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ABSTRACT
Skyline queries enable multi-criteria optimization by filtering ob-
jects that are worse in all the attributes of interest than another
object. To handle the large answer set of skyline queries in high-
dimensional datasets, the concept of k-dominance was proposed
where an object is said to dominate another object if it is better
(or equal) in at least k attributes. This relaxes the full domination
criterion of normal skyline queries and, therefore, produces lesser
number of skyline objects. This is called the k-dominant skyline
set. Many practical applications, however, require that the prefer-
ences are applied on a joined relation. Common examples include
flights having one or multiple stops, a combination of product price
and shipping costs, etc. In this paper, we extend the k-dominant
skyline queries to the join paradigm by enabling such queries to be
asked on joined relations. We call such queries KSJQ (k-dominant
skyline join queries). The number of skyline attributes, k, that an
object must dominate is from the combined set of skyline attributes
of the joined relation. We show how pre-processing the base re-
lations helps in reducing the time of answering such queries over
the naïve method of joining the relations first and then running the
k-dominant skyline computation. We also extend the query to han-
dle cases where the skyline preference is on aggregated values in
the joined relation (such as total cost of the multiple legs of the
flight) which are available only after the join is performed. In ad-
dition to these problems, we devise efficient algorithms to choose
the value of k based on the desired cardinality of the final skyline
set. Experiments on both real and synthetic datasets demonstrate
the efficiency, scalability and practicality of our algorithms.

Keywords
Skyline query; K-dominant skyline query; Join; Aggregation; K-
dominant skyline join query; KSJQ

1. INTRODUCTION AND MOTIVATION
Skyline queries are widely used to enable multi-criteria decision

making in databases [3]. Consider a scenario where a person wants
to buy a good house. Her preferences are low cost, proximity to
market, quiet neighborhood, etc. In a real scenario, it is almost

ACM ISBN XXX.

DOI: XXX

impossible to find a single house that is best in all her preferences.
The skyline query helps her narrow down the choices by filtering
out houses that are worse (or equal) than some other house in all the
preferences. Assuming rationality, her choices cannot lie outside
the skyline set.

In high-dimensional spaces, however, the skyline set becomes
less useful due to its impractically large size. The size tends to
increase exponentially with dimensionality [28]. This happens as it
becomes harder for any object to dominate another object in all the
attributes. The problem is especially severe in real datasets where
the data is generally anti-correlated in nature. For example, a quiet
neighborhood closer to a market is likely to be more costly.

There have been various works on handling the large cardinality
of skyline sets in high dimensions. The most prominent is that of
k-dominant skylines where, instead of being better in all the d di-
mensions, an object need only be better in some k < d dimensions
to dominate another object [4]. As a result, it becomes easier for an
object to be dominated which leads to lesser number of skylines.

The k-dominant skylines are quite useful in real scenarios. In the
example of housing discussed above, if there are many attributes, it
may be rare that one house is better than another on all the counts.
Instead, if a smaller number of attributes, say k = 2, is specified,
there are more chances of finding a house that has a lower cost and
a quieter neighborhood (but may not be closer to a market) than
another house. As a result, more houses can be filtered, and the
retrieved skyline set becomes more manageable and useful.

To the best of our knowledge, however, the k-dominant skyline
queries have not been explored for multiple relations.1 Suppose
there are two relations having d1 and d2 skyline attributes. Af-
ter joining, a bigger relation with d1 + d2 skyline attributes is
formed. (We discuss the different variants and restrictions later.)
A k-dominant skyline, where k < d1 + d2, is then sought on this
joined relation.

A real-life example of this situation happens often in flight book-
ings. Suppose a person wants to fly from city A to city B. Her pref-
erences are lower cost, lower duration, higher ratings and higher
amenities. While the basic skyline works for direct flights, in many
cases, a flight route from A to B includes one (or more) stopovers.
Thus, a valid flight path contains the join of all flights from city A
to other cities and from those cities to city B where the intermediate
city is the same. The preferences a user would want now applies to
the entire flight path and not a single leg of the journey. The skyline
is, therefore, needed on the joined relation [2, 21].

Once more, it is harder for a flight combination to dominate an-
other flight combination in all the skyline attributes over the two
relations. Here, the k-dominant skyline query is a natural choice,
where k is less than the total number of the skyline attributes in the

1A preliminary version of this paper will appear as a poster [1].
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joined relation.
With the increase in the number of attributes, the size of the sky-

line set increases further and, hence, computing the k-dominant
skylines becomes even more relevant and useful.

The naïve approach first creates the joined relation and then sub-
sequently computes the k-dominance. This strategy, while straight-
forward, is inefficient and impractical for large datasets.

A further practical consideration in the flight example is that a
user is not really bothered about the individual legs, but rather the
total cost and total duration of the journey. Thus, the skyline prefer-
ences should be applied on the aggregated values of attributes from
the base relations. Note that the aggregated values are available
only after the join and are, therefore, harder to process efficiently.

In this paper, we explore the question of finding k-dominant sky-
lines on joined relations, where the skyline preferences can be on
both aggregated and individual values. Apart from posing the prob-
lem, our main contribution is to push the skyline operator before
the join as much as possible, thereby making the whole algorithm
efficient and practical.

In addition to finding k-dominant skylines, an important question
that often arises in practical applications is how to choose a “good”
value of k? While there is no universal answer, one of the guiding
principles is the number of skyline objects finally returned [4]. The
basic idea of skyline queries is to serve as a filter for poor objects
and, thus, a user may find it easier to specify a value of δ objects
that she is interested in examining more thoroughly rather than a
value of k. Since the size of the skyline set increases with k, the
“optimal” value of k may be then taken as the smallest one that
returns at least δ skyline objects, or the largest one that returns at
most δ skyline objects.

We address the above question in the context of k-dominant sky-
lines over joined relations.

In sum, our contributions are:
1. We propose the problem of finding k-dominant skyline queries

over joined relations. We term such queries KSJQ.
2. We design efficient algorithms to solve the KSJQ problem.
3. We devise ways to arrive at a good value of “k” by specifying

a threshold size of the k-dominant skyline set.
The rest of the paper is organized as follows. Sec. 2 sets the

background on joins of k-dominant skylines. Using this, different
problem statements are defined in Sec. 3. Sec. 4 outlines the related
work. Various optimizations that can improve the efficiency of the
problem are explained in Sec. 5. Algorithms that use these opti-
mizations are described in Sec. 6. Sec. 7 analyzes the experimental
results before Sec. 8 concludes.

2. BACKGROUND

2.1 Skylines
Consider a dataset R of objects. For each object u, a set of d

attributes {u1, . . . , ud} are specified, which form the skyline at-
tributes. For each of the skyline attributes, without loss of gen-
erality, the preference is assumed to be less than (<), i.e., a lower
value is preferred over a higher one. An object u dominates another
object v, denoted by u � v, if and only if, for all the d skyline at-
tributes, ui is preferred over or equal to vi, and there exists at least
one skyline attribute where uj is strictly preferred over vj . The
skyline set S ⊆ R contains objects that are not dominated by any
other object [3]. In other words, every object in the non-skyline set
is dominated by at least one object in the dataset.

2.2 K-Dominant Skylines

The k-dominant skyline query [4] relaxes the definition of domi-
nation between objects. An object u k-dominates another object v,
denoted by u �k v, if and only if, for at least k of the d skyline at-
tributes, ui is preferred over or equal to vi, and there exists at least
one skyline attribute where uj is strictly preferred over vj . The
k-dominant skyline set contains objects that are not k-dominated
by any other object. The k attributes are not fixed and can be any
subset of the d skyline attributes.

The k-dominant query is particularly problematic when k ≤ d
2

since then two objects can dominate each other. Even when k >
d
2

, the k-dominance relationship is not transitive and may be even
cyclic: u �k v �k w �k u.

2.3 Multi-Relational Skylines
Consider two datasets R1 and R2 with d1 and d2 skyline at-

tributes respectively. The join of the two relations (using appro-
priate join conditions) forms the dataset R = R1 1 R2 with
d = d1 + d2 skyline attributes. The multi-relational skyline is
extracted from R [21].

