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ABSTRACT
As the use of crowdsourcing increases, it is important to think about
performance optimization. For this purpose, it is possible to think
about each worker as a HPU(Human Processing Unit [1]), and
to draw inspiration from performance optimization on traditional
computers or cloud nodes with CPUs. However, as we characterize
HPUs in detail for this purpose, we find that there are important
differences between CPUs and HPUs, leading to the need for com-
pletely new optimization algorithms.

In this paper, we study the specific optimization problem of ob-
taining results fastest for a crowd sourced job with a fixed total
budget. In crowdsourcing, jobs are usually broken down into sets
of small tasks, which are assigned to workers one at a time. We
consider three scenarios of increasing complexity: Identical Round
Homogeneous tasks, Multiplex Round Homogeneous tasks, and Mul-
tiple Round Heterogeneous tasks. For each scenario, we analyze
the stochastic behavior of the HPU clock-rate as a function of the
remuneration offered. After that, we develop an optimum Budget
Allocation strategy to minimize the latency for job completion. We
validate our results through extensive simulations and experiments
on Amazon Mechanical Turk.
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1. INTRODUCTION
Human Computation [2] has emerged in recent years as a new

and exciting compute paradigm. As a powerful compement of tra-
ditional computer systems, human computation naturally allows
tasks with human-intrinsic values or features, like comparing emo-
tions of speeches, identifying objects in images and so on. The
emergence of public crowdsourcing platforms, which provide a
scalable manageable workforce resource, has boosted the utiliza-
tion of this long-discovered [3] human cognitive ability. A wide
range of data-driven applications now benefit from human compu-
tation by considering it as a new computing component. Examples
include a) crowd-powered databases [4–6] and fundamental oper-
ators like filtering [7] and Max [8, 9], group-by [10], b) advanced
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data processing technologies like image tagging [11], schema match-
ing [12] and entity resolution [13], and c) combinatorial problems
like planning [14] and mining [15].

(a) Example 1: Repetition (b) Example 2: Heterogeneous

Figure 1: Demonstration of Motivation Example

As crowdsourcing becomes more prevalent, there is an effort to
understand and characterize it better. In this regard, it has been
suggested that the system can be viewed as comprising Human
Processing Units (HPUs) that are analogous to CPUs of traditional
computers. As atomic task performed by a worker is then one “in-
struction” of the HPU, and the time to respond is the “clock cycle”.
However, the HPU has many characteristics that differ from those
of a CPU:

i) the clock time is stochastic; ii) the results are error-prone
according to a probability; iii) the cost includes monetary expense.

Given the HPU abstractions, one can consider optimizing many
aspects of HPU processing. Our focus, in this paper, is the HPU
clock rate. This is because we want to minimize the total latency of
a computational task by optimizing HPU clock rate.

The clock rate for the HPU is variable, and is different for each
instruction and each instance. In a crowdsourcing workforce mar-
ket, a task is exposed on the market with a promised reward, and
then “workers” select the task to work on according to their inter-
ests. Recent studies on Amazon Mechanical Turk (AMT) report
that the task acceptance duration follows an exponential distribu-
tion [16, 17], and the rate λi is mostly determined by the promised
reward [18] and the type(difficulty) of the task [17]. Then, the pro-
cessing time of a task follows an exponential distribution with an-
other rate [19], which is independent of the promised payment [18].

Once the task has been specified, the only task-owner input that
can control the completion time is the payment. If we only have
one task to be performed by HPUs, the solution is very simple – the
more we can afford to pay, the faster the task will be completed.

Of course, the computational job at hand is typically performed
with the aid of many HPU tasks [4–6]. In fact, a typical algorithm
architecture repeats each task in multiple times. Thus, the requester
issues a large number of HPU tasks in parallel, each possibly to be
repeated, and then waits for all HPUs to return result. As such,
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there is limited value to optimize the clock rate of a single HPU in
isolation: what really matters is the latency of the entire computa-
tion, which is determined by the longest duration among the set of
parallel repeated tasks. Thus, our optimizing HPU clock rate prob-
lem is in fact on studying how to allocate a given fixed budget B
in a manner that minimizes the total latency of a computational job
involving HPUs.

To demonstrate the challenging issues involved in optimizing
HPU clock rates, let us consider the following two motivating ex-
amples, both based on a crowd-powered data-base, as proposed
in [4–6, 8, 9].

MOTIVATION EXAMPLE 1. (Figure 1(a)) Consider a sorting
task on 4 given itemsO = {o1, o2, o3, o4}. According to the user’s
requirements, the query planner, for example the “next votes” pro-
posed in [9], decomposes the sorting task into atomic pairwise vot-
ing tasks T = {{o1, o2}×1, {o3, o4}×2}, which means the HPU
is expected to run the task of comparison on such pairs for 1 and
2 repetitions (times) respectively. As illustrated in Figure 1(a), the
two tasks commence at the same time, but in order to finalize the
entire query, the database has to wait until the end of the longest
atomic task. There are many choices for budget allocation. Two
obvious ones are: one is evenly divided to two tasks, 3 for task 1
and 3 for task 2(case 1); another one is more load-sensitive, 2 for
task 1 and 4 for task 2(case 2). The results for the two cases are
shown in the figure, suggesting that the second option is better. But
how could we predict this? Moreover, even if this is the better of
these two choices, is it the best? What is the best allocation across
the two tasks?

MOTIVATION EXAMPLE 2. (Figure 1(b)) Consider now a more
complex scenario in which the database is required to process two
types of queries simultaneously, sorting and filtering [7], where
the latter can also be decomposed into pairwise voting tasks(yes
or no voting). Suppose two tasks are given T = {{o1, o2} ×
1, {o3, yes?no} × 1}. However, unlike the previous case, differ-
ent types of task present different difficulty levels, which leads to
different rates. As shown in Table 3, for the same price pi, the pro-
cessing rate λp of sort voting is lower than that yes or no voting.
In addition, the entire latency depends on both how long a task is
offered before it is accepted, which depends on the reward offered,
and also how long it takes to complete the task, which depends on
the task itself but not on price. Unlike in the previous example, we
now have to take such latency into account as well. Trying two
budget allocations: evenly allocating $3 to two tasks; balancing
budget according to difficulty, sorting task with $4 and filtering task
with $2, we get latencies as shown in the figure. Once again, these
are obviously not the only allocations possible, and our interest is
in finding the optimum, compounded by the difficulty of predicting
the uptake rate for any reward level (notice that Table 3 only gives
us values for a few price points), and of additionally folding in the
task completion time into the framework.

