.

For synthetic data sets, we generate workers/tasks that join
the spatial crowdsourcing system for every time instance in the
time instance set P as follows. We randomly produce locations



TABLE IV. EXPERIMENTAL SETTINGS.
Parameters Values

the size of sliding windows w 1, 2, 3, 4, 5
the budget B 100, 200, 300, 400, 500
the quality range [q−, q+] [0.25, 0.5], [0.5, 1], [1, 2], [2, 3], [3, 4]
the deadline range [e−, e+] [0.25, 0.5], [0.5, 1], [1, 2], [2, 3], [3, 4]
the velocity range [v−, v+] [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]
the unit price w.r.t. distance C 5, 10, 15, 20
the number, R, of time instances 10, 15, 20, 25
the number, m, of tasks 1K, 3K, 5K, 8K, 10K
the number, n, of workers 1K, 3K, 5K, 8K, 10K

of workers and tasks in a 2D data space [0, 1]2, following
Gaussian N (0.5, 12) and Zipf distributions (skewness = 0.3),
respectively. We also test synthetic worker/task data with other
distribution combinations (e.g., Uniform-Zipf) and achieve
similar results (see Appendix D).

For both real and synthetic data sets, we simulate the
velocity vi of each worker wi with Gaussian distribution
N ( v

−+v+

2 , (v+ − v−)2) within range [v−, v+], for 0 < v− ≤
v+ < 1, and the unit price C w.r.t. the traveling distance
dist(·, ·) varies from 5 to 25. Regarding the time constraint
(i.e., the deadline ej) of spatial tasks tj , we produce the
arrival deadlines of tasks within the range [e−, e+], which
are given by the remaining time for workers to arrive at
tasks after these tasks join the system. Moreover, for the
total quality score, qij , of worker-and-task assignments, we
randomly generate qij with Gaussian distributions within
[q−, q+]. In our experiments, we also test the size, w, of the
sliding window with values from 1 to 5, and the number, R,
of time instances in P from 10 to 25.
Measures and Competitors. We evaluate the effectiveness
and efficiency of our MQA processing approaches, in terms
of the overall quality score and the CPU time. Specifically,
the overall quality score is defined in Eq. (1), which can
measure the quality of the assignment strategy, and the CPU
time is given by the average time cost of performing MQA
assignments at each time instance.

In our MQA problem, regarding the effectiveness, we
will compare our MQA approaches with a straightforward
method that conducts the assignment over current and future
time instances separately (i.e., without prediction), in terms
of the overall quality score. Moreover, we will also compare
our MQA approaches, the MQA greedy (GREEDY) and
MQA divide-and-conquer (D&C) algorithms, with a random
(RANDOM) method (which randomly assigns workers to
spatial tasks under the budget constraint). Since RANDOM
does not take into account the quality of tasks, it is expected
to achieve worse quality than our MQA approaches (although
it is expected to be more efficient than MQA approaches).
Experimental Settings. Table IV shows our experimental
settings, where the default values of parameters are in bold
font. In subsequent experiments, each time we vary one
parameter, while setting others to their default values. All our
experiments were run on an Intel Xeon X5675 CPU @3.07
GHZ with 32 GB RAM in Java.

A. Effectiveness of the MQA Approaches
The Comparison of the Prediction Accuracy. We first
evaluate the prediction accuracy of future workers/tasks in our
MQA approach, by comparing the estimated numbers, est, of
workers/tasks in cells with actual ones, act, in terms of the
relative error (i.e., defined as |est−act|act ), where the size, w, of
the sliding window to do the prediction (via linear regressions)
varies from 1 to 5. In Figure 10, we present the average relative
error of our grid-based prediction method, which is the result

1 2 3 4 5

w

0

2

4

6

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r(

%
)

Worker(S)

Task(S)

Worker(R)

Task(R)

Fig. 10. The Prediction Accuracy vs. Window Size w.

of dividing the summation of the relative errors of all the cells
by the number of cells (e.g., 400 cells). For both synthetic
(marked with S) and real data (marked with R), average relative
errors for different window sizes w are not very sensitive to
w. Only for real data, the average relative error of predicting
the number of workers slightly increases with larger w value.
This is because the distribution of workers changes quickly
over time in real data, which leads to larger prediction error
by using wider window size w. Nonetheless, average relative
errors of predicting the number of workers/tasks remain low
(i.e., less than 5.5%) over all real/synthetic data for different
window sizes w, which indicates good accuracy of our grid-
based prediction approach.

