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Abstract—Several organizations, like social networks, store and
routinely analyze large graphs as part of their daily operation.
Such graphs are typically distributed across multiple servers, and
graph partitioning is critical for efficient graph management.
Existing partitioning algorithms focus on finding graph parti-
tions with good locality, but disregard the pragmatic challenges
of integrating partitioning into large-scale graph management
systems deployed on the cloud, such as dealing with the scale
and dynamicity of the graph and the compute environment.

In this paper, we propose Spinner, a scalable and adaptive
graph partitioning algorithm based on label propagation designed
on top of the Pregel model. Spinner scales to massive graphs,
produces partitions with locality and balance comparable to
the state-of-the-art and efficiently adapts the partitioning upon
changes. We describe our algorithm and its implementation in
the Pregel programming model that makes it possible to partition
billion-vertex graphs. We evaluate Spinner with a variety of
synthetic and real graphs and show that it can compute partitions
with quality comparable to the state-of-the art. In fact, by using
Spinner in conjunction with the Giraph graph processing engine,
we speed up different applications by a factor of 2 relative to
standard hash partitioning.

Keywords—Pregel, graph partitioning, graph processing, cloud
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I. INTRODUCTION

Graph partitioning is a core component for scalable and
efficient graph processing. The size of graphs available today,
whether a social network, the Web, or a protein interaction
network [[L1], requires graph management systems [18]], [LO],
[21], [23] to distribute the graph, typically across shared-
nothing clusters or clouds. Due to the inherent dependencies
that characterize graphs, producing partitions with good lo-
cality is critical in minimizing communication overheads and
improving system scalability[[17]. At the same time, partitions
that balance processing across the cluster can improve resource
utilization and reduce overall processing latency.

However, integrating graph partitioning in graph manage-
ment systems introduces a number of pragmatic challenges
that are disregarded by existing solutions. First, the scale of
the graphs, often reaching billions of vertices and edges, makes
it hard to provide locality and balance at the same time. For
instance, the Metis algorithm [[12], [13] produces partitionings
with good locality and balance, but doing so incurs high
computational cost and requires a global view of the graph
that makes it impractical for large graphs [28], [14], [25].
Alternative algorithms maintain balanced partitions by intro-
ducing centralized components to enforce strict constraints on
the size of the partitions [29], limiting scalability as well. As
a result, systems often resort to lightweight solutions, such as
hash partitioning, despite the poor locality that it offers.

Second, graph management systems need to continuously
adapt the partitioning of the graph [21]]. One one hand, graphs
are naturally dynamic, with vertices and edges constantly
added and removed. Thus, the system must regularly update
the partitioning to maintain optimal application performance.
On the other hand, modern computing platforms are elastic,
allowing to scale up and down on demand depending on
workload requirements. This implies that the system must re-
distribute the graph across a different number of machines. To
maintain a good partitioning under these conditions, existing
solutions continuously re-execute the partitioning algorithm
from scratch. This expensive approach prohibits frequent up-
dates and wastes computational resources. Furthermore, it does
not consider the previous state of the partitioned graph; a re-
partitioning may compute totally different vertex locations.
This forces the system to shuffle a large fraction of the graph,
impacting performance.

At the same time, recently emerged graph processing sys-
tems, like Pregel [[18] and Graphlab [[L6], provide platforms
customized for the design and execution of graph algorithms at
scale. They offer programming abstractions that naturally lead
to distributed algorithms. Further, their execution environments
allow to scale to large graphs leveraging clusters consisting
of commodity hardware. In fact, this has resulted in porting
several graph algorithms on such systems [22], [20], [3].
However, no work has explored so far how the problem of
graph partitioning can benefit from these architectures.

In this paper, we propose to leverage such architectures for
the development of scalable graph partitioning algorithms. We
introduce Spinner, a partitioning algorithm that runs on top
of Giraph [1], an open source implementation of the Pregel
model [18]. Spinner can partition billion-vertex graphs with
good locality and balance, and efficiently adapts to changes in
the graph or changes in the number of partitions.

Spinner uses an iterative vertex migration heuristic based on
the Label Propagation Algorithm (LPA). We extend LPA to a
scalable, distributed algorithm on top of the Pregel (Giraph)
programming model. As a design choice, Spinner avoids
expensive centralizations of the partitioning algorithm [12],
[29], [28] that may offer strict guarantees about partitioning
at the cost of scalability. However, we show that building only
on the programming primitives of Pregel, Spinner can still
provide good locality and balance, reconciling scalability with
partitioning quality.

Further, we designed Spinner to efficiently adapt a partition-
ing upon changes to the graph or the compute environment.
By avoiding re-computations from scratch, Spinner reduces the
time to update the partitioning by more than 85% even for large
changes (2%) to the graph, allowing for frequent adaptation,
and saving computation resources. Further, the incremental



adaptation prevents graph management systems from shuffling
large portions of the graph upon changes.

Finally, we show that we can use the resulting partitionings
of Spinner to improve the performance of graph management
systems. In particular, we use Spinner to partition the graph in
the Giraph graph analytics engine, and show that this speeds
up processing of applications by up to a factor of 2.

In this paper, we make the following contributions:

e We introduce Spinner, a scalable graph partitioning al-
gorithm based on label propagation that computes k-way
balanced partitions with good locality.

e We provide a scalable, open source implementation of
the algorithm on top of the Giraph graph processing
system. We extend the basic LPA formulation to support
a decentralized implementation that reconciles scalability
and balance guarantees. To the best of our knowledge, this
is the first implementation of a partitioning algorithm on
the Pregel model.

e We extend the core algorithm to adapt an existing parti-
tioning upon changes in the graph or the or the number
of partitions in an incremental fashion. This minimizes
computation and offers partitioning stability.

e We evaluate Spinner extensively, using synthetic and
real graphs. We show that Spinner scales near-linearly
to billion-vertex graphs, adapts efficiently to dynamic
changes, and significantly improves application perfor-
mance when integrated into Giraph.

The remaining of this paper is organized as follows. In
Section we outline Spinner’s design goals and give a
brief overview of graph processing systems. In Section |ILI| we
describe the Spinner algorithm in detail. Section [I'V| describes
the implementation of Spinner in the Pregel model, while in
Section |V| we present a thorough evaluation. In Section [V we
discuss related work, and Section concludes our study.

II. MOTIVATION AND BACKGROUND

To motivate our approach, in this section we first describe
our design goals. We then give a brief overview of graph
processing architectures and discuss how we can exploit such
systems to build a scalable partitioning solution.

A. Design goals

At a high level, Spinner must produce good partitionings
but also be practical. It must be able to manage the challenges
arising from graph management systems, such as scale and
dynamism.

Partitioning quality. Spinner must compute partitions with
good locality and balance. Typically, graph processing sys-
tems [18]], [16]] and graph databases [23]], [30] distribute ver-
tices across machines. Because communication in such systems
coincides with graph edges, network traffic occurs when edges
cross partition boundaries. Therefore, a good partitioning al-
gorithm must minimize the cut edges Further, partitions that

The edges that cross partition boundaries.

balance the load across machines improve processing latency
and resource utilization. For instance, in graph processing sys-
tems the load depends on the number of messages exchanged
and therefore on the number of edges. In fact, although our
approach is general, here we will focus on balancing partitions
on the number of edges they contain. Additionally, unlike
traditional community detection algorithms, we must control
the number k of the partitions, as this is mandated by the
underlying compute environment, for example, the number
of available machines or cores. This objective is commonly
referred to as k-way partitioning.

Scalability. We must be able to apply Spinner to billion-
vertex graphs. As a design principle, our algorithm must be
lightweight and lend itself to a distributed implementation.
Note that providing strict guarantees about locality and balance
and, at the same time, scale to large graphs may be conflicting
requirements. Often, providing such guarantees requires expen-
sive coordination or global views of the graph [[12], preventing
scalability.

