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gMark: Schema-Driven Generation of Graphs and Queries
Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien Lemay, Nicky Advokaat

Abstract —Massive graph data sets are pervasive in contemporary application domains. Hence, graph database systems are becoming
increasingly important. In the experimental study of these systems, it is vital that the research community has shared solutions for the
generation of database instances and query workloads having predictable and controllable properties. In this paper, we present the
design and engineering principles of gMark, a domain- and query language-independent graph instance and query workload generator.
A core contribution of gMark is its ability to target and control the diversity of properties of both the generated instances and the generated
workloads coupled to these instances. Further novelties include support for regular path queries, a fundamental graph query paradigm,
and schema-driven selectivity estimation of queries, a key feature in controlling workload chokepoints. We illustrate the flexibility and
practical usability of gMark by showcasing the framework’s capabilities in generating high quality graphs and workloads, and its ability
to encode user-defined schemas across a variety of application domains.

Index Terms —Graph databases, Selectivity estimation, Recursive queries, Benchmarking.

✦

1 INTRODUCTION

The problem. We study the problem of schema-driven
generation of synthetic graph instances and corresponding
query workloads for use in experimental analysis of graph
database systems. Our study is motivated by the ubiquity
of graph data in modern application domains, such as social
and biological networks and geographic databases, to name
a few. In response to these pressures, systems that can
handle massive graph-structured data sets are under intense
active research and development. These systems span from
pure graph database systems to more focused knowledge
representation systems. Native graph databases such as
Neo4j [1] and Sparksee [2] propose their own declarative
data model and query language, with particular attention to
query optimization, and space and performance. In contrast
to this trend of specialized systems, general-purpose sys-
tems such as LogicBlox [3] rely on declarative solutions that
can cover a broader range of use cases. Furthermore, knowl-
edge representation systems such as Virtuoso [4] implement
the standard RDF graph data model and SPARQL query
language to handle complex navigational and recursive
queries on large-scale Semantic Web data.

Keeping pace with these developments, synthetic graph
and query generation and benchmarking solutions for
graph data management systems has been a proliferating
activity, which started within the Semantic Web community
(e.g., [5], [6]) and recently within the database community,
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e.g., through the extensive work of the LDBC Council [7].
The latter has been the first to propose a chokepoint-driven
design of graph database benchmarks, which allows fine-
grained control of chokepoints of queries and all aspects
of the involved data. By relying on a fixed schema and a
carefully designed set of benchmark queries, this lets the
community focus on crucial features of query optimization
and/or parallel processing, and decreases the confusion and
the incomparable results of evaluated systems.

Our solution. We propose a complementary approach in
which the focus is not on the design of individual queries
but rather on whole query workloads. This approach relies
on the control of diversity of both graph schemas and query
workloads, which lets us vary the structural properties of
data as well as tailor the generated queries to a particular
domain or application. We emphasize that a workload-
centric approach primarily targets different benchmarking
and experimental scenarios from the query-centric approach
of current benchmarks. Indeed, we believe that this ap-
proach is important in contexts in which multiple queries
(i.e., those belonging to a query workload) need to be
considered altogether, which occurs in many cases, such as
in multi-query optimization, workload-driven database tun-
ing, streaming applications, mapping discovery, and query
rewriting in data integration systems.

In this paper, we present gMark, a fully-functional prac-
tical framework that realizes this workload-centric perspec-
tive. gMark takes a schema-driven approach to the flex-
ible and tightly-controlled generation of synthetic graph
instances coupled with sophisticated query workloads. The
complete framework is provided as open-source software1

ready for use in the graph processing community.

We further note that the core of query workload genera-
tion in gMark revolves around a novel method we propose
here for selectivity estimation for graph queries, which is, to
the best of our knowledge, the first of its kind. This method
is of independent interest, applicable to other contexts such

1. https://github.com/graphMark/gmark

http://arxiv.org/abs/1511.08386v6
https://github.com/graphMark/gmark


2

Graph configuration

Size (# of nodes) n

Edge predicates Σ “ ta, b, . . .u
Node types Θ “ tT1, T2, . . .u
Occurrence constraints T (for predicates and types)
Degree distributions ηpT1, T2, aq “ pDin , Doutq

Query workload configuration

Workload size (# of queries) #q

Arity (0, 1, 2, etc.) ar
Shape (chain, star, cycle, star-chain) f

Selectivity (constant, linear, quadratic) e

Probability of recursion pr
Query size (# of conjuncts, # of disjuncts, etc.) t

gMark
Graph&query generator

Graph instance file

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL openCypher PostgreSQL Datalog

Fig. 1. Overview of the gMark workflow.

as query optimization and query inference on graphs and,
more generally, relational data and queries.

1.1 gMark design principles

To support a broad range of systems and domains, we
aim in the gMark design to cover features and capabilities
commonly found in graph query processing, graph ana-
lytics, and schema validation. Reflecting this, the interplay
between the following key features characterizes the gMark

system architecture. To the best of our knowledge, gMark is
the first framework to satisfy all of these criteria.

Built-in support for schema definition. A major goal of
gMark is to account for an array of fundamental user-
defined schema constraints during graph generation. In
general, gMark is domain-independent, while it can be used
to target a rich variety of realistic domains. Hence, graph
instance generation leverages an optional schema definition,
called a graph configuration, which includes the enumeration
of predicates (i.e., edge labels) and node types (i.e., node
labels) occurring in the data, along with their properties in
generated instances (see Fig. 1).

Controlled instance and workload diversity. Given a graph
configuration, a subsequent challenge is to exploit it for
query workload generation. Current approaches in query
generation rely on the graph instances to generate queries
with desired behavior. However, this approach is unfeasible
for large and loosely structured networks. We argue that
query workload generation must primarily rely on the
graph configuration rather than on the generated graph
instances, while still enforcing the desired behavior of the
generated queries. Towards this, gMark supports a broad
range of schema-driven parameters in both the graph and
query workload generator (see Fig. 1), e.g., capable of
gauging both navigational and recursive query execution
performance, while not relying on a fixed set of query
templates. To the best of our knowledge, existing solutions
for graph databases do not support such configurable (and
easily extensible) range of parameters.

Language- and system-independence. Another important
design principle of gMark is independence from particular
query language syntaxes or systems. Towards this, gMark

supports various practical output formats for the graphs
and for the queries, including N-triples for data, and SQL,
SPARQL, Datalog and openCypher as concrete query lan-
guage syntaxes for query workloads (see Fig. 1). gMark is
also easily extensible to support other output formats.

Broad applicability. Finally, gMark aims to broadly support
a wide range of application domains. As an example, we
show below that it is easy to adapt the scenarios (mod-
ulo incomparable features) of three existing state-of-the-art
benchmarks into meaningful gMark configurations, while
also adding new gMark features: the LDBC Social Network
Benchmark [7], SP2Bench [6], and the Waterloo SPARQL
Diversity Test Suite (WatDiv) [5].

1.2 Contributions and organization

We depict an overview of the gMark workflow in Fig. 1.
The goal of this paper is to present the design, engineering,
and first empirical study of the gMark framework. We next
outline our main contributions.
‚ We formalize the problems of graph generation and

query workload generation, and show that they are in-
tractable in general (Section 3).
‚ We provide an in-depth presentation of the gMark

design principles, for the generation of both graphs (Sec-
tion 4) and query workloads (Section 5). The most notable
novel features are support for recursive queries and query
selectivity estimation in the generated query workloads.
‚ We empirically show the capability of gMark to cover

diverse graphs and query workloads, the accuracy of the
estimated selectivities, and the scalability of the generator
(Section 6).
‚ We present an in-depth experimental comparison of

a representative selection of state-of-the-art graph query
engines using gMark, which brings to light important limi-
tations of current graph query processing engines, in partic-
ular w.r.t. recursive query processing (Section 7).

We close this section by noting that gMark supports
the full range of data and query features, and practical
query syntaxes discussed above. Query selectivity tuning
is supported only on binary queries (i.e., queries of arity
two). This should not be considered as a limitation since
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already selectivity tuning is a non-trivial problem for binary
queries, and such queries already make interesting major
practical cases of query benchmarking in graph databases.
For example, all regular path queries (which appear as
“property paths” in SPARQL 1.1) are binary.

2 RELATED WORK

Data generation and benchmarking frameworks have
played an important role in database systems research over
the last decades, where efforts such as the TPC Bench-
marks and XML benchmarking suites have been crucial
for advancing the state of the art [8], [9]. Similarly, in
support of the experimental study of graph data manage-
ment solutions, a variety of synthetic graph tools such as
SP2Bench [6], LDBC [7], LUBM [10], BSBM [11], Grr [12] and
WatDiv [5] have been developed in the research commu-
nity. Complementary to the gMark approach, application-
driven derivation of graph configurations and synthetic
graph instances has also recently been studied [13], [14],
[15]. Furthermore, extensive collections of real-world graphs
such as SNAP [16] and KONECT [17] are now available as
community resources.