We also conducted experiments on the synthetic dataset
with varying window size w from 1 to 5 on three different
workers distributions (e.g., Gaussian, Zipf and Uniform)
to show the influence of the distributions of workers on
accuracies. Due to space limitations, we put the results in
Appendix F.
Comparison with a Straightforward Method. Figure 11
compares the quality score of our MQA approaches (with
predicted workers/tasks) with that of the straightforward
method which selects assignments in current and next time
instances separately (without predictions), where budget B
varies from 100 to 500. We denote MQA approaches with
prediction as GREEDY WP, D&C WP, and RANDOM WP,
and those without prediction as GREEDY WoP, D&C WoP,
and RANDOM WoP, respectively.

In Figure 11(a), we can see that, the quality scores of
MQA with predictions (with solid lines) are higher than that of
MQA without prediction (with dash lines), for different budget
B. This indicates the effectiveness of our MQA approaches
over current/predicted workers/tasks, which can achieve better
assignment strategy than the ones without prediction (i.e.,
local optimality). Moreover, either with or without predictions,
D&C incurs higher quality scores than GREEDY (since D&C
is carefully designed to find assignments with high quality
scores via divide-and-conquer), and RANDOM has the lowest
score, which implies good quality of our proposed assignment
strategies.

Figure 11(b) illustrates the average running time of our
GREEDY and D&C approaches, compared with RANDOM,
for each time instance. In the figure, due to the prediction
and merge costs, D&C WP requires the highest CPU time to
solve the MQA problem, which trades the efficiency for the
accuracy. When the budget B increases, the running time of
D&C decreases. This is because larger budget B leads to lower
cost of selecting assignment pairs under the budget constraint
(i.e., lines 12-15 in procedure MQA D&C of Figure 9). For
other approaches, the time cost remains low (i.e., less than 5
seconds) for different B values.

Due to space limitation, we put the results on varying other
parameters in Appendix G.



100 200 300 400 500

B

0

500

1000

1500

2000

Q
u
a
lt
iy

 S
c
o
re

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(a) Quality Score

100 200 300 400 500

B

10
-2

10
-1

10
0

10
1

R
u
n
n
in

g
 T

im
e
 (

s
)

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(b) Running Time

Fig. 11. Effect of the Budget B(Synthetic Data).

[q
-
,q

+
]

[0.25,0.5][0.5,1] [1,2] [2,3] [3,4]

Q
u
a
lit

y
 S

c
o
re

0

1000

2000

3000

4000
GREEDY

D&C

RANDOM

(a) Quality Score

[q
-
,q

+
]

[0.25,0.5] [0.5,1] [1,2] [2,3] [3,4]

R
u
n
n
in

g
 T

im
e
 (

s
)

0

5

10

15

GREEDY

D&C

RANDOM

(b) Running Time

Fig. 12. Effect of the Range of Quality Score qij (Real Data).
B. Performance of the MQA Approaches
The MQA Performance vs. the Range, [q−, q+], of Quality
Score qij . Figure 12 illustrates the experimental results on
different ranges, [q−, q+], of quality score qij from [0.25, 0.5]
to [3, 4] on real data. In Figure 12(a), with the increase of score
ranges, quality scores of all the three approaches increase.
D&C has higher quality score than GREEDY, which are both
higher than RANDOM. From Figure 12(b), RANDOM is
the fastest (however, with the lowest quality score), since it
randomly selects assignments without considering the quality
score maximization. D&C has higher running time than
GREEDY (however, higher quality scores than GREEDY).
Nonetheless, the running times of GREEDY remain low.
The MQA Performance vs. the Range, [e−, e+], of Tasks’
Deadlines ej . Figure 13 shows the effect of the range, [e−, e+],
of tasks’ deadlines ej on the MQA performance over real data,
where [e−, e+] changes from [0.25, 0.5] to [2, 3]. In Figure
13(a), when the range [e−, e+] becomes larger, quality scores
of all three approaches also increase. Since a more relaxed
(larger) deadline ej of a task tj can be performed by more
valid workers, it thus leads to higher quality score (that can
be achieved) and processing time (as confirmed by Figure
13(b)). Similar to previous results, D&C can achieve higher
quality scores than GREEDY, and both of them outperform
RANDOM. Furthermore, GREEDY needs higher time cost
than RANDOM, and has lower running time than D&C.
The MQA Performance vs. the Range, [v−, v+], of
Workers’ Velocities vi. Figure 14 presents the MQA
performance with different ranges, [v−, v+], of workers’
velocities vi from [0.1, 0.2] to [0.4, 0.5] on synthetic data,
where default values are used for other parameters. In
Figure 14(a), when the value range, [v−, v+], of velocities
of workers increases, the total quality scores of all three
approaches decrease. When the range of velocities increases,
some worker-and-task pairs with long distances may become
valid, which may quickly consume the available budget B and
in turn reduce the number of selected pairs. Thus, for larger
workers’ velocities, the resulting overall quality score for the
selected pairs in GREEDY and D&C approaches decreases.
With different velocities, D&C always has higher quality
scores than GREEDY, followed by RANDOM. In Figure
14(b), the running times of GREEDY and D&C increase for