In this paper, we take a different approach as we are
willing to trade partitioning quality and forego strict guarantees
in favor of a more practical algorithm that can scale. In
subsequent sections, we show how relaxing these requirements
allows a scalable distributed implementation that still produces
good partitions for all practical purposes.

Adaptability. Spinner must be able adapt the partitioning to
changes in the graph or the underlying compute environment.
For efficiency, we want to avoid re-partitioning the graph from
scratch, rather compute a new good partitioning incrementally.
We also want to avoid large changes in the adapted partitioning
as they may force the shuffling of vertices in the underlying
graph management system. Therefore, our algorithm should
take into consideration the most recent state of the partitioning.

B. Leveraging the Pregel model

In this paper, we propose to design a graph partitioning
solution on top of graph processing architectures such as
(L8], [, [16], [32]. These systems advocate a vertex-centric
programming paradigm that naturally forces users to express
graph algorithms in a distributed manner. Further, such systems
are becoming an integral part of the software stack deployed on
cloud environments. Building on top of such a system renders
our partitioning solution practical for a wide range of compute
environments.

In such models, graph algorithms are expressed through
a vertex computation function that the system computes for
each vertex in the graph. Vertex computations are executed in
parallel by the underlying runtime and can synchronize through
messages [18] or shared memory [16].

Spinner builds upon Pregel in particular, an abstraction
that is based on a synchronous execution model and makes
it easy to scale to large graphs. In Pregel, a program is
structured as a sequence of well-defined computation phases
called supersteps. During a superstep every vertex executes
the user-defined compute function in parallel. Vertices have an



associated state that they access from within the user-defined
function, and may communicate with each other through
messages. In Pregel, messages are delivered in a synchronous
manner only at the end of a superstep.

The synchronous nature of the Pregel model avoids any
expensive coordination among vertices, allowing programs to
scale near-linearly. In the following, we will show that building
a graph partitioning algorithm with this primitive allows us to
apply Spinner to billion-vertex graphs.

III. PROPOSED SOLUTION

We have designed Spinner based on the Label Propagation
Algorithm (LPA), a technique that has been used traditionally
for community detection [8]. We choose LPA as it offers a
generic and well understood framework on top of which we
can build our partitioning algorithm as an optimization prob-
lem tailored to our objectives. In the following, we describe
how we extend the formulation of LPA to achieve the goals we
set in Section [[Il We extend LPA in a way that we can execute
it in a scalable way while maintaining partitioning quality and
efficiently adapt a partitioning upon changes.

Before going into the details of the algorithm, let us intro-
duce the necessary notation. We define a graph as G = (V,E),
where V is the set of vertices in the graph and FE is the set of
edges such that an edge e € E is a pair (u,v) with u,v € V.
We denote by N(v) ={u: ucV,(u,v) € E} the neighborhood
of a vertex v, and by deg(v) = |[N(v)| the degree of v. In a k-
way partitioning, we define L as a set of labels L= {ly,...,[;}
that essentially correspond to the k partitions. « is the labeling
function a: V — L such that o(v) = {; if label /; is assigned
to vertex v.

The end goal of Spinner is to assign partitions, or labels, to
each vertex such that it maximizes edge locality and partitions
are balanced.

A. K-way Label Propagation

We first describe how to use basic LPA to maximize edge
locality and then extend the algorithm to achieve balanced
partitions. Initially, each vertex in the graph is assigned a
label /; at random, with 0 < i < k. Subsequently, every vertex
iteratively propagates its label to its neighbors. During this
iterative process, a vertex acquires the label that is more
frequent among its neighbors. Specifically, every vertex v
assigns a different score for a particular label / which is equal
to the number of neighbors assigned to label /

score(v,1) = Z o(o(u),l) (1)

ueN(v)

where 6 is the Kronecker delta. Vertices show preference to
labels with high score. More formally, a vertex updates its
label to the label /, that maximizes its score according to the
update function

1, = argmax score(v,l) 2)
!

Partition 1

Partition 3

Partition 3

Fig. 1. Conversion of a directed graph (left) to an undirected graph (right).

We call such an update a migration as it represents a logical
vertex migration between two partitions.

In the event that multiple labels satisfy the update function,
we break ties randomly, but prefer to keep the current label if
it is among them. This break-tie rule improves convergence
speed [8], and in our distributed implementation reduces
unnecessary network communication (see Section [[V). The
algorithm halts when no vertex updates its label.

Note that the original formulation of LPA assumes undi-
rected graphs. However, very often graphs are directed (e.g.
the Web). Even the data models of systems like Pregel allow
directed graphs, to support algorithms that are aware of graph
directness, like PageRank. To use LPA as is, we would need to
convert a graph to undirected. The naive approach would be to
create an undirected edge between vertices u and v whenever
at least one directed edge exists between vertex u and v in the
directed graph.

This approach, though, is agnostic to the communication
patterns of the applications running on top. Consider the
example graph in Figure [I] that we want to partition to 3
parts. In the undirected graph (right), there are initially 3
cut edges. At this point, according to the LPA formulation,
which is agnostic of the directness of the original graph, any
migration of a vertex to another partition is as likely, and it
would produce one cut edge less.

However, if we consider the directness of the edges in the
original graph, not all migrations are equally beneficial. In fact,
either moving vertex 2 to partition 1 or vertex 1 to partition 3
would in practice produce less cut edges in the directed graph.
Once the graph is loaded into the system and messages are
sent across the directed edges, this latter decision results in
less communication over the network.

Spinner considers the number of directed edges connecting
u,v in the original directed graph D by introducing a weighting
function w(u,v) such that

Wi, w) = 1, if (u,v)eD®(v,u) €D
2, if (u,v) eDA(vu)ED

where & is the logical XOR. We extend now the formulation
in (I) to include the weighting function

score' (v,1) = Z w(u,v)o(o(u),l) 4

ueN(v)

3)

In practice, the new update function effectively counts the
number of messages exchanged locally in the system.



Notice that, so far, the formulation of LPA does not dictate
in what order and when vertices propagate their labels or
how we should parallelize this process. For instance, the
propagation can occur in an asynchronous manner, with a
vertex propagating its label to its neighbors immediately after
an update. A synchronous propagation, instead, occurs in
distinct iterations with every vertex propagating its label at
the end of an iteration. In Section [[V] we will see how we
constraint the propagation to occur in a synchronous fashion
to retro-fit LPA to the Pregel model, allowing the massive
parallelization of a single LPA iteration.

B. Balanced Label Propagation

Next, we will extend LPA to produce balanced partitions.
In Spinner, we take a different path from previous work [29]
that balances partitions by enforcing strict constraints on the
partition sizes. Such an approach requires the addition to LPA
of a centralized component to ensure the satisfaction of the
balance constraints across the graph. Essentially, it calculates
which of the possible migration decisions will not violate the
constraints. This component is used after each LPA iteration,
potentially increasing the algorithm overhead and limiting
scalability.

Instead, as our aim is to provide a practical and scalable
solution, Spinner relaxes this constraint, only encouraging a
similar number of edges across the different partitions. In par-
ticular, to maintain balance, we integrate a penalty function into
the vertex score in that penalizes migrations to partitions
that are nearly full. Importantly, we define the penalty function
so that we can calculate it in a scalable manner.

In the following, we consider the case of a homogeneous
system, where each machine has equal resources. This setup
is often preferred, for instance, in graph processing systems
like Pregel, to eliminate the problem of stragglers and improve
processing latency and overall resource utilization.