Currently available resources (i) rely on fixed graphs or
instances of fixed graph schemas, or (ii) provide limited
or no support for generating tailored query workloads to
accompany graph instances. These aspects are difficult to
jointly relax, especially in the context of loosely structured
complex networks. Indeed, there is no community consen-
sus on schema formalisms for graph data, an area that is
still in an early stage of investigation [18]. Furthermore,
constructing workloads with given selectivity and structural
features is a very difficult problem [19], [20], [21], [22],
[23], [24], [25]. As mentioned in the Introduction, current
approaches such as WatDiv and LDBC perform selectivity
estimation on generated graph instances, which becomes
unfeasible when dealing with massive graphs and query
workloads.

In gMark, we address this challenge by generating tai-
lored workloads directly from the graph schema, where
query selectivity is set as one of the input parameters.
While BSBM and WatDiv do support a workload-centric
approach, they do not provide this fine-grained level of
control of query behavior. In general, we are not aware
of any solutions for controlling selectivity during query
generation relying solely on graph schemas.

Finally, to our knowledge gMark is the first solution
for generating workloads exhibiting recursive path queries.
In particular, the queries generated by gMark are the so-
called unions of conjunctive regular path queries [26]. This
fundamental query language covers many graph queries
that appear in practice. In particular, SPARQL 1.1 and open-
Cypher have conjunctive regular path queries as their core
constructs. They are also expressible in modern Datalog-
like query languages [3] and in SQL:1999. As discussed
in the Introduction, gMark supports the output of query
workloads in all these concrete query language syntaxes.

3 THE GENERATION PROBLEM

We start this section by intuitively introducing the gen-
eration problem via a real-world motivating example that

also emphasizes some of the limitations of existing bench-
marks (Section 3.1). Then, we formalize the benchmark
generation problem i.e., generating a graph instance and
a query workload on this instance according to a given
set of constraints. More precisely, we formally define the
problems of graph generation (Section 3.2) and query workload
generation (Section 3.3), and we detail constraint parameters
for both problems. We conclude the section by showing that
the generation problem is intractable (Section 3.4).

3.1 Motivating example

Assume that a user wants to perform an extensive empirical
evaluation of a new graph query processing algorithm that
she designed. For this purpose, the user needs to efficiently
generate: (i) graphs of different characteristics and sizes (to
test the robustness and scalability of her algorithm), and
(ii) query workloads sufficiently diverse to highlight strong
or weak points of her new development. Additionally, our
user would like to specify all parameters in a declarative
way and to be able to simulate real-world scenarios.

For instance, the user would like to generate graphs
simulating a bibliographical database that uses a simple
schema consisting of 5 node types and 4 edge predicates.
Intuitively, the database consists of researchers who author
papers that are published in conferences (held in cities) and that
can be extended to journals. Moreover, the user would like to
specify constraints on the number of occurrences for both
the node types and edge predicates, either as proportions
of the total size of the graph or as fixed numbers e.g., as in
Fig. 2(a) and 2(b). For instance, for graphs of arbitrary size,
half of the nodes should be authors, but a fixed number
of nodes should be cities where conferences are held (in a
realistic scenario the number of authors increases over time,
whereas the number of cities remains more or less constant).

Moreover, our user wants to specify real-world relation-
ships between types and predicates via schema constraints
e.g., as in Fig. 2(c). For instance, the first line encodes that the
number of authors on papers follows a Gaussian distribu-
tion (the in-distribution of the schema constraint), whereas
the number of papers authored by a researcher follows a
Zipfian (power-law) distribution (the out-distribution of the
schema constraint). The following lines in Fig. 2(c) encode
constraints such as: a paper is published in exactly one
conference, a paper can be extended or not to a journal,
a conference is held in exactly one city, the number of
conferences per city follows a Zipfian distribution, etc.

Whereas specifying all aforementioned constraints as an
input gMark graph configuration (cf. Fig. 1) can be easily
done via a few lines of XML, to the best of our knowledge
there is no benchmark where they can be specified. For
instance, in SP2Bench [6] (which is also based on a similar
bibliographical scenario), all constraints are hardcoded and
the only parameter that a user can specify is the size of
the graph, which makes it impossible for the user to finely
tune schema-related characteristics of the graph. Moreover,
in WatDiv [5], although the user can specify similar global
constraints on the node types and the out-distributions, the
absence of global constraints on the edge predicates and the
absence of in-distributions entail important limitations, such
as the absence of control on the selectivities of the queries of
the generated query workloads.
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Node type Constr.

researcher 50%
paper 30%
journal 10%
conference 10%
city 100 (fixed)

(a) Node types.

Edge predicate Constr.

authors 50%
publishedIn 30%
heldIn 10%
extendedTo 10%
(b) Edge predicates.

source type predicate
ÝÝÝÝÝÑ

target type In-distr. Out-distr.

researcher authors
ÝÝÝÝÝÝÑ

paper Gaussian Zipfian

paper publishedIn
ÝÝÝÝÝÝÝÝÝÑ

conference Gaussian Unif. [1,1]

paper extendedTo
ÝÝÝÝÝÝÝÝÝÑ

journal Gaussian Unif. [0,1]

conference heldIn
ÝÝÝÝÝÑ

city Zipfian Unif. [1,1]

(c) In- and out-degree distributions.

Fig. 2. The bibliographical motivating example.

In gMark we allow the user to finely tune the selectiv-
ities of the generated queries. For instance, the user can
specify that she wants queries that, for any graph size,
have constant, linear, or quadratic selectivity (we formally
define these selectivity classes later on in the paper). To
the best of our knowledge, no graph database benchmark
supports such a feature. In particular, SP2Bench uses a
fixed set of queries, while WatDiv can generate synthetic
workloads, but without schema-driven selectivity control.
As another remarkable difference to the state-of-the-art
benchmarks, none of them supports recursive queries such
as pauthors¨authors´ q˚ which selects all pairs of re-
searchers linked by a co-authorship path (by ´ we denote
the predicate inverse and by ˚ the transitive closure). As
shown in the input gMark query workload configuration in
Fig. 1, the user can finely-tune e.g., the structure, size,
selectivity of such queries.

3.2 Graph generation

gMark generates directed edge-labeled graphs and outputs
them in formats that are compatible with the supported
query languages. In this section, we formally define a graph
configuration (cf. Fig. 1), which is essentially a set of con-
straints that generated graph instances should satisfy. We
start by giving a definition of the schema constraints which
are the backbone of graph configurations.

Definition 3.1 A graph schema is a tuple S “ pΣ,Θ, T , ηq
where Σ is a finite alphabet of predicates, Θ is a finite set of
types such that each node of the generated graph is associated
with exactly one type, T is a set of constraints on Σ and Θ
associating to each predicate and type either a proportion of its
occurrences or a fixed constant value, and η is a partial function
associating to a triple consisting of a pair of input and output
types T1, T2 in Θ and a symbol a in Σ, a pair (Din, Dout) of in-
and out-degree distributions.

Predicates correspond to edge labels, and in the remainder we
use the two terms interchangeably. A degree distribution
is a probability distribution, among which gMark supports
uniform, Gaussian (also known as normal), and Zipfian dis-
tributions. For each distribution, the user can specify the
relevant parameters (i.e., min and max for uniform, µ and σ
for Gaussian, and s for Zipfian). If the user wants to specify
only the in- or the out-distribution, she can mark the other
one as nonspecified. Notice that the parameters for the in-
and out-degree distributions of each triple T1, T2, a have

to be consistent in order to guarantee the compatibility of
the number of generated ingoing and outgoing edges. We
discuss the details of this consistency check in Section 4.

Definition 3.2 A graph configuration is a tuple G “ pn,Sq,
where n is the number of nodes of the graph and S is the schema
of the graph.

Example 3.3 Take a graph configuration G “ pn,Sq s. t.:
‚ The graph should have n “ 5 nodes.
‚ The graph should satisfy the schema S “ pΣ,Θ, T , ηq,

where Σ “ ta, bu, Θ “ tT1, T2, T3u, T is defined as T pT1q “
60%, T pT2q “ 20% and T pT3q “ 1 and η is defined as
follows (we report only some constraints):

ηpT1, T1, aq “ pg, zq, ηpT1, T2, bq “ pu, gq,

ηpT2, T2, bq “ pg, nsq, ηpT2, T3, bq “ pns , uq,

where by u, g, z, and ns we denote uniform, Gaussian,
Zipfian, and non-specified distributions, respectively. For

T1

T1

T1

T2

T3

a
a

a
a

a

b

a b

a b

Fig. 3. Graph from Example 3.3.

instance, the graph in Fig. 3 can be generated by using
this graph configuration. Although a much larger graph
is needed to observe the actual distributions, we refer to
Section 5 for further examples also handling distributions. ˝

3.3 Query workload generation

We next formally define query workload configurations (cf.
Fig. 1). Towards this, we first outline the query language
supported by gMark. As motivated in Section 2, we focus
on generating unions of conjunctions of regular path queries
(UCRPQ). This fundamental query language covers many
queries which appear in practice, including the core con-
structs of SPARQL 1.1 queries, Neo4j’s Cypher queries, and
many Datalog-based encodings [26].