[e
-
,e

+
]

[0.25,0.5] [0.5,1] [1,2] [2,3] [3,4]

Q
u

a
lit

y
 S

c
o
re

1000

1200

1400

1600

1800

2000

2200

2400
GREEDY

D&C

RANDOM

(a) Quality Score

[e
-
,e

+
]

[0.25,0.5] [0.5,1] [1,2] [2,3] [3,4]

R
u
n
n
in

g
 T

im
e
 (

s
)

0

5

10

15

GREEDY

D&C

RANDOM

(b) Running Time

Fig. 13. Effect of the Range of Tasks’ Deadlines ej (Real Data).

[v
-
,v

+
]

[0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

Q
u
a
lit

y
 S

c
o
re

400

600

800

1000
GREEDY

D&C

RANDOM

(a) Quality Score

[v
-
,v

+
]

[0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

R
u
n
n
in

g
 T

im
e
 (

s
)

0

2

4

6

8

10

12

GREEDY

D&C

RANDOM

(b) Running Time

Fig. 14. Effect of the Range of Velocities [v−, v+] (Synthetic Data).
larger workers’ velocities, since there are more worker-and-
task assignments to process. Moreover, RANDOM has the
smallest time cost (however, the worst quality score), whereas
GREEDY runs faster than D&C, and slower than RANDOM.
The MQA Performance vs. the Number, m, of Tasks .
Figure 15 varies the total number, m, of spatial tasks for R
(= 15 by default) time instance from 1K to 10K on synthetic
data sets, where other parameters are set to their default values.
From the experimental results, with the increase of m, the total
quality scores and time costs of all the three approaches both
increase smoothly. This is reasonable, since more tasks lead to
more valid pairs, which incur higher quality score for selected
assignment pairs, and require higher time cost to process.
D&C can achieve higher quality score than GREEDY, which
indicates the effectiveness of our proposed D&C approach.
Moreover, RANDOM has the worst quality score among the
three tested approaches.
The MQA Performance vs. the Number, n, of Workers.
Figure 16 examines the effect of the number, n, of workers for
R (= 15 by default) time instances on the MQA performance,
where n varies from 1K to 10K and other parameters are
set to default values. Similarly, both overall quality scores and
running times of three tested approaches increase, for larger
n values. Our GREEDY and D&C algorithms can achieve
better quality scores than RANDOM. Further, GREEDY has
lower time costs than D&C. Nonetheless, the time cost of
our approaches smoothly grows with the increasing n values,
which indicates good scalability of our MQA approaches.

Due to space limitations, please refer to the experimental
results of the effects of the number, R, of time instances and
the unit price C w.r.t. distance dist(wi, tj) in Appendix E.

VII. RELATED WORK
There are many previous studies in crowdsourcing systems

[6], which usually allow workers to accept task requests and
accomplish tasks online. However, these workers do not have
to travel to some sites to perform tasks. In contrast, the spatial
crowdsourcing system [12], [17] requires workers traveling to
locations of spatial tasks, and completes tasks such as taking
photos/videos. For instance, some related studies [11], [16]
studied the problem of using smart devices (taken by workers)
to collect data in real-world applications.



m
1K 3K 5K 8K 10K

Q
u
a
lit

y
 S

c
o
re

500

1000

1500

2000

2500

GREEDY

D&C

RANDOM

(a) Quality Score

m
1K 3K 5K 8K 10K

R
u
n
n
in

g
 T

im
e
 (

s
)

0

5

10

15

20

GREEDY

D&C

RANDOM

(b) Running Time

Fig. 15. Effect of the Number, m, of Tasks (Synthetic Data).

Kazemi and Shahabi [17] classified the spatial crowd-
sourcing systems from two perspectives: workers’ motivation
and publishing models. Regarding the workers’ motivation,
there are two types, reward-based and self-incentivised, which
inspires workers to do tasks by rewards or volunteering,
respectively. Moreover, based on the publishing models, there
are two modes, worker selected tasks (WST) [12] and server
assigned tasks (SAT) [17], [9], [21], [8], in which tasks are
accepted by workers or assigned by workers, respectively.
What is more, to handle the requests more quickly, existing
studies [23], [24], [22] proposed methods to online process
spatial crowdsourcing requests with quality guarantees.