In a significant variant of the problem, a number of skyline at-
tributes in each relation are marked for aggregation with corre-
sponding attributes from the other relation [2]. Thus, a attributes
out of d1 in R1 and d2 in R2 are aggregated in the joined relation
R. As a result, R contains (d1− a) + (d2− a) + a = d1 + d2− a
skyline attributes. The skyline query is then asked over these at-
tributes. The aggregation function is assumed to be monotonic; this
ensures that if the base values of two tuples u ∈ R1 and t ∈ R2

are preferred over the base tuples of two other tuples v ∈ R1 and
s ∈ R2 respectively, the aggregated value of u 1 t ∈ R will be
necessarily preferred over the aggregated value of v 1 s ∈ R.

The case for more than two base relations can be handled by
cascading the joins.

3. PROBLEM STATEMENTS
We propose two main variants of what we call the K-DOMINANT

SKYLINE JOIN QUERY (KSJQ) problem.
The first variant works on relations for which the skyline at-

tributes are strictly local.
The number of skyline attributes in the first and second relations,

R1 and R2, are d1 and d2 respectively.

R1 = {h11 , . . . , h1m , s11 , . . . , s1d1 } (1)

R2 = {h21 , . . . , h2m , s21 , . . . , s2d2 } (2)

R = {h1, . . . , hm, s11 , . . . , s1d1 , s21 , . . . , s2d2 } (3)

where hi captures the join of h1i with h2i in the joined relation
R = R1 1 R2, and s1i , s2i are the skyline attributes.

PROBLEM 1 (KSJQ). Given two datasets R1 and R2 having
d1 and d2 skyline attributes respectively, find k-dominant skylines
from the joined relationR = R1 1 R2 having d = d1 +d2 skyline
attributes.

We restrict k to be at least one more than the dimensionality in
the base relations, i.e., max{d1, d2} < k < d. This restriction
constrains at least some skyline attributes from each relation to sat-
isfy the preferences. In other words, the k preferred attributes must
span both the relations. However, there is no restriction over how
many skyline attributes from each relation must be satisfied. De-
noting the number of skyline attributes that are chosen from the
two relations by k1 and k2 where k1 + k2 = k, this implies that
1 ≤ k1 ≤ d1 and 1 ≤ k2 ≤ d2.

The second variant works on the aggregate version of the prob-
lem. Assuming a total of a aggregate attributes, the number of



attributes on which only local skyline preferences are applied are
d1 − a = l1 and d2 − a = l2 respectively. The joined relation R,
therefore, contains l1+l2 local attributes and a aggregate attributes.

PROBLEM 2 (AGGREGATE KSJQ). Given two datasetsR1 and
R2 having d1 and d2 skyline attributes respectively, of which a at-
tributes are used for aggregation, find k-dominant skylines from
the joined relation R = R1 1 R2 having d1 + d2 − a skyline
attributes.

Once more, we assume that max{d1, d2} < k ≤ d. Expressing
in terms of local and aggregate attributes, max{l1, l2}+ a < k ≤
l1 + l2 + a.

The third and fourth problems address the tuning of the value of
k. The value can be tuned in two ways.

PROBLEM 3 (AT LEAST δ). Given a KSJQ query framework
and a threshold number of skyline objects δ, determine the smallest
value of k that returns at least δ skyline objects.

PROBLEM 4 (AT MOST δ). Given a KSJQ query framework
and a threshold number of skyline objects δ, determine the largest
value of k that returns at most δ skyline objects.

Prob. 4 is directly linked with Prob. 3. If k∗ is the answer to
Prob. 3, then the answer to Prob. 4 must be k∗ − 1. There are two
corner cases. First, if k∗ = 1, then the answer to Prob. 4 should be
trivially 1 as well. Second, if k∗-dominant skyline returns exactly
δ skyline objects (or k∗ = d), then the answer to Prob. 4 is k∗ as
well. Thus, henceforth, we focus only on Prob. 3.

4. RELATED WORK
The skyline operator was introduced in databases by [3] by adopt-

ing the maximal vector or the Pareto optimal problem [15]. Several
indexed [14], [17] and non-indexed algorithms [3, 5, 22] have been
since proposed to retrieve the skyline set.

Analyses of the cardinality of the skyline set [9, 28] have shown
that the number of skyline objects can grow exponentially with the
increase in dimensionality. Consequently, several attempts have
been made to restrict the size of the skyline set. These mostly in-
clude notions of approximate skylines or representative skylines [6,
8, 10, 12, 13, 16, 23, 25, 26, 27].

A completely different approach—k-dominant skylines—was pro-
posed by [4]. It uses subsets of skyline attributes to control the car-
dinality of the skyline set. Although the parameter k is an input to
the problem, the authors also proposed a way to derive the smallest
k that will guarantee a δ number of skylines.

There have been many recent works on k-dominant skylines in-
cluding extensions to high-dimensional spaces [18, 19], using par-
allel processing [24], cardinality estimation [11] as well as in update-
heavy datasets [20] and combined datasets [7].

The skyline join problem where skylines are retrieved from joined
relations, both components of which contain skyline attributes, was
introduced in [21]. This work, however, simply assumed that the
skyline attributes remain unchanged from the base relations to the
joined one. The aggregate skyline join queries [2] removed this re-
striction by enabling skyline preferences to be posed on aggregate
values of attributes formed by combining attributes from the base
relations. The aggregation function was assumed to be monotonic.

In this paper, we pose the k-dominant skyline problem in the
join paradigm (including the aggregated version). To the best of
our knowledge, this is the first work in this direction.

fno destination cost dur rtg amn category
11 C 448 3.2 40 40 SS1

12 C 468 4.2 50 38 NN1

13 D 456 3.8 60 34 SN1

14 D 460 4.0 70 32 NN1

15 E 450 3.4 30 42 SN1

16 F 452 3.6 20 36 SS1

17 G 472 4.6 80 46 SN1

18 H 451 3.7 20 37 SS1

19 E 451 3.7 40 37 NN1

Table 1: Flights from city A (f1).

5. OPTIMIZATIONS
In this section, we describe the various optimization schemes that

can be used to speed-up the process of finding k-dominant skylines
in joined relations. Sec. 6 uses these optimizations to design the
algorithms.

5.1 Join Attributes
We assume an equality join condition. Two base tuples u ∈ R1

and v ∈ R2 can be joined to form t = u 1 v ∈ R if and only if all
their join attributes match. Referring to Eq. (3), ∀j=1,...,m h1j =
h2j . (We discuss the relaxation of this assumption in Sec. 6.6.)

ASSUMPTION 1 (EQUALITY JOIN). The join conditions are
all based on equality, i.e., the join is an equality join.

All the tuples in a base relation are, thus, divided into groups
according to the value of the join attributes. In every group, the
values of the join attributes, hi1 , . . . , him(i = 1, 2), are the same.

In the flight example, since the joining criterion is destination
of first flight to be the source of the second flight, the first base
relation is divided on the basis of destinations while the second one
is divided on sources.

5.2 Grouping
Based on the k-dominance properties within each group, each

base relation is partitioned into different sets as follows.
A tuple may be a k-dominant tuple for the entire base relation.

However, even when it is not, it may not be k-dominated by any
other tuple in its group. It is then a k-dominant tuple when only its
group is concerned.

Based on the above notion of k-dominance within a group, each
base relationRi is divided into 3 mutually exclusive and exhaustive
sets SSi, SNi, and NNi:

Ri = SSi ∪ SNi ∪NNi (4)

We next define the three sets.

DEFINITION 1 (SS). A tuple u is in SS if u is a k-dominant
skyline in the overall relation; consequently, it is a k-dominant sky-
line in its group as well.

DEFINITION 2 (SN ). A tuple u is in SN if u is a k-dominant
skyline only in its group but not in the overall relation.

DEFINITION 3 (NN ). A tuple u is in NN if u is not a k-
dominant skyline in its group; consequently, it is not a k-dominant
skyline in the overall relation as well.