Recall that Σ is a finite alphabet (cf. Definition 3.1) and
let Σ` “ ta, a´ | a P Σu, where a´ denotes the inverse of
the edge label a. Let V “ t?x, ?y, . . .u be a set of variables
and n ą 0. A query rule is an expression of the form

p?vq Ð p?x1, r1, ?y1q, . . . , p?xn, rn, ?ynq

where: for each 1 ď i ď n, it is the case that ?xi, ?yi P V ;
?v is a vector of zero or more of these variables, the length
of which is called the arity of the rule; and, for each 1 ď
i ď n, it is the case that ri is a regular expression over Σ`

using t¨,`, ˚u (i.e., concatenation, disjunction, and Kleene star).
Without loss of generality, we restrict regular expressions to
only use recursion (i.e., the Kleene star symbol ˚) at the
outermost level. Hence, expressions can always be written
to take either the form pP1`¨ ¨ ¨`Pkq or the form pP1`¨ ¨ ¨`
Pkq

˚, for some k ą 0, where each Pi is a path expression i.e.,
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a concatenation of zero or more symbols in Σ`. We refer to
the right-hand side of a query rule as the body of the query
rule, each subgoal p?xi, ri, ?yiq of the body as a conjunct, and
to the left-hand side as the head of the query rule.

A query Q P UCRPQ is a finite non-empty set of query
rules, each of the same arity. The semantics QpGq of evalu-
ating Q on a given graph G (having edge labels in Σ) is the
standard one following that of unions of conjunctive Data-
log queries [26], assuming standard set-oriented semantics. In
summary, a query is basically a collection of query rules, each
rule having several conjuncts, each conjunct having several
disjuncts whose paths have a certain length.

Example 3.4 Take the following UCRPQ:

p?x, ?y, ?zq Ð p?x, pa ¨ b` cq˚, ?yq, p?y, a, ?wq, p?w, b´, ?zq

p?x, ?y, ?zq Ð p?x, pa ¨ b` cq˚, ?yq, p?y, a, ?zq

This query selects nodes x, y, z such that one can navigate
between x and y with a path in the language of pa ¨ b ` cq˚,
and moreover, can navigate between y and z with a path in
the language of a ¨ b´ ` a. This query consists of two rules
consisting of three conjuncts and two conjuncts, resp. The
conjuncts of the form p?x, pa ¨ b` cq˚, ?yq have two disjuncts
(of length 2 and 1, resp.) and all other conjuncts have only
one disjunct (of length 1). ˝

We define query size as a tuple

t “ prrmin, rmaxs, rcmin, cmaxs, rdmin, dmaxs, rlmin, lmaxsq

providing intervals of minimal and maximal values for the
number of rules, conjuncts, disjuncts, and length of the
paths in the query, resp., that generated queries should
have. For example, the query from Example 3.4 has size
pr2, 2s, r2, 3s, r1, 2s, r1, 2sq. In gMark, users can specify mini-
mal and maximal values for all of these parameters; in turn,
the query generation algorithm can assign values that range
in these intervals. For simplicity of presentation, we assume
in the remainder that a query consists of only one rule.

Definition 3.5 A query workload configuration is a tuple
Q “ pG,#q, ar , f, e, pr, tq where G is a graph configuration,
#q is the number of queries in the workload (defined on all
instances of G), ar is the arity constraint, f is the shape con-
straint, e is the selectivity of the queries in the workload, pr is the
probability of recursion, and t is the query size.

Notice that in addition to the graph configuration G (cf.
Section 3.2), the user can specify several other constraints.
First, ar is the range of allowed arities for the queries in
the workload. For instance, the query from Example 3.4 has
arity 3. We also support Boolean queries (arity 0). The shape
constraint f contains the supported query shapes (among
which chain, star, cycle, and star-chain are supported in
gMark) and the user can specify which among them she
would like to have in the generated query workload. Sim-
ilarly, the selectivity constraint e contains the desired se-
lectivity classes, among which we support constant, linear
and quadratic (cf. Section 5.2). The user can further specify
the probability to have the multiplicity * above a disjunct,
reflected by the parameter pr .

We finally point out that gMark is able to translate the
generated UCRPQ in four concrete syntaxes (cf. Fig. 1):
SPARQL, openCypher, PostgreSQL, and Datalog.

3.4 Intractability of the generation problem

In this section, we prove the intractability of the problems of
graph and query workload generation. First, we prove that
the graph generation problem is intractable.

Theorem 3.6 Given a graph configuration G, deciding whether
there exists a graph satisfying G is NP-complete.

Prior to presenting the proof of Theorem 3.6, we would
like to introduce some standard macros for encoding pairs
of in- and out-distributions. Precisely, we use:
‚ “1” for non-specified in-degree distribution and uni-

form out-degree distribution with min=max=1. In other
words, ηpT1, T2, aq “ 1 means that from a node of type
T1 there is precisely one outgoing a-labeled edge to a node
of type T2, and that in a node of type T2 we can have an
arbitrary number of incoming a-labeled edges from nodes
of type T1.
‚ “?” for non-specified in-degree distribution and uni-

form out-degree distribution with min=0 and max=1.
‚ “0” for non-specified in-degree distribution and uni-

form out-degree distribution with min=max=0.

Proof We show the NP-hardness by reduction from the
SAT1-in-3 problem, known to be NP-complete [27]. Take a
3CNF formula ϕ “ C1 ^ . . .^Ck over variables x1, . . . , xn.
We construct a schema Sϕ “ pΣϕ,Θϕ, Tϕ, ηϕq and a subse-
quent graph configuration Gϕ “ pnϕ,Sϕq as follows:
‚ nϕ: The graph should have 2ˆ n` k ` 1 nodes.
‚ Σϕ: There should be 3ˆ n` k symbols (predicates) in

the alphabet: Σϕ “ tc1, . . . , ck, b1, . . . , bn, t1, f1, . . . , tn, fnu
‚ Θϕ: There should be 3 ˆ n ` k ` 1 node types: Θϕ “

tA,C1, . . . , Ck, B1, . . . , Bn, T1, F1, . . . , Tn, Fnu.
‚ Tϕ: There should be precisely one node of type A in the

graph, which can be expressed as TϕpAq “ 1. Additionally,
TϕpB1q “ . . . “ TϕpBnq “ TϕpC1q “ . . . “ TϕpCkq “ 1.
Notice that all these constraints could be alternatively ex-
pressed by saying that the proportion of each of them
should be 1{p2ˆ n` k ` 1q of the graph nodes.
‚ ηϕ such that:
‚ ηϕpA, T1, t1q “ . . . “ ηϕpA, Tn, tnq “?
‚ ηϕpA,F1, f1q “ . . . “ ηϕpA,Fn, fnq “?
‚ ηϕpTi, Cl1 , cl1q “ . . . “ ηϕpTi, Clm , clmq “

ηϕpTi, Bi, biq “ 1, for every i P t1, . . . , nu, where
cl1 , . . . , clm correspond to the clauses in which the variable
xi appears in a positive literal.

‚ ηϕpFi, Cl1 , cl1q “ . . . “ ηϕpFi, Clm , clmq “
ηϕpFi, Bi, biq “ 1, for every i P t1, . . . , nu, where
cl1 , . . . , clm correspond to the clauses in which the variable
xi appears in a negative literal.

‚ ηϕpX,Y, bq “ 0 for all other combinations of types
X,Y and symbols b not present in one of the aforemen-
tioned cases.

We illustrate the construction for ϕ0 “ px1_ x2_x3q^
p x1 _ x3 _  x4q, for which we obtain (we omit all cases
with 0):
‚ ηϕpA, T1, t1q “ ηϕpA,F1, f1q “ . . . “ ηϕpA, T4, t4q “
“ ηϕpA,F4, f4q “?
‚ ηϕpT1, C1, c1q “ ηϕpT1, B1, b1q “ ηϕpF1, C2, c2q “
“ ηϕpF1, B1, b1q “ ηϕpT2, B2, b2q “ ηϕpF2, C1, c1q “
“ ηϕpF2, B2, b2q “ ηϕpT3, C1, c1q “ ηϕpT3, C2, c2q “
“ ηϕpT3, B3, b3q “ ηϕpF3, B3, b3q “ ηϕpT4, B4, b4q “
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“ ηϕpF4, C2, c2q “ ηϕpF4, B4, b4q “ 1

We claim that ϕ P SAT1-in-3 iff there exists a graph that
satisfies the graph configuration.

A

T1

T2

F3

F4

C1 B1

B2

B3

C2

B4

t1
t2

f3

f4

c1 b1

b2

b3

c2

b4

Fig. 4. Graph from the proof of Theorem 3.6.