Our MQA problem is reward-based and follows the SAT
mode. Prior studies in the SAT mode [17], [9], [21], [8]
assigned existing workers to tasks in the spatial crowdsourcing
system with distinct goals, for example, maximizing the
number of the completed tasks on the server side [17],
minimizing the traveling cost for completing a set of given
tasks [21], or the reliability-and-diversity score of assignments
[9]. In contrast, our MQA problem in this paper has a
different goal, that is, maximizing the overall quality score
of assignments and under the budget constraint. As a result,
we design specific MQA greedy and MQA divide-and-conquer
algorithms for our MQA problem, that maximize the quality
score (under the budget constraint) rather than other metrics
(e.g., the reliability-and-diversity score in [9]), which cannot
directly borrow from previous works.

Most importantly, different from the algorithms in existing
studies [9], [8] that deal with deterministic workers and tasks,
our MQA approaches need to handle predicted workers and
tasks, whose locations and other attributes (e.g., distances,
quality scores, etc.) are variables (rather than fixed values).
Thus, our MQA approaches aims to design the assignment
strategy over both current and predicted workers/tasks, which
has not been investigated before. Therefore, we cannot directly
apply previous techniques (proposed for workers/tasks without
prediction) to tackle our MQA problem.

VIII. CONCLUSION
In this paper, we studied a spatial crowdsourcing problem,

named maximum quality task assignment (MQA), which
assigns moving workers to spatial tasks satisfying the budget
constraint of the traveling cost and achieving a high overall
quality score. In order to provide better global assignments,
our MQA approaches are based on the assignment selection
strategy over both current and (predicted) future workers/tasks.
We propose an accurate prediction approach to estimate
both quality/location distributions of workers/tasks. We prove
that the MQA problem is NP-hard, and thus intractable.
Alternatively, we propose efficient heuristics, including MQA
greedy and MQA divide-and-conquer approaches, to obtain
better global assignments. Extensive experiments have been
conducted to confirm the efficiency and effectiveness of our
proposed MQA processing approaches.

n
1K 3K 5K 8K 10K

Q
u
a
lit

y
 S

c
o
re

0

500

1000

1500

2000
GREEDY

D&C

RANDOM

(a) Quality Score

n
1K 3K 5K 8K 10K

R
u
n
n
in

g
 T

im
e
 (

s
)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

GREEDY

D&C

RANDOM

(b) Running Time

Fig. 16. Effect of the Number, n, of Workers (Synthetic Data).

IX. ACKNOWLEDGMENT
Peng Cheng and Lei Chen are supported in part by

Hong Kong RGC Project N HKUST637/13, NSFC Grant
No. 61328202, NSFC Guang Dong Grant No. U1301253,
National Grand Fundamental Research 973 Program of
China under Grant 2014CB340303, HKUST-SSTSP FP305,
Microsoft Research Asia Gift Grant, Google Faculty Award
2013 and ITS170. Xiang Lian is supported by Lian Start Up
No. 220981. Cyrus Shahabi’s work has been funded in part by
NSF grants IIS-1320149 and CNS-1461963.

REFERENCES
[1] Gigwalk. http://www.gigwalk.com.
[2] Google street view. https://www.google.com/maps/views/streetview.
[3] Taskrabbit. https://www.taskrabbit.com.
[4] Waze. https://www.waze.com.
[5] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In

ICDE, 2001.
[6] M. F. Bulut, Y. S. Yilmaz, and M. Demirbas. Crowdsourcing location-

based queries. In PERCOM Workshops, 2011.
[7] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, and et al.

gmission: A general spatial crowdsourcing platform. VLDB, 2014.
[8] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao. Task assignment on

multi-skill oriented spatial crowdsourcing. TKDE, 2016.
[9] P. Cheng, X. Lian, Z. Chen, and et al. Reliable diversity-based spatial

crowdsourcing by moving workers. VLDB.
[10] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user

movement in location-based social networks. In SIGKDD, 2011.
[11] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, and et al. Anonysense:

privacy-aware people-centric sensing. In MobiSys, 2008.
[12] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing the number of

worker’s self-selected tasks in spatial crowdsourcing. In SIGSPATIAL
GIS, 2013.

[13] C. M. Grinstead and J. L. Snell. Introduction to probability. American
Mathematical Soc., 2012.

[14] B. E. Hansen. Lecture notes on nonparametrics. Lecture notes, 2009.
[15] G. Jovanovic-Dolecek. Demo program for central limit theorem. In

MWSCAS, volume 1, 1997.
[16] S. S. Kanhere. Participatory sensing: Crowdsourcing data from mobile

smartphones in urban spaces. In MDM, volume 2, 2011.
[17] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering with

spatial crowdsourcing. In SIGSPATIAL GIS, 2012.
[18] S. H. Kim, Y. Lu, G. Constantinou, C. Shahabi, G. Wang, and

R. Zimmermann. Mediaq: mobile multimedia management system. In
MMSys, 2014.

[19] C. L. Lawson and R. J. Hanson. Solving least squares problems. volume
161. SIAM, 1974.