As shown in the motivating example above, the allocation of
budget to the tasks matters to a great extent in terms of the over-
all HPU processing latency. The difficulty of finding the optimal
allocation strategy is two-fold: 1) the latency of an atomic task is
a random variable which depends on the type of the task, the allo-
cated budget, and the current workforce market situation, therefore
it is non-trivial to predict the overall latency of a set of tasks, partic-
ularly when they are of different types; 2) the search space for find-
ing an optimal solution is large so that efficient algorithms and/or
approximation tradeoffs are necessary. The promised payment has
a minimum granularity($0.01 on AMT), which renders the tuning
process a discrete, rather than a continuous optimization problem.

To address these challenges, the following contributions are made:

• In Section 3, we begin with HPU characteristics, develop a
stochastic model to predict uptake rate as a function of re-
ward amount, and show how to estimate the model param-
eters. Using these results, we can determine the expected
latency for any specific budget allocation choice.

• In Section 4,we formally propose the H-Tuning Problem to
minimize the expected latency of a given set of tasks and pro-
pose probabilistic analysis and tuning strategies under three
practical scenarios: Homogeneous, Repetition and Heteroge-
neous. In each case, we show how to solve an optimization
problem with a large feasible space of possible budget allo-
cation choices.

• The performance of proposed strategies are verified on real
crowdsourcing platform, and with simulation in Section 5.

In addition, Section 2 gives an overview of the related work. Sec-
tion 6 makes conclusion to this work.

2. RELATED WORK
Leveraging the HPU in hope of better performance is an attrac-

tive topic ever since the emergence of crowdsourcing applications.
Many recent works have studied various optimization issues associ-
ated with the HPU [20,21]. Most of them focus on the quality issue
in terms of answer confidence [22,23], and some efforts on the opti-
mization of monetary cost [17].However, in the effort of designing
an industrial level computing module, speed or latency is always
one of the most significant concerns among the various properties.
Most of current works touch this issue by reducing the number of
queries issued to the crowds [2, 6, 7, 9, 12, 14, 15].Whereas, consid-
ering the HPU a new “hardware” for general human computation, a
lower-level clock-rate model, instead of the higher-level number of
queries, is far more entailed. Unfortunately, the stochastic human
behavior makes this model rather intractable. Several applications
tried to optimize the HPU’s performance in real time in order to fin-
ish tasks before a preset deadline [19,24,25]. But their approaches
are highly application-dependent and thus hard to adapt to a general
framework; in addition, the “deadline” semantic does not support
the batch processing scenario where a general HPU usually meets.

Meanwhile, another practical methodology is developed by re-
cruiting a set of prepaid worker, so that they can wait online and
process the task immediately after publishing. In the work of [26],
the authors propose such a pre-paid model to instantiate a real-time
respond crowdsourcing interface, and a Retailer Model is adopted
to describe the prepaid workers behavior [27]. Following the Re-
tainer Model, one analytic effort on optimally organizing the micro-
tasks can be found in [28]. Note that the prepaid implementation
differs greatly from this work: the tasks for prepaid implementa-
tion entails high instantaneity, where the tasks are expected to be
finalized in several seconds(the payments are relatively higher as
well); however, the HPU tuning assumes a system-level perspec-
tive, where the latency of the task set varies over a larger range
according to the specific requirement of the database users. Last,
the Queuing Theory based model of prepaid implementation cannot
be tailored into the HPU scenarios easily.

This work is most related to [29], where the problem of mini-
mizing crowdsourcing latency is formulated into two optimization
issues: 1. minimizing the completion cost of all the tasks given de-
terministic deadline of every task, and 2. minimizing the latency
with constrained budget. The objective of the problem discussed
in this work is virtually same with the second issue in above work.