For the only if part, take a valuation that satisfies exactly
one literal of each clause and construct a graph that encodes
this valuation, starting from a node of type A. For example,
for the above formula ϕ0 and the valuation such that x1

and x2 are true, and x3 and x4 are false, construct the graph
from Fig. 4. Since we choose exactly one among Ti and Fi for
every i P t1, . . . , nuwe have exactly one Bi. Moreover, since
exactly one literal of each clause is satisfied we have exactly
one Ci (for i P t1, . . . , ku). Thus, the constraints in Tϕ are
satisfied. As for the number of nodes, we have 2ˆn (because
there is exactly one valuation of each variable and we also
have its corresponding Bi) + k (because of the k clauses) +
1 (the node of type A). Consequently, the constructed graph
satisfies all the constraints from the configuration.

For the if part, take a graph satisfying the constraints.
Since it satisfies the constraints from Tϕ, the graph should
have one node A, one Bi (for i P t1, . . . , nu) and one Ci

(for i P t1, . . . , kuq. Since the total size of the graph is of
2 ˆ n ` k ` 1 nodes and seen how we can reach Bi’s and
Ci’s based on the schema, we infer that the other n nodes
correspond to nodes of type Ti or Fi (encoding a valuation
of the variable xi). Since we have precisely one Bi, we infer
that each variable has exactly one valuation and since we
have precisely one Ci, we infer that in each clause there
is exactly one literal that is satisfied. This means that the
formula ϕ is in SAT1-in-3.

To show the membership of the problem to NP, we point
out that a non-deterministic Turing machine has to guess
a graph having as many nodes as the constraint from the
configuration. The size of such a graph is thus polynomial
in the size of the input and testing whether it satisfies the
schema can be easily done in polynomial time. ˝

As a natural consequence of Theorem 3.6, we have that
the query workload generation problem is also intractable.
That means that some parameters of the query workload
cannot be fulfilled and it is not possible to test this efficiently.
Hence, gMark follows a heuristic strategy in the generation.
More precisely, it attempts to achieve the exact values of the
parameters and it may decide to relax some of them in order
to obtain linear running time. However, we do not claim that
our algorithm is the best linear time algorithm. Nonetheless,
in the experimental study we observed fast generation time
and good quality graph instances and queries.

Corollary 3.7 Given a query workload configuration Q, decid-
ing whether there exists a query workload satisfying Q is NP-
complete.

Proof Recall that a query workload configuration Q is a
tuple pG,#q, ar , f, e, pr, tq. Since the graph configuration G

is part of the input of Q, we can take for G precisely the same
encoding of SAT1-in-3 as in the proof of Theorem 3.6 and
then arbitrary values for the other constraints in Q. Then,
both if and only if parts for the NP-hardness follow precisely
as in the proof of Theorem 3.6. As for the membership of
the problem to NP, we point out that a non-deterministic
Turing machine has to guess a query workload and then
we can easily decide in polynomial time whether it satisfies
the input constraints. In particular, the query workload is of
polynomial size (since the size is given as parameter in the
query workload configuration), and the graphs that we need
to check whether the query workload satisfies the selectivity
constraints are also of polynomial size (since the graph size
is given as part of the graph configuration that is also part
of the query workload configuration). ˝

Despite the intractability of the generation problems and
the gMark heuristic approach, we would like to already
point out that the gMark graph and query generator leads
to highly accurate results, as we detail with our experiments
in Section 6.2, where we report on the selectivity estimation
of the generated queries over the generated graphs.

4 GRAPH GENERATION

As shown in Theorem 3.6, given a graph configuration G,
deciding whether there exists a graph satisfying G is NP-
complete. Consequently, it is not always possible to generate
in PTIME a graph satisfying a given graph configuration G.
Nevertheless, generating graph instances in PTIME is an im-
portant goal in designing a graph generator, essentially be-
cause of scalability. To achieve scalability we must therefore
relax some constraints specified in the graph configuration.

For all such reasons, the gMark generation algorithm (cf.
Fig. 5) takes a heuristic approach that guarantees linear time
generation (i.e. linear in the size of the input and output).
The algorithm pseudocode, which is conceptually quite
straightforward, is illustrated below. For each constraint
ηpT1, T2, aq, it generates a set of edges as follows. It creates
a vector vsrc for the source nodes containing each of the
nodes of type T1 a number of times drawn according to
the out-distribution Dout . It initializes (line 2), fills (lines 3-
4), and, respectively, shuffles (line 7) this vector. The length
nT1

of this vector is computed either as nˆ T pT1q if T pT1q
is a proportion, or simply T pT1q if T pT1q is a fixed value.
The algorithm creates a vector for the target nodes vtrg
in a similar manner (lines 2, 5–7). Next, it simultaneously
iterates over the two vectors vsrc and vtrg and outputs a
number of a-labeled edges corresponding to the minimal
length of the two vectors (lines 8-9). The function idT pjq
then returns the jth node of type T in the graph (assuming
that the graph nodes are uniquely identified). We note
that the random draws in Lines 4 and 6 are statistically
independent and hence the order in which we process j has
no impact. Likewise, the processing of constraints in Line 1
is statistically independent and hence order-independent.
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Input: A graph configuration G “ pn,S “ pΣ,Θ, T , ηqq
Output: A set of edges (source node, label, target node)

1: foreach ηpT1, T2, aq “ pDin , Doutq do
2: let vsrc and vtrg be two empty vectors
3: for j P t1, . . . , nT1

u do
4: add draw pDoutq occurrences of j in vsrc
5: for j P t1, . . . , nT2

u do
6: add draw pDinq occurrences of j in vtrg
7: shufflepvsrcq; shufflepvtrgq
8: for i P t1, . . . ,minp|vsrc |, |vtrg |qu do
9: output pidT1

pvsrcrisq, a, idT2
pvtrg risqq

Fig. 5. Graph generation algorithm.

Algorithm from Fig. 5 produces an output graph in linear
time, without backtracking. Our implementation leverages
further optimizations, notably exploiting the average infor-
mation of the Gaussian distributions to avoid entirely con-
structing the vectors when the in- and/or out-distributions
are Gaussian. Our experiments in Section 6.2 confirm the
practical efficiency and scalability of our graph generator.

Due to the heuristic nature of our algorithm, some of the
constraints in the graph configuration might not be fulfilled
in the output graph. In particular, for each constraint it
generates a number of edges equal to the minimal length
of the two vectors (line 8). Consequently, whenever the
two vectors have different sizes, then the generated graph
may contain nodes that do not satisfy the precise values
dictated by the in- or out-distributions. Notice that these
distributions are essential in the proof of Theorem 3.6 for
showing the intractability of the generation problem.

Due to practical reasons, we decided that our gener-
ator should always return a graph to the user instead
of performing a potentially costly satisfiability check and
possibly aborting the generation. Moreover, this choice still
allows to globally preserve the types of distribution for each
constraint ηpT1, T2, aq, even though the generated number
of edges may not satisfy the exact parameters of the in- or
out-distributions. In fact, our method relies on the types of
distributions (uniform, Gaussian, Zipfian) and not on the
actual parameters of the distributions. Such a choice of pre-
serving the global distributions in the graph generator also
turns to be useful in the query generator, where we adopt
a novel technique of selectivity estimation for the generated
queries. As shown in the experiments in Section 6.2, the
obtained selectivities exhibit high accuracy, thus confirming
the effectiveness of our method.

5 QUERY GENERATION

A core innovation of gMark is that graph instances and
query workloads are both generated from graph schemas.
This allows the tight coupling of queries to instances while
still also supporting fine-grained control of the diversity
of query workloads. As discussed in Section 3.3, query
generation in gMark is guided by the same input schema
used for graph generation, which makes the queries of the
workload pertinent to graph instances.

In Section 5.1, we present our query generation algorithm,
which ensures query diversity in terms of arity, shape (chain,
star, cycle, star-chain), recursion (probability to have Kleene

Input: A query workload configuration Q “
pG “ pn,Sq,#q, ar , f, e, pr, tq

Output: A set of queries
1: for i P t1, . . . ,#qu do
2: let skeleton “ get query skeletonpf, tq
3: add projection variablespskeleton , arq
4: let Q “ instantiate placeholderspskeleton ,S, pr, tq
5: output Q

Fig. 6. Query generation algorithm.

star above conjuncts), and size (number of conjuncts, dis-
juncts, length of paths). We have already implemented in
gMark this algorithm supporting the diversity of all the
aforementioned parameters.

Additionally, users can specify constraints on the query
selectivity. In gMark, we guarantee the selectivity estimation
for binary queries, a natural and broad class in the context
of graph queries, strictly containing the regular path queries
(i.e., property paths in SPARQL 1.1). Selectivity estimation
for such queries already involved the development of novel
sophisticated machinery. Indeed, in Section 5.2 we formalize
the notion of selectivity classes for binary queries and we ex-
plain the additional data structures and techniques needed
to accommodate selectivity estimation for binary queries
in the general algorithm. The schema-driven techniques
that we introduce for selectivity estimation are non-trivial
and, to the best of our knowledge, novel. Moreover, binary
queries already make interesting practical cases for graph
database benchmarking. In particular, our study based on
such queries points out important limitations of existing
graph database engines, as we highlight in Section 7.

5.1 General algorithm

The query generation algorithm (cf. Fig. 6) takes as input a
query workload configuration Q (cf. Section 3.3) and outputs a
set of queries.