Consider the examples in Table 1 and Table 2. We assume that
all the attributes have lower preferences2. We set k = 3 for both
2Although the preferences for ratings and amenities are generally
the other way round, we stick to lower preferences for ease of un-
derstanding.



fno source cost dur rtg amn category
21 D 348 2.2 40 36 SS2

22 D 368 3.2 50 34 NN2

23 C 356 2.8 60 30 SN2

24 C 360 3.0 70 28 NN2

25 E 350 2.4 30 38 SN2

26 F 352 2.6 20 32 SS2

27 G 372 3.6 80 42 SN2

28 H 350 2.4 35 37 SN2

Table 2: Flights to city B (f2).

the relations. The categorization of the tuples are shown in the last
column.

Table 3 shows the joined relation.
The important outcome of this division into the three sets is that it

allows certain tuples to be automatically designated as k-dominant
skylines (or not) without computing the join, as explained next.

5.3 Deciding about Skylines before Join
We first analyze a simple case where out of the final k attributes

in the joined relation, if a joined tuple t k-dominates another joined
tuple s, t must k1-dominate s in the first base relation and must
k2-dominate in the second base relation (k = k1 + k2).

Note that, in practice this situation will not be specified by any
user. We are only going to use it to explain the basic concepts
and then build upon it later by removing this assumption. For
the theorems and observations in this section, the first base rela-
tion is divided into the three sets SS1, SN1, NN1 according to
k1-domination while the second base relation is divided into SS2,
SN2, NN2 using k2-domination.

The first theorem shows that a tuple formed by joining the SS
counterparts is always a k-dominant skyline.

THEOREM 1. The tuples in the set (SS1 1 SS2) are k-dominant
skylines.

PROOF. Consider a joined tuple t′ = u′ 1 v′ formed by joining
the tuples u′ ∈ SS1 and v′ ∈ SS2. Assume that t = u 1 v
k-dominates t′, i.e., t �k t′. Since u′ ∈ SS1, no tuple and, in
particular, u can k1-dominate u′. Similarly, v 6�k2 v

′. Therefore,
6 ∃t, t �k t

′. Hence, t′ is a k-dominant tuple.

The flight combination (16,26) in Table 3 is an example.
The second theorem shows the reverse: composite tuples formed

by joining a base tuple in NN can never be k-dominant skylines.

THEOREM 2. The tuples in the sets (SS1 1 NN2), (SN1 1

NN2), (NN1 1 SS2), (NN1 1 SN2), and (NN1 1 NN2) are
not k-dominant skylines.

PROOF. Consider a joined tuple t′ = u′ 1 v′ formed by joining
the tuples u′ ∈ NN1 and v′ ∈ R2. Therefore, there must exist a
tuple u in the same group that k1-dominates u′, i.e., ∃u, u �k1 u

′.
Consider the tuple t formed by joining u with v′. Since u is in the
same group as u′, this tuple necessarily exists. As t dominates t′

in k1 attributes and is equal in k2, overall, it dominates in k1 +
k2 = k attributes, i.e., t �k t

′. Therefore, t′ is not a k-dominant
skyline. This covers the cases (NN1 1 SS2), (NN1 1 SN2),
and (NN1 1 NN2). The cases for (SS1 1 NN2) and (SN1 1

NN2) are symmetrical.

The flight combinations (11,24), (13,22), (14,21), (14,22), (12,23),
and (12,24) in Table 3 exemplify the above cases. For example, the
tuple (11,24) is dominated by (11,23).

However, nothing can be concluded surely about the rest of the
joined tuples.

OBSERVATION 1. The tuples in the sets (SS1 1 SN2) and
(SN1 1 SS2) are most likely to be k-dominant skylines, although
that is not guaranteed.

PROOF. Consider a joined tuple t′ = u′ 1 v′ formed by joining
the tuples u′ ∈ SS1 and v′ ∈ SN2. Consider the dominator v ∈
R2 �k2 v′. Since v′ is a k2-dominate skyline in R2, v is in a
different group than v′. Therefore, v cannot join with u′, i.e., 6 ∃t =
u′ 1 v, v �k2 v′. Although no tuple u can k1-dominate u′,
there may exist u whose k1 attributes have the same value as u′.
If it happens that u is join-compatible with v, then and only then,
t = u 1 v exists and t �k t

′ (since it is equal in k1 and better in
k2 attributes). The above situation is quite unlikely, although not
impossible. The case for (SN1 1 SS2) is symmetrical.

Thus, while (11,23) and (13,21) are k-dominant skylines, (18,28)
is not (Table 3). Flight 18 has same k1 values as 19 while 28 is
dominated by 25. Therefore, (18,28) is k-dominated by (19,25).

The observation for (SN1 1 SN2) is similar.

OBSERVATION 2. A tuple in the set (SN1 1 SN2) may or may
not be a k-dominant skyline.

PROOF. Consider a joined tuple t′ = u′ 1 v′ ∈ (SN1 1

SN2). Consider the tuples u and v such that u �k1 u
′ and v �k2

v′. Since u′ ∈ SN1, u is in a different group than u′. Similarly, v
is in a different group than v′. If and only if u and v are join com-
patible, they will join to form t = u 1 v which then k-dominates
t′. Otherwise, no such t exists, and t′ is a k-dominant skyline.

Consider (15,25) in Table 3. Since its dominators, flights 11 and
21 respectively, are not join compatible (11 reaches city C while 21
takes off from city D), the flight combination (11,21) is not valid.
Consequently, no joined tuple dominates it, and (15,25) becomes a
k-dominant skyline. On the other hand, for (17,27), the dominators
16 and 26 do join (the city F is common) to form the tuple (16,26).
As a result, (17,27) is not a k-dominant skyline.

The overall situation is summed up in Table 4.

5.4 Skyline Attributes in Joined Relation
We next do away with the assumption that k1 and k2 attributes

have to be satisfied separately from the first and second relations. It
is simply required that the joined relation returns k-dominant sky-
lines with no restriction on how k is broken up between the base
relations. However, to ensure that the skyline preferences are re-
spected for at least one attribute in every base relation, we assume
that k > max{d1, d2}.

A brute-force way to find the skylines is to generate all combi-
nations of k1 and k2 such that k1 + k2 = k and, then, combine
the answer sets using the results obtained in the previous section.
However, it can be done more efficiently as explained next.

We consider the following cases:

k′1 = k − d2 k′2 = k − d1 (5)

For all combinations of k1 and k2 such that k1 + k2 = k, the
inequalities, 1 ≤ k′1 ≤ k1 ≤ d1 and 1 ≤ k′2 ≤ k2 ≤ d2, hold.

Consider the example in Table 3. If k = 7, then k′1 = k′2 = 3.
Thus, categorization and k-dominant skyline sets remain the same.

We first establish the following lemma on the monotonicity of
the number of skyline attributes.

LEMMA 1. If tuple u is a j-dominant skyline, it is also a i-
dominant skyline for any i ≥ j.

PROOF. Consider u to be a j-dominant tuple. Assume that,
however, it is not i-dominant for some i > j. Thus, there exists



fno stop-over f1.cost f1.dur f1.rtg f1.amn f2.cost f2.dur f2.rtg f2.amn categorization skyline
(11,23) C 448 3.2 40 40 356 2.8 60 30 SS1 1 SN2 yes
(11,24) C 448 3.2 40 40 360 3.0 70 28 SS1 1 NN2 no
(12,23) C 468 4.2 50 38 356 2.8 60 30 NN1 1 SN2 no
(12,24) C 468 4.2 50 38 360 3.0 70 28 NN1 1 NN2 no
(13,21) D 456 3.8 60 34 348 2.2 40 36 SN1 1 SS2 yes
(13,22) D 456 3.8 60 34 368 3.2 50 34 SN1 1 NN2 no
(14,21) D 460 4.0 70 32 348 2.2 40 36 NN1 1 SS2 no
(14,22) D 460 4.0 70 32 368 3.2 50 34 NN1 1 NN2 no
(15,25) E 450 3.4 30 42 350 2.4 30 38 SN1 1 SN2 yes
(16,26) F 452 3.6 20 36 352 2.6 20 32 SS1 1 SS2 yes
(17,27) G 472 4.6 80 46 372 3.6 80 42 SN1 1 SN2 no
(18,28) H 451 3.7 20 37 350 2.4 35 39 SS1 1 SN2 no
(19,25) E 451 3.7 40 37 350 2.4 30 38 NN1 1 SN2 no

Table 3: Joined relation (f1 1 f2).