We define the capacity C of a partition as the maximum
number of edges it can have so that partitions are balanced,
which we set to

E]
C=c — 5
€ ®)
where ¢ > 1 is a constant, and the load b(l) of a partition [ as
the actual number of edges in the partition

b(l) =) deg(v)8(a(v),1) (6)

veG

The capacity C represents the constraint that Spinner puts
on the load of the partitions during an LPA iteration, and for
homogeneous systems it is the same for every partition. Notice
that in an ideally balanced partitioning, every partition would
contain |E|/k edges. However, Spinner uses parameter ¢ to
let the load of a partition exceed this ideal value. This allows
for vertices to migrate among partitions, potentially improving
locality, even if this is going to reduce balance.

At the same time, to control the degree of unbalance,
we introduce the following penalty function that discourages

the assignment of vertices to nearly full partitions. Given a
partition /, we define the penalty function 7(!) as

n(l) = =5 )

The closer the current load of a partition to its capacity is,
the higher the penalty of a migration to this partition is, with
the penalty value ranging from O to 1. Next, we integrate the
penalty function into the score function. To do so, we first
normalize @I), and reformulate the score function as follows

w(u,)8(eu(u), )

UEN(v) ZuEN(v) W(ua V)

—n(l) ®)

score” (v,1) =

This penalty function has the following desirable properties.
First, using parameter ¢ we can control the tradeoff between
partition unbalance and convergence speed. A larger value of ¢
increases the number of migrations allowed to each partition at
each iteration. This possibly speeds up convergence, but may
increase unbalance, as more edges are allowed to be assigned
to each partition over the ideal value |E|/k.

Second, it allows us to compute the score function in a
scalable way. Notice that the locality score depends on per-
vertex information. Further, computing the introduced penalty
function only requires to calculate b(I). This is an aggregate
across all vertices that are assigned label [. As we describe in
Section we can leverage the Giraph aggregation primitives
to compute b(l) for all possible labels in a scalable manner. As
we show later, the introduction of this simple penalty function
is enough to produce partitions with balance comparable to the
state-of-the-art.

C. Convergence and halting

Although proving the convergence properties of LPA is a
hard problem in the general case [8], our additional emphasis
on partition balance, namely that a vertex can migrate to
improve balance despite a decrease in locality, allow us to pro-
vide some analytical guarantees about Spinner’s convergence
and partitioning quality. One of the difficulties in proving
convergence is that approaches based on LPA sometimes reach
a limit cycle where the partitioning fluctuates between the same
states. Nevertheless, we can analyze it from a stochastic per-
spective. By using classic results from the theory of products
of stochastic matrices [27], [26], in the following we show
that: (i) under sufficient conditions on the connectivity of the
underlying graph, Spinner converges exponentially-fast to an
even balancing, and (ii) in the general case Spinner conver-
gences, but no guarantees are provided about the partitioning
quality. For practical purposes, in this section we also provide
a heuristic for deciding when to halt the execution of the
algorithm.

Model. We will abstract from the underlying graph by
encoding the system state in a k-dimensional load vector
x=[B(l1),B(lh),...B(I;)]. At each iteration 7, Spinner moves
a portion of the load of each partition to each of the other
k — 1 partitions. This can be captured by a partition graph



P, = (L,0;), having one vertex for each label and an edge
(li,1;) € O, if and only if the portion [X];; of load which
migrates from partition i to j is larger than zero. Supposing
that xq is the starting state, the state x; during iteration ¢ is
given by

X=X Xi—1--- X130 = Xi:1 X0. 9

We next show that, when the partition graph is B-connected,
Spinner converges exponentially-fast to an even balancing.

Definition 1 (B-connectivity). A sequence of graphs {P,>o} is
B-connected if, for all t >0, each union graph Pp.p(1)-1 =
(L, OB UQpr1U---UQp(41)—1) is strongly connected.

Simply put, B-connectivity asserts that each partition ex-
changes load with every other partition periodically. We can
now state our first result:

Proposition 1. If the partition graph {P,~o} is B-connected,
one can always find constants 1L € (0,1) and g € R, for which
Spinner converges exponentially ||x; — x*||o/||X0[|c0 < qut’~" to
an even balancing x* =[C C ... C], with C = |E|/k.

Proposition [2] asserts that, when {P~¢} is not B-connected,
Spinner also converges—though we cannot state anything
about the quality of the achieved partitioning.

Proposition 2. Spinner converges in bounded time.

Due to lack of space, we refer to [2]] for the derivation of
the proofs of Propositions [I] and [2]

From a practical perspective, even if limit cycles are avoided
often it is not worth spending compute cycles to achieve
full convergence. Typically, most of the improvement in the
partitioning quality occurs during the first iterations, and the
improvement per iteration drops quickly after that. We validate
this with real graphs in Section

In LPA convergence is detected by the absence of ver-
tices changing label, referred to as the halting condition. A
number of strategies have been proposed to guarantee the
halting of LPA in synchronous systems (such as Pregel). These
strategies are either based on heuristics for tie breaking and
halting, or on the order in which vertices are updated [33].
However, the heuristics are tailored to LPA’s score function,
which maximizes only locality. Instead, our score function
does not maximize only locality, but also partition balance,
rendering these strategies unsuitable. Hence, in Spinner we use
a heuristic that tracks how the quality of partitioning improves
across the entire graph.

At a given iteration, we define the score of the partitioning
for graph G as the sum of the current scores of each vertex

score(G) =Y score” (v, (1)) (10)
veG

As vertices try to optimize their individual scores by making
local decisions, this aggregate score gradually improves as
well. We consider a partitioning to be in a steady state,
when the score of the graph is not improved more than a
given threshold € for more than w consecutive iterations. The

algorithm halts when a steady state is reached. Through & we
can control the trade-off between the cost of executing the
algorithm for more iterations and the improvement obtained
by the score function. At the same time, with w it is possible
to impose a stricter requirement on stability; with a larger w,
we require more iterations with no significant improvement
until we accept to halt.

Note that this condition, commonly used by iterative hill-
climbing optimization algorithms, does not guarantee halting
at the optimal solution. However, as we present in Section
Spinner periodically restarts the partitioning algorithm
to adapt to changes to the graph or the compute environment.
This natural need to adapt gives Spinner the opportunity to
jump out of local optima.

D. Incremental Label Propagation

As edges and vertices are added and removed over time, the
computed partitioning becomes outdated, degrading the global
score. Upon such changes, we want to update the partitioning
to reflect the new topology without repartitioning from scratch.
Ideally, since the graph changes affect local areas of the graph,
we want to update the latest stable partitioning only in the
portions that are affected by the graph changes.

Due to its local and iterative nature, LPA lends itself to
incremental computation. Intuitively, the effect of the graph
changes is to “push” the current steady state away from the
local optimum it converged to, towards a state with lower
global score. To handle this change, we restart the iterations,
letting the algorithm search for a new local optimum. In
the event we have new vertices in the graph, we initially
assign them to the least loaded partition, to ensure we do not
violate the balance constraint. Subsequently, vertices evaluate
their new local score, possibly deciding to migrate to another
partition. The algorithm continues as described previously.

Upon graph changes, there are two possible strategies in
restarting vertex migration. The first strategy restarts migra-
tions only for the vertices affected by the graph changes,
for instance, vertices adjacent to a newly added edge. This
strategy minimizes the amount of computation to adapt. The
second strategy, allows every vertex in the graph, even if it
is not affected by a change, to participate in vertex migration
process. This latter strategy incurs higher computation over-
head, but increases the likelihood that the algorithm jumps out
of a local optimum. We have found that this computational
overhead does not affect the total running time of the algorithm
significantly and, therefore, opt for this latter strategy favoring
better partitioning quality.