For each query, we first generate a query skeleton for
the body of the query (line 2) by considering the query
shape and the number of conjuncts. A query skeleton is
a set of conjuncts of the form p?x1, P, ?x2q where ?x1

and ?x2 are variables, and P is a placeholder that we
instantiate afterwards with a regular expression. For ex-
ample, if we want a chain query and a number of con-
juncts cmin “ cmax “ 3, we obtain a query skeleton
p?x1, P1, ?x2q, p?x2, P2, ?x3q, p?x3, P3, ?x4q.

The other query shapes are essentially combinations of
different chain queries. More precisely, we implemented cycle
queries as two chain queries that share the same endpoint
variables, star queries as combinations of chains that have the
same starting variable, and star-chain queries as combinations
of chain queries and star queries.

Next, we randomly pick a set of projection variables
such that their number is consistent with the arity constraint
(line 3); in gMark, we already support the generation of
queries of arbitrary arity (including Boolean i.e., arity 0).
We finally instantiate the placeholders (line 4) with regular
expressions that satisfy the probability of recursion and the
other aspects of the size (number of disjuncts and length of
paths), and we output the obtained query (line 5).
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Algorithm from Fig. 6 works in linear time in the size of
the input and output. It produces a query workload coupled
to the graph schema, and satisfying the arity, shape, recur-
sion and size constraints. As presented here, it disregards
the selectivity constraint e that is the trickier parameter of a
graph configuration and treated in the next section.

5.2 Selectivity estimation algorithm

In this section, we present an innovative method to estimate
the selectivity of binary queries, that we already imple-
mented in gMark. Our method impacts the step from line 4
in Fig. 6, and requires new developments. In Section 5.2.1,
we classify the binary queries in three classes depending on
the asymptotic behavior of the size of their result. In Sec-
tion 5.2.2, we propose a method to estimate the selectivity.
In Section 5.2.3, we introduce the data structures needed to
implement it. In Section 5.2.4, we revisit the algorithm from
Fig. 6 to accommodate selectivity estimation.

5.2.1 Constant, linear, and quadratic queries

The selectivity of a query Q on a graph G is the number of
results returned by the evaluation of Q on G, i.e., |QpGq|.
This number depends on both the topology and the actual
size of the graph instance, given that instances of different
sizes can be generated upon the same input schema.

Given a binary query Q and a schema S, for every graph
G satisfying S, we assume that the value |QpGq| behaves
asymptotically as a function of the form |QpGq| “ β|G|α,
where α and β are real constants2. We say that the above
value α is the selectivity value of Q (w.r.t. S), denoted αSpQq
or simply αpQq when it does not lead to ambiguity. Thus,
the selectivity value of a query is by definition bounded
by the query arity. Since we focus on binary queries, we
consider selectivity values such that 0 ď αpQq ď 2.

We identify three practical query classes, depending on
whether αpQq is closer to 0, 1, or 2:
‚ Constant queries (for which αpQq « 0) select a number

of results that does not grow (or barely grows) with the
graph size. For instance, a query selecting pairs (country,
language) is constant if the graphs follow a realistic
schema specifying that the numbers of countries and lan-
guages do not grow with the graph size, and hence the
number of query results is more or less constant.
‚ Linear queries (for which αpQq « 1) select a number of

results that grows at a rate close to the growth of the number
of nodes in the graph instances. For example, a query
selecting pairs (language, user) is linear if the schema
specifies that the number of users grows with the graph,
whereas the number of languages is more or less constant.
Another example of a linear query is (user, address) if we
assume that the schema specifies that each user has precisely
one address and the number of users grows linearly with the
graph.
‚ Quadratic queries (for which αpQq « 2) select a number

of results that grows at a rate close to the growth of the
square of the number of nodes in the graph instances. For
example, the transitive closure of the knows predicate in
a social network is quadratic because a realistic schema

2. Our experimental study duly confirms this assumption.

TABLE 1
Algebraic operations between types.

Operation |tn | pn1, nq P QpGqu| |tn | pn, n2q P QpGqu| αpQq
“ Bounded Bounded 0 or 1
ă Bounded Not bounded 1
ą Not bounded Bounded 1
˛ Not bounded Not bounded 1
ˆ Not bounded Not bounded 2

should specify that this predicate follows a power-law (e.g.,
Zipfian) in- and out-distribution. Thus, the query result
contains Cartesian products of subsets of users that know
and are known by some hub users of the social network.

5.2.2 Estimating the selectivity value

We propose a solution for estimating the selectivity value
αpQq of a given query Q, for all graphs satisfying a given
schema S. This basically means to compute a function
that associates to Q a value α̂pQq P t0, 1, 2u. This value
can be made more precise as follows: for a pair of node
types A and B, α̂A,BpQq is the estimated selectivity of Q
restricted to pairs px, yq where x is of type A and y of
type B. Then, the overall estimated selectivity value of Q
is α̂pQq “ max

A,B
pα̂A,BpQqq.

To compute these values, we define an algebra based on
what we call selectivity classes. First, for each node type A

within the input schema S, we denote TypepAq “ N if A
grows with the graph size and TypepAq “ 1 if it does not.
In the graph schema, TypepAq “ 1 if T pAq is a fixed value
and TypepAq “ N if T pAq is a proportional value.

For each query Q and each pair of node types A and
B, the selectivity class of Q for A, B, denoted selA,BpQq is a
triple ptA, o, tBq such that tA “ TypepAq, tB “ TypepBq and
o P t“,ă,ą, ˛,ˆu is an operation between types.

We summarize these algebraic operations in Table 1,
which should be read a follows: an operation from the first
column denotes that for every graph G satisfying a schema
S, for every pair of nodes pn1, n2q P QpGq, it is the case that
|tn | pn1, nq P QpGqu| and |tn | pn, n2q P QpGqu|, resp.,
are or are not bounded (by some constants), as indicated in
the second and third columns, resp. The last column αpQq
is particularly useful to distinguish between the last two
operations ˛ and ˆ.

We next intuitively explain the above operations and we
illustrate them via examples:
‚ “ is the simplest operation and occurs either (i) be-

tween constant types e.g., (country, language) as illus-
trated for constant queries, or (ii) for some linear queries
such as the query defined by the empty regular expression
ε that returns precisely as many results as the nodes in the
graph.
‚ ă characterizes queries where either (i) the out-degree

distribution is Zipfian, such as (language, user) as illus-
trated for linear queries, or (ii) the source node type A has
TypepAq “ 1 and the target node type B has TypepBq “ N .
Then, the definition of ą is symmetric to ă.
‚ ˆ corresponds to queries performing a Cartesian prod-

uct between two node sets (both growing with the graph),
for example the transitive closure of the knows predicate
that we used above to illustrate the quadratic queries. Intu-
itively, the ˆ is the result of a ą followed by a ă.



9

` “ ă ą ˛ ˆ
“ “ ă ą ˛ ˆ
ă ă ă ˛ ˛ ˆ
ą ą ˛ ą ˛ ˆ
˛ ˛ ˛ ˛ ˛ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

(a) Disjunction.

¨ “ ă ą ˛ ˆ
“ “ ă ą ˛ ˆ
ă ă ă ˆ ˆ ˆ
ą ą ˛ ą ˛ ˆ
˛ ˛ ˛ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

(b) Conjunction.

Fig. 7. Algebra for selectivity classes. To read in a (column, row) order.

‚ ˛ is the trickier operation and corresponds for instance
to pairs of users that are known by someone in common.
Most users are not linked in this way, but two pairs of
hub users are. Thus, although there are numerous paths
between two hubs, their number remains relatively small,
in particular it grows linearly with the graph. Intuitively,
the ˛ is the result of a ă followed by a ą.

As defined in Section 3.3, the gMark workloads consist of
queries expressed as UCRPQ’s. Hence, we need to compute
the selectivity values for regular path queries, which involve
regular expressions. First, for a query Q defined by the
regular expression ε (the empty word), for each type A, we
have that selA,ApQq “ pTypepAq,“,TypepAqq. When Q is
defined by a single edge label a P Σ`, we obtain selA,BpQq
directly from the distribution of the a-labeled edges from A
to B, as defined above and obtained from the schema.

