

Edinburgh Research Explorer

GPH: Similarity Search in Hamming Space

Citation for published version:
Qin, J, Wang, Y, Xiao, C, Wang, W, Lin, X & Ishikawa, Y 2018, GPH: Similarity Search in Hamming Space.
in 34th IEEE International Conference on Data Engineering. Institute of Electrical and Electronics Engineers
(IEEE), Paris, France, pp. 1-14, 34th IEEE International Conference on Data Engineering, Paris, France,
16/04/18. https://doi.org/10.1109/ICDE.2018.00013

Digital Object Identifier (DOI):
10.1109/ICDE.2018.00013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
34th IEEE International Conference on Data Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Mar. 2024

https://doi.org/10.1109/ICDE.2018.00013
https://doi.org/10.1109/ICDE.2018.00013
https://www.research.ed.ac.uk/en/publications/0cf54d79-4a1c-407d-ac18-4fd5d2ee6b4f

GPH: Similarity Search in Hamming Space
Jianbin Qin† Yaoshu Wang† Chuan Xiao‡ Wei Wang† Xuemin Lin† Yoshiharu Ishikawa‡

†University of New South Wales, Australia
{jqin, yaoshuw, weiw, lxue}@cse.unsw.edu.au

‡ Nagoya University, Japan
chuanx@nagoya-u.jp ishikawa@i.nagoya-u.ac.jp

Abstract—A similarity search in Hamming space finds binary
vectors whose Hamming distances are no more than a threshold
from a query vector. It is a fundamental problem in many
applications, including image retrieval, near-duplicate Web page
detection, and machine learning. State-of-the-art approaches to
answering such queries are mainly based on the pigeonhole
principle to generate a set of candidates and then verify them.

We observe that the constraint based on the pigeonhole prin-
ciple is not always tight and hence may bring about unnecessary
candidates. We also observe that the distribution in real data
is often skew, but most existing solutions adopt a simple equi-
width partitioning and allocate the same threshold to all the
partitions, and hence fail to exploit the data skewness to optimize
the query processing. In this paper, we propose a new form of
the pigeonhole principle which allows variable partition size and
threshold. Based on the new principle, we first develop a tight
constraint of candidates, and then devise cost-aware methods
for dimension partitioning and threshold allocation to optimize
query processing. Our evaluation on datasets with various data
distributions shows the robustness of our solution and its superior
query processing performance to the state-of-the-art methods.

I. INTRODUCTION

Finding similar objects is a fundamental problem in database
research and has been studied for several decades [37]. Among
many types of queries to find similar objects, Hamming distance
search on binary vectors is an important one. Given a query
q, a Hamming distance search finds all vectors in a database
whose Hamming distances to q are no greater than a threshold
τ . Answering such queries efficiently plays an important role
in many applications. In addition, it will receive increasingly
attention due to the continuous development and adoption of
deep learning techniques.
• Various forms of Hamming similarity search are fundamental

issues in computational geometry and theoretical computer sci-
ence. For example, nearest neighbor [14] or range searches [9]
can be reduced and solved in a Hamming cube using the
Hamming distance.

• Hamming similarity searches have been used in various
similarity search or retrieval applications. This is because one
can use various hashing techniques (either locality sensitive
hashing [39] or metric-learning or deep-learning based learned
hash functions [38]) or manual feature exactions (e.g., in
Cheminformatics [40]) to obtain a compact binary code for
objects, and similarity search or retrieval can be performed
efficiently in this Hamming cube.

We give several concrete and diverse application examples in
the following three areas:

• For image retrieval, images are converted to compact binary
vectors in traditional methods [34], [28]. Zhang et al. proposed
to identify the vectors within a Hamming distance threshold
of 16 as candidates for further image-level verification [42].
Recently, deep learning has become remarkably successful in
image recognition. Learning to hash algorithms that utilize
neural networks have been actively explored [17], [19], [7].
In these studies, images are represented by binary vectors
and Hamming distance is utilized to capture the dissimilarity
between images.

• To process text documents, state-of-the-art information retrieval
methods [29], [8] represent documents by binary vectors
through hashing. For Web page deduplication, Google uses
SimHash to convert a Web page to a 64-bit vector, and then
two pages are considered as near-duplicate if the Hamming
distance of the vectors are within 3 [22].

• For scientific databases, a fundamental task in cheminformatics
is to find similar molecules [12], [24]. In this task, molecules
are converted into binary vectors, and the Tanimoto similarity
is used to measure the similarity between molecules. This
similarity constraint can be converted to an equivalent
Hamming distance constraint [43].

The naı̈ve algorithm to answer a Hamming distance search
query requires access and computation of every vector in the
database; hence it is expensive and does not scale well to large
datasets. Therefore, there has been much interest in devising
efficient indexes and algorithms. Many existing methods [1],
[18], [43], [25] adopt the filter-and-refine framework to quickly
find a set of candidates and then verify them. They are based
on the naı̈ve application of the pigeonhole principle to this
problem: If the n dimensions are partitioned into m equi-width
parts1, then a necessary condition for the Hamming distance
of two vectors to be within τ is that they must share a part
in which the Hamming distance is within

⌊
τ
m

⌋
. This leads to

a filtering condition, and produces a set of candidate vectors,
which are then verified by calculating the Hamming distances
and comparing with the threshold. As a result, the efficiencies
of these methods critically depend on the candidate size.

However, despite the success and prevalence of this framework,
we identify that the filtering condition has two inherent major
weaknesses: (1) The threshold on each partition is not
always tight. Hence, many unnecessary candidates are included.
For example, when m = 3, the filtering conditions for τ in

1In this paper, we assume n mod m = 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

S
k

e
w

n
e
s
s

Dimension

PubChem
GIST

mSong
Trevi3200

Ran50
Cifar10

Glove
Ran100

Bigann2M
Notre
SIFT

UQVideo

FastText

Fig. 1. Skewness (|#1s−#0s|
#data

) by dimension of datasets in [16].

[9, 11] are the same (Hamming distance ≤
⌊
τ
m

⌋
= 3), and hence

will produce the same set of candidates.
(2) The thresholds on the partitions are evenly dis-

tributed. It assumes a uniform distribution and does not work
well when the dataset is skewed. We found that many real
datasets are skewed to varying degrees and complex correlations
exist among dimensions. Fig. 1 shows that 8 out of 11 real
datasets have dimensions with skewness greater than 0.3 2, and
5 out of the 8 datasets contain a vector whose frequency ≥ 0.1
on a partition, meaning that at least 1/10 data vectors become
candidates if the query matches the data vector on this partition.

In this paper, we propose a novel method to answer the
Hamming distance search problem and address the above-
mentioned weaknesses. We propose a tight form of the pigeonhole
principle named general pigeonhole principle. Based on the new
principle, the thresholds of the m partitions sum up to τ−m+1,
less than τ , thus yielding a stricter filtering condition than the
existing methods. In addition, the threshold on each partition is
a variable in the range of [−1, τ], where −1 indicates that this
partition is ignored when generating candidates. This enables
us to choose proper thresholds for different partitions in order
to improve query processing performance. We prove that the
candidate condition based on the general pigeonhole principle
is tight; i.e., the threshold allocated to each partition cannot
be further reduced. To tackle data skewness and dimension
correlations, we first devise an online algorithm to allocate
thresholds to partitions using a query processing cost model, and
then devise an offline algorithm to optimize the partitioning of
vectors by taking account of the distribution of dimensions. The
proposed techniques constitute the GPH algorithm. Experiments
are run on several real datasets with different data distributions.
The results show that the GPH algorithm performs consistently
well on all these datasets and is faster than state-of-the-art
methods by up to two orders of magnitude.

Our contributions can be summarized as follows. (1) We
propose a new form of the pigeonhole principle to obtain a tight
filtering condition and enable flexible threshold allocation. (2) We
propose an efficient online query optimization method to allocate
thresholds on the basis of the new pigeonhole principle. (3) We
propose an offline partitioning method to address the selectivity
issue caused by data skewness and dimension correlations. (4) We

2To measure the skewness of the i-th dimension, we calculate the numbers
of vectors whose values on the i-th dimension are 0 and 1, respectively, and
then take the ratio of their difference and the total number of vectors.

conduct extensive experimental study on several real datasets
to evaluate the proposed method. The results demonstrate the
superiority of the proposed method over state-of-the-art methods.