Table 1: HPU Processing Rate for Motivation Example
`````````̀reward($)

task type sorting vote yes or no vote

2 2 3
3 3 5

1.5 1.5 2

However, our work is distinguished with [29] in the following as-
pects. First, the latency of a crowdsourcing task is modeled with
two phases: the on-hold phase and the processing phase. Such
consideration is consistent with the real world scenarios. How-
ever, [29] only considers the latency of the tasks’ acceptance. Sec-
ondly, the crowdsourcing tasks can be processed both parallel (mul-
tiple tasks being processed simultaneously) and sequentially (one
task calls for multiple answering repetitions, which are submitted
one after another). Both processing manners are studied in this
work, while [29] minimizes the latency with the implicit setting of
pure parallel processing.

3. THE HPU MODEL
In this section, we begin with the basic crowdsourcing frame-

work, develop the HPU model and demonstrate how to estimate
HPUs’ parameters. In short, we lay the foundation for the opti-
mization problem we consider in the next section.

We begin with definitions of standard crowdsourcing concepts:

- Requester: A requester publishes tasks, collects answers,
and makes the promised reward payments. Database-wise,
the requester is the higher-level “executor” as in [6] or “task
manager” in [5]. The requester has also been called the“task-
holder”, “job-owner” or “builder”.

- Worker: A worker (or crowd-worker) performs the actual
human processing tasks. A worker arrives at the market in
a uniformly random manner, and she immediately chooses
one of the tasks to work on. The preference of task selec-
tion is based on her utility maximization principle. After a
period of time, the worker finalizes the task by returning the
answer to the requester. Note that some research [17] re-
ports that the worker activity on Amazon MTurk observes
fluctuation along both a daily and a weekly basis. How-
ever due to the scale of data-driven micro-tasks, which are
mainly light-weight voting, such long-term fluctuation can
be ignored, provided that we use parameters that recurrent.
In Section 3.3 we discuss the practical methodology to infer
the realtime system parameters.

- Task: A task is the most decomposed operation that a worker
may work on. Unfortunately, there are intrinsic limits of
human cognitive capacity [2], and huge differences are ob-
served in the demographics of crowd workers [30]. Conse-
quently, to ensure the coherence and reliability of the human
answers, a worker is restricted to perform a set of most basic
operations like selecting from several options, ranking within
a couple of objects, connecting between figures, tagging im-
ages with text and so on. Many of these human operations
can be categorized into voting, where a latent true option
needs to be located with some effort (a period of time).

In the literature, tasks have sometimes been called “jobs”,
“HIT(Human Intelligent Tasks)” and so on. However, we
reserve the word “job” for the following:

- Job: A job is what the requester is responsible for. A job
is accomplished by invoking tasks in parallel in one or more
phases, with possible additional computation performed at
the requester at the beginning and end of each phase. In this
paper, we will consider three different structures for tasks in
phases, as we shall see below.

3.1 Worker Selection Model
Based on the definition of worker above, in a workforce market,

a worker appears and starts working on a task uniformly at any
time. Meanwhile, the worker’s preference among the candidate
tasks relies on the subjective utility measurement.

3.1.1 Worker Appearing Time
The online workers enter the crowdsourcing market with a ran-

dom manner. For a short period of time, like a few hours for plat-
forms like Amazon MTurk, (according to the statistics of workers’
arrival which is publicly released on AMT), the workers’ arrival
rate (the number of workers arrive within the unit time) can be re-
garded to be a constant number. Such property enables us to model
the worker’s appearing time with the following process. Denote the
current workers’ arrival rate with the constant number λ. For a time
interval of fixed length ∆t, the probability of No worker appears
equals to (1 − ∆t · λ). Suppose a task is submitted at time “0”,
and the task is accepted rightly after a worker arrives, the distribu-
tion of its acceptance can be derived as follows: P (tacc ≤ s) =

1− P (N(s) = 0) = 1− (1−∆t · λ)
s

∆t „ where tacc is the time
when the task is accepted and N(s) denotes the number of arriving
worker at time stamp s. Taking limit to ∆t gives the following ex-
pression: P (tacc ≤ s) = 1− lim∆t→0(1−∆t ·λ)

s
∆t = 1−e−λs.

Clearly, the acceptance time of a task follows exponential distribu-
tion on condition that the task is accepted once a worker arrives.

Recent research work in [16, 17] delve into more detailed anal-
ysis of when workers appear, with more delicate consideration of
time period and so on. Nevertheless, for an encapsulated compu-
tation module, a major exponential model is powerful enough for
describing the latency characteristics.

3.1.2 Task Preference
In previous discussion, we make the assumption that a task is ac-

cepted once a worker arrives. However, workers have preferences
over the tasks and tend to choose the task that can maximize her
benefits. In other words, a task is accepted by an appearing worker
with certain probability “p”. Since we have pointed that after the
submission of a task, the latency can only be adjusted though pric-
ing, therefore p is set to be variable affected by the task’s price
“c” (“p(c)”). Together with the worker’s arrival rate, the proba-
bility of No worker accepts a task is derived as: (1 − λp(c)∆t)
(when p(c) = 1, such expression is equivalent to probability of
“No worker arrives” presented in last part). Following the same
procedure, the task’s acceptance distribution is re-formulated as:
P (T < t) = 1− e−λct = 1− e−λp(c)t, where λc (λc = λp(c)) is
the joint acceptance rate of price c.

A detailed discussion of choice model can be found in [17]. But
to better estimate the latency behavior, in Section 3.3, we present a
real-time technique to infer parameters for tuning strategies.

3.2 The HPU Latency
Like in traditional CPU-based applications, when a single task is

published to the HPU, there will be two phases before the answers
are returned and collected: on-hold phase and processing phase.
The first one is the period from the task being published to the task
being chosen by a worker; the second one is the period waiting for



Table 2: Summary of Notations
Notation Description

ti an atomic task
TN a set of atomic tasks with size N
L(ti) latency of task ti
K the maximum number of possible batches
Lbio On-hold latency of batch bi