Example 5.1 Consider the schema given in Example 3.3.
First, we assign selectivity classes to the types of the schema,
thus TypepT1q “ TypepT2q “ N whereas TypepT3q “ 1.
From the schema, we compute the following values:
‚ selT1,T1

paq “ pN,ă, Nq and selT1,T1
pa´q “ pN,ą,

Nq (because of the Zipfian out-distribution that more-
over implies a Zipfian in-distribution for the inverse, and
TypepT1q “ N ),

‚ selT1,T2
pbq “ pN,“, Nq and selT2,T1

pb´q “ pN,“, Nq
(because of non-Zipfian in- and out-distributions, and more-
over, both TypepT1q “ TypepT2q “ N ),
‚ selT2,T2

pbq “ pN,“, Nq and selT2,T2
pb´q “ pN,“, Nq

(same reasoning as for the previous bullet),
‚ selT2,T3

pbq “ pN,ą, 1q and selT3,T2
pb´q “ p1,ă, Nq

(because of non-Zipfian in- and out-distributions, and more-
over, TypepT2q “ N and TypepT3q “ 1). ˝

Let a query Q be defined by the regular expres-
sion p1 ` p2 where p1 and p2 are two regular expres-
sions that define queries Q1 and Q2, respectively. For
every pair of node types A, B, such that selA,BpQ1q “
ptA, o1, tBq and selA,BpQ2q “ ptA, o2, tBq then selA,BpQq “
ptA, o1 ` o2, tBq where o1 ` o2 is defined by the table
in Fig. 7(a). Quite similarly, for Q defined by p1 ¨ p2, we
have selA,BpQq “ ΣCPΘselA,CpQ1q ¨ selC,BpQ2q where
selA,CpQ1q ¨ selC,BpQ2q “ ptA, o1 ¨ o2, tBq for selA,CpQ1q “
ptA, o1, tCq and selC,BpQ2q “ ptC , o2, tBq, and where o1 ¨ o2
is defined by the table in Fig. 7(b). Finally, if Q is defined
by the regular expression p˚ where p defines a query
Q1, we assign a selectivity class to Q if and only if the
input and output types of Q1 are the same, in which case
selA,ApQq “ selA,ApQ

1q ¨ selA,ApQ
1q.

As a remark, if either tA or tB is 1, the operator solely
relies on the other one. Hence, the triples p1,ˆ, 1q and
p1, ˛, 1q are not permitted, which makes p1,“, 1q, p1,ă, Nq

T1, pN, ă, Nq T1, pN, ˛, Nq

T1, pN, “, Nq T2, pN, “, Nq T3, pN, ą, 1q

T2, pN, ˆ, Nq

a

a´ a

b

b´

b

b´b

b´

a´

a´a

b

Fig. 8. A snippet of the schema graph for our running example.

and pN,ą, 1q the only permitted triples that contain a 1.
However, in the computation of the algebraic expression,
we could still obtain triples p1,ˆ, 1q and p1, ˛, 1q, that we
should replace with p1,“, 1q if the case occurs.

Finally, the estimated selectivity value of a query is ob-
tained directly from its class. If the obtained selectivity class
of a query Q is p1,“, 1q, then α̂pQq “ 0, if we obtain
pN,ˆ, Nq, then α̂pQq “ 2, and α̂pQq “ 1 for all other cases.

5.2.3 Data structures

The data structures needed to estimate the selectivity are:
(a) the schema graph GS , (b) the distance matrix D, and (c)
the selectivity graph Gsel .

(a) Schema graph GS . We derive the schema graph from
the schema S. Each node in GS is a pair given by a node
type of the schema and a selectivity triple (cf. Section 5.2.2)
associated to that type. More formally, the set of nodes of the
schema graph GS , denoted SelTypepSq, consists of tuples
pT, pt1, o,TypepT qqq, where (i) T is a node type from Θ
and (ii) pt1, o,TypepT qq is a selectivity triple in the set of
all possible selectivity triples tp1,“, 1q, p1,ă, Nq, . . .u. The
edges of GS are labeled with symbols in Σ`.

The goal of the schema graph GS is to indicate
how a path ending with a type T of selectivity triple
pt1, o,TypepT qq changes when it is extended with an edge in
Σ`. Formally, given a node pT, pt1, o,TypepT qqq and a label
(or label inverse) a P Σ` such that the schema allows an
a-labeled edge between T and a node type T 1, if accord-
ing to our algebra we have pt1, o,TypepT qq ¨ selT,T 1paq “
pt1, o

1,TypepT 1qq, then in the schema graph GS there is an
edge ppT, pt1, o,TypepT qqq, a, pT

1, pt1, o
1, TypepT 1qqq.

Example 5.2 Recall Examples 3.3 and 5.1. We illustrate a
snippet of the corresponding schema graph in Fig. 8. For
instance, the node pT1, pN,“, Nqq is due to the fact that
TypepT1q “ N and recall from Section 5.2.2 that for a
given type A we have selA,Apεq “ pTypepAq,“,TypepAqq.
Moreover, our schema allows an a-labeled edge between
two nodes of type T1, following a Zipfian out-degree dis-
tribution, hence its selectivity triple is pN,ă, Nq, which
explains the node pT1, pN,ă, Nqq in Fig. 8. Additionally,
there is an a-labeled edge in our schema graph between the
nodes pT1, pN,“, Nqq and pT1, pN,ă, Nqq because in our
algebra pN,“, Nq ¨ pN,ă, Nq “ pN,ă, Nq. ˝

(b) Distance matrix D. The distance matrix D establishes
for each pair n, n1 P SelTypepSq the length Dpn, n1q of the
shortest path between n and n1 in Dpn, n1q in GS .
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T1, pN, “, Nq T2, pN, “, Nq

T3, pN, ą, 1q T2, pN, ˆ, Nq

Fig. 9. An excerpt of the selectivity graph derived from the schema graph
in Fig. 8.

(c) Selectivity graph Gsel . The selectivity graph Gsel is an
unlabeled directed graph whose nodes are SelTypepSq. An
edge exists between two nodes n and n1 if there exists a path
between n and n1 of length in rlmin, lmaxs (recall that this
interval is specified as part of the query size in the workload
configuration Q).

Example 5.3 We illustrate the selectivity graph for our run-
ning example in Fig. 9. As an example, there exists a path
between T1, pN,“, Nq and T2, pN,ˆ, Nq (for instance, the
path b ¨ b ¨ b´), whose length is less than lmax “ 4. However,
there does not exist such a path between T2, pN,ˆ, Nq and
T1, pN,“, Nq, thus there is no edge between those nodes. ˝

5.2.4 Accommodating selectivity in query generation
We show how the instantiation of the placeholders (line 4
in Fig. 6) should be implemented to support selectivity
estimation for binary queries. Assume that we have already
generated the query skeleton and picked the two projection
variables (lines 2-3).

We first build a function T that associates to each
placeholder P of the query skeleton a selectivity type
pT1, pTypepT1q, o,TypepT2qq, T2q, where T1 and T2 are
schema types, and o is a selectivity operator. This function
exhibits two properties. First, the input and output type
of each selectivity operator should be consistent with the
types of T1, T2 and secondly, selectivity values for each
type should be selected in a way to guarantee that the
global selectivity class for the query is the expected one. To
achieve this, we randomly choose a path on the selectivity
graph Gsel . This basically means that we want to find a
path between a node with selectivity triple p?,“, ?q (where
by “?” we denote any type) to a node with pT1, o, T2q
yielding one of the desired selectivities. The length of this
path should be consistent with the configuration. Some of
the placeholders contain Kleene stars, with a probability
dictated by the configuration. Such conjuncts inherit the
input and output types of their neighbor conjuncts, with
the selectivity operator ’=’.

Example 5.4 In our running example, assuming that we
look for a linear query with 3 conjuncts, we can instantiate
the function T as follows:

T pP1q “ pT1, pN,“, Nq, T1q, T pP2q “ pT1, pN,ą, Nq, T2q,

T pP3q “ pT2, pN,“, Nq, T2q.

We can then compute the selectivity of the concatenation,
which is pN,“, Nq ¨ pN,ą, Nq ¨ pN,“, Nq “ pN,ą, Nq,
which corresponds to a linear query. ˝

Note that drawing uniformly at random paths of a
certain length in Gsel can be done efficiently with a two-
step algorithm: first, each node n is associated with a

function nb pathpn, iq that gives the number of paths of
length i that can be generated starting from n. For instance,
for a quadratic query, a node n1 : pA, pN,ˆ, Nqq has
nb pathpn1, 0q “ 1 whereas a node n2 : pB, p1 “ 1qq
has nb pathpn2, 0q “ 0. Other values are obtained by
a saturation algorithm: to generate a path of length l,
the algorithm picks a starting node with a random draw
weighted by nb pathpn, lq, and then picks the label of an
outgoing edge to a node n1 with a random draw weighted
by nb pathpn1, l ´ 1q, etc. until all the nodes are saturated.

Next, for each placeholder we build a path skeleton that
satisfies the constraints concerning the number of disjuncts
and the length of the paths in the query size, as illustrated
by the following example.

Example 5.5 To continue our running example, with a num-
ber of disjuncts in the range rdmin, dmaxs “ r3, 5s and path
length in the range rlmin, lmaxs “ r2, 4s, we may have a path
skeleton as follows: P1 “ X1 ¨X2 `X3 ¨X4 ¨X5 `X6 ¨X7

(i.e., three disjuncts having path length from 2 to 3). ˝

Once a path skeleton is computed, we need to find actual
edge labels for each path, by randomly choosing paths in
Gsel . For the sake of conciseness, we omit the details and
we illustrate it on the following example.