II. PRELIMINARIES

A. Problem Definition

In this paper, we focus on the similarity search on binary
vectors. We can view an object as an n-dimensional binary
vector x. x[i] denotes the value of the i-th dimension of x. Let
∆(x[i], y[i]) = 0, if x[i] = y[i]; or 1, otherwise. The Hamming
distance between two vectors x and y, denoted H(x, y), is the
number of dimensions on which x and y differ:

H(x, y) =

n∑
i=1

∆(x[i], y[i]).

Hamming distance is a symmetric measure. If we regard x (re-
spectively, y) as a yardstick, we can also say that y (respectively,
x) has H(x, y) errors with respect to x (respectively, y).

Given a collection of data objects D, a query object q, a
Hamming distance search is to find all data objects whose
Hamming distance to q is no greater than a threshold τ , i.e.,
{x | x ∈ D, H(x, q) ≤ τ }.

B. Basic Pigeonhole Principle

Most exact solutions to Hamming distance search are based
on the filter-and-refine framework to generate a set of candidates
that satisfy a necessary condition of the Hamming distance
constraint. The majority of these methods [1], [18], [43], [25]
are based on the intuition that if two vectors are similar, there
will be a pair of similar partitions from the two vectors. Hence
the (basic) pigeonhole principle is utilized by these methods.

Lemma 1 (Basic Pigeonhole Principle): x and y are di-
vided into m partitions. Each partition consists of n

m dimensions.
Let xi and yi (1 ≤ i ≤ m) denote each partition in x and y,
respectively. If H(x, y) ≤ τ , there exists at least one partition i
such that H(xi, yi) ≤

⌊
τ
m

⌋
.

Any data object x satisfying the condition that ∃i, H(xi, qi) ≤⌊
τ
m

⌋
is called a candidate. Since these candidates will be verified

by computing the exact Hamming distance to the query, the
query processing performance depends heavily on the number
of candidates.

C. Overview of Existing Approaches

We briefly introduce a state-of-the-art method, Multi-index
Hamming (MIH) [25]; other methods based on the basic
pigeonhole principle work in a similar way. MIH partitions the n
dimensions into m equi-width partitions. In each partition, based
on basic pigeonhole principle, it performs Hamming distance
search on n′ =

⌊
n
m

⌋
dimensions with a threshold τ ′ =

⌊
τ
m

⌋
.

MIH builds an inverted index offline, mapping each partition of
a data object to the object ID. For each partition of the query, it
enumerates n′-dimensional vectors whose Hamming distances to
the partition are within τ ′. These vectors are called signatures.
Then it looks up signatures in the index to find candidates and
verifies them.

2

D. Weaknesses of Basic Pigeonhole Principle

Next we analyze the major drawbacks of the filtering condition
based on the basic pigeonhole principle. Note that the filtering
condition is uniquely characterized by a vector of thresholds
allocated to each corresponding partition; we call the vector
threshold vector, and denote the one used by the basic pigeonhole
principle as Tbasic = [

⌊
τ
m

⌋
, . . . ,

⌊
τ
m

⌋
]. We also define the

dominance relationship between threshold vectors. Let ni denote
the number of dimensions in the i-th partition. T1 dominates
T2, or T1 ≺ T2, iff ∀i ∈ { 1, . . . ,m }, T1[i] ≤ T2[i] and
[T1[i], T2[i]] ∩ [−1, ni − 1] 6= ∅, and ∃i, T1[i] < T2[i].
• Tbasic is not always tight. By the tightness of a threshold

vector T , we mean that (1) (correctness) every vector whose
Hamming distance to the query is within the threshold
will be found by the filtering condition based on T , and
(2) (minimality) there does not exists another vector T ′

that dominates T yet still guarantees correctness. As the
candidate size is monotonic with respect to the threshold, an
algorithm based on a threshold vector which dominates Tbasic
will generate fewer or at most equal number of candidates
compared with an algorithm based on Tbasic.

Example 1: Consider τ = 9 and m = 3. The threshold
vector Tbasic is [3, 3, 3]. We can find a dominating threshold
vector T = [2, 2, 3] which is tight and guarantees both
correctness and minimality. Note that there may be multiple
tight threshold vectors for the same τ . E.g., another tight
threshold vector for the example can be [2, 3, 2] or [4, 3, 0] 3.

• The filtering condition does not adapt to the data distri-
bution in the partitions. Skewness and correlations among
dimensions often exist in real data. Equal allocation of
thresholds, as done in Tbasic, may result in poor selectivity
for some partitions, hence excessive number of candidates.
Several recent studies recognized this issue and proposed
several methods to either obtain relatively less skew partitions
by partition rearrangement [43] or allocating varying thresholds
heuristically to different partitions [11]. In contrast, we propose
that skewed partitions can be beneficial and we can reduce the
candidate size by judiciously allocating different thresholds to
different partitions for each query to exploit such skewness,
as shown in Example 2.

Example 2: Suppose n = 8, m = 2, and τ = 2. Consider
the four data vectors and the query, and two different
partitioning schemes in Table I. Consider the first query and
existing method will use Tbasic = [1, 1]. This will results in all
the four data vectors recognized as candidates, but only one
(x1) is the result. If we use the first six dimensions as one
partition and the rest two dimensions as the other dimension,
and use T = [2, 0], the candidate size will be reduced to 2
(x1 and x2).

III. GENERAL PIGEONHOLE PRINCIPLE

In this section, we propose a general form of the pigeonhole
principle which allows variable thresholds to guarantee the
tightness of threshold vectors.

3Please refer to Section III for more explanation of tightness.

TABLE I
BENEFITS OF ADAPTIVE PARTITIONING AND THRESHOLDING

Equi-width Partitioning Variable Partitioning

Partition 1 Partition 2 Partition 1 Partition 2

x1 = 00000000 0000 0000 000000 00
x2 = 00000111 0000 0111 000001 11
x3 = 00001111 0000 1111 000011 11
x4 = 10011111 1001 1111 100111 11

q1 = 10000000 1000 0000 100000 00
τ1 = 1 τ2 = 1 τ1 = 2 τ2 = 0

We begin with the allocation of thresholds. Given a threshold
vector, we use the notation ‖T‖1 to denote the sum of thresholds
in all the partitions, i.e., ‖T‖1 =

∑m
i=1 T [i]. The flexible

pigeonhole principle is stated below.
Lemma 2 (Flexible Pigeonhole Principle): A partitioning

P divides a n-dimensional vector into m disjoint partitions. x
and y are partitioned by P . Consider a vector T = [τ1, . . . , τm]
such that τi are integers and ‖T‖1 = τ . If H(x, y) ≤ τ , there
exists at least one partition i such that H(xi, yi) ≤ τi.

Proof: Assume that @i such that H(xi, yi) ≤ τi. Since
partitions are disjoint, H(x, y) =

∑m
i=1H(xi, yi) >

∑m
i=1 τi.

Hence H(x, y) > τ , which contradicts that H(x, y) ≤ τ .
The principle stated by Lemma 2 is more flexible than the

basic pigeonhole principle in the sense that we can choose
arbitrary thresholds for different partitions. Intuitively, we may
tolerate more errors for selective partitions and fewer errors for
unselective partitions.

To achieve tightness, we first extend the threshold allocation
from integers to real numbers.

Lemma 3: x and y are partitioned by P into m disjoint
partitions. Consider a vector T = [τ1, . . . , τm] in which the
thresholds are real numbers. ‖T‖1 = τ . If H(x, y) ≤ τ , there
exists at least one partition i such that H(xi, yi) ≤ bτic.

Proof: The proof of Lemma 2 also applies to real numbers.
Therefore, if

∑m
i=1 τi = τ and H(x, y) ≤ τ , then ∃i,

H(xi, yi) ≤ τi. Because τi are real numbers and H(xi, yi)
are integers, ∃i, H(xi, yi) ≤ bτic.