[20] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A
location-aware recommender system. In ICDE, 2012.

[21] Q. Liu, T. Abdessalem, H. Wu, Z. Yuan, and S. Bressan. Cost
minimization and social fairness for spatial crowdsourcing tasks. In
DASFAA, 2016.

[22] S. Tianshu, T. Yongxin, W. Libin, S. Jieying, and et al. Trichromatic
online matching in real-time spatial crowdsourcing. ICDE, 2017.

[23] Y. Tong, J. She, B. Ding, L. Chen, and et al. Online minimum matching
in real-time spatial data: experiments and analysis. VLDB, 2016.

[24] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen. Online mobile micro-
task allocation in spatial crowdsourcing. ICDE, 2016.

[25] V. V. Vazirani. Approximation algorithms. Springer Science & Business
Media, 2013.

http://www.gigwalk.com
https://www.google.com/maps/views/streetview
https://www.taskrabbit.com
https://www.waze.com


APPENDIX
A. Proof of Lemma 2.1

Proof: We prove the lemma by a reduction from the 0-1
knapsack problem. A 0-1 knapsack problem can be described
as follows: Given a set, C, of n items ai numbered from 1
up to n, each with a weight wi and a value vi, along with a
maximum weight capacity W , the 0-1 knapsack problem is to
find a subset C ′ of C that maximizes

∑
ai∈C′ vi subjected to∑

ai∈C′ wi ≤W .
For a given 0-1 knapsack problem, we can transform it

to an instance of MQA as follows: at timestamp p, we give n
pairs of worker and task, such that for each pair of worker and
task 〈wi, ti〉, the traveling cost cii = wi and the quality score
qii = vi. Also, we set the global budget B = W . At the same
time, for any pair of worker and task 〈wi, tj〉 where tj 6= ti,
we make cij � cii and qij ≤ qii. Thus, in the assignment
result, it is only possible to select worker-and-task pairs with
same subscripts. Then, for this MQA instance, we want to
achieve an assignment instance set Ip of some pairs of worker
and task with same subscripts that maximizes the quality score∑
∀〈wi,ti〉∈Ip qii subjected to

∑
∀〈wi,ti〉∈Ip cii ≤ B.

Given this mapping, we can show that the 0-1 knapsack
problem instance can be solved, if and only if the transformed
MQA problem can be solved.

This way, we can reduce 0-1 knapsack problem to the MQA
problem. Since 0-1 knapsack problem is known to be NP-hard
[25], MQA is also NP-hard, which completes our proof.
B. The Pseudo Code of the Grid-based Prediction Algorithm

Figure 17 shows the pseudo code of our grid-based pre-
diction algorithm, namely MQA Prediction, which predicts
the number of workers/tasks in each cell, celli, of the grid
index by using the linear regression (lines 3-4), and generates
worker/task samples with the estimated sizes (lines 5-6).

Procedure MQA Prediction {
Input: worker sets W = {Wp−w+1, ...,Wp} and task sets T = {Tp−w+1,

..., Tp} at the latest w time instances, and a grid index I
Output: future workers and tasks in Wp+1 and Tp+1, respectively, for the next

time instance at timestamp (p+ 1)
(1) let Wp+1 = ∅ and Tp+1 = ∅
(2) for each cell celli in I
(3) estimate the future number, |W (i)

p+1|, of workers in celli by the linear regression

(4) estimate the future number, |T (i)
p+1|, of tasks in celli by the linear regression

(5) randomly generate |W (i)
p+1| worker samples for celli, and add them to Wp+1

(6) randomly generate |T (i)
p+1| task samples for celli, and add them to Tp+1

(7) return Wp+1 and Tp+1

}

Fig. 17. The Grid-Based Worker/Task Prediction Algorithm.

C. Cost-Model-Based Estimation of the Best Number of the
Decomposed Subproblems
The Cost, FD, of Decomposing Subproblems. From
Algorithm MQA Decomposition (in Figure 7), we first need
to retrieve all valid worker-and-task assignment pairs (line 3),
whose cost is O(m′ · n′), where m′ and n′ are the numbers
of both current/future tasks and workers, respectively. Then,
we will divide each problem into g subproblems, whose cost
is given by O(m′ · g + m′) on each level. For level k, we
have m′/gk tasks in each subproblem M

(k)
i . We will further

partition it into g more subproblems, M (k+1)
j , recursively, and

each one will have m′/gk+1 tasks. In order to obtain m′/gk+1

tasks in each subproblem M
(k+1)
j , we first need to find the

anchor task, which needs O(m′/gk) cost, and then retrieve

the rest tasks, which needs O(m/gk+1) cost. Moreover, since
we have gk+1 subproblems on level (k + 1), the cost of
decomposing tasks on level k is given by O(m′ · g +m′).