Note that the number of iterations required to converge to a
new steady state depends on the number of graph changes and
the last state. Clearly, not every graph change will have the
same effect. Sometimes, no iteration may be necessary at all.
In fact, certain changes may not affect any vertex to the point
that the score of a different label is higher than the current
one. As no migration is caused, the state remains stable. On
the other hand, other changes may cause more migrations due
to the disruption of certain weak local equilibriums. In this



sense, the algorithm behaves as a hill-climbing optimization
algorithm. As we will show in Section [V-C|] even upon a large
number of changes, Spinner saves a large fraction of the time
of a re-partitioning from scratch.

E. Elastic Label Propagation

During the lifecycle of a graph, a system may need to re-
distribute the graph across the compute cluster. For instance,
physical machines may be characterized by a maximum ca-
pacity in the number of vertices or edges they can hold due
to resources limitations, such as the available main memory.
As the graph grows and the load of the partitions reaches
this maximum capacity, the system may need to scale up
with the addition of more machines, requiring to re-distribute
the graph. Alternatively, we may perform such re-distribution
just to increase the degree of parallelization and improve
performance. Conversely, if the graph shrinks or the number
of available machines decreases, we need to remove a number
of partitions and, again, redistribute the graph.

In these scenarios, we want the algorithm to adapt to the
new number of partitions without repartitioning the graph
from scratch. Spinner achieves this in the following way.
Upon a change in the number of partition, Spinner lets each
vertex decide independently whether it should migrate using
a probabilistic approach. In the case we want to add n new
partitions to the system, each vertex picks one of the new
partitions randomly and migrates to it with a probability p
such that

n
k+n
In the case we want to remove n partitions, all the vertices
assigned to those partitions migrate to one of the remaining
ones. Each vertex chooses uniformly at random the partition
to migrate to.

p= (1)

In both cases, after the vertices have migrated, we restart
the algorithm to adapt the partitioning to the new assignments.
As in the case of incremental LPA, the number of iterations
required to converge to a new steady state depends on factors,
such as the graph size, and the number of partitions added or
removed.

By introducing these random migrations upon a change, this
strategy clearly disrupts the current partitioning, degrading the
global score. However, it has a number of interesting character-
istics. First, it remains a decentralized and lightweight heuristic
as each vertex makes a decision to migrate independently.
Second, by choosing randomly, the partitions remain fairly
balanced even after a change in the number of partitions.
Third, this random change from the current state of the
optimization problem may allow the solution to jump out of a
local optimum.

Note that, if the number n of new partitions is large, the
cost of adapting the partitioning may be quite large, due to a
large number of random migrations. However, in practice, the
frequency with which partitions are added or removed is low
compared, for example, to the number of times a partitioning
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Fig. 2. Organization of the algorithm in multiple phases, each implemented
by one or multiple steps (block). Each algorithm step is implemented as a
Pregel superstep.

is updated due to changes in the graph itself. Furthermore,
although vertices are shuffled around, the locality of those ver-
tices that do not migrate is not completely destroyed, such as if
the partitioning was performed from scratch. The adaptation of
the partitioning to the new number of partitions will naturally
take advantage of the late state of the partitioning.

IV. PREGEL IMPLEMENTATION

We implemented Spinner in Apache Giraph [1] and open
sourced the cod Giraph is an open source project with a
Java implementation of the Pregel model. Giraph is a batch
graph processing system that runs on Hadoop [4], and can run
computations on graphs with hundreds of billions of edges
across clusters consisting of commodity machines.

In this section, we describe the implementation details of
Spinner. We show how we extend the LPA formulation to
leverage the synchronous vertex-centric programming model of
a system like Giraph. We implemented a distributed algorithm
with no centralized component that scales and, at the same
time, achieves good partitioning quality.

A. Vertex-centric partitioning

At a high-level, the algorithm is organized in three phases,
depicted in Figure [2| In the first phase, since LPA assumes an
undirected graph, if directed, Spinner converts it to a weighted
undirected form as described in Section In the second
phase, Spinner initializes the partition of each vertex depending
on whether it partitions the graph from scratch or it is adapting
an existing partitioning.

Subsequently, the third phase that implements the main LPA
iterative migration process starts. In this phase, Spinner itera-
tively executes two different steps. In the first step, each vertex
computes the label that maximizes its local score function.
In the second step, vertices decide whether to migrate by
changing label or defer migration. At the end of each iteration
Spinner evaluates the halting condition to decide whether to
continue or stop computation.

Zhttp://grafos.ml



We implement each of these phases as a series of Giraph
supersteps. In the following subsections, we describe each
phase in detail.

1) Graph conversion and initialization: We implement the
first phase, the graph conversion, as two Giraph supersteps.
Note that the Giraph data model is a distributed directed graph,
where every vertex is aware of its outgoing edges but not of
the incoming ones. For this reason, in the first superstep, each
vertex sends its ID as a message to its neighbors. We call this
step NeighborPropagation.

During the second superstep, a vertex receives a message
from every other vertex that has an edge to it. For each received
message, a vertex checks whether an outgoing edge towards
the other endpoint is already present. If this is the case, the
vertex sets the weight of the associated edge to 2. Otherwise,
it creates an edge pointing to the other vertex with a weight
of 1. We call this step NeighborDiscovery.

After this, Spinner executes the second phase, assigning
partitions to each vertex. We call this step Initialization,
and it corresponds to a single Giraph superstep. In the case
Spinner partitions the graph from scratch, each vertex chooses
a random partition. We will consider the case of adapting
a partitioning in following sections. At this point, the LPA
computation starts on the undirected graph.

2) Local computation of labels: The vertex-centric program-
ming model of Pregel lends itself to the implementation of
LPA. During an LPA iteration, each vertex computes the label
that maximizes its local score based on the load of each
partition and the labels of its neighbors. Each vertex stores
the label of a neighbor in the value of the edge that connects
them. When a vertex changes label, it informs its neighbors
of the new label through a message. Upon reception of the
message, neighboring vertices update the corresponding edge
value with the new label.

We implement a single LPA iteration as two successive
Giraph supersteps that we call ComputeScores and ComputeM-
igrations. In the first step, the ComputeScores, a vertex finds
the label that maximizes its score. In more detail, during
this step each vertex performs the following operations: (i) it
iterates over the messages, if any, and updates the edge values
with the new partitions of each neighbors, (ii) it iterates over
its edges and computes the frequency of each label across its
neighborhood, (iii) it computes the label the maximizes its
local score, (iv) if a label with a higher score than the current
one is found, the vertex is flagged as candidate to change label
in the next step.

3) Decentralized migration decisions: Implementing our
algorithm in a synchronous model introduces additional com-
plexity. If we let every candidate vertex change label to
maximize its local score during the ComputeScores step, we
could obtain a partition that is unbalanced and violates the
maximum capacities restriction. Intuitively, imagine that at a
given time a partition was less loaded than the others. This
partition could be potentially attractive to many vertices as
the penalty function would favor that partition. As each vertex
computes its score independently based on the partition loads

computed at the beginning of the iteration, many vertices
could choose independently that same partition label. To avoid
this condition, we introduce an additional step that we call
Compute Migrations, that serves the purpose of maintaining
balance.

To avoid exceeding partition capacities, vertices would need
to coordinate after they have decided the label that maximizes
their score during the ComputeScores step. However, as we
aim for a decentralized and lightweight solution, we opt for a
probabilistic approach: a candidate vertex changes to a label
with a probability that depends (i) on the remaining capacity of
the corresponding partition and (ii) the total number of vertices
that are candidates to change to the specific label.

More specifically, suppose that at iteration i partition / has
a remaining capacity (/) such that

r(l) =C—b(l) (12)

Suppose that M(/) is the set of candidate vertices that want
to change to label [, which is determined during the Com-
puteScores step of the iteration. We define the load of M(I)
as

m(l)= ) deg(v) (13)

veM(l)

This is the total load in edges that vertices in M(I) would carry
to partition [ if they all migrated. Since m(l) might be higher
than the remaining capacity, in the second step of the iteration,
we execute each candidate vertex that wants to change label,
and we only let it change with a probability p such that
r(1)

P= ) (14)
Upon change, each vertex updates the capacities of the current
partition and the new partition, and it updates the global score
through the associated counter. It also sends a message to all
its neighbors, with its new label. At this point, after all vertices
have changed label, the halting condition can be evaluated
based on the global score.