SS2 SN2 NN2

SS1 yes (Th. 1) likely (Obs. 1) no (Th. 2)
SN1 likely (Obs. 1) may be (Obs. 2) no (Th. 2)
NN1 no (Th. 2) no (Th. 2) no (Th. 2)

Table 4: Fate of k-dominant skylines.

SS2 SN2 NN2

SS1 yes (Th. 3) likely (Obs. 3) no (Th. 4)
SN1 likely (Obs. 3) may be (Obs. 4) no (Th. 4)
NN1 no (Th. 4) no (Th. 4) no (Th. 4)

Table 5: Joins of groups.

v that i-dominates u, i.e., v is better than u in i attributes. Then, v
must be better than u in some subset j of these i attributes, which is
a contradiction. Thus, u must be i-dominant for every i ≥ j.

The following theorems and observations implicitly use Lemma 1.

THEOREM 3. The tuples in the set (SS1 1 SS2) are k-dominant
skylines.

PROOF. Consider t′ = u′ 1 v′ ∈ (SS1 1 SS2). There are
two cases to consider: (i) when there does not exist any tuple u that
shares k′1 attributes with u′, and (ii) when there exists a tuple u that
share k′1 or more attributes with u′.

In the first case, if ∃t, t �k t
′, then tmust dominate t′ in at least

k′1 attributes corresponding to u′ since it can dominate t in at most
d2 attributes corresponding to v′. Since this is impossible, t′ is a
k-dominant skyline.

In the second case, u′ can be dominated by u ∈ R1 in at most
d1 − 1 attributes (otherwise u′ 6∈ SS1). Thus, to dominate t′, u
must combine with v ∈ R2 such that v dominates v′ in at least
k − (d1 − 1) = k2 + 1 attributes, which is impossible since v′ ∈
SS2. Hence, t′ is a k-dominant skyline.

THEOREM 4. The tuples in the sets (SS1 1 NN2), (SN1 1

NN2), (NN1 1 SS2), (NN1 1 SN2), and (NN1 1 NN2) are
not k-dominant skylines.

PROOF. In each of the sets, at least one base tuple is in NN .
Consider a joined tuple t′ = u′ 1 v′ where u′ ∈ NN1. Surely,
∃u, u �k′

1
u′ exists and u is in the same group as u′. Therefore, u

is join compatible with v′. Consider t = u 1 v′. It dominates t′ in
k′1 + d2 = k attributes. Thus, t′ is not a k-dominant skyline.

For example, (16,26) ∈ SS1 1 SS2 and (14,22) ∈ NN1 1

NN2 (in Table 3) is a k-dominant skyline and not a k-dominant
skyline respectively.

OBSERVATION 3. A tuple in the set (SS1 1 SN2) or (SS2 1

SN1) is most likely to be a k-dominant skyline, although that is not
guaranteed.

PROOF. Consider t′ = u′ 1 v′ ∈ (SS1 1 SN2). There are
two cases to consider. In the first case when there does not exist
any tuple u that share k′1 attributes with u′, a joined tuple t can
dominate t′ in at most k′1 − 1 + d2 = k − 1 attributes. Therefore,
t′ is a k-dominant skyline.

In the second case, assume that such a u with equal k′1 attributes
exists. Note, however, that u cannot be better in any other attribute
as then u′ would be k′1-dominated by u. Since v′ ∈ SN2, there
exists a v ∈ R2 that dominates v′ but is in a different group. If and
only if u and v are join compatible, the joined tuple t = u 1 v
exists. Comparing t against t′, we see that the k′1 attributes corre-
sponding to u′ (or u) are same. Therefore, for t′ to k-dominate t, v′

must dominate v in all the k− k′1 = d2 attributes. This is unlikely,
although not impossible.

The proof for (SS2 1 SN1) is similar.

For example, consider (18,28) ∈ SS1 1 SN2 in Table 3 against
(19,25). While k′1 = 3 attributes for 18 and 19 are same, 25 dom-
inates 28 in d2 = 4 attributes. Thus, overall, (19,25) dominates
(18,28) in 3+4 = 7 attributes and, thus, (18,28) is not a k-dominant
skyline. On the other hand, (11,23) ∈ SS1 1 SN2 is a k-dominant
skyline since there is no tuple that shares k′1 = 3 attributes with 11.

OBSERVATION 4. A tuple in the set (SN1 1 SN2) may or may
not be a k-dominant skyline.

PROOF. Consider a joined tuple t′ = u′ 1 v′ ∈ (SN1 1

SN2). Consider the tuples u and v that dominate u′ and v′ respec-
tively. Since u and v are in different groups than u′ and v′, they
may not be join compatible. If they are, the joined tuple t = u 1 v
dominates t′ in at least k′1 + k′2 attributes. The tuple t may ad-
ditionally dominate t′ in some other attributes such that it overall
k-dominates t′. If these two conditions are not met, t′ becomes a
k-dominant skyline.

Out of the two tuples in SN1 1 SN2 in table 3, while (15,25) is
a k-dominant skyline because the dominators 11 and 21 are not in
the same group and, therefore, cannot join, the flight combination
(17,27) is not a k-dominant skyline as the dominators 16 and 26
join to form (16,26) which overall k-dominates (17,27).

Table 5 summarizes the situation.
It is important to note that for determining the groups in the base

relations, it must be the minimum number of attributes considered,
i.e., k′1 and k′2; otherwise, the correctness of the above theorems
may be violated.



5.5 Unique Value Property
For a tuple in SS1 1 SN2 (and SN2 1 SS1) to be not a k-

dominant skyline, the number of attributes in which u ∈ R1 is
same as u′ ∈ SS1 must be at least k′1. If the base relations fol-
low a unique value property where it is guaranteed that for any
k′i (i = 1, 2) number of attributes, two tuples will be unique, then
the processing becomes simpler.

DEFINITION 4 (UNIQUE VALUE PROPERTY). A relationR has
the unique value property (UVP) with respect to i if for each sub-
set of i skyline attributes of R, all the tuples are unique, i.e., no
two tuple will have exactly the same values in any i-sized subset of
attributes.

If k′i = 1, every tuple for any attribute must be unique. While
real-valued attributes generally follow that, categorical attributes
do not. However, for reasonable values of k′1 and k′2, real datasets
having a mix of both real-valued and categorical attributes gener-
ally follow the UVP.

The UVP is extremely useful since it ensures that the tuples in
SS1 1 SN2 and SN2 1 SS1 become k-dominant skylines as
shown next.

THEOREM 5. If relations R1 and R2 follow UVP with respect
to k′1 and k′2 attributes respectively, the tuples in the sets (SS1 1

SN2) and (SN1 1 SS2) are k-dominant skylines.

PROOF. Consider a joined tuple t in either of the two sets. The
generic situation, as shown in Obs. 3 has two cases. While the first
case makes t a k-dominant skyline, the UVP precludes the second
case. Thus, t is always a k-dominant skyline.

Although we present Th. 5 for the sake of completeness, we do
not assume it in our experiments (Sec. 7).

5.6 Aggregate Attributes
We next consider the case of aggregation where the k-dominant

skyline is sought over attributes that attain values aggregated from
attributes in the base relation.

We assume that there are l1 local and a aggregate skyline at-
tributes in R1 and l2 local and a aggregate skyline attributes in R2.
The total number of skyline attributes inR is, therefore, l1 + l2 +a
attributes. As earlier, the final skyline query is asked over k <
l1 + l2 + a attributes.