Since there are totally logg(m
′) levels, the total cost of

decomposing the MQA problem is given by:

FD = m
′ · n+ (m

′ · g +m
′
) · logg(m

′
).

G-UG-GG-ZU-UU-GU-Z Z-U Z-G Z-Z

<Workers-Tasks> Distributions

0

500

1000

1500

Q
u
a
lit

y
 S

c
o
re

GREDDY

D&C

RANDOM

Fig. 18. Effect of Distributions of Workers and Tasks on Quality
Score (Synthetic Data).

<Workers-Tasks> Distributions
G-U G-G G-Z U-U U-G U-Z Z-U Z-G Z-Z

R
u

n
n

in
g

 T
im

e
 (

s
)

0

5

10

15

20

25

30

35

40
GREDDY

D&C

RANDOM

Fig. 19. Effect of Distributions of Workers and Tasks on Running
Time (Synthetic Data).

The Cost, FC , of Recursively Conquering Subproblems.
Let function FC(x) be the total cost of recursively

conquering a subproblem, which contains x spatial tasks. Then,
we have the following recursive function:

FC(m
′
) = g · FC(

⌈
m′

g

⌉
).

Assume that degt is the average number of tasks in the
assignment instance set Ip. Then, the base case of function
FC(x) is the case that x = 1, in which we greedily select
one worker-and-task pair from degt pairs to achieve the
highest quality score (via the greedy algorithm). Thus, we have
FC(1) = 2deg2

t .
From the recursive function FC(x) and its base case, we

can obtain the total cost of the recursive invocation on levels
from 1 to logg(m) below:

logg(m′)∑
k=1

Fc(m
′
/g

k
) =

2(m′ − 1)deg2
t

g − 1
.



C
5 10 15 20

Q
u
a
lit

y
 S

c
o
re

0

500

1000

1500

2000
GREEDY

D&C

RANDOM

(a) Quality Score

C
5 10 15 20

R
u
n
n
in

g
 T

im
e
 (

s
)

0

1

2

3

4

5

GREEDY

D&C

RANDOM

(b) Running Time

Fig. 21. Effect of the Unit Price C w.r.t. Distance dist(wi, tj)
(Synthetic Data).

1 2 3 4 5

w

0

200

400

600

800

1000

1200

1400

S
c
o

re

GREEDY

D&C

RANDOM

(a) Quality Score (GAUS)

1 2 3 4 5

w

0

200

400

600

800

1000

1200
S

c
o

re

GREEDY

D&C

RANDOM

(b) Quality Score (UNIF)

1 2 3 4 5

w

200

400

600

800

1000

1200

S
c
o
re

GREEDY

D&C

RANDOM

(c) Quality Score (ZIPF)

Fig. 22. Effect of the Window Size w (Synthetic Data).

The Cost, FM , of Merging Subproblems. Next, we provide
the cost, FM , of merging subproblems by resolving conflicts.
For level k, we have gk subproblems and m′/gk tasks in each
subproblem M

(k)
i . When merging the result of one subproblem

M
(k)
i to the current maintained assignment instance set Ip,

there are at most m′/gk conflicted workers as each task is
only assigned with one worker. In addition, for level k, we
need to merge the results of (gk − 1) subproblems to the
current maintained assignment instance set. Moreover, when
resolving conflict of one worker, we may need to greedily pick
one available worker from degt workers, which costs 2deg2

t .
Therefore, the worst-case cost of resolving conflicts during

resolving conflicts of workers can be given by:

FM =

logg(m′)∑
k=1

2deg
2
t (g

k − 1)
m

gk
= 2deg

2
t (
m logm

log g
−
g(m− 1)

g − 1
).

The Cost, FB , of the Budget Adjustment on Subproblems.
Then, we provide the cost, FB , of the budget adjustment in
line 15 of the D&C algorithm (in Figure 9), or lines 17-28
in procedure MQA Budget Constrained Selection (Figure
8). Since each task is assigned with at most one worker, the
number of candidate pairs is at most same as the number of
tasks. For a subproblem with m′/gk tasks on level k, lines
20-25 of Figure 8 need at most (m′/gk)2 cost. In addition,
line 26 needs |Sp| cost, which is also at most (m′/gk)2 cost.
There are at most (m′/gk) iterations, each of which selects at
least one pair.