Definition 1 (Integer Reduction): Given a threshold vec-
tor T = [τ1, τ2, . . . , τm], we can reduce it to T ′ =
[bτ1c , bτ2c , . . . , bτmc]. This reduction is called integer reduc-
tion.

It is obvious that the candidate size does not change after an
integer reduction, as the Hamming distances must be integers.

When we combine Lemma 3 and the integer reduction
technique, they can produce a threshold vector which dominates
Tbasic, as shown in Example 3.

Example 3: Recall in Example 1, Tbasic is [3, 3, 3] using the
basic pigeonhole principle.

To obtain a dominating vector, we can start with a possible
threshold vector T = [2.9, 2.9, 3.2]. Then by the integer
reduction technique, T is reduced to T ′ = [2, 2, 3]. To see this
is correct, if 6 ∃i, H(xi, yi) ≤ T ′[i], there will be 3+3+4 = 10
errors between x and y. Compared to [3, 3, 3], T ′ is a dominating
threshold vector, and the constraints on the first two partitions
are stricter.

3

The above example also shows that the sum of thresholds of
partitions can be reduced. The following lemma and theorem
show how they work in the general case and the tightness
guarantee of the resulting threshold vectors.

Lemma 4 (General Pigeonhole Principle): x and y are par-
titioned by P into m disjoint partitions. Consider a threshold
vector T composed of integers. ‖T‖1 = τ − m + 1. If
H(x, y) ≤ τ , there exists at least one partition i such that
H(xi, yi) ≤ τi.

Proof: Given a vector T = [τ1, . . . , τm] such that ‖T‖1 =
τ −m + 1, we consider another vector T ′ = [τ ′i , . . . , τ

′
m] =

[τ1+1, . . . , τm−1+1, τm]; i.e., it equals to T on the last partition
and is greater than T by 1 in the other m−1 partitions. Because
‖T ′‖1 = ‖T‖1 + (m− 1) = τ , by Lemma 2, if H(x, y) ≤ τ ,
then ∃i, H(xi, yi) ≤ τ ′i .

For the first (m− 1) dimensions in T ′, we decrease each of
their thresholds by a small positive real number ε, and for the last
dimension, we increase the threshold by (m− 1)ε; i.e., the sum
of thresholds does not change. Hence we have a vector T ′′ =
[τ ′′i , . . . , τ

′′
m] = [τ1 + 1− ε, . . . , τm−1 + 1− ε, τm + (m− 1)ε].

Because ‖T ′′‖1 = ‖T ′‖1 = τ , by Lemma 3, if H(x, y) ≤ τ ,
then ∃i, H(xi, yi) ≤ bτ ′′i c. Because

bτ ′′i c =

{
bτi + 1− εc = τi, if i < m;

bτi + (m− 1)εc = τi, if i = m,

if H(x, y) ≤ τ , then ∃i, H(xi, yi) ≤ τi.
One may notice that in the above proof, the partitions we

choose to decrease thresholds are not limited to the first (m−1)
ones. Therefore, given a threshold vector T such that ‖T‖1 =
τ , we may choose any (m − 1) partitions and decrease their
thresholds by 1. For the resulting vector T ′, ‖T ′‖1 = τ −m+1.
We may use it as a stricter condition to generate candidates and
the correctness of the algorithm is still guaranteed. We call the
process of converting T to T ′ ε-transformation.

Theorem 1: The filtering condition based on the general
pigeonhole principle is tight.

Proof: The correctness is stated in Lemma 4. We prove the
minimality. Given a threshold vector T based on the general
pigeonhole principle, i.e., ‖T‖1 = τ −m + 1, we consider a
threshold vector T ′ which dominates T , i.e., ∀i ∈ { 1, . . . ,m },
T ′[i] ≤ T [i] and [T ′[i], T [i]] ∩ [−1, ni − 1] 6= ∅, and
∃j ∈ { 1, . . . ,m }, T ′[j] < T [j]. Because ∀i ∈ { 1, . . . ,m },
H(xi, qi) ∈ [0, ni] and [T ′[i], T [i]]∩ [−1, ni− 1] 6= ∅, we may
construct a vector x such that ∀i ∈ { 1, . . . ,m }, H(xi, qi) =
max(0, T ′[i] + 1). ∀i ∈ { 1, . . . ,m }, because T ′[i] ≤ T [i]
and [T ′[i], T [i]] ∩ [−1, ni − 1] 6= ∅, H(xi, qi) ≤ T [i] + 1.
Because ∃j ∈ { 1, . . . ,m }, T ′[j] < T [j], ∃j ∈ { 1, . . . ,m },
H(xi, qi) ≤ T [i]. Because H(xi, qi) > T ′[i] on all the
partitions, x is not a candidate by T ′. However, H(x, q) =∑m
i=1H(xi, qi) ≤ ‖T‖1 +m− 1 = τ , meaning that x is result

of the query. Therefore, the filtering condition based on T ′ is
incorrect, and thus the minimality of T is proved.

One surprising but beneficial consequence of the ε-
transformation is that the resulting threshold of a partition may

become negative. For example, [1, 0, 0] becomes [0, 0,−1]4 if
the first and third partitions are chosen to decrease thresholds.
Since H(xi, yi) is a non-negative integer, H(xi, yi) ≤ T [i]
is always false if T [i] is negative. This fact indicates that the
partitions with negative thresholds can be safely ignored for
candidate generation. As will be shown in the next section, this
allows us to ignore partitions where the query and most of the
data are identical. This endows our method the unique ability to
handle highly skewed data or partitions.

Example 4: Consider the four data vectors and two queries
in Table II. For q1, we show the threshold vectors based on the

TABLE II
THRESHOLD VECTOR AND THEIR CANDIDATE SIZES

Partition 1 Partition 2

x1 = 00000000 000000 00
x2 = 00000111 000001 11
x3 = 00001111 000011 11
x4 = 10011111 100111 11

q1 = 10000000 100000 00

q2 = 10000011 100000 11

q1 T = [2, 0] Cand = {x1, x2 }

T = [1, 0] Cand = {x1 }

q2 T = [1, 0] Cand = {x1, x2, x3, x4 }

T = [2,−1] Cand = {x1, x2 }

flexible pigeonhole principle and the general pigeonhole principle.
The candidate sizes are 2 and 1, respectively. For q2, we show
two different threshold vectors based on the general pigeonhole
principle. The candidate sizes are 4 and 2, respectively.

IV. THRESHOLD ALLOCATION

To utilize the general pigeonhole principle to process queries,
there are two key issues: (1) how to divide the n dimensions
into m partitions, and (2) how to compute the threshold vector
T such that ‖T‖1 = τ −m+ 1. We will tackle the first issue in
Section V with an offline solution. Before that, we focus on the
second issue in this section and propose an online algorithm.

A. Cost Model

To optimize the threshold allocation, we first analyze the
query processing cost. Like MIH, we also build an inverted
index offline to map each partition of a data object to the object
ID. Then for each partition of the query, we enumerate signatures
to generate candidates.

The query processing cost consists of three parts:

Cquery proc(q, T) =Csig gen(q, T) + Ccand gen(q, T)

+ Cverify(q, T),

where Csig gen, Ccand gen, and Cverify denote the costs of
signature generation, candidate generation, and verification,
respectively.

4Note that in our method, we only consider the case of −1 for the negative
threshold of a partition since the other negative values are not necessary.

4

For each partition i, a signature is a vector whose Hamming
distance is within τi to the i-th partition of query q. Since we
enumerate all such vectors, the signature generation cost is

Csig gen(q, T) =

m∑
i=1

(
ni
τi

)
· cenum,

where ni denotes the number of dimensions in the i-th partition,
and cenum is the cost of enumerating the value of a dimension
in a given vector. If τi < 0, the cost is 0 for the i-th partition.

Let Ssig denote the set of signatures generated. The candidate
generation cost can be modeled by inverted index lookup:

Ccand gen(q, T) =
∑
s∈Ssig

|Is| · caccess,

where |Is| denotes the length of the postings list of signature s,
and caccess is the cost of accessing an entry in a postings list.