Example 5.6 Let us consider P1 “ X1¨X2`X3¨X4¨X5`X6¨
X7, with T pP1q “ pT1, pN,“, Nq, T1q. The query workload
generation algorithm may obtain a path instantiation of this
kind: X1 “ b and X2 “ b´ as the path b ¨ b´ can go from
T1 to T2 and from T2 to T1 via a concatenation of two paths
with edge label b. ˝

The total size of the data structures described in Section 5.2.3
is quadratic in the size of the graph schema (due to the
distance matrix) and the running time of the selectivity
estimation algorithm inherits the quadratic behavior. How-
ever, we observed that the query workload generation is
very efficient, as we point out in more details at the end
of Section 6.2 for our default schemas and for the three
existing schemas that we encoded in gMark. Moreover, it
may not be possible that all constraints are satisfied at
the same time and testing satisfiability is intractable (cf.
Section 3.4). Our algorithm always outputs a result to the
user. More precisely, when instantiating the placeholders,
it may be the case that we cannot fill the path skeleton
with paths of the precise lengths and meeting the required
selectivities, hence we choose to relax the path length in
order to ensure accurate selectivity estimation and efficiency
(instead of backtracking and drawing new skeletons).

6 EMPIRICAL EVALUATION OF GMARK

In this section, we empirically evaluate gMark w.r.t. two
important aspects: the capability to encode the application
domain of existing benchmarks (Section 6.1), and its quality
in terms of both accuracy of the estimated selectivities and
scalability of the generator (Section 6.2).

Environment. All experiments reported in this section and
in Section 7 were run on an Intel Core i7 920, with 6GB
RAM, and running Ubuntu 14.04 64bit.
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6.1 Coverage of practical graph scenarios

In our experiments, we relied on four use cases: the default
gMark use case, and three gMark encodings of the schemas
of existing state-of-the-art benchmarks [5], [7], [6] that were
possible since gMark can be easily tuned to fit an arbitrary
set of predicates, node types, and schema constraints.

‚ Bib is our default scenario, describing the bibliograph-
ical database introduced in Section 3.1 as our motivating ex-
ample. It represents a baseline, illustrating the main gMark

features, in particular all types of degree distributions.

‚ LSN is our gMark encoding of the fixed schema pro-
vided with the LDBC Social Network Benchmark [7], which
simulates user activity in a social network.

‚ SP is our gMark encoding of the fixed DBLP-based [28]
schema provided with SP2Bench [6].

‚ WD is our gMark encoding of the default schema
provided with Waterloo SPARQL Diversity Test Suite (Wat-
Div) [5], which differs from LDBC and SP2Bench, and is sim-
ilar to gMark in the sense that it also supports user-defined
schemas via a data set description language. The default
schema that we encoded is about users and products.

The difference between gMark and the aforementioned
benchmarks resides in the kind of expressible schema con-
straints that are incomparable. Nonetheless, we have been
able to encode their key characteristics, which include for
instance node types, edge labels, and associations between
entities. By opposite, we could not encode other character-
istics that are typical of those benchmarks, such as subtyp-
ing and hardcoded correlations that we do not support in
gMark. We detail in Appendix A in our technical report [29]
the expressiveness differences between gMark and existing
benchmarks, and our encoding choices of their schemas.

Discussion on the query loads. Because of these differences,
the gMark query loads are different from the fixed query
loads in the other benchmarks. Nevertheless, although
gMark does not generate exactly the same queries of the
other benchmarks, it can easily be tuned to generate queries
with similar characteristics, i.e., queries of comparable query
shape and size and featuring the same selectivity of the
original queries of those benchmarks. To concretely point
out that this is the case, we report in Fig. 10 an experiment
in which we considered the execution times of three queries
(one per selectivity class) from the original SP2Bench query
load and three comparable queries of the same shape,
size and selectivity generated with gMark using SP. We
observe that the queries generated and executed with gMark

show the same asymptotic runtime behavior of the original
SP2Bench queries executed under SP2Bench. Precisely, we
can notice in Fig. 10 that the obtained simulated constant
(linear and quadratic, respectively) query in gMark falls in
the same selectivity class of the original constant (linear and
quadratic, respectively) query in SP2Bench. Since the goal
of gMark is not to simulate the exact query loads of other
existing benchmarks, in the rest of the experimental study
we only rely on the gMark encodings of their schemas LSN,
SP, WD (as well as our user-defined schema Bib) to generate
more diverse query loads, going beyond the existing ones
w.r.t. the fine-grained control of different characteristics such
as size, selectivity, and recursion.

TABLE 2
αpQq averaged across constant, linear, and quadratic queries (with

standard deviation), with varying graph sizes, data, and query diversity.

Constant Linear Quadratic
LSN-Len 0.200˘0.417 1.189˘0.261 2.032˘0.059
LSN-Dis 0.182˘0.364 1.325˘0.318 2.046˘0.074
LSN-Con 0.190˘0.391 1.244˘0.326 2.017˘0.032
LSN-Rec 0.196˘0.409 1.090˘0.492 1.564˘0.889
Bib-Len 0.003˘0.010 0.921˘0.122 1.405˘0.337
Bib-Dis 0.000˘0.000 0.995˘0.012 1.607˘0.261
Bib-Con 0.023˘0.029 0.986˘0.112 1.409˘0.296
Bib-Rec 0.100˘0.316 0.982˘0.073 1.493˘0.335
WD-Len 0.016˘0.044 1.427˘0.392 2.004˘0.022
WD-Dis 0.009˘0.022 1.412˘0.380 1.999˘0.014
WD-Con -0.010˘0.026 1.540˘0.495 1.750˘0.708
WD-Rec 0.587˘0.830 - 1.976˘0.012
SP 0.074˘0.130 1.064˘0.034 2.034˘0.295
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Fig. 10. Evaluation times of a constant, a linear and a quadratic query in
the original SP2Bench query load (org) and gMark, respectively.

6.2 Quality and scalability

Selectivity estimation quality study. Our first set of exper-
iments focuses on understanding the quality of the selec-
tivity estimation performed using the algebra presented in
Section 5.2. We used four types of workloads in which we
stress-test several diverse queries with incrementally varied
query size: Len generates queries with varying path lengths,
no disjuncts, no conjuncts, and no recursion; Dis generates
queries with disjuncts, no conjuncts and no recursion; Con
generates queries with conjuncts and disjuncts and no re-
cursion; Rec generates queries with recursion (Kleene-stars).
Each of the above tests leads to a workload of 30 queries, out
of which 10 are constant, 10 are linear, and 10 are quadratic.
We repeated these experiments for each of the Bib, WD, and
LSN use cases (cf. Section 6.1). We executed each query Q

on graph instances of sizes between 2K and 32K, and we
counted the number of results returned on each instance.
To compute the α-value in the formula |QpGq| “ β|G|α

(cf. Section 5.2), we computed a simple linear regression
between log |G| and log |QpGq|. We averaged the α-values
obtained across all queries belonging to the same selectivity
class. We report these results, together with the standard
deviation, in Table 2. As expected, we observe that, for all
combinations of use cases and diverse query workloads, the
estimated values of α are « 0 for constant queries, « 1 for
linear queries, and « 2 for quadratic queries. The missing
value in Table 2 corresponds to linear recursive queries
for WD. In the presence of recursion, we actually observed
numerous failures on the majority of the studied systems
(cf. Section 7).

Finally, the last row (SP) of Table 2 shows the estimated
α-values for SP2Bench [6] on a set of queries following our
gMark encoding of the original set of SP2Bench queries. In
the remainder of our study in Section 7, we disregard SP
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Fig. 11. Summary of selectivity estimation quality results for the bibliographical use case Bib.

TABLE 3
Graph generation time for varying graph sizes (# nodes) and schemas.

100K 1M 10M 100M
Bib 0m0.057s 0m0.638s 0m8.344s 1m28.725s
LSN 0m0.225s 0m1.451s 0m23.018s 3m11.318s
WD 0m2.163s 0m25.032s 4m10.988s 113m31.078s
SP 0m0.638s 0m7.048s 1m28.831s 15m23.542s

since this use case does not bring more insights than the
query sets generated for the other use cases.

To further illustrate the precision of our estimated val-
ues, we report in Fig. 11 the estimated selectivities (|E|)
along with the theoretical selectivities (|Q|) for constant
(Q1), linear (Q2), and quadratic (Q3) queries on the Bib use
case. We observe that for the classes of queries of increasing
expressiveness the number of results is generally higher
for quadratic queries, while it is linearly and constantly
varying for the other queries, as expected. We also observe
that the two curves representing the estimated selectivities
and the theoretical ones closely overlap in all the cases.
Finally, notice that the above experiments are considering
chain queries only. The results on other shapes and/or use
cases are similar and omitted for conciseness.

We conclude from this study that the schema-driven
gMark selectivity estimation framework generates consis-
tently high quality estimates, across all selectivity classes,
across a broad spectrum of diverse data sets and queries.