Therefore, the cost of the budget adjustment while merging
subproblems can be given by:

FB =

logg(m′)∑
k=0

g
k · 2(

m′

gk
)
3

=

logg(m′)∑
k=0

2m′2

g2k
=

2g2(m′2 − 1)

g2 − 1
. (11)

The Total Cost of the g-D&C Approach. The total cost,
costD&C , of the D&C algorithm can be given by summing up
four costs, FD, FC , FM , and FB . That is, we have:

costD&C = FD +

logg(m′)∑
k=1

Fc(m
′
/g

k
) + FM + FB . (12)

We take the derivation of costD&C (given in Eq. (12)) over
g, and let it be 0. In particular, we have:

∂costD&C

∂g
=

m′ logm′(g log g − g − 1− 2deg2
t )

g log2(g)

−
4g(m′2 − 1)

(g2 − 1)2
= 0. (13)

We notice that when g = 2, ∂costD&C

∂g is much smaller than
0 but increases quickly when g grows. In addition, g can only
be an integer. Then we can try the integers like 2, 3, and so
on, until ∂costD&C

∂g is above 0.

R
10 15 20 25

Q
u

a
lit

y
 S

c
o
re

500

1000

1500

2000

2500
GREEDY

D&C

RANDOM

(a) Quality Score

R
10 15 20 25

R
u
n
n
in

g
 T

im
e
 (

s
)

0

5

10

15

20
GREEDY

D&C

RANDOM

(b) Running Time

Fig. 20. Effect of the Number, R, of Time Instances (Synthetic Data).

D. Results with Different Worker-Task Distributions
In this section, we present the experimental results for

workers and tasks with different location distributions, where
parameters of synthetic data are set to default values. We
denote the Uniform distribution as U, the Gaussian distribution
as G, and the Zipf distribution as Z. Then, for 〈worker−task〉
distributions, we tested the quality score and running time over
9 distribution combinations, including G-U, G-G, G-Z, U-U,
U-G, U-Z, Z-U, Z-G, and Z-Z, and the results are shown in
Figures 18 and 19.

Similar to previous results, as shown in Figure 18, the D&C
algorithm can achieve the highest quality score, compared
with GREEDY and RANDOM, over all the 9 worker/task
distribution combinations. For the running time, as illustrated
in Figure 19, with different combinations of worker/task
distributions, D&C can achieve low time cost in most cases.
Only for Z-U and Z-G, D&C incurs higher time cost than
GREEDY and RANDOM, due to the unbalanced distributions
of workers and tasks. In particular, GREEDY and RANDOM
iteratively assign one valid pair and maintain the rest of valid
pairs in each iteration. When the distributions of workers and
tasks are similar, for example, G-G, U-U, and Z-Z, running
times of GREEDY and RANDOM become longer than D&C.
Especially, for Z-Z, almost all the workers can reach all the
tasks, which leads to the highest number of valid pairs among
all the 9 distribution combinations. As a result, both GREEDY
and RANDOM need much higher running time than that
of other distribution combinations. In general, with different



worker and task distributions, our GREEDY and D&C can
both achieve high quality scores (with small time cost).

E. The MQA Performance vs. the Number, R, of Time
Instances and the Unit Price C w.r.t. Distance dist(wi, tj)
The MQA Performance vs. the Number, R, of Time
Instance. Figure 20 reports the experimental results for
different numbers, R, of time instance from 10 to 25 on
synthetic data sets, where other parameters are set to default
values. In Figure 20(a), when the number, R, of time instances
increases, the total quality score of three MQA approaches also
increases. Since we consider a fixed time interval P with more
time instances (each with budget B), the total quality score
within interval P expects to increase for more time instances.
D&C can achieve higher quality scores than GREEDY.

In Figure 20(b), when R becomes larger, the running time
of all the three tested approaches decreases. This is because,
given m tasks and n workers within time interval P , for
more time instances, the average number of workers/tasks per
time instance decreases, which leads to lower time cost per
time instance. Similar to previous results, the running time of
GREEDY is lower than that of D&C.

[0.25,0.5][0.5,1] [1,2] [2,3] [3,4]

[q
-
,q

+
]

0

1000

2000

3000

4000

Q
u
a
lt
iy

 S
c
o
re

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(a) Quality Score

[0.25,0.5][0.5,1] [1,2] [2,3] [3,4]

[q
-
,q

+
]

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
u
n
n
in

g
 T

im
e
 (

s
)

(b) Running Time

Fig. 23. Effect of the Range of Quality Score qij (Real Data).

[0.25,0.5] [0.5,1] [1,2] [2,3] [3,4]

[e
-
,e

+
]

1000

1500

2000

2500

Q
u
a
lt
iy

 S
c
o
re

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(a) Quality Score

[0.25,0.5][0.5,1] [1,2] [2,3] [3,4]

[e
-
,e

+
]

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
u
n
n
in

g
 T

im
e
 (

s
)

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(b) Running Time

Fig. 24. Effect of the Range of Tasks’ Deadlines ej (Real Data).