The verification cost is

Cverify(q, T) = |Scand| · cverify,

where Scand is the set of candidates, and cverify is the cost
to check if two n-dimensional vectors’ Hamming distance is
within τ .

In practice, the signature generation cost is usually much less
than the candidate generation cost and the verification cost (see
Section VII-B for experiments). So we can ignore the signature
generation cost when optimizing the threshold allocation. In
addition, it is difficult to accurately estimate the size of Scand
using the lengths of postings lists, because it can be reduced
from the minimal k-union problem [35], which is proved to be
NP-hard. Nonetheless, |Scand| is upper-bounded by the sum of
candidates generated in all the partitions, i.e.,

∑
s∈Ssig |Is|. Our

experiments (Section VII-B) show that the ratio of |Scand| and
this upper bound depends on data distribution and τ . Given a
dataset, the ratio with respect to varying τ can be computed and
recorded by generating a number of queries and processing them.
Let α denote this ratio. We may rewrite the number of candidates
in the form of α ·

∑m
i=1 CN(qi, τi), where CN(qi, τi) is the

number of candidates generated by the i-th partition of the query
q with a threshold of τi (when τi = −1, CN(qi, τi) = 0).
Hence the query processing cost can be estimated as:

̂Cquery proc(q, T) =

m∑
i=1

CN(qi, τi) · (caccess + α · cverify).

(1)

With the above cost model, we can formulate the threshold
allocation as an optimization problem.

Problem 1 (Threshold Allocation): Given a collection of
data objects D, a query q and a threshold τ , find the threshold
vector T that minimizes the estimated query processing cost
under the general pigeonhole principle; i.e.,

arg min
T

̂Cquery proc(q, T), s.t. ‖T‖1 = τ −m+ 1.

Algorithm 1: DPAllocate(q,m, τ)

1 for e = −1 to τ do
2 OPT [1, e]← CN(q1, e), PATH[1, e]← e;

3 for i = 2 to m do
4 for t = −i to τ − i+ 1 do
5 cmin = +∞;
6 for e = −1 to t+ i− 1 do
7 if OPT [i− 1, t− e] + CN(qi, e) < cmin then
8 cmin ← OPT [i− 1, t− e] + CN(qi, e);
9 emin ← e;

10 OPT [i, t] = cmin, PATH[i, t] = emin;

11 e← τ −m+ 1;
12 for i = m to 1 do
13 T [i]← PATH[i, e];
14 e← e− PATH[i, e];

15 return T ;

B. Threshold Allocation Algorithm

Since caccess, cverify , and α are independent of CN(qi, τi),
we can omit the coefficient (caccess + α · cverify) in Equa-
tion 1 and find the minimum query processing cost with only
CN(qi, τi). The computation of CN(qi, τi) values will be
introduced in Section IV-C. Here we treat CN(qi, τi) as a
black box with O(1) time complexity and propose an online
threshold allocation algorithm based on dynamic programming.

Let OPT [i, t] record the minimum query processing cost
(omitting the coefficient (caccess + α · cverify)) for partitions
1, . . . , i with a sum of thresholds t. We have the following
recursive formula:

OPT [i, t] =

t+i−1
min
e=−1

OPT [i− 1, t− e] + CN(qi, e),if i > 1;

CN(qi, t), if i = 1.

With the recursive formula, we design a dynamic programming
algorithm for threshold allocation, whose pseudo-code is shown
in Algorithm 1. It first initializes the costs for the first partition
(Lines 1 – 2), i.e., OPT [1,−1], . . . , OPT [1, τ]. Then it iterates
through the other partitions and compute the minimum costs
(Lines 3 – 10). Note that the negative threshold −1 is also
consider for each partition. Finally, we trace the path that reaches
OPT [m, τ −m+ 1] to obtain the threshold vector (Lines 11
– 14). The time complexity of the algorithm is O(m · (τ + 1)2).

Example 5: Consider a dataset of 100 binary vectors and we
partition it into 4 partitions. Given a query q, for each partition
i, suppose the numbers of candidates (denoted CNi) under
different thresholds are provided in the table below.

τi = −1 τi = 0 τi = 1 τi = 2 τi = 3 τi = 4

CN1 0 5 10 15 50 100
CN2 0 10 80 90 95 100
CN3 0 5 15 20 70 100
CN4 0 10 70 80 95 100

We use Algorithm 1 to compute the threshold vector. The
OPT [i, t] values are given in the table below.

5

t = i = 1 i = 2 i = 3 i = 4

-3 0 0 0 5
-2 0 0 5 10
-1 0 5 10 20
0 5 15 20 30
1 10 20 20 30
2 15 25 35 45
3 50 60 40 45
4 100 110 45 55

The minimum query processing cost OPT [4, 4] = 55. We
trace the path (in boldface) that reaches this value and obtain
the threshold vector [2, 0, 2, 0].

C. Computing Candidate Numbers

In order to run the threshold allocation algorithms, we need to
obtain the candidate numbers CN(qi, τi) beforehand. An exact
solution to computing CN(qi, τi) is to enumerate all possible
vectors for the i-th partition and then count how many vectors in
D has a Hamming distance within τi to the enumerated vector
in this partition. These numbers are stored in a table. When
processing the query, with the given qi, the table is looked up
for the corresponding entry CN(qi, τi). The time complexity
of this algorithm is O(m · 2n · 2τ), and the space complexity
is O(m · 2n). This method is only feasible when n and τ are
small. To cope with large n and τ , we devise two approximation
algorithms to estimate the number of candidates.

Sub-partitioning. The basic idea of the first approximation
algorithm is splitting qi into smaller equi-width sub-partitions
and estimating CN(qi, τi) with the candidate numbers of the
sub-partitions. We divide qi into mi sub-partitions. Each sub-
partition has a fixed number of dimensions so that its candidate
number can be computed using the exact algorithm in reasonable
amount of time and stored in main memory. For the thresholds of
the sub-partitions, we may use the general pigeonhole principle
and divide τi into mi values such that they sum up to τi−mi+1.
Let qij denote a sub-partition of qi and τij denote its threshold.
Let G(mi, τi) be the set of threshold vectors of which the
total thresholds sum up to no more than τi − mi + 1; i.e.,
{ [τi1, . . . , τimi]|τij ∈ [−1, τi] ∧

∑mi
j=1 τij ≤ τi −mi + 1 }.

We offline compute all the CN(qij , τij) values for all τij ∈
[−1, τi] using the aforementioned exact algorithm; i.e., enumerate
all possible query vectors and then count how many data vectors
in D has a Hamming distance within τij to the enumerated
vector in this sub-partition. We assume that the candidates in
the mi sub-partitions are independent. Then CN(qi, τi) can be
approximately estimated online with the following equation.

̂CN(qi, τi) =
∑

g∈G(mi,τi)

mi∏
j=1

(CN(qij , g[j])− CN(qij , g[j]− 1)).

Machine Learning. We may also use machine learning
technique to predict the candidate number for a given 〈qi, τi〉.
For each τi, we regard each dimension of qi as a feature and
randomly generate feature vectors xk = [b1, . . . , b|qi|]. The
candidate number CN(xk, τi) can be obtained by processing

xk as a query with a threshold τi. Then we apply the regression
model on the training data Ti = { 〈xk, CN(xk, τi)〉 }.

Let hτi(xi, θi) denote the machine learning model, where
θi denotes its parameters. Traditional regression models utilize
mean squared error as loss function. To reduce the impact of
large CN(xk, τi), we use relative error as our loss function:
J(Ti, θi) =

∑|Ti|
k=1{

CN(xk,τi)−hτi (xk,θi)
CN(xk,τi)

}2. According to [27],
we utilize the approximation ln(t) ≈ t−1 to estimate J(Ti, θi):

J(Ti, θi) =

|Ti|∑
k=1

{
1− hτi(xk, θi)

CN(xk, τi)

}2

≈
|Ti|∑
i=1

{
ln
CN(xk, τi)

hτi(xk, θi)

}2

=

|Ti|∑
i=1

{lnCN(xk, τi)− lnhτi(xk, θi)}2.