Scalability study. Our second set of experiments is devoted
to measuring the time taken by the graph generator of
gMark, while varying the size of the data and the size of
the query workload. To gauge the robustness of our graph
instance generator w.r.t. data and query diversity, in these
experiments we employed all four use cases: Bib, WD, LSN,
and SP. We report the results in Table 3. We observe that
the generator scales quite well for all use cases. It is quite
efficient for big graph sizes in all cases except WD. This
is due to the quite complex nature of its schema, which
induces much denser graph instances compared to the other
use cases. For example, WD instances have two orders of
magnitude higher number of edges than Bib instances
having the same number of nodes. This is not a limitation
of gMark or of the WD scenario, but rather a specific feature
of very dense graphs.

We conclude by observing that gMark can efficiently
generate both small and large graph instances, on a diversity
of practical scenarios. We note that we also conducted a
scalability study of query generation, which showed that
gMark easily generates workloads of a thousand queries
for Bib, LSN, and SP in around one second and for the

richer WD scenario in around 10 seconds. Query translation
of a thousand queries into all four supported syntaxes for
each of the four scenarios took a mere tenth of a second.
This study shows that gMark workload generation is very
efficient and scalable for large-scale complex workloads.

7 EVALUATION OF QUERY ENGINES

We next turn to an empirical evaluation of a representative
selection of currently available graph query processing en-
gines using gMark. Our goal here is both to demonstrate the
new capabilities in benchmarking introduced by gMark, and
to pinpoint limitations and areas for further improvement in
current graph query processing solutions.

7.1 Design of experiments

Systems. The database systems (and their supported query
languages) that we consider in our study are3:

‚ G: a native graph database (openCypher [30])
‚ S: a popular SPARQL query engine (SPARQL 1.1 [31])
‚ P: PostgreSQL v9.3.9 (SQL:1999 recursive views4 [32])
‚ D: a modern Datalog engine (Datalog [33])

For the sake of fairness, we used default configurations
for each system i.e., without special purpose optimizations.

Query languages. Recall that the queries generated by
gMark are UCRPQ’s. We provide in Appendix B in our
technical report [29] a translation of an example UCRPQ

into each of the above concrete syntaxes. We note that not all
systems support the full expressive power of UCRPQ’s. In
particular, arbitrary UCRPQ’s can be expressed in SPARQL,
SQL, and Datalog, while openCypher supports only those
UCRPQ’s having no occurrences of inverse or concatenation
under Kleene star. In our results regarding recursive queries,
some of the generated benchmark queries do indeed exhibit
inverse and/or concatenation in a recursive conjunct. In
these cases, the corresponding openCypher query has only
the non-inverse symbol and/or the first symbol in a concate-
nation of symbols, respectively. Furthermore, while all other
languages adopt the classical homomorphic semantics for
conjunctive queries [33], openCypher adopts an isomorphic
semantics. For these two reasons, openCypher queries often
have answer sets that differ from that of their counterparts

3. For obvious reasons, we obfuscate the names of the three commer-
cial systems employed in our study.

4. We use the standard translation of UCRPQ’s into recursive views,
implemented using linear recursion [26].
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in the other languages, which should be kept in mind while
evaluating experimental results pertaining to system G.

Measurements. We generate and execute query workloads
on a variety of graph configurations. We execute and mea-
sure the runtime of each query six times. The first one is a
“cold” run that we exclude from the computation of the
average; from the remaining five “warm” runs we drop
the fastest and slowest and then report the average of the
remaining three execution times. Between the execution
of each query, we close and reopen the database to clear
any caching effects. We consider the following parameters
in generating workloads: selectivity classes of the tested
queries (constant, linear, quadratic) and size (amounting to
30 queries for each workload). We consider the following
parameters in generating graphs: size (from 2K to 16K
nodes) and use case i.e, Bib, LSN, and WD (cf. Section 6.1).

We make three remarks here. (i) Despite being small, the
considered graph sizes were already sufficient to illustrate
interesting behavior and distinctions between the studied
systems. Indeed, as we discuss in Section 7.2, already on
these graphs we observed that many simple queries fail on a
majority of the systems. Even for those queries that succeed,
the evaluation times are often very high e.g., hundreds or
even thousands of seconds already on instances of these
sizes. (ii) To ensure a fair comparison of all systems and
to avoid measuring the time to print the query results,
we added to all queries the aggregate countpdistinctp?vqq,
where ?v is the (binary) vector of output variables. We recall
that distinct is also necessary for our analysis since the
algebra relies on the elimination of duplicates (cf. Section 5).
(iii) In this study, all queries are chains, as this is the basic
query shape from which the others are constructed and
hence sufficient for illustrating the relative performance
of current graph query processing engines. Finally, even
though in the presentation of the results, we focus on the
default use case Bib, we observed comparable trends for
the other use cases, that we omit for the sake of conciseness.

7.2 Results of experiments

Non-recursive queries. In our first experiment, we focus on
the non-recursive queries i.e., query workloads Len, Dis, Con
(cf. Section 6.2). We summarize the results in Fig. 12. The
goal of this study is to observe how the different systems
react to these varied workloads. Fig. 12(a) shows the query
execution times averaged across the 10 constant queries of
each workload. Out of the 10 averages obtained by the 5
warm runs of each query, we computed once again the
overall average, by discarding two out of the 10 averages
that have the farthest standard deviation with respect to this
overall average. This allows to capture the cases in which
some of the systems fail or give outlier results. In Fig. 12(a),
we observe that P reacts better than S, G, and D to query
workload diversity, by exhibiting lower query evaluation
times on all instance sizes. This behavior is confirmed in
the case of linear queries, as shown in Fig. 12(b), for the
Con query workload on all the sizes and for the Len and
Dis query workloads for smaller sizes only i.e., 2K and 4K.
For larger instance sizes i.e., 8K and 16K, the behavior is
reverted in favor of S for linear queries. Then, as shown in
Fig. 12(c) for quadratic queries, S continues on this trend

TABLE 4
Execution time (sec.) for recursive queries.

Syst.
Query 1: Graph Size Query 2: Graph Size

2K 4K 8K 16K 2K 4K 8K 16K
P 3400 72113 - - - - - -
G - - - - - - - -
S 6621 - - - - - - -
D 450 455 552 725 607 704 1295 2095

by beating P, G, and D. We also observe from all query
execution times reported in Fig. 12 that the times taken by
constant and linear are of the same order of magnitude,
whereas quadratic queries, as expected, typically exhibit an
order of magnitude slowdown. There is only one system (D)
for which the differences of the behavior along the sets of
linear and quadratic queries are blurred.

We conclude from this study that gMark allows us to gen-
erate interesting queries and diverse query workloads that
already on small graph instances stress-test state-of-the-art
systems, and highlight particular strengths and weaknesses
in processing graph queries. As a general observation, we
can further conclude that the straightforward standard im-
plementation of UCRPQ’s in PostgreSQL typically shows
superior performance across a broad class of queries (i.e.
constant and linear) to that of existing dedicated systems.

Recursive queries. Our second experiment is devoted to
recursive queries, generated by query workloads containing
Kleene stars. Unfortunately, all tested systems either failed
on the majority of these queries or had to be manually
terminated after unexpectedly long running times. For these
reasons, it is difficult to draw a clear conclusion on recursive
queries. Therefore, we performed a small case analysis: we
considered two recursive queries of constant and quadratic
selectivity, respectively, for which we could collect results
for at least one of the four systems. We report the results
for both queries in Table 4. The first query has constant
selectivity. P was quite slow at evaluating it on small in-
stances and starts failing on graphs of 8K nodes. S was able
to answer this query only on the smallest graph size (2K).
G failed in all cases and always returned empty results (due
to its different query semantics, as discussed in Section 7.1).
The only system for which we could measure the evaluation
time for all sizes was D, which also turned to be the most
efficient one. The second query has quadratic selectivity and
only D was able to evaluate it. We conclude from this study
that only D is currently able to deal with recursive queries.

8 CONCLUDING REMARKS

We presented gMark, the first generator that satisfies the key
criteria of being domain-independent, extensible, schema-
driven, and highly configurable also in terms of the expected
query selectivity of a given workload. The latter is a novel
contribution on its own and is applicable to other inde-
pendent benchmarks and problems. For instance, we could
envision the query workload generation in gMark applied to
real graph data sets on top of which a schema extraction tool
has been run beforehand. Furthermore, gMark is the first
benchmark to generate workloads exhibiting recursive path
queries, which are central to graph querying. Our in-depth
empirical study demonstrated both the quality and prac-
ticality of gMark. Moreover, our experiments highlighted
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Fig. 12. Summary of query execution times for diverse query workloads (Len, Dis, Con) and various graph sizes under PostgreSQL (P) and three
commercial systems: a SPARQL query engine (S), a native graph database (G), and a modern Datalog engine (D).

important limitations in the query processing capabilities
of current state-of-the-art graph processing engines, already
on small graph instances and on both recursive and non-
recursive queries.

We plan to align our work on gMark with international
benchmarking bodies such as LDBC [7]. Looking ahead
to the future work, there are many directions for further
investigation e.g., extending the selectivity estimation to n-
ary queries. We also aim to evangelize for the use of gMark

by researchers in the graph data management community;
a first step in this direction is our VLDB demo [34].
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Guillaume Bagan (PhD, Université de Caen, 2009) is a CNRS research
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