This strategy has the advantage of requiring neither cen-
tralized nor direct coordination between vertices. Vertices can
independently decide to change label or retry in the next itera-
tion based on local information. Moreover, it is lightweight, as
probabilities can be computed on each worker at the beginning
of the step. Because this is a probabilistic approach, it is
possible that the load of a partition exceeds the remaining ca-
pacity. Nevertheless, the probability is bounded and decreases
exponentially with the number of migrating vertices and super-
exponentially with the inverse of the maximum degree.

Proposition 3. The probability that at iteration i+ 1 the load
bi+1(1) exceeds the capacity by a factor of €ri(l) is

Pl‘(bH] (l) > C—|—£rl(l)) < e*Z\M([)|<I>(g)’ (15)

2
where ®(€) = (Z”f?) and 8, A is the minimum and maximum
degree of the vertices in M(l), respectively.



Due to lack of space, we refer to [2]] for the derivation of
the proof.

We can conclude that with high probability at each iteration
Spinner does not violate the partition capacity. To give an
example, consider that |[M(I)| = 200 vertices with minimum
and maximum degree 6 = 1 and A = 500, respectively, want
to migrate to partition /. The probability that, after the migra-
tion, the load b;41(1) exceeds 1.2r;(1) +b;(1) = C+0.2r;(I)
is smaller than 0.2, where the probability that it exceeds
C+0.4r;(1) is smaller than 0.0016. Note that, being a upper
bound, this is a pessimistic estimate. In Section [V-AT|we show
experimentally that unbalance is in practice much lower.

4) Asynchronous per-worker computation: Although the
introduction of the ComputeMigrations step helps maintain
balance by preventing excessive vertices from acquiring the
same label, it depends on synchronous updates of the partition
loads. The probabilistic migration decision described in
is based on the partition loads calculated during the previous
superstep, and ignores any migrations decision performed
during the currently executed superstep. Consequently, a less
loaded partition will be attractive to many vertices, but only
a few of them will be allowed to migrate to it, delaying
the migration decision of the remaining ones until the next
supersteps.

In general, the order in which vertices update their label
impacts convergence speed. While asynchronous graph pro-
cessing systems allow more flexibility in scheduling of vertex
updates, the synchronous nature of the Pregel model does not
allow any control on the order of vertex computation.

However, Spinner leverages features of the Giraph API to
emulate an asynchronous computation without the need of a
purely asynchronous model. Specifically, Spinner treats each
iteration computation within the same physical machine worker
of a cluster as an asynchronous computation. During an itera-
tion, each worker maintains local values for the partition loads
that are shared across all vertices in the same worker. When a
vertex is evaluated in the ComputeScores step and it becomes
a candidate to change to a label, it updates the local values of
the load of the corresponding partition asynchronously. As an
effect, subsequent vertex computations in the same iteration
and on the same worker use more up-to-date partition load
information. Note that every vertex still has to be evaluated in
the ComputeMigrations step for consistency among workers.

This approach overall speeds up convergence, and does not
hurt the scalability properties of the Pregel model. In fact,
the Spinner implementation leverages a feature supported by
the Giraph programming interface that allows data sharing
and computations on a per-worker basis. The information
shared within the same worker is a set of counters for each
partition and therefore does not add to the memory overhead.
Furthermore, it still does not require any coordination across
workers.

5) Management of partition loads and counters: Spinner
relies on a number of counters to execute the partitioning:
the global score, the partition loads b(/), and the migration
counters m(l). The Pregel model supports global computation

Name —V— —E—  Directed Source
LiveJournal (LJ) 4.8M 6OM Yes 171
Tuenti (TU) 12M 685M No 8]
Google+ (G+) 29M 462M Yes [9]
Twitter (TW) 40M 1.5B Yes [13]
Friendster (FR) 66M 1.8B No 1331
Yahoo! (Y!) 1.4B 6.6B Yes ]
TABLE II. DESCRIPTION OF THE REAL-WORLD DATASETS USED FOR

THE EVALUATION.

of commutative and associative operations through aggrega-
tors. During each superstep, vertices can aggregate values into
named aggregators, and they can access the value aggregated
during the previous superstep. In Pregel, each aggregator is
computed in parallel by each worker for the aggregations
performed by the assigned vertices, and a master worker
aggregates these values at the end of the superstep. Giraph
implements sharded aggregators, where the duty of the master
worker for each aggregator is delegated to a different worker.
This architecture allows for scalability, through a fair distri-
bution of load and parallel communication of partial aggrega-
tions. To exploit this feature, Spinner implements each counter
through a different aggregator, making the management of
counters scalable.

B. Incremental and elastic repartitioning

To support incremental and elastic repartitioning, Spinner
restarts the computation from the previous state of the parti-
tioning. Regarding the implementation, the difference lies in
the execution of the second phase of the algorithm, when
vertices are labeled. In the case a graph is repartitioned
due to changes to the graph, the vertices that have already
been partitioned are loaded and labeled as previously. Any
new vertices are labeled randomly. In the case a graph is
repartitioned due to changes to the number of partitions, the
vertices are loaded and labeled as previously, and they are
re-labeled to a new partition only according to the approach
described in Section

V. EVALUATION

In this section, we assess Spinner’s ability to produce
good partitions on large graphs. Specifically, we evaluate the
partitioning quality in terms of locality and balance and use
Spinner to partition billion-vertex graphs. Furthermore, we
evaluate Spinner’s ability to support frequent adaptation in
dynamic cloud environments. Here, we measure the efficiency
of Spinner in adapting to changes in the underlying graph and
compute resources. Furthermore, we utilize the partitioning
computed by Spinner with the Giraph graph processing engine
and measure the impact on the performance of real analytical
applications.

For our experiments, we use a variety of synthetic as well
as real-world large-scale graphs. Table [l summarizes the real
datasets we used. We run our evaluation on different Hadoop
clusters. We describe the details of each setup in the following
sections.



Twitter k=2 Twitter k=4 Twitter k=8 Twitter k=16 Twitter k=32
Approach 9 p (4 p o p o p 9 p
Wang et al. [30] 0.61 1.30 0.36 1.63 0.23  2.19 0.15  2.63 0.11 1.87
Stanton et al. [24] 0.66 1.04 0.45 1.07 0.34 1.10 0.24 1.13 0.20 1.15
Fennel [28] 0.93 1.10 0.71 1.10 0.52 1.10 0.41 1.10 0.33 1.10
Metis [12] 0.88 1.02 0.76 1.03 0.64 1.03 0.46 1.03 0.37 1.03
Spinner 0.85 1.05 0.69 1.02 0.51 1.05 0.39 1.04 0.31 1.04

TABLE 1.

COMPARISON WITH STATE-OF-THE-ART APPROACHES. SPINNER OUTPERFORMS OR COMPARES TO THE STREAM-BASED APPROACHES, AND

IS ONLY SLIGHTLY OUTPERFORMED BY SEQUENTIAL METIS. NOTICE THAT BECAUSE WANG ET AL. BALANCES ON THE NUMBER OF VERTICES, NOT
EDGES, IT PRODUCES PARTITIONINGS WITH HIGH VALUES OF p.
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A. Partitioning quality

In our first set of experiments, we measure the quality of the
partitions that Spinner can compute in terms of locality and
balance. We measure locality with the ratio of local edges ¢
and balance with the maximum normalized load p, defined as

6= # local edges

maximum load

k

(16)

where k is the number of partitions, # local edges represents
the number of edges that connect two vertices assigned to the
same partition, and maximum load represents the number of
edges assigned to the most loaded partition. The maximum
normalized load metric is typically used to measure unbalance
and represents the percentage-wise difference of the most
loaded partition from a perfectly balanced partition.