From the above equation, we can simply convert training data
〈xk, CN(xk, τi)〉 into 〈xk, lnCN(xk, τi)〉 and then take mean
squared error to train an SVM model with RBF kernel.

V. DIMENSION PARTITIONING

To deal with data skewness and dimension correlations, the
existing methods for Hamming distance search resort to random
shuffle [1] or dimension rearrangement [43], [36], [20]. All
of them are aiming towards the direction that the dimensions
in each partition or the signatures in the index are uniformly
distributed, so as to reduce the candidates caused by frequent
signatures. In this section, we present our method for dimension
partitioning. We devise a cost model of dimension partitioning
and convert the partitioning into an optimization problem to
optimize query processing performance. Then we propose the
algorithm to solve this problem.

A. Cost Model

Let Pi denote a set of dimensions in the range [1, n]. Our
goal is to find a partitioning P = {P1, . . . , Pm } such that
Pi∩Pj = ∅ if i 6= j, and ∪mi=1Pi = { 1, . . . , n }. Given a query
workload Q = {< q1, τ1 >, . . . , < q|Q|, τ |Q| > }, the query
processing cost of the workload is the sum of the costs of its
constituent queries:

Cworkload(Q,P) =

|Q|∑
i=1

̂Cquery proc(q
i, τ i,P), (2)

where ̂Cquery proc(q
i, τ i,P) is the processing cost of query

qi with a threshold τ i, which can be computed using the dynamic
programming algorithm proposed in Section IV. Then we can
formulate the dimension partitioning as an optimization problem.

Problem 2 (Dimension Partitioning): Given a collection of
data objects D, a query workload Q, find the partitioning P
that minimizes the query processing cost of Q under the general
pigeonhole principle; i.e.,

arg min
P

Cworkload(Q,P).

6

Lemma 5: The dimension partitioning problem is NP-hard.
Proof: We can reduce the dimension partitioning problem

from the number partitioning problem [2], which is to partition
a multiset of positive integers, S, into two subsets S1 and
S2 such that the difference between the sums in two sets is
minimized. Consider a special case of m = 2 and a Q of
only one query. Let S be a multiset of n positive integers,
each representing a dimension in the dimension partitioning
problem. Let sum(S) denote the sum of numbers in S. For
i ∈ { 1, 2 }, Let CN(qi, τi) = sum(Si)

2, ∀τi ∈ [−1, τ]; i.e.,
the candidate number in partition i equals to the square of
the sum of numbers in this partition. By Equations 1 and 2,
Cworkload(Q,P) = (sum(S1)2 + sum(S2)2) · (caccess + α ·
cverify). Cworkload is minimized when the difference between
sum(S1) and sum(S2) is minimized. Hence the special case
of dimension partitioning problem is reduced from the number
partitioning problem. Because the number partitioning problem
is NP-complete, the dimension partitioning is NP-hard.

B. Partitioning Algorithm

Seeing the difficulty of the dimension partitioning problem,
we propose a heuristic algorithm to select a good partitioning:
first generate an initial partitioning and then refine it.

Algorithm 2 captures the pseudo-code of the heuristic
partitioning algorithm. It first generates an initial partitioning P
of m partitions (Line 1). The details of the initialization step
will be introduced in Section V-C. Then the algorithm iteratively
improves the current partitioning by selecting the best option
of moving a dimension from one partition to another. In each
iteration, we pick a dimension from a partition Pi (Line 8), try
to move it to another partition Pj , j 6= i (Line 10), and compute
the resulting query processing cost of the workload. We try all
possible combination of Pi and Pj , and the option that yields
the minimum cost is taken as the move of this iteration (Line 16).
The above steps repeat until the cost cannot be further improved
by moving a dimension. The time complexity of the algorithm is
O(lmnc). l is the number of iterations. c is the time complexity
of computing the cost of the workload, O(|Q| ·m ·(τ+1)2). We
also note that due to the replacement of dimensions, partitions
may become empty in our algorithm. Hence it is not mandatory
to output exactly m partitions for an input partition number m.

For the input query workload Q, in case a historical query
workload is unavailable, a sample of data objects can be used as
a surrogate. Our experiments show that even if the distribution
of real queries are different from the query workload that we use
to compute the partitioning, our query processing algorithm still
achieves good performance (Section VII-G). We also note that
we may assign varying thresholds to the queries in the workload
Q. The benefit is that we can offline compute the partitioning
using the workload which cover a wide range of thresholds, and
then build an index without being aware of the thresholds of
real queries beforehand.

C. Initial Partitioning

Since the dimension partitioning algorithm stops at a local
optimum, we may achieve a better result with a carefully

Algorithm 2: HeuristicPartition(D,Q,m)

1 P ← InitialPartition(D,Q,m);
2 cmin ← Cworkload(Q,P);
3 f ← true;
4 while f = true do
5 f ← false;
6 foreach Pi ∈ P do
7 foreach d ∈ Pi do
8 P ′i ← Pi \ { d }, P ′ ← (P \ Pi) ∪ P ′i ;
9 foreach Pj ∈ P, j 6= i do

10 P ′j ← Pj ∪ { d }, P ′ ← (P ′ \ Pj) ∪ P ′j ;
11 if Cworkload(Q,P ′) < cmin then
12 f ← true;
13 cmin ← Cworkload(Q,P ′);
14 Pmin ← P ′;

15 if f = true then
16 P ← Pmin;

17 return P;

selected initial partitioning. The correlation of dimensions play
an important role here. Unlike the existing methods which try
to make dimensions in each partition uniformly distributed, our
method aims at the opposite direction. We observe that the query
processing performance is usually improved if highly correlated
dimensions are put into the same partitions. This is because our
threshold allocation algorithm works online and optimizes each
query individually. When highly correlated dimensions are put
together, more errors are likely to be identified in a partition,
and thus our threshold allocation algorithm can assign a larger
threshold to this partition and smaller thresholds to the other
partitions; i.e., choosing proper thresholds for different partitions.
If the dimensions are uniformly distributed, all the partitions will
have the same distribution and there is little chance to optimize
for specific partitions.

We may measure the correlation of dimensions with entropy.
For a partition Pi, we project all the data objects in D on the
dimensions of Pi, and use DPi to denote the set of the resulting
vectors. The correlation of the dimensions of Pi is measured by:

H(DPi) = −
∑

X∈DPi

P (X) · logP (X).

According to the definition of entropy, a smaller value of
entropy indicates a higher correlation of the dimensions of Pi.
The entropy of the partitioning P is the sum of the entropies of
its constituent partitions:

H(P) =

m∑
i=1

H(DPi).

Our goal is to find an initial partitioning P to minimize H(P).
To achieve this, we generate an equi-width partitioning in a
greedy manner: Starting with an empty partition, we select the
dimension which yields the smallest entropy if it is put into
this partition. This is repeated until a fixed partition size

⌊
n
m

⌋
is reached, and thereby the first partition is obtained. Then we

7

repeat the above procedure on the unselected dimensions to
generate the other (m− 1) partitions.

VI. THE GPH ALGORITHM

Based on the general pigeonhole principle and the techniques
proposed in Sections IV and V, we devise the GPH (short for
the General Pigeonhole principle-based algorithm for Hamming
distance search) algorithm.

The GPH algorithm consists of two phases: indexing phase
and query processing phase. In the indexing phase, it takes
as input the dataset D, the query workload Q, and a tunable
parameter m for the number of partitions. The partitioning P
is generated using the heuristic partitioning algorithm proposed
in Section V. Then for each n-dimensional vector x in D, we
divided it by P into m partitions. Then for the projection of
x on each partition, the ID of vector x is inserted into the
postings list of this projection. In the query processing phase,
the query q and the threshold τ are input to the algorithm. It
first partitions q by P into m partitions. Then the threshold
vector T is computed using the dynamic programming algorithm
proposed in Section IV. For the projection of q on each partition,
we enumerate the signatures whose Hamming distances to the
projection do not exceed the allocated threshold. Then for each
signature, we probe the inverted index to find the data objects
that have this signature in the same partition, and insert the
vector IDs into the candidate set. The candidates are finally
verified using Hamming distance and the true results are returned.
We omit the pseudo-code here in the interest of space.