Lbip Processing latency of batch bi
λio the On-hold clock rate of batch bi
λip the Processing clock rate of batch bi
B the total budget
gi task group i, whose tasks are of i repetitions
pi payment for the task group i

E(gi) the expected latency for the task group i

answer from the worker. Statistical research has been conducted
on several crowdsourcing platforms to capture the traits of such
latencies [16–18].

DEFINITION 1 (LATENCY). The On-hold LatencyLo of a task
(or a batch of tasks) is the clock time from when the task is pub-
lished to the time when it is accepted by a worker. The Processing
Latency Lp of a task (or a batch of tasks) is the clock time from
when the task is accepted to the time when the answer is returned
and collected by the system. The Overall Latency L is the sum of
Lo and Lp: L = Lo + Lp.

According to the worker appearing behavior proposed previously,
we can derive that the distribution of the overall latency as follows.
Let λo and λp denote the clock rates of the process in On-hold and
Processing phase respectively, and the probability density function
of the latencies are as follows

fo(t) = pdf(Lo ≤ t) = λoe
−λot, fp(t) = pdf(Lp ≤ t) = λpe

−λpt

Since the latency of On-hold phase depends on the attractiveness of
a task towards the crowds, whereas the latency of Processing phase
depends on the actual cognitive load of a task, we assume these
two phases are independent from each other, which is supported by
a recent study [19]. Therefore, the probability density function for
the overall latency L can be derive as following.

fL(t) = pdf(L ≤ t) = fo(t) ∗ fp(t) =

∫ t

0

λoe
−λo(t−u)λpe

−λpu du

=
λoλp
λo − λp

(e−λpt − e−λot) =
λoλp
λo − λp

(e−λpt − e−λot),

where “∗” denotes the convolution operation of two pdf.

3.2.1 Parallel Processing
In order to complete tasks quickly, unrelated tasks will be pub-

lished simultaneously onto the crowdsourcing platforms. Given a
set of k batch tasks, Bk, being processed by the HPU simultane-
ously, the distribution for the overall latency of parallel processing
is the maximum latency of all the tasks:

Fpara(t) = cdf(Lpara(Bk) ≤ t) =

k∏
i=1

cdf(L(bi) ≤ t)

EXAMPLE 1. Revisiting the motivating examples of the intro-
duction, we now have the machinery in place to discuss how we
obtained the latencies shown in (Figure 1(a) and (Figure 1(b). The
expectation of the longest task for the first example is

E[L] =
1

λ1 + λ2
(1 + 2

λ1

λ2
+ λ2(1 +

λ1

λ2
+
λ2

λ1
))

Based on Table 3, E[case1] = 2.93(s) and E[case2] = 2.25(s),
where the load-sensitive strategy is better.

A similar computation for the second example shows that the
expected latency becomes 3.5s and 2.7s respectively.

3.3 The HPU Running Parameters
The crowds workforce platform is always fluctuating, both in

terms of demographics and in population. However, an exponential
model suffices as a good approximation. To support a robust tun-
ing strategy, we propose to statistically infer the parameters with
following two methodologies.

3.3.1 Parameter Inference
To infer the parameter λo, a “probe” program is introduced, which

publishes tasks with varying prices. The workers who accept the
task are simply required to make the submission as soon as possi-
ble, so that the processing latency is small enough to be neglected.
Due to the specific application scenario, two different inference
methodologies could be adopted.

Fixed Period The probe publishes sample tasks with the same
type and price. After a fixed period T0, the number of taken tasks
as N is observed.

Random Period The probe publishes sample tasks with the same
type and price at moment t0. After N tasks have been taken(or fin-
ished), track down the length of the period T0 starting from t0.

For both methodologies, under maximum likelihood estimate,
the parameter λo is given by λ̂o = N

T0
. Proof of the correctness

of the inference can be found in Appendix Section A. Further ad-
vanced sampling-based inference can be found in [31]. The clock
rate for the processing phase λp is estimated with similar manner.
This time, tasks of a specific type are published and the clock rate
overall latency is estimated as: λ̂ = N

T0
. Then λp is estimated as:

λ− λo, where λo is the estimation of On-hold clock rate.

3.3.2 Linearity Hypothesis
Without loss of generality, within a certain time interval, the

price c and the clock rate for the On-hold phase λo(c) observes re-
lationship with certain linearity. To provide better enhancement of
the tuning strategy, we propose a Linearity Conjecture as follow-
ing, which is the supporting property for strategy in Section 4.2.
(The concrete values of the linearity between c and λo(c) does not
affect the design of tuning strategy.)

HYPOTHESIS 1 (LINEARITY). There exists constant values k
and b, such that the rate λc and price c follows λo(c) = k · c+ b.

The experiment part gives an empirically justifies this conjecture.

4. TUNING STRATEGIES
In this section, the H-Tuning problem is defined in the first place.

Then the tuning strategies are developed according to three differ-
ent scenarios.

4.1 Problem Definition

DEFINITION 2 (LATENCY TARGET). A Latency Target L∗ is
a stochastic objective function for the tuning problem.

Specific instantiation of L∗ will be presented in each scenario.

DEFINITION 3 (H-TUNING PROBLEM). Given a set of atomic
tasks T = {t1, t2, . . . , tN} with size N , a discrete budget B, find
an optimal budget allocation strategy so that Latency Target L∗ is
minimized, without exceeding the budget B.



4.2 Scenario I - Homogeneity
4.2.1 Scenario Description

Scenario I is the most fundamental case. In this scenario, the
system is provided with a set of identical (in terms of difficulty)
atomic tasks, which require the same number of running repeti-
tions. All these atomic tasks is published simultaneously, and com-
pleted when all the tasks are solved for the required repetitions.
A fixed budget is given at the very beginning and the system is
to come up with the budget allocation for each atomic task before
publishing them to the platform. The budget allocation is made to
minimize the expected latency of all the atomic tasks being solved.

4.2.2 Tuning Strategy for Scenario I
The overall latency of all tasks being solved is equivalent to

the maximum value of every single task’s latency. Specifically,
this is defined as L∗ = L(T ) = max {L(ti)|i = 1, 2, . . . , N}.
As is stated earlier, the latency for each repetition is composed of
two phases: the on-hold phase (Phase 1) and the processing phase
(Phase 2). The latency of both phases follows an exponential distri-
bution with parameters of λo and λp. The value of λo is determined
by the allocated payment with a constant market condition, and the
value of λp is determined simply by the nature. While our objec-