First, we observe that the ability to maintain local edges
depends on the number of partitions. Intuitively, the more
partitions, the harder it is to maintain locality. In this experi-
ment, we vary the number of partitions and measure locality
and balance for different graphs. For this and the remaining
experiments, we set the algorithm parameters as follows:
additional capacity ¢ = 1.05, and halting thresholds &€ = 0.001
and w = 5. We run this experiment on a Hadoop cluster of 92
machines with 64GB RAM and 8 compute cores each.

In Figure[3(a)] we show that Spinner is able to produce parti-
tions with high locality for all the graphs also for large numbers
of partitions. With respect to balance, Spinner calculates fairly
balanced partitions. In Table [[T| we show the average value of
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(a) Partitioning locality on real graphs as a function of the number of partitions. X-axis is in log scale. (b) Improvement in the locality compared to

Graph L) G+ TU ™ FR
p 1.053 1.042 1.052 1.059 1.047
TABLE IIT. PARTITIONING BALANCE. THE TABLE SHOWS THE

AVERAGE p FOR THE DIFFERENT GRAPHS.

the maximum normalized load for each graph. For example, a
p value of 1.059 for the Twitter graphs means that no partition
exceeds the ideal size by more than 5.9% edges.

To give perspective on the quality of the partitions that
Spinner computes, Figure shows the improvement in the
percentage of local edges compared to hash partitioning. We
perform this comparison for the same set of graphs. Notice
that for 512 partitions Spinner increases locality by up to 250
times.

In Table | we compare Spinner with state-of-the-art ap-
proaches. Recall that our primary goal for Spinner is to design
a scalable algorithm for the Pregel model that is practical in
maintaining the resulting partitioning, and that is comparable
to the state-of-the-art in terms of locality and balance. Indeed,
Spinner computes partitions with locality that is within 2-12%
of the best approach, typically Metis, and balance that is within
1-3% of the best approach. In cases Spinner performs slightly
worse than Fennel with respect to ¢, it performs better with
respect to p. These two metrics are connected as the most
loaded partition will be the result of migrations to increase
locality.

To describe in more detail the behavior of our algorithm,
in Figure ] we show the evolution of the different metrics
during the partitioning of the Twitter (left) and the Yahoo!
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(right) graphs. The Twitter graph is known for the existence
of high-degree hubs [10]. Due to these hubs, the Twitter graph
can produce highly unbalanced partitions when partitioned
with random partitioning. We will show in Section how
unbalance affects application performance, and in particular
load balancing.

As Figure shows, the initial maximum normalized
load obtained with random partitioning is high (p = 1.67), as
expected. However, by applying our approach, the partitioning
is quickly balanced (p = 1.05), while the ratio of local edges
increases steadily. Looking at the shape of the score(G) curve,
notice that initially the global score is boosted precisely by
the increased balance, while after balance is reached, around
iteration 20, it increases following the trend of ¢. Note that
we let the algorithm run for 115 iterations ignoring the halting
condition, which otherwise would have halted the partitioning
at iteration 41, as shown by the vertical black line.

In the case of the Yahoo! graph, the partitioning starts out
more balanced than Twitter. The most notable difference is that
the algorithm converges to a good partitioning with 73% local
edges and a p of 1.10 after only 42 iterations. A single iteration
on the 1.4B-vertex Yahoo! graph takes on average 200 seconds
on an AWS Hadoop cluster consisting of 115 m2.4xlarge
instances, totaling 140 minutes for the entire execution.

1) Impact of additional capacity on balance and conver-
gence: Here, we investigate the effect of parameter ¢ on
balance and convergence speed. Recall that Spinner uses
parameter ¢ to control the maximum unbalance. Additionally,
parameter ¢ affects convergence speed; larger values of c¢
should increase convergence speed as more migrations are
allowed during each iteration.

In Section[[V-A3|we showed that with high probability Spin-
ner respects partition capacities, that is, maximum load < C.

.. 7 E
From the definitions of p = %ﬂ”"“d and C = c- £l we

k 9
derive that with high probability ;) < c. Therefore, we can
use parameter ¢ to bound the unbalance of partitioning. For
instance, if we allow partitions to store 20% more edges than
the ideal value, Spinner should produce a partitioning with a
maximum normalized load of up to 1.2.

To investigate these hypotheses experimentally, we vary the
value of ¢ and measure the number of iterations needed to
converge as well as the final value of p. We partition the
LiveJournal graph into 8, 16, 32, and 64 partitions, setting

cto 1.02, 1.05, 1.10, and 1.20. We repeat each experiment 10
times and the average for each value of c. As expected, Figure
@] shows that indeed on average p < c. Moreover, the error
bars show the minimum and maximum value of p across the
runs. We can notice that in some cases p is much smaller than
¢, and when it is exceeded, it is exceeded only by a small
degree.

Figure[5(b)]shows the relationship between ¢ and the number
of iterations needed to converge. Indeed, a larger value of ¢
speeds up convergence. These results show how ¢ can be used
to control the maximum normalized load of the partitioning. It
is up to the user to decide the trade-off between balance and
speed of convergence.

B. Scalability

In these experiments we show that the algorithm affords
a scalable implementation on modern large-scale graph pro-
cessing frameworks such as Giraph. To this end, we apply
our algorithm on synthetic graphs constructed with the Watts-
Strogatz model [31]. In all these experiments we set the
parameters of the algorithm as described in Section[V-A] Using
synthetic graphs for these experiments allows us to carefully
control the number of vertices and edges, still working with
a graph that resembles a real-world social network or web-
graph characterized by ‘“small-world” properties. On such a
graph, the number of iterations required to partition the graph
does not depend only on the number of vertices, edges and
partitions, but also on its topology, and in particular on graph
properties such as clustering coefficient, diameter etc.

For this reason, to validate the scalability of the algorithm
we focus on the runtime of the first iteration, notably the
iteration where all vertices receive notifications from all their
neighbors, making it the most deterministic and expensive
iteration. Precisely, we compute the runtime of an iteration as
the sum of the time needed to compute the ComputeScores and
the following ComputeMigrations supersteps. This approach
allows us to factor out the runtime of algorithm as a function
the number of vertices and edges.

Figure [6] presents the results of the experiments, executed on
a AWS Hadoop cluster consisting of 116 m2.4xlarge machines.
In the first experiment, presented in Figure [6(a)l we focus on
the scalability of the algorithm as a function of the number of
vertices and edges in the graph. For this, we fix the number
of outgoing edges per vertex to 40. We connect the vertices
following a ring lattice topology, and re-wire 30% of the edges
randomly as by the function of the beta (0.3) parameter of the
Watts-Strogatz model. We execute each experiment with 115
workers, for an exponentially increasing number of vertices,
precisely from 2 to 1024 million vertices (or one billion
vertices) and we divide each graph in 64 partitions. The results,
presented in a loglog plot, show a linear trend with respect to
the size of the graph. Note that for the first data points the size
of the graph is too small for such a large cluster, and we are
actually measuring the overhead of Giraph.

In the second experiment, presented in Figure we focus
on the scalability of the algorithm as a function of the number
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Fig. 4. Partitioning of (a) the Twitter graph across 256 partitions and (b) the Yahoo! web graph across 115 partitions. The figure shows the evolution of metrics
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of workers. Here, we fix the number of vertices to 1 billion,
still constructed as described above, but we vary the number
of workers linearly from 15 to 115 with steps of 15 workers
(except for the last step where we add 10 workers). The drop
from 111 to 15 seconds with 7.6 times more workers represents
a speedup of 7.6.