We note that in case of a query service level agreement, with
the data and query workloads provided by the user, we are able
to estimate the query response time of GPH using the cost
returned by the threshold allocation algorithm. Then we can
either guarantee the number of queries that can be handled in a
specific amount of time using current computing resources, or
let the user know the amount of additional resources required to
process the queries.

VII. EXPERIMENTS

We report experiment results and analyses in this section.

A. Experiments Setup

The following algorithms are compared in the experiment.
• MIH is a method based on the basic pigeonhole principle [25].

It divides vectors into m equi-width partitions and uses a
threshold

⌊
τ
m

⌋
on all the partitions to generate candidates.

Its filtering condition is not tight. Signatures are enumerated
on the query side. We utilize the open source of MIH on
GitHub 5 and chose the fastest m setting on each dataset.

• HmSearch is a method based on the basic pigeonhole
principle [43]. Vectors are divided into

⌊
τ+3
2

⌋
equi-width

partitions. It has a filtering condition in multiple cases but not
tight. The threshold of a partition is either 0 or 1. This is one
of our previous work and we utilize the existing source code.

• PartAlloc is a method to solve the set similarity join
problem [11]. It divides vectors into τ+1 equi-width partitions
5https://github.com/norouzi/mih

and allocate thresholds to partitions with three options: −1,
0, and 1. −1 means that the partition is disregarded for
candidate generation. Its filtering condition is tight. Signatures
are enumerated on both data and query vectors. The source
code is received from the authors of [11]. We convert the
Hamming distance constraint to an equivalent Jaccard similarity
constraint [1], which is supported by the source code. The
greedy method [11] is chosen to allocate thresholds. Positional
filters (checking the number of dimensions whose values are
1 in each partition and discarding a candidate if the difference
exceeds τ) have already been implemented in the provided
source code and are invoked when generating candidates.

• LSH is an algorithm to retrieve approximate answers. We
convert the Hamming distance constraint to an equivalent
Jaccard similarity constraint and then use the minhash LSH [5].
The dimension which yields the minimum hash value is chosen
as a minhash. k minhashes are concatenated into a single
signature, and this is repeated l times to obtain l signatures. We
set k to 3 and recall to 95%. l =

⌈
log1−tk(1− r)

⌉
, where t is

the Jaccard similarity threshold. The algorithm is implemented
by ourselves.

• GPH is the method proposed in this paper. We implement it
on top of the source code of MIH for fair comparison.
Other methods for Hamming distance search, e.g., [18], [15],

[22], are not compared since prior work [43] showed they are
outperformed by HmSearch. We do not consider the method
in [30] because it focuses on small n (≤ 64) and small τ (≤ 4),
and it is significantly slower than the other algorithms in our
experiments. E.g., on GIST, when τ = 8, its average query
response time is 128 times longer than GPH. The approximate
method proposed in [26] is only fast for small thresholds. On
SIFT, when τ ≥ 12, it becomes slower than MIH even if the
recall is set to 0.9 [26]. Due to its performance compared to
MIH and the much larger threshold settings in our experiments,
we do not compare with the method in [26].

We select five publicly available real datasets with different
data distributions and application domains.
• SIFT is a set of 1 billion SIFT features from the BIGANN

dataset 6 [13]. We follow the method used in [25] to convert
them into 128-dimensional binary vectors.

• GIST is a set of 80 million 256-dimensional GIST descriptors
for tiny images 7 [33].

• PubChem is a database of chemical molecules 8. We sample
1 million entries, each of which is a 881-dimensional vector.

• FastText is a set of 1 million English word vectors trained
on Wikipedia 2017 9. We convert them into binary vectors of
128 dimensions by spectral hashing [39].

• UQVideo is a set of 3.3 million keyframes of Web videos
from the UQ Video project 10. Each keyframe is converted
to a binary vector of 256 dimensions by multiple feature
hashing [31].

6http://corpus-texmex.irisa.fr/
7http://horatio.cs.nyu.edu/mit/tiny/data/index.html
8https://pubchem.ncbi.nlm.nih.gov/
9https://fasttext.cc/docs/en/english-vectors.html
10http://staff.itee.uq.edu.au/shenht/UQ VIDEO/

8

 0.01

 0.1

 1

 10

 100

 1000

 10000

6 12 18 24 30

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

verification

S

S

S

S
S

candidate generation
signature enumeration

threshold allocation

 0.01

 0.1

 1

 10

 100

 1000

 10000

6 12 18 24 30

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

G
G

G
G

G

 0.01

 0.1

 1

 10

 100

 1000

 10000

6 12 18 24 30

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

P

P
P

P
P

(a) Response Time Decomposed

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 4 8 12 16 20 24 28 32

C
a
n

d
 v

s
.

S
u

m

Threshold

SIFT-sum

SIFT-cand

GIST-sum

GIST-cand

PubChem-sum

PubChem-cand

(b) Compare
∑
s∈Ssig

|Is| and Scand

Fig. 2. Justification of Assumptions

SIFT has the smallest skewness among the five. GIST and
UQVideo are medium skewed datasets. PubChem and FastText
are highly skewed datasets. In addition to the five real datasets,
we generate a synthetic dataset with varying skewness.

We sample a subset of 100 vectors from each dataset as
the query workload for the partitioning of GPH. To generate
real queries, for each dataset we sample 1,000 vectors (differ
from the query workload for partitioning) and take the rest as
data objects. We vary τ and measure the query response time
averaged over 1,000 queries. For GPH and PartAlloc, threshold
allocation time are also included. The τ settings are up to 32,
64, 32, 20, and 48 on the five real datasets, respectively. The
reason why we set smaller thresholds on PubChem is that due
to the skewness, more than 10% data objects are results when
τ = 32.

The experiments are carried out on a server with a Quad-
Core Intel Xeon E3-1231 @3.4GHz Processor and 96GB RAM,
running Debian 6.0. All the algorithms are implemented in C++
in a main memory fashion.

B. Justification of Assumptions

We first justify our assumptions for the cost model of threshold
allocation. Fig. 2(a) shows the query processing time of GPH on
SIFT, GIST, and PubChem (denoted S, G, and P, respectively).
The time is decomposed into four parts: threshold allocation,
signature enumeration, candidate generation, and verification.
The figure is plotted in logscale so that threshold allocation
and signature enumeration can be seen. Compared to candidate
generation and verification, the time spent on threshold allocation
and signature enumeration is negligible (< 3%), meaning that
we can ignore them when estimating the query processing
cost. Fig. 2(b) shows the sum of candidates generated in
all the partitions (

∑
s∈Ssig |Is|, denoted dataset-sum) and

the candidate sizes (|Scand|, denoted dataset-cand) on the
three datasets. It can be seen that |Scand| is upper-bounded
by
∑
s∈Ssig |Is|. The ratio of them varies from 0.69 to 0.98,

depending on dataset and τ . The ratios on different datasets and
τ settings are recorded as the value of α in Equation 1 for cost
estimation.

C. Evaluation of Threshold Allocation

We evaluate threshold allocation by comparing with a baseline
algorithm (denoted RR). RR allocates thresholds in a round robin
manner, and the thresholds of all partitions sum up to τ −m+1.
For a fair comparison, we randomly shuffle the dimensions and
then use the equi-width partitioning (m is chosen for the best

 1x10
6

 1x10
7

 1x10
8

 4 8 12 16 20 24 28 32

A
v

g
.

E
st

im
at

ed
 C

o
st

Threshold

RR DP

(a) SIFT, Allocation Method, Cost

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

RR DP

(b) SIFT, Allocation Method, Time

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 8 16 24 32 40 48 56 64

A
v

g
.

E
st

im
at

ed
 C

o
st

Threshold

RR DP

(c) GIST, Allocation Method, Cost

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

RR DP

(d) GIST, Allocation Method, Time

 10000

 100000

 1x10
6

 1x10
7

 4 8 12 16 20 24 28 32

A
v

g
.