tive is to minimize the overall latency, the budget allocation does
not affect the processing latency. Because of the identical nature
of the processing time for all the tasks, the minimization of the on-
hold latency leads to the minimum latency as well. Therefore, for
Scenario I, the objective is changed to the minimization of the ex-
pected latency of the on-hold phase. In the remaining part of this
section, unless otherwise specified, we use the term “expected la-
tency” referring to the expected latency in Phase 1. Before giving
the optimal solution of the budget allocation problem for Scenario
I, we introduce the following Lemmas and Theorems.

LEMMA 1. Given two identical atomic tasks t1 and t2, both
requiring to be run one round, a fixed budget of B unit payment,
allocating both t1 and t2 with B

2
(or if B is odd, allocating these

two atomic tasks with
⌊
B
2

⌋
and

⌊
B
2

⌋
+ 1) unit payments leads to

the minimum expected latency of completing t1 and t2.

PROOF. Please refer to Appendix Section B

Then, Lemma 2 shows that for one atomic task with multiple rep-
etitions, allocating budget evenly to each repetition will minimize
the expected latency.

LEMMA 2. For atomic task t which needs to be run m repeti-
tions, and a fixed budget of B unit payment, allocating B evenly to
each repetition of t leads to the minimum expected latency.

PROOF. Please refer to Appendix Section C

With the above two lemmas, we have Theorem 1, which pro-
duces the budget allocation plan to minimize the expected latency.

THEOREM 1. Given two identical atomic tasks which require
to be run for the same number of times and a fixed budget of B,
allocating the budget evenly to each repetition of all the atomic
tasks leads to the minimum expected latency.

PROOF. Please refer to Appendix Section D.

directly leads to the optimal budget plan, whose operations are
shown in Algorithm 1. As the optimal solution is obtained analyti-
cally, EA is conducted with O(1) time complexity.

4.3 Scenario II - Repetition
In this section, we take one more step forward: despite the iden-

tical difficulty, the tasks require different running repetitions.

Algorithm 1: Even Allocation (EA)

Input: budget B, atomic task set T = t1, t2, . . . , tN , m required
repetition rounds

Output: allocation of payment P = p1, p2, . . . , pN
1 if B ≤ m ∗N then
2 return the budget is not enough;
3 else
4 δ = bB/mNc and each repetition of all the atomic tasks is

allocated with δ unit payment;
5 γ = b(B mod mN)/Nc and select γ repetitions from each

atomic task randomly. Increase the payment for the selected
rrepetitions by one unit;

6 σ = (B mod mN)mod N and select σ repetitions from σ
random atomic tasks whose payment is not increased in the
previous step. Increase the payment of the selected repetition
rounds by one unit;

4.3.1 Getting the Expected Latency
As the tasks require different number of running repetitions, the

closed form of overall latency’s pdf will become intractable when
tasks come with large quantity. Thus, it’s impossible to get the
deterministic optimal solution. To address this challenge, the over-
all latency is processed approximately, based on which the optimal
budget plan is derived. Specifically, tasks are grouped according to
the running repetitions. Then the overall latency is approximated
with the sum of latency of all the task groups.

Group of Single Round Given task group g which is composed
of atomic tasks t1,t2,. . .,tn, requiring to be run for single round.
According to the definition, the latency of g, which is denoted by
L(g), equals to max (L(t1), L(t2), . . . , L(tn)). Let
x1 = min {(L(t1), L(t2), . . . , L(tn))}, which means the first com-
pletion of all the tasks within the group, and then let
x2 = min {{(L(t1), L(t2), . . . , L(tn))} − x1} which means the
second completion of all the atomic tasks within the group, and the
like, xn = minL(g)−

∑n−1
i=1 xi, which means the last comple-

tion of all the atomic tasks. It can be derived thatL(g) =
∑i=n
i=1 xi.

As xi ∼ exp(λ ∗ i), L(g) can be regarded as the sum of n expo-
nential variables. Therefore, L(g) =

∑n
i=1

1
λ∗i .

Group Multiple Rounds Before we turn to the study of the
probabilistic model of the task group of multiple repetition rounds,
the following lemma is needed to show the probabilistic property
of the task which requires multiple running repetitions.

LEMMA 3. Let t denote an atomic task which needs to be run
for k repetition rounds, the latency of t follows Erlang distribution
of parameter k and λ, which is L(t) ∼ Erl {k, λ}

PROOF. Please refer to Appendix Section E.

Now we can get the expected latency of the task group through
the following deduction. Suppose we are given a task group g,
which is composed of a set of tasks {t1, t2, . . . , tn} and each task
is needed to be run for k repetition rounds. Let L{g} denote the
latency of the task group g, then we can have the following rela-
tionship: L{g} = L{max{x1, x2, . . . , xn}}. Let F (t) denote the
cumulative distribution function (cdf) and f(t) denote the proba-
bility density function (pdf) of the latency of the atomic tasks re-
spectively. Let Fg(t) denote the cumulative distribution function
(cdf) and fg(t) denote the probability density function (pdf) of the
latency of the task group respectively. The following relationship
can be derived:

Fg(t) = Fn(t), fg(t) = n ∗ Fn−1(t) ∗ f(t)

With the above relationship, we get get the expression of the ex-



pected latency of the task group as:

E{L(g)} =

∫ ∞
0

fg(t) ∗ tdt =

∫ ∞
0

n ∗ Fn−1(t) ∗ f(t) ∗ tdt

According to the conclusion of lemma 3, the latency of the tasks
within the task group follow Erlang distributionErl(k, λ), thus the
expected latency of the task group is derived as:

E{L(g)} =

∫ ∞
0

n ∗ Fn−1
E (k, λ, t) ∗ fE(k, λ, t) ∗ tdt

among which FE(k, λ, t) and fE(k, λ, t) denote the cdf and pdf
of the Erlang distribution Erl(k, λ).

Approximate Expected Latency As is stated in the previously,
the close form of expected latency is intractable when the number
of tasks is huge. Thus, we use the sum of the expected latency of
all the task groups to approximate the real function. There are two
reasons for such approximation: one is that the sum of the expected
latency of all the task group lays the upper bound of the expected
latency of all the atomic tasks; the other is that the expected latency
of all the atomic tasks will decrease while the sum of the expected
latency of the task group is going down.

4.3.2 Tuning Strategy for Scenario II
Let Eg1 , Eg2 , . . . , Egn denote the expected latency of the task

group g1, g2, . . . , gn. Let bg1 , bg2 , . . . , bgn denote the allocated
payment of task group g1, g2, . . . , gn. The optimizing problem is
defined as min

∑n
i=1 Egi s.t.

∑n
i=1 bgi 6 B.

A dynamic algorithm is designed as follows to solve such min-