The groups in the base relations are partitioned based on both the
local and aggregate attributes. Out of the final number of skyline
attributes k, a of them can be aggregate. Thus, the minimum num-
ber of local attributes that must be dominated in each base relation
is k′′1 = k − a − l2 and k′′2 = k − a − l1. The categorization of
the base relations into the sets SS, SN and NN are done on the
basis of k′1 = k′′1 + a and k′2 = k′′2 + a. Since d1 = a + l1 and
d2 = a+ l2, these definitions are same as earlier (Sec. 5.4).

We use the following assumption about the monotonicity prop-
erty of the aggregate attributes.

ASSUMPTION 2 (MONOTONICITY). If the value of attribute
u1 dominates that of u2 and the value of attribute v1 dominates that
of v2, the aggregated value of u1⊕v1 will dominate the aggregated
value of u2 ⊕ v2, where ⊕ denotes the aggregation operator.

Since the categorization remains the same, the fate of the joined
tuples using the aggregation remains exactly the same as earlier (as
summarized in Table 5).

Table 6 shows the joined relation obtained from Table 1 and Ta-
ble 2 with the cost values aggregated.

Algorithm 1 KSJQ: Naïve Algorithm

Input: Relations R1, R2; Number of attributes k
Output: k-dominant skyline set T
1: D ← R1 1 R2

2: T ← k-dominant skyline(D, k)
3: return T

In the example, considering k = 6 with a = 1, k′′1 = 6−1−3 =
2 and k′′2 = 6−1−3 = 2 but k′1 = k′′1 +1 = 3 and k′2 = k′′2 +1 = 3
remain as earlier.

6. ALGORITHMS
In this section, we describe the various algorithms for answering

the k-dominant skyline join queries (Sec. 5.4). We consider the
general case where the datasets do not follow UVP (Sec. 5.5) and,
where in addition to local skyline attributes, there are aggregate
ones as well (Sec. 5.6).

6.1 Naïve Algorithm
The naïve algorithm (Algo. 1) simply computes the join of the

two relations first (line 1) and then computes the k-dominant sky-
lines from the joined relation (line 2) using any of the standard k-
dominant skyline computation methods [4]. Being the most basic,
it suffers from two major disadvantages. First, the join can require
a very large time, thereby rendering the entire algorithm extremely
time-consuming and impractical. The second shortcoming is the
non-progressive result generation. The user has to wait a fairly
large time (at least the complete joining time) before even the first
skyline result is presented to her. In online scenarios, the progres-
sive result generation is quite an attractive and useful feature.

6.2 Target Set
To alleviate the problems of the naïve algorithms, we next pro-

pose two algorithms, grouping and dominator-based, that use the
concepts of optimization from Sec. 5.

However, before we describe them, we first explain and define
the concept of target sets. Although a tuple in a set marked by
“may be” or “likely” is not guaranteed to be a k-dominant skyline,
it needs to be checked against only a small set of tuples, called its
target set.

Formally, a target set for a tuple u′ in a base relation is the set
of tuples τ(u′) that can potentially combine with other tuples from
the other base relation and k-dominate a joined tuple formed with
u′. In other words, for a joined tuple t′ = u′ 1 v′, there may exist
v such that t = u 1 v where u ∈ τ(u′) k-dominates t′. No tuple
outside the target set τ(u) of u may combine with any other tuple
and dominate t.

DEFINITION 5 (TARGET SET). The target set for a tuple u′ ∈
Ri is the set of tuples τ(u′) ⊆ Ri such that ∀u 6∈ τ(u′), 6 ∃v, v′, t =
u 1 v � t′ = u′ 1 v′.

The definition is one-sided: a tuple in the target set may or may
not join and dominate t′, but no tuple outside the target set can join
and dominate t′. The utility of a target set is easy to understand. To
check whether t′ is a k-dominant skyline, u′ needs to be checked
only against its target set and nothing outside it.

The join of target sets for the base tuples produces the potential
dominating set for the joined tuple.

The target set for a tuple u′ ∈ SS constitutes itself and the set
of tuples {u} that has at least k′1 attributes same as u′. The aug-
mentation is required to guarantee the correctness as explained in



fno stop-over cost f1.dur f1.rtg f1.amn f2.dur f2.rtg f2.amn categorization skyline
(11,23) C 804 3.2 40 40 2.8 60 30 SN1 1 SN2 yes
(11,24) C 808 3.2 40 40 3.0 70 28 SN1 1 NN2 no
(12,23) C 824 4.2 50 38 2.8 60 30 NN1 1 SN2 no
(12,24) C 828 4.2 50 38 3.0 70 28 NN1 1 NN2 no
(13,21) D 804 3.8 60 34 2.2 40 36 SN1 1 SN2 yes
(13,22) D 824 3.8 60 34 3.2 50 34 SN1 1 NN2 no
(14,21) D 808 4.0 70 32 2.2 40 36 NN1 1 SN2 no
(14,22) D 828 4.0 70 32 3.2 50 34 NN1 1 NN2 no
(15,25) E 800 3.4 30 42 2.4 30 38 SN1 1 SN2 yes
(16,26) F 804 3.6 20 36 2.6 20 32 SS1 1 SS2 yes
(17,27) G 844 4.6 80 46 3.6 80 42 SN1 1 SN2 no
(18,28) H 801 3.7 20 37 2.4 35 39 SS1 1 SN2 no
(19,25) E 801 3.7 40 37 2.4 30 38 NN1 1 SN2 no

Table 6: Joined relation (f1 1 f2): aggregate.

Obs. 3. The tuple u′ must be included in the target set of u′ for the
same reason.

For each tuple in SS, the number of such tuples sharing at least
k′1 attributes is typically low. Hence, maintenance of target sets is
quite feasible and practical.

However, the target set for a tuple in SN can be any tuple outside
its group that dominates it. For simplicity, we consider it as the
entire dataset Ri.

Similarly, the target set for NN is Ri.

6.3 Grouping Algorithm
Our first algorithm, called the grouping algorithm (Algo. 2), first

computes the groups SS, SN and NN in the base relations. Next,
the summarization from Table 5 is used. Tuples from the sets
marked by “yes” are immediately output as k-dominant skyline tu-
ples. Tuples marked by “no” are pruned and not even joined.

A tuple in a set marked by “may be” or “likely” is checked
against the join of the target sets of the base tuples.

For a base tuple in the SS group, the target set is first augmented
with tuples that share at least k′i attributes (the Augment subroutine
in lines 6 and 7). Then, each group of tuples is checked only against
its target set. For example, in line 8, the set SS1 1 SN2 is checked
only against A1 1 R2 for a domination in k attributes. Note that
the target set for u ∈ SS1 is only A1. Similarly, lines 9 and 10
handle the sets SN1 1 SS2 and SN2 1 SN1 respectively.

The efficiency of the grouping algorithm stems from the fact that
only the tuples in SN1 1 SN2 need to be compared against the
entireR1 1 R2. For other tuples, the decision can be taken without
even joining (the “yes” and “no” cases), or the comparison set is
small (for the tuples in SS1 1 SN2 and SS2 1 SN1).

6.4 Dominator-Based Algorithm
The grouping algorithm has the problem that for tuples in SNi,

the target set is the entire relationRi. The next algorithm, dominator-
based algorithm (Algo. 3) rectifies this by explicitly storing the set
of dominators. Thus, for a tuple ∈ SSi, SNi, the dominator set of
tuples is first obtained (lines 7 and 11). When the tuple is in SSi,
this set is empty. The dominator sets are augmented by the tuples
themselves and those tuples having the same values in the required
number of skyline attributes (lines 8 and 12). In general, the size
of the dominator sets is quite low as compared to the entire dataset,
i.e., generally |dom(·)| � Ri.