E
st

im
at

ed
 C

o
st

Threshold

RR DP

(e) PubChem, Allocation Method, Cost

 1

 10

 100

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

RR DP

(f) PubChem, Allocation Method, Time

Fig. 3. Evaluation of Threshold Allocation

performance) for the competitors in this set of experiments.
Figs. 3(a), 3(c), and 3(e) show the query processing costs (in
terms of candidate numbers) estimated by DP on SIFT, GIST,
and PubChem. We also plot the costs of RR using our cost
model. The corresponding query response times are shown in
Figs. 3(b), 3(d), and 3(f). The trends of the cost and the time
are similar, indicating that the cost model effectively estimates
the query processing performance. DP is significantly faster than
RR in query processing, and the gap is more remarkable on
datasets with more skewness. On PubChem, the time of RR
is close to sequential scan due to the skewness. With judicious
threshold allocation, the time is reduced by nearly two orders
of magnitude.

To evaluate the candidate number computation, we compare
the sub-partitioning algorithm (denoted SP) and the machine
learning algorithm based on SVM model (denoted SVM). To
show why we choose SVM as the machine learning model, we
also compare with two other learning models: random forest
(RF) and a 3-layer deep neural network (DNN). The number of
sub-partitions is 2. The size of the training data is 1,000 for the
machine learning algorithms. Table III shows the relative errors
with respect to the exact method and the times of candidate
number computation (in microseconds). Since the performances
on the real datasets are similar, we only show the results on
the GIST dataset. The relative error of SVM is very small, and
it is more accurate and faster than SP. To compare learning
models, the relative error of RF is much higher than the other
methods. Although DNN estimates candidate numbers slightly
more accurately than SVM in some settings, their relative errors
are both very small, and the running time of DNN is much more
than SVM. In addition, we tried logistic regression and gradient
boosting decision tree. Their relative errors are higher than the
above methods and hence not shown here. Seeing these results,

9

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GR

OR

OS

DD

RS

(a) SIFT, Partitioning Method, Time

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Skewness

GreedyInit
OriginalInit

RandomInit

(b) SIFT, Initial Partitioning, Time

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GR

OR

OS

DD

RS

(c) GIST, Partitioning Method, Time

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Skewness

GreedyInit
OriginalInit

RandomInit

(d) GIST, Initial Partitioning, Time

 1

 10

 100

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GR

OR

OS

DD

RS

(e) PubChem, Partitioning Method, Time

 1

 10

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Skewness

GreedyInit
OriginalInit

RandomInit

(f) PubChem, Initial Partitioning, Time

Fig. 4. Evaluation of Dimension Partitioning

we choose the machine learning algorithm based on SVM model
to estimate candidate numbers in the rest of the experiments.

TABLE III
ESTIMATION WITH VARIOUS MODELS ON GIST (EACH CELL SHOWS
PERCENTAGE ERROR AND PREDICTION TIME (µS), SEPARATED BY /)

τ SP SVM RF DNN

16 1.75%/0.47 1.64%/0.31 8.73%/0.40 1.78%/2.64
32 0.37%/0.77 0.28%/0.28 12.43%/0.39 0.19%/2.60
48 0.15%/2.67 0.10%/0.43 9.26%/0.73 0.08%/3.83
64 0.07%/3.45 0.06%/0.29 3.58%/0.44 0.03%/2.44

D. Evaluation of Dimension Partitioning

To evaluate the effect of partitioning, we compare our method
(denoted GR) with the following competitors: (1) OR is to use
the original unshuffled order of the dataset. (2) RS is to perform
a random shuffle on the original order. (3) OS [43] and DD [36]
are two dimension rearrangement methods to make dimensions
in each partition uniformly distributed. We run GPH with the
above partitioning methods and show the query response times
in Figs. 4(a), 4(c), and 4(e). On SIFT, their performances are
close. When the dataset has more skewness, the advantage of
GR becomes remarkable. It is faster than the runner-up by up
to 4 times on GIST and 8 times on PubChem.

To evaluate the effect of initial partitioning, we run our
partitioning algorithm with three initial states: (1) the proposed
method which tries to minimize entropy (denoted GreedyInit),
(2) equi-width partitioning on the original unshuffled data
(denoted OriginalInit), and (3) equi-width partitioning after
random shuffle (denoted RandomInit). The corresponding query
response times on the three datasets are plotted in Figs. 4(b), 4(d),
and 4(f). The trends are similar to the previous set of experiments.
On datasets with more skewness, GreedyInit is consistently

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

m=6

m=8

m=10

m=12

m=14

(a) SIFT, Effect of m, Time

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

m=10

m=12

m=14

m=16

m=18

(b) GIST, Effect of m, Time

 1

 10

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

m=38

m=44

m=50

m=56

m=62

(c) PubChem, Effect of m, Time

Fig. 5. Effect of Partition Number

faster than the other competitors, and the gap to the runner-up
can be up to 2 times.

As for the query workload Q to compute dimension parti-
tioning, our results show that the effect of its size on the query
processing performance is not obvious.E.g., when τ = 64, the
average query processing times vary from 4.19 to 3.97 seconds
on GIST, if we increase |Q| from 100 to 1000. Thus we choose
100 as the size of Q in our experiments.

We also study the effect of partition number on the query
processing performance. Figs. 5(a) – 5(c) show the query
response times on SIFT, GIST, and PubChem by varying
the number of partitions. The general trend is that a smaller m
performs better under small τ settings. When τ increases, the best
choice of m slightly increases. The reason is: (1) When τ is small,
a small m is good enough. Dividing vectors into unnecessarily
large number of partitions yields very small partitions and hence
increases the frequency of signatures. (2) When τ is large, a
small m means more thresholds will be allocated to a partition,
and this results in more candidates. Hence a slightly larger m is
better in this case. Based on the results, we suggest user choose
m ≈ n

24 for GPH for good query processing performance.

E. Comparison with Existing Methods

We compare GPH with alternative methods (equipped with
the OS partitioning [43]) for Hamming distance search.

Index are compared first. Figs. 6(a) – 6(e) show the index
sizes of the algorithms on the five datasets. LSH, HmSearch,
and PartAlloc run out of memory for some τ settings on SIFT
and GIST. We only show the points when the memory can
hold their indexes. GPH consume more space than MIH due
to the machine learning-based technique to estimate candidate
numbers. Both algorithms consume less space than the other
exact competitors. This is expected as GPH and MIH enumerate
signatures on query vectors only. HmSearch and PartAlloc
enumerate 1-deletion variants on data vectors; i.e., removing
an arbitrary dimension from a partition and taking the rest as
a signature. The variants are indexed and this will increase
their index sizes. PartAlloc and LSH exhibit variable index
sizes with respect to τ . LSH has the smallest index size on
PubChem, but consumes much more space on the other datasets.

10

 15000

 30000

 60000

 4 8 12 16 20 24 28 32

In
d

e
x

 S
iz

e
 (

M
B

)

Threshold

GPH

MIH

PartAlloc

LSH

(a) SIFT, Index Size

 2500

 5000

 10000

 20000

 40000

 80000

 8 16 24 32 40 48 56 64

In
d

e
x

 S
iz

e
 (

M
B

)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(b) GIST, Index Size

 3

 12

 48

 192

 768

 4 8 12 16 20 24 28 32

In
d

e
x

 S
iz

e
 (

M
B

)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(c) PubChem, Index Size

 100

 1000

 4 6 8 10 12 14 16 18 20

In
d

e
x

 S
iz

e
 (

M
B

)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(d) FastText, Index Size

 1000

 10000

 4 8 12 16 20 24 28 32 36 40 44 48

In
d

e
x

 S
iz

e
 (

M
B

)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(e) UQVideo, Index Size

Fig. 6. Comparison with Alternatives - Index Size

TABLE IV
INDEX CONSTRUCTION TIME ON GIST (S)

τ MIH HmSearch PartAlloc LSH GPH

16 481 1681 1736 583 5026 + 560
32 481 1689 3244 5221 5026 + 560
48 481 1711 7600 64256 5026 + 560
64 481 1747 9605 N/A 5026 + 560

The reason is that PubChem has much more dimensions than
the other datasets. Hence given a τ , the equivalent Jaccard
threshold is higher on PubChem, resulting in less number of
signatures. The corresponding index construction times on GIST
are shown in Table IV. LSH runs out of memory when τ = 64,
and thus is shown for the other τ settings. The time of GPH
is decomposed into dimension partitioning and indexing. MIH
spends the least amount of time on index construction. Despite
more time consumption on partitioning, GPH spends less time
indexing data objects than the other algorithms. We argue that
the partitioning can be done offline and the time is affordable.
Because the query workload Q for partitioning computation
consists of queries with varying thresholds, we can run the
partitioning once and use the same partitioning for different τ
settings in real queries. This is also the reason why GPH has
constant partitioning and indexing time irrespective of τ .