In the third experiment, presented in Figure [6(b)] we focus
on the scalability of the algorithm as a function of the number
of partitions. Again, we use 115 workers and we fix the number
of vertices to 1 billion and construct the graph as described
above. This time, we increase the number of partitions expo-
nentially from 2 to 512. Also here, the loglog plot shows a
near-linear trend, as the complexity of the heuristic executed
by each vertex is proportional to the number of partitions &, and
so is cost of maintaining partition loads and counters through
the sharded aggregators provided by Giraph.

C. Partitioning dynamic graphs

Due to the dynamic nature of graphs, the quality of an initial
partitioning degrades over time. Re-partitioning from scratch
can be an expensive task if performed frequently and with
potentially limited resources. In this section, we show that our
algorithm minimizes the cost of adapting the partitioning to the
changes, making the maintenance of a well-partitioned graph
an affordable task in terms of time and compute resources
required.

Specifically, we measure the savings in processing time
and number of messages exchanged (i.e. load imposed on the
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Fig. 7. Adapting to dynamic graph changes. We vary the percentage of new
edges in the graph and compare our adaptive re-partitioning approach and
re-partitioning from scratch with respect to (a) the savings in processing time
and messages exchanged, and (b) the fraction of vertices that have to move
upon re-partitioning.

network) relative to the approach of re-partitioning the graph
from scratch. We track how these metrics vary as a function
of the degree of change in the graph. Intuitively, larger graph
changes require more time to adapt to an optimal partitioning.

For this experiment, we take a snapshot of the Tuenti [5]
social graph that consists of approximately 10 million vertices
and 530 million edges, and perform an initial partitioning. Sub-
sequently, we add a varying number of edges that correspond
to actual new friendships and measure the above metrics. We
perform this experiment on an AWS Hadoop cluster consisting
of 10 m2.2xlarge instances.

Figure [7(a)| shows that for changes up to 0.5%, our approach
saves up to 86% of the processing time and, by reducing vertex
migrations, up to 92% of the network traffic. Even for large
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Fig. 8. Adapting to resource changes. We vary the number of new partitions
and compare our adaptive approach and re-partitioning from scratch with
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graph changes, the algorithm still saves up to 80% of the pro-
cessing time. Note that in every case our approach converges
to a balanced partitioning, with a maximum normalized load
of approximately 1.047, with 67%-69% local edges, similar to
a re-partitioning from scratch.

D. Partitioning stability

Adapting the partitioning helps maintain good locality as
the graph changes, but may also require the graph management
system (e.g. a graph DB) to move vertices and their associated
state (e.g. user profiles in a social network) across partitions,
potentially impacting performance. Aside from efficiency, the
value of an adaptive algorithm lies also in maintaining stable
partitions, that is, requiring only few vertices to move to
new partitions upon graph changes. Here, we show that our
approach achieves this goal.

We quantify the stability of the algorithm with a metric
we call partitioning difference. The partitioning difference
between two partitions is the percentage of vertices that belong
to different partitions across two partitionings. This number
represents the fraction of vertices that have to move to new
partitions. Note that this metric is not the same as the total
number of migrations that occur during the execution of the
algorithm which only regards cost of the execution of the
algorithm per se.

In Figure we measure the resulting partitioning differ-
ence when adapting and when re-partitioning from scratch as
a function of the percentage of new edges. As expected, the
percentage of vertices that have to move increases as we make
more changes to the graph. However, our adaptive approach
requires only 8%-11% of the vertices to move compared to a
95%-98% when re-partitioning, minimizing the impact.

E. Adapting to resource changes

Here, we show that Spinner can efficiently adapt the parti-
tioning when resource changes force a change in the number
of partitions. Initially, we partition the Tuenti graph snapshot
described in Section [V-C|into 32 partitions. Subsequently we
add a varying number of partitions and either re-partition the
graph from scratch or adapt the partitioning with Spinner.

Figure[8(a)|shows the savings in processing time and number
of messages exchanged as a function of the number of new
partitions. As expected, a larger number of new partitions
requires more work to converge to a good partitioning. When
increasing the capacity of the system by only 1 partition,
Spinner adapts the partitions 74% faster relative to a re-
partitioning.

Similarly to graph changes, a change in the capacity of
the compute system may result in shuffling the graph. In
Figure [§(b)l we see that a change in the number of partitions
can impact partitioning stability more than a large change
in the input graph (Figure [7(b)). Still, when adding only
1 partition Spinner forces less than 17% of the vertices to
shuffle compared to a 96% when re-partitioning from scratch.
The high percentage when re-partitioning from scratch is
expected due to the randomized nature of our algorithm. Note,
though, that even a deterministic algorithm, like modulo hash
partitioning, may suffer from the same problem when the
number of partitions changes.

F. Impact on application performance

The partitioning computed by Spinner can be used by differ-
ent graph management systems, to improve their performance.
In this section, we use Spinner to optimize the execution of
the Giraph graph processing system itself. After partitioning
the input graph with Spinner, we instruct Giraph to use the
computed partitioning and run real analytical applications on
top. We then measure the impact on performance compared to
using standard hash partitioning.

We use our computed partitioning in Giraph as follows. The
output of Spinner is a list of pairs (v;,/;) that assigns each
vertex to a partition. We use this output to ensure that Giraph
places vertices assigned to the same partition on the same
physical machine worker. By default, when Giraph loads a
graph for computation, it assigns vertices to workers according
to hash partitioning, i.e. vertex v; is assigned to one of the k
workers according to h(v;) mod k. We define a new vertex
id type v; = (v;,;) that encapsulates the computed partition
as well. We then plug a hash function that uses only the /;
field of the pair, ensuring that vertices with the same label are
placed on the same worker.

First, we assess the impact of partitioning balance on the
actual load balance of the Giraph workers. In a synchronous
processing engine like Giraph, an unbalanced partitioning
results in the less loaded workers idling at the synchronization
barrier. To validate this hypothesis, we partition the Twitter
graph across 256 partitions and run 20 iterations of the PageR-
ank algorithm on a cluster with 256 workers using (i) standard
hash partitioning (random), and (ii) the partitioning computed
by Spinner. For each run, we measure the time to compute a
superstep by all the workers (Mean), the fastest (Min) and the
slowest (Max), and compute the standard deviation across the
20 iterations. Table shows the results.

The results indicate that with hash partitioning the workers
are idling on average for 31% of the superstep, while with
Spinner for only 19%. While the shorter time needed to



Approach Mean Max. Min.
Random 5.854+2.3s 84s£2.1s 34s+109s
Spinner 475+ 1.5s 5.8s+1.3s 3.1s£1.1s

TABLE IV. IMPACT OF PARTITIONING BALANCE ON WORKER LOAD.
THE TABLE SHOWS THE TIME SPENT BY WORKERS TO CONCLUDE A
SUPERSTEP.
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Fig. 9. Impact on application performance. We measured the runtime
improvement between hash partitioning and Spinner. We evaluated three
different applications, Single Source Shortest Paths/BFS (SP), PageRank (PR),
and Weakly Connected Components (CC). The LJ graph was evaluated across
16 partitions, TU across 32 partitions and TW across 64.

compute a superstep can be imputed to the diminished number
of cut edges, the decreased idling time is an effect of a more
even load spread across the workers.

Second, we measure the impact of the partitioning on
processing time. We partitioned three graphs with Spinner
and hash partitioning, and we compared the time to run
three representative algorithms commonly used inside graph
analytical pipelines. Shortest Paths, computed through BFS is
commonly used to study the connectivity of the vertices and
centrality, PageRank is commonly used at the core of ranking
graph algorithms, and Connected Components, as a general
approach to finding communities. We present the results in
Figure 0]

Notice that using the partitionings computed by Spinner we
significantly improve the performance across all graphs and
applications. In the case of the Twitter graph, which is denser
and harder to partition, the improvement ranges from 25% for
SP to 35% for PR. In the case of LiveJournal and Tuenti, the
running time decreases by up to 50%.