imization problem. The outer loop of the algorithm increases the
task payment from 1 toB′ (B′ = B−

∑n
i=1 ui). Within each loop,

it takes O(n) operations to find the optimal payment given the cur-
rent budget. Apparently, the overall time complexity for algorithm
2 turns out to be O(nB′)

Algorithm 2: Repetition Algorithm (RA)

Input: budget B, task group G = g1, g2, . . . , gn
Output: allocation of payment P = p1, p2, . . . , pn

1 for i = 1 to n do
2 pi(0) = 1

3 B′ = B −
∑n
i=1 ui;

4 E0(0) =
∑n
i=1 Ei(Pi(0));

5 for x = 1 to B′ do
6 E0(x) = min{E0(x− 1),

min {E0(x− ui)− [Ei(pi)− Ei(pi + 1)]|ui ≤ x}};
7 if

E0(x−1) ≤ {E0(x−ui)−[Ei(pi)−Ei(pi+1)]|ui ≤ x}
then

8 θ =
argmin

i
{E0(x−ui)− [Ei(pi)−Ei(pi+1)]|ui ≤ x};

9 pθ(x) = pθ(x− 1) + 1;

10 ∀i = 1, . . . , n, pi = pi(b)

4.4 Scenario III - Heterogeneous
In Scenario III, the tasks are heterogeneous (in terms of dif-

ficulty) and need to be run for different numbers of repetitions.
While dealing with the latency of first two scenarios, we only take
the latency of Phase 1 into account, whose reasons are two fold: the
first one is that the payment does not change the latency of Phase 2,
the second one is that the latency of Phase 2 is identical for all the
atomic tasks since all the tasks are homogeneous in terms of task
nature. However, these properties no longer hold in Scenario III as
different tasks require different processing time.

For this scenario, some tasks are easier to solve, which produce
smaller processing latency, while others are harder to solve, which
lead to longer processing latency. As a result of such character, the
previous tunning strategies do not apply well to the current prob-
lem, as the tuning result may be jeopardized by the tasks whose
processing latency is significantly larger than others’. One extreme
situation is that the latency of Phase 2 of some atomic tasks is so
long that the overall latency of completing all the atomic tasks will
be approximately equal to the expected latency such atomic task.
We call such kind of atomic tasks as “most difficult task”. It is ob-
vious that such type of atomic tasks generate stronger influence to
the overall latency than the others.

In order to relieve the delaying effect caused by the “most diffi-
cult tasks”, we make the following adaption to the tuning strategy.
For previous tuning strategies, only the latency of Phase 1 is con-
sidered. While in Scenario III, two objectives will be minimized
simultaneously: one objective is still the latency Phase 1, the other
one is the latency of the “most difficult task”, which is equivalent
to the largest expected latency of all the atomic tasks. The reason
of introducing the first objective is the same as previous scenar-
ios, which is the allocation of payment only changes the latency of
Phase 1, while the reason of introducing the second objective is to
confine the delay effect caused by the “most difficult task”. Here
the second objective serves as the penalty function to avoid the ap-
pearance of the situation where the latency of some atomic tasks
is significantly longer than that of others’. One more point needs
to be clarified is that we can’t simply minimize the second objec-
tive because the minimization of the latency of the “most difficult
work” doesn’t necessarily lead to minimum latency of completing
all the atomic tasks.

Formally, the objective function is defined as follow. Let G =
{g1, g2, . . . , gn} denote the task group (the grouping operation is
performed to all the atomic tasks so that the tasks of identical type
and repetition fall into the same group, which is slightly different
from Scenario II). Let L1(gi) and L2(gi) denote the latency of
Phase 1 and Phase 2 of gi respectively. Objective 1 is the expected
latency of Phase 1 of all the atomic tasks, which is denoted by O1

and O1 = E{L1(G)}. Objective 2 is the sum of the expected
latency of Phase 1 and Phase 2 of the most difficult atomic tasks,
which is denoted by O2 and O2 =
max{E{L1(gi)}+ E{L2(gi)}|i = 1, . . . , n}. Given the budget
ofB unit payment and let pi denote the payment allocated to group
gi, the optimizing problem is defined as: min{O1, O2} s.t.∑n
i=1 pi ≤ B. Here, we adopt a “Compromise strategy” to solve

the above two objective optimization problems. Firstly, the “Utopia
Point” (UP ) is calculated, which refers to the point where both ob-
jectives are optimized independently under the given constraints. In
the second place, the “Closeness” (CL) is defined as the first order
distance between the objective point OP and UP . The “Close-
ness” is minimized under the given constrains, and the correspond-
ing solution will serve as the optimal solution. The definition of
“UP ”, “OP ”, and “CL” are formally presented as follows.

DEFINITION 4 (UTOPIA POINT). Let O∗1 = {minO1 : s.t.∑n
i=1 pi ≤ B } and O∗2 = {minO2 : s.t.

∑n
i=1 pi ≤ B}. The

Utopia Point is defined as UP = (O∗1 , O
∗
2).

DEFINITION 5 (OBJECTIVE POINT). Let O1 and O2 denote
the objective value of the current payment allocated to each task
group. The Objective Point is the two dimensional position deter-
mined by {O1,O2}.

DEFINITION 6 (CLOSENESS). The Closeness equals to the first
order distance between UP and OP : CL = ‖OP − UP‖.



Here, the optimal budget plan is equivalent to the minimization
of the following problem: minCL : s.t.

∑n
i=1 pi ≤ B. Such

a problem can be optimally solved with dynamic programming,
whose procedures are shown with Algorithm 3. Similar with al-
gorithm 2, the dynamic programming runs with O(nB′) iterations
to achieve the optimal solution.

Algorithm 3: Heterogeneous Algorithm (HA)

Input: budget B, task group G = g1, g2, . . . , gn
Output: allocation of payment P = p1, p2, . . . , pn

1 for i = 1 to n do
2 pi = 1

3 B′ = B −
∑n
i=1 ui;

4 CL0 = ‖OP0 − UP‖;
5 for x = 1 to B′ do
6 CLx = min{CLx−1,min{CLx−ui (+ + pi(x− ui))
7 |ui ≤ x, i = 1, . . . , n}};
8 if CLx−1

9 ≤ {CLx−ui (+ + pi(x− ui))|ui ≤ x, i = 1, . . . , n} then
10 θ = argmin

i
{CLx−ui (+ + pi(x− ui))|ui ≤ x, i =

1, . . . , n};
11 pθ(x) = pθ(x− 1) + 1;

12 ∀i = 1, . . . , n, pi = pi(b)

5. EXPERIMENTS
We extensively evaluated our model and optimization techniques,

and report on the results here. While the gold standard is per-
formance on a real platform, we can exercise greater control and
thereby get a better empirical understanding of our system through
simulation. Therefore, we did both. We report first on simulation
results with synthetic data, and then on jobs executed on Amazon
Mechanical Turk.

5.1 HPU Traits Testing with Synthetic Data

5.1.1 Experiments Settings
We conduct six sets of experiment for each Scenario. The first

four sets are linear model based, which aim to verify the effective-
ness of the tuning strategy under the linear Hypothesis, and the last
two sets are nonlinear model based, which aim to test the robust-