The target sets for the joined tuples are composed of the joins of
the dominating tuples. Each tuple in the sets marked by “likely”
and “may be” is checked against these joins of the corresponding
dominator sets and is added to the answer only if no dominator

Algorithm 2 KSJQ: Grouping Algorithm

Input: Relations R1, R2; Number of attributes k
Output: k-dominant skyline set T
1: k′1 ← k − d2
2: k′2 ← k − d1
3: SS1, SN1, NN1 ← Group(R1, k

′
1)

4: SS2, SN2, NN2 ← Group(R2, k
′
2)

5: T ← (SS1 1 SS2) . “yes” tuples
6: A1 ← Augment(SS1, k

′
1) . augment u ∈ SS1 with

{u′ : u′k′
1

= uk′
1
}

7: A2 ← Augment(SS2, k
′
2) . augment v ∈ SS2 with

{v′ : v′k′
2

= vk′
2
}

8: T1 ← CheckTarget(SS1 1 SN2, A1 1 R2, k)
9: T2 ← CheckTarget(SN1 1 SS2, R1 1 A2, k)

10: T3 ← CheckTarget(SN1 1 SN2, R1 1 R2, k)
11: return T ← T1 ∪ T2 ∪ T3

exists (line 16).
The joins of dominating sets are substantially less in size than

the target sets for the grouping algorithm (which is the join of the
entire target sets). The saving is largest for tuples in SN1 1 SN2.

The saving, however, comes at a cost. For each tuple in SN , all
the dominators need to found out. In addition, the entire dominator
set needs to be stored explicitly.

The advantages of the dominator-based algorithm may not be
enough to offset this overhead of time and storage, especially when
there are many such tuples. Sec. 7 compares the different algo-
rithms empirically.

6.5 Cartesian Product
When the final relation is a Cartesian product of the two base re-

lations, the algorithms become considerably easier. The Cartesian
product can be considered as a special case of join with every tuple
having the same value of the join attribute. In other words, all the
tuples are in the same join group. As a result, there is no SN set.
A tuple is either in SS (when it is a skyline in its local relation) or
in NN (when it is not a skyline). Consequently, the tables become
much simpler, and the fate of all the joined (i.e., final) tuples can be
concluded without the need to explicitly compute them. The tuples
in SS1 1 SS2 are skylines while none of the other tuples are.

6.6 Non-Equality Join Condition
In certain cases, the join condition may not be an equality. For

example, in a flight combination, the arrival time of the first leg
needs to be earlier than the departure time of the second, i.e., f1.arrival <



Algorithm 3 KSJQ: Dominator-Based Algorithm

Input: Relations R1, R2; Number of attributes k
Output: k-dominant skyline set T
1: k′1 ← k − d2
2: k′2 ← k − d1
3: SS1, SN1, NN1 ← Group(R1, k

′
1)

4: SS2, SN2, NN2 ← Group(R2, k
′
2)

5: T ← (SS1 1 SS2) . “yes” tuples
6: for each u ∈ SS1, SN1 do
7: dom(u)← k′1-dominators(u) . dominators of u with k′1

attributes
8: dom(u)← dom(u)∪ Augment(u, k′1) .
{u′ : u′k′

1
= uk′

1
}

9: end for
10: for each v ∈ SS2, SN2 do
11: dom(v)← k′2-dominators(v) . dominators of v with k′2

attributes
12: dom(v)← dom(v)∪ Augment(v, k′2) .
{v′ : v′k′

2
= vk′

2
}

13: end for
14: T ← ∅
15: for each u 1 v ∈ (SS1 1 SN2) ∪ (SN1 1 SS2) ∪ (SN1 1

SN2) do
16: T ← T∪ CheckDominators(dom(u) 1 dom(v), k)
17: end for
18: return T

f2.departure. In this section, we discuss how to handle such join
cases when the condition is one of <,≤, >,≥.

Since the main purpose of dividing a base relation into the three
sets SS, SN and NN is to ensure that certain decisions can be
taken about the tuples in these sets without joining, all the optimiza-
tions discussed in Sec. 5 work with the following modifications.

A tuple in SS1 1 SS2 can never be k-dominated and, thus, it
does not matter how such a tuple is composed from the base rela-
tions. In other words, the semantics of the join condition, equality
or otherwise, does not matter for SS1 1 SS2 tuples.

Next consider a tuple t′ = u′ 1 v′ ∈ (SN1 1 SS2). A tuple in
the SN set, u′, is originally defined as one that is not dominated by
any other tuple in the same group. This ensures that if u′ joins with
v′ from the other relation, then no other tuple u can join with v′ to
dominate t′. This is the crucial property that needs to be maintained
even when the join condition is non-equality.

Thus, if the join condition is u′.arr < v′.dep, then the set {u :
u.arr < u′.arr} is considered to be in the same group of u′ since
it can also join with v′ (and can potentially dominate u). In other
words, this ensures that all such u is join compatible with v′. The
set SN is thus expanded to take care of the non-equality condition.
Note that there may exist other tuples {u′′ : u′′.arr < v′.dep} that
may also join with v′; these, however, cannot be determined locally
without the knowledge of v′ from the other relation and, therefore,
cannot be considered. The target set of a tuple in SN is anyway the
entire dataset (or its dominators). Thus, the algorithms will work
correctly with the above modification.

Similarly, for the converse set, SS1 1 SN2, the SN set for v′

consists of {v : v.dep > v′.dep}.
A joined tuple with NN as a component is rejected as a k-

dominant skyline since the NN tuple can be always dominated by
another tuple in the same group. Hence, similar to SN , the group
of a tuple needs to be defined by taking into account the semantics
of the join condition.

Considering the earlier example of u′.arr < v′.dep, if u′ ∈
NN , then to say that u′ ∈ NN1, there must exist u : u.arr <
u′.arr and u �k′

1
u′. (The definition is suitably modified forNN2

Algorithm 4 Finding k: Naïve Algorithm

Input: Number of skylines δ
Output: Number of attributes k
1: k ← max{d1, d2}+ 1 . minimum k
2: while k < d do
3: if |skyline(k)| ≥ δ then . actual number
4: return k . return and terminate
5: end if
6: k ← k + 1
7: end while
8: return d . maximum possible k

in a suitable manner.) This ensures that the joined tuple t′ = u′ 1
v′ will be dominated by u 1 v′. Once more, tuples of the form
{u′′ : u′′.arr < v′.dep} are left out due to lack of knowledge
about v′.

It may happen that there does not exist any such u but there exists
such an u′′. In that case, u′ is classified as an SN tuple instead
of an NN . This, however, only leads to extra processing of tuples
joined with u′. The correctness is not violated as such joined tuples
of the form t′ = u′ 1 v′ will be finally caught by u′′ 1 v′ and
rejected. Thus, the above modification only affects the efficiency
of the algorithms, not the final result.

6.7 Algorithms for Aggregation
The algorithms that consider aggregation are essentially the same

as the plain KSJQ. The only difference is that when the join is per-
formed, the aggregation of the attributes are done as an additional
step. Therefore, they are not discussed separately.

We next discuss the algorithms for finding k (Problem 3).

6.8 Finding k: Naïve Algorithm
The naïve algorithm (Algo. 4) to search for the lowest k that

produces at least δ skylines starts from the least possible value of
k, i.e., max{d1, d2}+ 1, and keeps incrementing it till the number
of k-dominant skylines is at least δ. The largest possible value of
k, i.e., d, is otherwise returned by default, even if it does not satisfy
the δ criterion.

The algorithm is very inefficient as for each case, it computes the
actual k-dominant skyline set. Further, it traverses the possibilities
of k in a linear manner. The correctness is based on the fact that the
number of k-dominant skylines is a monotonically non-decreasing
function in k (Lemma 1).

We next design algorithms that use Table 5.

6.9 Finding k: Range-Based Algorithm
For a particular value of k, the actual number of k-dominant sky-

lines, ∆k, is at least the size of the “yes” sets, denoted by ∆k,lb,
and at most the sum of sizes of the “yes”, “likely” and “may be”
sets, denoted by ∆k,ub. These, thus, denote the lower and upper
bounds respectively: ∆k,lb < ∆k < ∆k,ub.