VI. RELATED WORK

Graph partitioning that has been studied in various domains.
In this section, we present the related work on k-way balanced
graph partitioning.

METIS [12] is an offline partitioning algorithm and is
considered the golden standard against new approaches. It
is known to produce partitions with very good locality and
balance. However, it is not suitable for very large graphs, due
to high computational and space complexity, and the need
to repartition graphs from scratch every time a change is
introduced in the graph or the number of partitions.

Streaming algorithms [24]], [28], [19] avoid this complexity
through lightweight heuristics that assign vertices to partitions
in only one pass over the graph. However, parallelizing these

algorithms requires every participating machine to maintain a
consistent view of the partitioning assignments of the entire
graph. This requires distribution of the assignments across the
cluster and coordination among the machines. Implementing
this mechanism in a scalable and efficient manner is challeng-
ing. To the best of our knowledge, none of these approaches
have been implemented on top of scalable data processing
models.

The closest approaches to Spinner are [29], [30]. The
former applies LPA to the MapReduce model, by attempting
to improve locality through iterative vertex migrations across
partitions. However, to guarantee balanced partitions, it exe-
cutes a centralized linear solver between any two iterations.
The complexity of lineary system is quadratic to the number
of partitions and proportional to the size of the graph, making it
expensive for large graphs. Moreover, MapReduce is known to
be inefficient for iterative computations. The approach in [30]
computes a k-way vertex-based balanced partitioning. It uses
LPA to coarsen the input graph and then applies Metis to the
coarsened graph. At the end, it projects the Metis partitioning
back to the original graph. While the algorithm is scalable,
we have found that for large number of partitions and skewed
graphs, the locality it produces is lower than Spinner due to the
coarsening. We also found that the approach is very sensitive
to its two parameters for whom no intuition is available
(differently from Spinner that requires only one parameter
for which we provide a rationale). Further, the approach is
designed to run on the Trinity engine and is not suitable for
implementation on a synchronous model such as Pregel. None
of the two solutions investigates how to adapt a partitioning
upon changes in the graph or the compute environment.

Mizan [14] views the problem of dynamically adapting the
graph partitioning from a different perspective. It monitors run-
time performance of the graph processing system, for instance,
to find hotspots in specific machines, and migrates vertices
across workers to balance the load during the computation of
analytical applications. Their solution is specific to a graph
processing system and orthogonal to the problem of k-way
balanced partitions. SPAR [21]] and Sedge [34] also consider
the problem of adapting graph distribution. However, they
focus on minimizing latency for simple graph queries, and
address the problem through replication of the vertices across
machines.

VII. CONCLUSIONS

We presented Spinner, a scalable and adaptive graph parti-
tioning algorithm built on the Pregel abstraction. By sacrificing
strict guarantees on balance, Spinner is practical for large-scale
graph management systems. Through an extensive evaluation
on a variety of graphs, we showed that Spinner computes
partitions with locality and balance comparable to the state-
of-the-art, but can do so at a scale of at least billion-vertex
graphs. At the same time, its support for dynamic changes
makes it more suitable for integrating into real graph systems.
These properties makes Spinner possible to use as a generic
replacement of the de-facto standard, hash partitioning, in



cloud systems. Toward this, our scalable, open source im-
plementation on Giraph makes Spinner easy to use on any
commodity cluster.
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APPENDIX A

Proposition (1} If the partition graph {P~o} is B-connected,
one can always find constants | € (0,1) and q € R, for which
Spinner converges exponentially ||x; —x* ||/ || X0 < gu'~! t0
an even balancing x* =[C C ... C|', with C = |E|/k.

Proof: Even though 0 < [X;];; <1 is time-dependent and
generally unknown, it has the following properties:

e X, is I-local: [Xt]ij > 0 iff (l,',lj) € O and [Xz]ii > 0 for
all i

e X, is row-stochastic: ZI;-ZI[XJ,- =1 for all i

e X, is uniformly bounded: if [X;];j > 0 then [X;];; > 1/n

In general, the above properties do not guarantee ergodicity.
Nevertheless, we can obtain stronger results if the partition
graph is B-connected. From [27, Lemma 5.2.1] (see also [26}
Theorem 2.4]), X;.; is ergodic and Xe = limy_ye0 X:1 Xo = 17rTx0,
where 1 is the one vector and 7 is a stochastic vector.
Furthermore, constants y € (0,1) and g € R™ exist for which

|26 — oo | oo
[0l

Furthermore, from ergodicity, lim,_,. X;.1 is a rank-one matrix
and Xe(1;) = xe(I;) for all partitions /;,/; and by construction
the total load is always equal to the number of graph edges.
It follows that, for all /, x.(I) = IEl/k = C = x*(I). |

Proposition 2} Spinner converges in bounded time.

<X =17 [ < gu' 1

Proof: Convergence is proven by first splitting {P>o}
according to Lemma [I] and then applying Proposition [I] for
each of the resulting subgraphs. The time required until
[[xe —x*[|eo /|| X0]|o < € is at most <log, (€/¢)+1+T, which is
equal to the splitting time 7 added to the time for exponential
convergence. ]

Lemma 1. Labels | € L can be always split into p subsets
Ly,Ly,...,L, having the following properties:

1) Subsets L; are non-empty, disjoint, and cover L.

2) Any induced subgraph {P,~o(L;)}, i.e., the subgraph of
{P,>0} which includes only nodes in L; and all edges
with both endpoints in L;, is B-connected.

3) A bounded time T exists after which {P~r(L;)} and
{P~7(L;)} are disconnected Vi, j. In other words, no
edge connects two subgraphs fort > T.

Proof: To begin with, observe that when {P~¢} is B-
connected, the statement is obvious for L; = L and p = 1.
Assume that B-connectivity does not hold and let 7; be the
-latest- time for which {Pr,>;~0} is B-connected, under all
possible bounded B. Notice that, by construction, a p;-split
exists which satisfies the first and third property (each subset
includes all labels that exchange load after 77). If such a
partitioning did not exist, then {Pr,1>;~0} must have been
B-connected—a contradiction. Though this first splitting does
not guarantee the second property, i.e., that {P~o(L;)} are
B-connected, we can find the correct subsets by recursively
re-splitting each subgraph in the same manner. This recursive

re-splitting will always terminate because: (i) all subsets are
non-empty and (ii) the trivial k-splitting L; = {/;} is always
B-connected. Hence time T, chosen as the time of the last
splitting, is bounded. ]

Proposition 3} The probability that at iteration i+ 1 the load
bi+1(1) exceeds the capacity by a factor of €ri(l) is
Pr(biy1(l) > C+ery(l)) < e 2MDI*E), (17)
2
where ®(g) = (Z”j?) and 6, A is the minimum and maximum
degree of the vertices in M(l), respectively.

Proof: Let X, be a random variable which becomes 0
when vertex v does not migrate and deg(v) otherwise. The
expected value of X, is

E(X,)=0-(1—p)+deg(v)p=deg(v)p.

The total load carried by the vertices that migrate is described
by the random variable X =}, X, and has expected value

E(X) =E< 2))@) — YE(X,)=p Y deg(v) = r(0).

veM(l veM(l) veM(l)

We want to bound the probability that X is larger than r(!), that
is, the number of edges that migrate to / exceeds the remaining
capacity of /. Using Hoeffding’s method, we have that for any
t>0,

242 2
veM(l)

where § and A are the minimum and maximum degree of the
vertices in M(I), respectively. Setting ¢t = e E(X), we obtain
the desired upper bound:

Pr(X > (1+€)E(X)) = Pr(X +b(l) > C+er(l))

. exp<_z () (;’_”; )2)
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