[0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

[v
-
,v

+
]

0

500

1000

Q
u
a
lt
iy

 S
c
o
re

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(a) Quality Score

[0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

[v
-
,v

+
]

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
u
n
n
in

g
 T

im
e
 (

s
)

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(b) Running Time

Fig. 25. Effect of the Range of Velocities [v−, v+] (Synthetic Data).

The MQA Performance vs. the Unit Price C w.r.t. Distance
dist(wi, tj). Figure 21 illustrates the experimental results on
different unit prices C w.r.t. distance dist(wi, tj) from 5 to 20
over synthetic data, where other parameters are set to default

values. In Figure 21(a), when the unit price C increases, the
overall quality scores of all the three approaches decrease.
This is because for larger C, the number of valid worker-
and-task pairs for each time instance decreases, under the
budget constraint. Thus, the overall quality score of all the
selected assignments also expects to decrease for large C.
Similar to previous results, D&C has higher quality scores
than GREEDY. In Figure 21(b), running times of GREEDY
and RANDOM are not very sensitive to C. However, with
large C, the running time of D&C increases, since we need to
check the constraint of budget from lower divide-and-conquer
levels, which increases the total running time. For different C
values, GREEDY has lower running times than D&C.

1K 3K 5K 8K 10K

m

500

1000

1500

2000

2500

Q
u
a
lt
iy

 S
c
o
re

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(a) Quality Score

1K 3K 5K 8K 10K

m

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
u
n
n
in

g
 T

im
e
 (

s
)

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(b) Running Time

Fig. 26. Effect of the Number, m, of Tasks (Synthetic Data).

1K 3K 5K 8K 10K

n

0

500

1000

1500

2000
Q

u
a
lt
iy

 S
c
o
re

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(a) Quality Score

1K 3K 5K 8K 10K

n

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n
n
in

g
 T

im
e
 (

s
)

GREEDY_WP

D&C_WP

RANDOM_WP

GREEDY_WoP

D&C_WoP

RANDOM_WoP

(b) Running Time

Fig. 27. Effect of the Number, n, of Workers (Synthetic Data).

F. The MQA Performance vs. the Window Size w
We show the results of quality scores by varying window

size on different workers distributions in Figure 22. We can
see the sliding window size affects the quality score slightly
for GREEDY and RANDOM. For D&C, it can achieve the
highest quality score when the window size equals to 3 on
workers with Gaussian Distribution (as shown in Figure 22(a)),
and equals to 4 and 2 on workers with Uniform and Zipf
distribution respectively.

G. Results of Comparison with Straightforward Methods
Figure 23 to Figure 27 compare the quality scores and

running times of our MQA approaches (with predicted work-
ers/tasks) with that of the straightforward method which selects
assignments at current and next time instances separately
(without predictions) by varying the range [q , q+] of quality
score qij , the range [e−, e+] of tasks’ deadlines ej , the range
[v−, v+] of workers’ velocities vi, the number of tasks m and
the number of workers n. We denote MQA approaches with
prediction as GREEDY WP, D&C WP, and RANDOM WP,
and those without prediction as GREEDY WoP, D&C WoP,
and RANDOM WoP, respectively.


	I Introduction
	II Problem Definition
	II-A Dynamically Moving Workers
	II-B Time-Constrained Spatial Tasks
	II-C The Maximum Quality Task Assignment Problem
	II-D Hardness of the MQA Problem
	II-E Framework

	III The Grid-based Worker/Task Prediction Approach
	III-A The Grid-Based Prediction Algorithm
	III-B Statistics of the Predicted Workers/Tasks

	IV The MQA Greedy Approach
	IV-A The Comparisons of the Quality Score Increases / Traveling Cost Increases
	IV-B The Pruning Strategy
	IV-C The MQA Greedy Algorithm

	V The MQA Divide-and-Conquer Approach
	V-A The Decomposition of the MQA Problem
	V-B The MQA Merge Algorithm
	V-C The D&C Algorithm

	VI Experimental Study
	VI-A Effectiveness of the MQA Approaches
	VI-B Performance of the MQA Approaches

	VII related work
	VIII conclusion
	IX Acknowledgment
	References
	Appendix
	A Proof of Lemma 2.1
	B The Pseudo Code of the Grid-based Prediction Algorithm
	C Cost-Model-Based Estimation of the Best Number of the Decomposed Subproblems
	D Results with Different Worker-Task Distributions
	E The MQA Performance vs. the Number, R, of Time Instances and the Unit Price C w.r.t. Distance dist(wi, tj)
	F The MQA Performance vs. the Window Size w
	G Results of Comparison with Straightforward Methods