The range-based algorithm (Algo. 5) uses these bounds to speed-
up the process. Starting from the minimum possible k = max{d1, d2}+
1, the algorithm finds ∆k,lb and ∆k,ub (lines 3 and 4 respectively).
If ∆k,lb ≥ δ, then the current k is the answer (line 5). If ∆k,ub <
δ, then the current k cannot be the answer and k is incremented
(line 7). Otherwise, i.e., if ∆k,lb < δ ≤ ∆k,ub, then the current k
may be an answer. In this case, the actual k-dominant skyline set
is computed. If its size is δ or greater, it is returned as the answer
(line 9). Else, k is incremented (line 11), and the steps are repeated.

While this algorithm is definitely more efficient than the naïve
one, it still suffers from the shortcoming that it examines a large
number of k’s by incrementing it one by one. If the required k lies



Algorithm 5 Finding k: Range-Based Algorithm

Input: Number of skylines δ
Output: Number of attributes k
1: k ← max{d1, d2}+ 1 . minimum k
2: while k < d do
3: ∆k,lb ← |“yes” sets|
4: ∆k,ub ← |“yes” sets|+ |“likely” sets|+ |“may be” sets|
5: if ∆k,lb ≥ δ then . lower bound
6: return k
7: else if ∆k,ub < δ then . upper bound
8: k ← k + 1
9: else if |skyline(k)| ≥ δ then . actual number

10: return k
11: else
12: k ← k + 1
13: end if
14: end while
15: return d . maximum possible k

towards the higher end of the range, it unnecessarily examines too
many lower values of k. The next algorithm does a binary search
to reduce this overhead.

6.10 Finding k: Binary Search Algorithm
Algo. 6 shows how the binary search proceeds. It starts from the

middle of the possible values of k (line 5). The values of ∆k,lb and
∆k,ub are computed in the same manner as earlier (lines 6 and 7
respectively).

If ∆k,lb ≥ δ (line 8), then k is a potential answer. No value in
the higher range can be the answer as the current k already satisfies
the condition. However, there may be a lower k that satisfies the δ
condition. Hence, the search is continued in the lower range to try
and find a better (i.e., lesser) k.

If, on the other hand, ∆k,ub < δ (line 11), then the current es-
timate of k is too low. The search is, therefore, continued in the
higher range.

If none of these bounds help, the actual number of k-dominant
skylines, ∆k, is found. If ∆k ≥ δ (line 13), then the current k is
a potential answer. However, a lesser k may be found and, so, the
search proceeds to the lower range.

Otherwise, i.e., when ∆k < δ (line 16), the required k is searched
in the higher range.

The algorithm stops when the lower range of the search becomes
larger than or equal to the current answer (line 19), which then is
the lowest k that satisfies the δ condition. It may also stop when the
range is exhausted, in which case, the current value of k is returned
(line 23).

The binary search based algorithm, thus, speeds up the searching
through the possible range of values of k. Sec. 7 compares the three
algorithms empirically.

7. EXPERIMENTAL RESULTS
We experimented with data synthetically generated using http://

randdataset.projects.pgfoundry.org/ on an Intel i7-4770 @3.40 GHz
Octacore machine with 16 GB RAM using code written in Java.

We also experimented with a real dataset of two-legged flights
from New Delhi to Mumbai. The details are in Sec. 7.4.

We measured the effects of various parameters on the different
algorithms proposed in Sec. 6. The parameters and their default
values are listed in Table 7. Note that the size of the joined relation
is a derived parameter. It is equal to n2/g for two base relations
with n tuples and g groups. When the effect of a particular set of
parameters are measured, the rest are held to their default values,

Algorithm 6 Finding k: Binary Search Algorithm

Input: Number of skylines δ
Output: Number of attributes k
1: l← max{d1, d2}+ 1 . minimum k
2: h← d . maximum k
3: cur ← d . current estimate of k
4: while l < h do
5: k ← b(l + h)/2c
6: ∆k,lb ← |“yes” sets|
7: ∆k,ub ← |“yes” sets|+ |“likely” sets|+ |“may be” sets|
8: if ∆k,lb ≥ δ then
9: cur ← k . update current estimate

10: h← k − 1 . search for a lower k
11: else if ∆k,ub < δ then
12: l← k + 1 . search for a higher k
13: else if |skyline(k)| ≥ δ then
14: cur ← k . update current estimate
15: h← k − 1 . search for a lower k
16: else if |skyline(k)| < δ then
17: l← k + 1 . search for a higher k
18: end if
19: if l ≥ cur then . lowest k already found
20: return cur
21: end if
22: end while
23: return cur

Symbol Parameter Default value
n Dataset size for base relation 3, 300
d Dimensionality of base relation 7
k Number of skyline attributes 11
a Number of aggregate attributes 2
g Number of join groups 10
T Dataset type Independent
δ Threshold of skyline size 10, 000
N Size of joined relation 1, 089, 000

Table 7: Parameters for experiments.

unless explicitly stated otherwise.
In the figures, the three main algorithms for KSJQ are denoted

as: G for grouping, D for dominator-based, and N for naïve. The
overall running time for each algorithm is divided into various com-
ponents: (i) time taken for computing the groups in the base rela-
tions, i.e., SS, SN , andNN , (ii) time taken for actually joining the
tuples from the two base relations that cannot be pruned, (iii) time
taken for finding the dominators of the tuples, and (iv) the rest of
the processing. These are marked separately in the figures.

Not all the components are applicable to every algorithm, e.g.,
the naïve algorithm does not find groups. The components that are
not applicable to an algorithm are shown to have zero costs.

The three algorithms for determining the value of k are depicted
as: B for binary search, R for range-based, and N for naïve.

7.1 Aggregate
We first show the results where aggregate values have been used.

The aggregation function used is sum.

7.1.1 Effect of Dimensionality
The first experiment measures the effect of varying k. Fig. 1

shows that the running time increases sharply with k. The two
different settings of dimensionality, d, and number of aggregate
attributes, a, (Fig. 1a and Fig. 1b) show the robustness of this be-
havior. As k increases, it becomes increasingly hard to dominate a
tuple in k dimensions. As a result, the number of k-dominant sky-
line increases heavily, thereby resulting in increased running times.

http://randdataset.projects.pgfoundry.org/
http://randdataset.projects.pgfoundry.org/
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Figure 1: Effect of k.
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Figure 2: Effect of dimensionality.

Overall, the grouping algorithm is the fastest. The dominator-
based algorithm spends a substantial amount of time in finding
the dominators for each tuple. This overhead is not compensated
enough in the final checking stage. This is due to the fact that
the average dominator set sizes are quite large and, hence, joining
large dominator sets requires a substantial amount of time. With
increasing dimensionality, the time required to find the dominator
sets increases as well.

As expected, the naïve algorithm performs the worst as it does
not attempt any optimization at all. It is slower than the grouping
algorithm by about 1.5-2 times.

The next set of experiments hold d and k constant but increases
the number of aggregate attributes, a. Fig. 2a depict the results.
Note that a = 0 signifies that no aggregate attributes are used. The
trend of the results remain the same with the running time increas-
ing with a. Once more, grouping is the best algorithm followed by
dominator-based and naïve.

Fig. 2b shows a medley of results across different d, k and a.
When a or k increase, the running time increases as well.

However, it seems that the reverse happens with d. Comparing
the case of d = 5, k = 7, a = 1 with d = 6, k = 7, a = 1, we note
that in the first case, k′1 = k′2 = 3 while in the second case, k′1 =
k′2 = 2. Thus, in the second case, it is easier to find the groups and
perform the joins. Consequently, it runs faster. The same reasoning
holds true for d = 5, k = 7, a = 2 against d = 6, k = 7, a = 2.

We next compare d = 5, k = 7, a = 2 against d = 6, k =
8, a = 2. The values of k′1 = k′2 = 4 are same in both the cases.
However, the size of dominator sets is larger in the first case. The
time required to divide the base relations into the three sets is also
higher. This leads to an overall higher running time.