ness of the tuning strategy. For the linear model based experiment,
the model parameters are set as λo = p + 1, λo = 10p + 1,
λo=0.1p+ 10, λo = 3p+ 3. For the nonlinear part, the parameters
are set as λo = 1 + p2 and λo = log (1 + p). The total number of
task is set to be 100 uniformly for each set of the experiment and
the budget varies from 1000 to 5000.

Homogeneity All tasks call fro 5 repetitions. As the difficulty of
the tasks are identical, the clock rate λp for the processing latency
is uniformly set to be 2.0. Since the optimistic solution is produced
by the even allocation (algorithm 1), biased allocation strategies
are adopted as the baseline comparison. Instead of allocating the
budget evenly, the biased method gives more payment to one half
of the tasks, while less payment to the other. Specifically, half of
the tasks are randomly selected as “the prior group” which take
up α ( 1

2
< α < 1) of the total budget (α = 1

2
leads to the even

allocation), and the remaining tasks get the 1−α of the total budget.
The value of the alpha is set to be 0.67, and 0.75 in our experiment.

Repetition The tasks are divided equally into two groups: one
group is of 3 repetitions for each task, while the other group is of 5
repetitions for each of the tasks. Still, λp is uniformly set to be 2.0
due the identical setting of the difficulty. Two baseline methods are
chosen as for the comparison. The first method is called task-even

allocation, which gives identical price to each task, then every task
allocate the total budget evenly to each of its repetitions. Therefore,
repetition price for group 2 is 60% of that of group 1. The second
one is called rep-even allocation, which gives identical price to each
repetition of all the tasks. So the total price for the tasks in the
group 1 is 60% of that of group 2.

Heterogeneous The tasks are dived into two groups: task in the
first group call fro three repetitions, while tasks in the second group
call fro five repetitions. Then λp is set to be 2.0 and 3.0 these two
groups, respectively. Same with scenario ii, the rep-even and task-
even are chosen the baseline methods for the comparison.

We also conduct experiments with different settings of the bud-
get, task amount, repetitions, and difficulty. However, there’s no
significant variance between different settings. Therefore, we sim-
ply demonstrate the results of the above setting for further analysis.

5.1.2 Results Summary
From the experiment results, the optimal solution outperforms

the comparisons in terms of latency in every cases. For results of
scenario 1 (homo), the “bias_1” produces slightly better perfor-
mance than “bias_2”. This is because bias_2 is more biased (the
value of α is larger) than bias_1. Such phenomenon further veri-
fied our conclusion that even allocation leads to the optimal budget
plan for the Scenario 1. Besides, we can find that although the
optimal solution of the Scenario 1 is designed based on the lin-
ear hypothesis, it still works for the nonlinear cases (homo(e) and
homo(f)), which can be partially explained by the varying range of
the payment: the task price varies form 1 to 9. For such relatively
low prices, the non-linear relationship can be linearly approximated
quite well. We can further find that the optimal results are relatively
close to the comparison in case (b) and (c), for all the scenarios.
For case (b), such phenomenon can be caused the large value of
the linear coefficient (lambda = 10p + 1). When the linear co-
efficient is large, the on-hold clock rate is sensitive to the change
of price. When price grows, the clock rate increases much more
faster, making the oh-hold latency decrease to a low level with a
relatively lower price. In this situation, the overall latency will be
mostly determined by the processing phase. Similar phenomenons
can be observed for case (e) in each of the scenarios, where over-
all latency reduces sharply for the initial prices, and soon get to a
stable level. While case (c) is another extreme, where λ is fairly
insensitive to the price changes. In this situation, and the latency is
largely determined by the initial setting of on-hold and processing
phase, and price does little to change it.

Finally, we can summarize the findings of the synthetic exper-
iment as follows: 1) the optimal tuning strategy is robust to non-
linearity. The unit price for each task is usually small, therefore the
linearity hypothesis holds for normal cases. 2) The optimal tun-
ing strategy is sensitive to the price-lambda relationship: when
lambda is sensitive to the change of price, the on-hold latency
drops sharply with the growing price. Then the overall latency is
determined by the processing time and it’s unnecessary to keep on
increasing the price.

5.2 Tuning Tasks on Amazon MTurk
5.2.1 Experiments Settings

We create a set of image filtering tasks as the atomic tasks: we
first present the workers an image with the exact number of the dots
on it, then a set of images are presented to the “workers” and they
are required to estimate the number of dots on each image. Based
on the estimation, “workers” are expected to filter out the ones who
have dots less than a given threshold. Under such settings, the cog-
nitive abilities of “recognizing” and “counting” are utilized, and the
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Figure 2: Experiments on Synthetic Data
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task is finished by presenting a set of binary voting(clicking on the
checkbox). In addition, the “workers” receive their rewards when
the provided answers are correct. We control the difficulty or type
of tasks by varying the images given in a single tasks.

Our work focuses on tuning upon budget allocation and real time
latency, thus we purposely design the experiment simple enough
and avoid setting any worker qualifications and inter-rater agree-
ment. In fact, in real scenarios, the atomic tasks on lowest level are
just the same as the experimental tasks: comparing items, screening
out candidates and simple ranking.

5.2.2 Results Summary
Firstly, in Fig 3 we present the general behavior of the worker

appearance and the latency of processing time. We issue image
filtering tasks with 1 unit reward($0.05), and collect the first 20 ar-
rivals. As shown in Fig 3, the arrival epochs of the workers exhibit
linearity, indicating the suitability of the Poisson Process Model,
while the latency of the second phase fluctuates in a small range.

Then we examine the effect of varying the rewards: we vary the
reward on a single task from $0.05 to $0.12, while for each task
we require 10 repetitions. The results can be found in Fig 4, where
it is obviously that the increase on rewards incurs shorter laten-
cies. According to the methodologies introduced in Section 3.3,
we obtain the corresponding parameters(s−1), λ1 = 0.0038, λ2 =
0.0062, λ3 = 0.0121, λ4 = 0.0131, which supports the Linearity
Hypothesis proposed in Section 3.3.2.

In the sequel, we present the results of examining the effect of
varying the type of the tasks: we vary the internal binary voting
number from 4 to 8. Such change of difficulty results in the de-
crease of the coming rate (see Fig 5(a)), and the increase of the
average processing time, which is shown in Fig 5(b). We then eval-
uate our proposed algorithms on Amazon MTurk, especially under

Scenario II and III. Namely, 3 types of tasks are published with
different repetition requirement: 10 for t1, 15 for t2 and 20 for
t3. The total budgets are also varied from $6 to $10. We compare
our algorithms(OPT) with the heuristic where each type receives
same payment under both two scenarios. Results can be found in
Fig 5(c), where the lower latency of OPT shows the effectiveness
of our algorithms. Note that at each budget, the OPT successfully
avoids yielding the longest latency among the three tasks.

6. CONCLUSION
In this paper, we address the problem of tuning the modularized

human computation, so that the latency in real clock time could be
minimized. The difficulty of such problem arises in the stochastic
behavior of the latency of the HPU. To address this challenge, we
theoretically and practically propose that appearance of the crowd
“workers” follows a Poisson Process, whose parameter differs at
different budget levels and types of atomic tasks. Then we formally
propose the H-Tuning Problem to optimize the expected latency of
the longest task. Moreover, under three most general scenarios on
crowd-powered applications, advanced strategies are designed to
cope with the H-Tuning Problem. Finally, a series of experiments
conducted on both simulated data and real commercial platform
observe the effectiveness of the proposed model and strategies. To
conclude, the crowdsourced human computation is now equipped
with primitive tuning ability in terms of running time.
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APPENDIX
A. INFERENCE OF PARAMETER λ

Fixed Period The likelihood function of parameter λ is L =
λN exp[−λ

∑N
k=1 Tk] exp[−λ(T0 − tn)] = λN exp[−λT0]. To

maximize the likelihood, the ML estimation of λ is derived as λ̂ =
N/T0, which is unbiased according to Rao-Blackwell Theorem.

Random Period Suppose each worker appears at the epochs 0 <
t1 < t2 . . . < tN , we could obtain the likelihood function: L =
λNe−λT0 . Thus to maximize the likelihood, the ML estimation of
λ is given by λ̂ = N

T0
(same as the one in Fixed Period). To remove

the bias, further the parameter can be updated: λ̃ = ((N − 1)N)λ̂.

B. PROOF OF LEMMA 1
PROOF. As illustrated in the previous section, Phase 1 of both

t1 and t2 follow exponential distribution, whose parameters are de-
noted as λot1 and λot2 , and according to Hypothesis I in Section 3.3,
when allocating t1 with x unit payment and t2 withB−x unit pay-
ment, λot1 = kx and λot2 = k(B−x). (k is the constant coefficient)
With the two parameters defined above, we can derive the follow-
ing relationship: E({t1, t2}) = E {max {Lo(t1), Lo(t2)}} =

λo
t1

+λo
t2

λo
t1
λo
t2

− 1
λo
t1

+λo
t2

As λot1 = kx and λot2 = k(B − x), E(t1, t2)

turns out to be a convex function and reaches its minimum point
when x = B

2
(or bB/2c if B is odd). Hence, allocating t1 and t2

with B
2

unit payments leads to the minimum expected latency.

C. PROOF OF LEMMA 2
PROOF. Let {p1, . . . , pm} denote the payment allocated to each

repetition of atomic task t, and {λo1, . . . , λom} denote the exponen-
tial parameter of each repetition. It is obvious to see that

∑k
i=1 pi =

B, and based on Hypothesis 1, λoi = k ∗ pi. With above informa-
tion, we can derive the expected latency of t as follows.
E{L(t)} =

∑m
i=1 1/λoi =

∑m
i=1 1/kpi. Since E{L(t)} =∑m

i=1 1/kpi ≤ B2/km, and the equality is established iff. ∀i ∈
{1, . . . ,m},xi = B/m. Therefore, we come to the conclusion
that allocating the budget evenly to each repetition of the atomic
task leads to the minimum expected latency.

D. PROOF OF THEOREM 4.2.2
PROOF. This theorem is proved with mathematical induction.

Firstly, the theorem holds when both atomic tasks are run exactly
once, which is a direct result of Lemma 1. Then, we prove that
the theorem still holds when the repetitions increases to n + 1 on
condition that it hold with repetition equals to n. Suppose we have
a two identical tasks t1 and t2, which require n reps. Now we allo-
cate each rep with x unit payment.Based on our presumption, this
budget allocation leads to the minimum expected latency. Let H
denotes the completion of task t1, and the completion of both tasks
as max {H,H}. Now we increase the repetitions of both tasks to
n + 1, and the budget to 2(n + 1)x. Suppose we have a better
budget allocation which outperforms allocating the budget evenly.
It is trivial to see that one task will be allocated with more payment
and the other atomic task will be allocated with less payment. At
the same time the payment for each repetition of the same atomic
task remains identical. Let I denote the completion of the first n
repetitions of t1 and i denote the event of the completion of the last
repetition of t1. So the completion of t1 is denoted as {I + i}. Let
J denote the completion of the first n repetitions of t2 and j de-
note the completion of the last repetition of t2. The completion of
t2 can be denoted as J + j. Similarly, when allocating the budget
evenly to each repetition of both tasks, we use H to denote the first
n repetitions of the atomic task and h to denote the last repetition
of the atomic task, and the completion of t1 (or t2) is denoted as
{H + h}. Then, the completion of both tasks with the assumed
optimal budget allocation is denoted by max {{I + i}, {J + j}}
and the completion of both tasks with the evenly allocated budget
is denoted as max {{H + h}, {H + h}}. Here, we will have the
flowing relationship: E{max {{I + i}, {J + j}} = (E{I + i}+
E{J + j})− E{min {{I + i}, {J + j}}}, and
E{max {{H + h}, {H + h}}} = (E{H + h}+E{H + h})−
E{min {{H + h}, {H + h}}}. As E{I + i} + E{J + j} =
n/(k(x−ε))+n/(k(x+ε))≤ 2n/kx = E{H+h}+E{H+h},
we can get the result that E{max {{I + i}, {J + j}}} ≥
E{max {{H + h}, {H + h}}}. This shows that the theorem still
holds when the repetitions increases to n+ 1, which prove the the-
orem to be truth.

E. PROOF OF LEMMA 3
PROOF. Let ri denote the ith repetition of task x. According

to Lemma 1,∀ri ∈ {r1, . . . , rn}, L(ri) follows exponential dis-
tribution of the same parameter λ. So L(x) = L(

∑k
i=1 ri). This

meets the requirement of Erlang distribution and makes L(x) ∼
Erl(k, λ).
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