7.1.2 Effect of Number of Join Groups
Fig. 3a shows the effect of number of join groups. Note that

when g = 1, the join reduces to a Cartesian product. This case can
be handled specially as explained in Sec. 6.5. When g is low, the
number of k-dominant skylines is low since there are more chances
of a tuple being k-dominated by another one in the same group.
Thus, there are less number of SN tuples (none at g = 1) and
their dominators. On the other hand, when g is high, the size of
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Figure 3: Scalability.
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Figure 4: Type of data distribution.

the joined relation (which is n2/g) decreases. Therefore, there are
two opposing effects on the running time. Empirically, the running
times are the highest at medium values.

7.1.3 Effect of Dataset Size
The next experiment varies the size of the base relations, n. Note

that with increase in n, the size of the joined relation increases
quadratically (O(n2)). Consequently, as visible in Fig. 3b, the run-
ning time increases drastically. The scalability of the grouping al-
gorithm, in particular, as well as the dominator-based algorithm, is
sub-linear in the size of the joined relation, though.

7.1.4 Effect of Type of Data Distribution
The final set of experiments on the aggregated attributes mea-

sures the effect of type of data distribution. Fig. 4 shows that cor-
related datasets are the easiest to process due to higher chances of
domination of a tuple by another tuple, thereby resulting in lesser
number of skylines. The anti-correlated datasets are the most time
consuming due to the opposing effect. The independent datasets
are mid-way.

7.2 No Aggregation
The next set of experiments target the scenarios where no aggre-

gation over the skyline attributes is done.

7.2.1 Effect of Dimensionality
Fig. 5a shows the effect of k when d = 5. Note that since a = 0,

the possible values of k range from d+ 1 = 6 to 2d− 1 = 9.
Similar to the case with aggregate attributes, the running time

increases sharply with k. The grouping algorithm performs the best
while the naïve is the worst. The dominator-based algorithm suffers
since the time spent in finding the dominators is too large and is not
sufficiently compensated later. Interestingly, since the join time is
constant for the naïve algorithm irrespective of the value of k, the
proportion of time spent in joining is much higher for lower k.

Fig. 5b holds k constant and varies d over two settings. When k
is fixed and d increases, the values of k′1 and k′2 decrease. This re-
sults in faster grouping time. The dominator sets are also computed
faster. Thus, the the overall time decreases.

7.2.2 Effect of Number of Join Groups



 0

 1

 2

 3

 4

 5

G D N G D N G D N G D N

T
im

e
 (

m
s
)

k (d=5, a=0)

Grouping Time
Join Time

Dominator Generation
Remaining

9876

 0

 0.05

 0.1

 0.15

 0.2

76

(a) Effect of k.

 0

 2

 4

 6

 8

 10

GDN GDN GDN GDN GDN GDN

T
im

e
 (

s
)

d,k (a=0)

Grouping Time
Join Time

Dominator Generation
Remaining

10,117,116,116,75,74,7

 0
10,116,75,7

(b) Effect of d.

Figure 5: Effect of dimensionality (no aggregation).
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Figure 6: Scalability (no aggregation).

As explained earlier in Sec. 7.1.2, the number of join groups has
two opposing effects on the running time. Therefore, as shown in
Fig. 6a, the results are similar. Note that the values of d and k here
are d = 4 and k = 7.

7.2.3 Effect of Dataset Size
Fig. 6b shows that the running time increases drastically with

n, although the scalability is sub-linear in the size of the joined
relation, i.e., n2. The largest dataset size we tested was for n =
33, 000, leading to a massive size of over 108 for the joined rela-
tion. The fact that the grouping algorithm produces the result in less
than 20 s for this case establishes the practicality of the algorithms.

7.2.4 Effect of Type of Data Distribution
The effect of type of data distribution (Fig. 7) is similar to that in

Sec. 7.1.4 with the anti-correlated requiring the largest amount of
time and correlated the least.

7.3 Finding k

The third and final set of experiments deals with finding the value
of k given a threshold δ of requisite number of k-dominant sky-
lines. Aggregate attributes are not used.

7.3.1 Effect of Threshold δ

Fig. 8a shows the effect of varying δ values. The dimensionality
is held fixed at d = 5 with a = 0. The possible values of k,
therefore, range from d+ 1 = 6 to 2d = 10. The size of each base
relation is n = 3, 300 with g = 10, thereby resulting in more than
106 joined tuples (as listed in Table 7).

With increasing δ, the naïve algorithm requires larger running
times since it keeps iterating over k. The range-based search also
iterates over the values of k, although it avoids the costly full k-
dominant skyline computation in the intermediate steps, if possi-
ble. When δ is very large, it falls outside the upper bounds for most
values of k and, hence, the algorithm runs very fast. In this experi-
ment, when δ ≥ 10, 000, the largest possible k = 10 is returned as
the answer.

For low values of δ, the iterations of both naïve and range-based
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Figure 7: Type of data distribution (no aggregation).
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Figure 8: Effect of dimensionality (finding k).

algorithms stop early. The answer for δ = 10 is k = 8 while that
for δ = 100 and δ = 1, 000 are both k = 9.

The binary search method is faster even for medium values of δ
since it avoids the iterative procedure and quickly finds the desired
value of k. Overall, it is always the fastest algorithm.

7.3.2 Effect of Dimensionality d
Fig. 8b shows the complementary effect, that of varying dimen-

sionality d while keeping δ constant at 10, 000. When d is low,
the chosen δ value is too large and the algorithms terminate fast.
When d is increased, the algorithms need to search through a larger
range and, therefore, takes a much longer time. The binary search
method is consistently the fastest algorithm. It outperforms the
range-based algorithm by about 1.2-1.5 times while the naïve al-
gorithm is slower by a factor of 2-2.5.

7.3.3 Effect of Number of Join Groups
There is no appreciable effect of the number of join groups on

the algorithms for finding k (Fig. 9a).

7.3.4 Effect of Dataset Size
Fig. 9b shows the effect of increasing dataset size, n. The di-

mensionality and threshold values are kept fixed at d = 5 and
δ = 1, 000 with g = 10.

For very low values of n (up to 1, 000), the threshold is too high,
and the maximum possible k = 10 is required to satisfy the thresh-
old δ.

With increasing n, the running time increases due to increasing
k-dominant skyline computation times. Even for larger n, the val-
ues of k are towards the higher end. Therefore, the binary search
algorithm is the most suitable one for finding k.

7.3.5 Effect of Data Type
The effect of type of data distribution is as expected with corre-

lated being the fastest and anti-correlated the slowest (Fig. 10a).

7.4 Real Dataset
To test our algorithms on real data, we collected information

about various attributes on domestic flights in India from www.
makemytrip.com. The first base table contained information about

www.makemytrip.com
www.makemytrip.com
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Figure 9: Scalability (finding k).
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Figure 11: Real data.

192 flights from New Delhi to 13 important cities of India while
the second base table contained information about 155 flights from
those 13 cities to Mumbai. For each base table, 5 attributes were
considered: cost, flying time, date change fee, popularity, and ameni-
ties. The first 2 attributes were aggregated while the other 3 were
used as local attributes. The join was based on the equality of the
intermediate city. Thus, each tuple in the joined relation contained
3 + 3 + 2 = 8 attributes. The size of the joined relation was 2649.

We ran experiments on k = 6, 7, 8. The results are summarized
in Fig. 11. The grouping-based algorithm performed the best fol-
lowed by the dominator-based method and the naïve algorithm. All
the results were produced in milliseconds highlighting the practi-
cality of the methods.

7.5 Summary of Experiments
The experiments show that the grouping algorithm consistently

outperforms the other methods in solving the KSJQ queries. For
finding the right value of k, the binary search algorithm turns out
to be the best method always.

8. CONCLUSIONS
In this paper, we proposed a novel query, k-dominant skyline

join query (KSJQ), that incorporates finding k-dominant skylines
over joined relations where the attributes may be aggregated as
well. We analyzed certain optimizations for the query and used
them to design efficient algorithms. In addition, given the number
of final skylines sought, we also proposed efficient algorithms to
find the right value of k.

In future, we would like to extend the algorithms to work in par-
allel, distributed and probabilistic settings.
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