The candidate numbers are plotted in Figs. 7(a), 7(c), 7(e),
7(g), and 7(i). The corresponding query response times are plotted
in Figs. 7(b), 7(d), 7(f), 7(h), and 7(j). For all the algorithms,
candidate numbers and running times increase when τ moves
towards larger values, and their trends are similar. Thanks to
the tight filtering condition and cost-aware partitioning and
threshold allocation, GPH is consistently smaller than MIH and
HmSearch in candidate size and faster than the two methods.
The only exception is that HmSearch has smaller candidate

size when τ = 4 on PubChem and τ ≤ 8 on UQVideo, but
turns out to be slower than GPH. This is because HmSearch
generates many signatures whose postings lists are empty, and
this drastically increases signature enumeration and index lookup
times. Although PartAlloc has a tight filtering condition and
utilizes threshold allocation, it is not as fast as GPH, and
even slower than MIH. This result showcases that PartAlloc’s
partitioning and threshold allocation is not efficient for Hamming
distance search, though it pays off on set similarity search.
Another interesting observation is that LSH does not perform
well on highly skewed data. The reason is that the hash functions
may choose highly skewed and correlated dimensions, and thus
the selectively of the chosen signatures becomes very bad. On
PubChem, LSH’s performance is close to a sequential scan.
Overall, GPH is the fastest algorithm. The speed-ups against the
runner-up algorithms on the five datasets are up to 22, 21, 135,
32, and 8 times, respectively. We also notice that when τ ≥ 16
on FastText, the speed-up of GPH against MIH becomes less
remarkable. This is because more than 59% data objects are
results, meaning that both MIH and GPH are ineffective in
filtering. Nonetheless, GPH is faster than MIH by 1.3 times, and
both methods are significantly faster than the other competitors.

F. Varying Number of Dimensions

We compare the five competitors to evaluate their performances
when varying the number of dimensions. We sample 25%, 50%,
75%, and 100% dimensions from SIFT, GIST, and PubChem,
and then run the experiment. τ = 12, 24, and 12 for the 100%
sample on the three datasets, respectively, and we let τ change
linearly with the number of sampled dimensions. Figs. 8(a)
– 8(c) show the query response times of the algorithms on the
three datasets. We observe that the times of all the algorithms
increase with n. There are two factors: (1) Although τ and n
increase proportionally, the number of results increases with n
due to dimension correlations. Hence we have more candidates
to verify. (2) The verification cost increases with n because
more dimensions are compared. Nonetheless, GPH is always
the fastest algorithm among the competitors, especially on the
more skewed PubChem.

G. Varying Skewness

We study the performance by varying skewness 11. As seen
from Fig. 1, the relationship between skewness and dimensions
is approximately linear (except PubChem) on most datasets. On
the basis of this observation, the synthetic dataset is generated as
follows: The number of dimensions is 128. The mean skewness
is controlled by a parameter γ, and the skewnesses of the 128
dimensions range from 0 to 2γ. We set τ = 12. The query
processing times are plotted in Fig. 8(d). The general trend is
that all the algorithms become slower on more skewed data. This
is expected as signatures become less selective. Nonetheless,
thanks to variable partitioning and threshold allocation, GPH is
the fastest among the five competitors.

To demonstrate the robustness of GPH, we show that even if
the distribution of real queries is different from the sample to

11See the footnote in Section I for the measurement of dataset skewness.

11

 100000

 1x10
6

 1x10
7

 1x10
8

 4 8 12 16 20 24 28 32

A
v

g
.

C
an

d
id

at
e

S
iz

e

Threshold

GPH

MIH

PartAlloc

LSH

(a) SIFT, Candidate Number

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH

MIH

PartAlloc

LSH

(b) SIFT, Query Processing Time

 10000

 100000

 1x10
6

 1x10
7

 8 16 24 32 40 48 56 64

A
v

g
.

C
an

d
id

at
e

S
iz

e

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(c) GIST, Candidate Number

 10

 100

 1000

 10000

 8 16 24 32 40 48 56 64

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(d) GIST, Query Processing Time

 1000

 10000

 100000

 1x10
6

 4 8 12 16 20 24 28 32

A
v

g
.

C
an

d
id

at
e

S
iz

e

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(e) PubChem, Candidate Number

 1

 10

 100

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(f) PubChem, Query Processing Time

 10000

 100000

 1x10
6

 4 6 8 10 12 14 16 18 20

A
v

g
.

C
an

d
id

at
e

N
u

m
b

er

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(g) FastText, Candidate Number

 1

 10

 100

 4 6 8 10 12 14 16 18 20

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(h) FastText, Query Processing Time

 100

 1000

 10000

 100000

 1x10
6

 4 8 12 16 20 24 28 32 36 40 44 48

A
v

g
.

C
an

d
id

at
e

N
u

m
b

er

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(i) UQVideo, Candidate Number

 1

 10

 100

 1000

 4 8 12 16 20 24 28 32 36 40 44 48

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH

MIH

HmSearch

PartAlloc

LSH

(j) UQVideo, Query Processing Time

Fig. 7. Comparison with Alternatives - Candidate Number & Time

compute partitioning, our method retains good performance. We
generate a synthetic dataset with a γ of 0.5, and then compute
partitioning with two query workloads: γ = 0.5 (denoted GPH-
0.5) and γ = 0.1 (denoted GPH-0.1), respectively. Then we run
a set of queries with a γ of 0.1. The gap between GPH-0.5
and GPH-0.1 can be regarded as the extent to which GPH’s
performance deteriorates in the presence of a different query
distribution. Then we set γ to 0.1 for the synthetic dataset and
run the experiment again. Results are plotted in Figs. 8(e) – 8(f).
It can be seen that although GPH computes partitioning with
a workload whose distribution is different from real queries,
the query processing performance is almost the same. A slight
difference can be noticed only when τ is as large as 12, where the
query processing speed drops by 11.1% and 4.4%, respectively.

VIII. RELATED WORK

The notion of Hamming distance search was first proposed
in [23]. Due to its wide range of applications, the problem has
received considerable attention in the last few decades.

 100

 1000

 10000

 32 64 96 128

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Dimension

GPH

MIH

PartAlloc

(a) SIFT, Effect of n, Time

 10

 100

 1000

 10000

 64 128 192 256

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Dimension

GPH

MIH

HmSearch

PartAlloc

LSH

(b) GIST, Effect of n, Time

 1

 10

 100

 1000

 220 440 660 880

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Dimension

GPH

MIH

HmSearch

PartAlloc

LSH

(c) PubChem, Effect of n, Time

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

 γ

GPH

MIH

HmSearch

PartAlloc

LSH

(d) Synthetic, Effect of Skewness, Time

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH-0.1 GPH-0.5

(e) Synthetic, γD = 0.5, γq = 0.1,
Time

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3 6 9 12

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH-0.1 GPH-0.5

(f) Synthetic, γD = 0.1, γq = 0.5,
Time

Fig. 8. Varying Number of Dimensions and Skewness

A few studies focused on the special case when τ = 1 [3],
[4], [21], [41]. Among them, the method by [21] indexes all
the 1-variants of the data vectors to answer the query in O(1)
time and O(

(
n
τ

)
) space. A data structure was proposed in [4] to

answer this special case in O(1) time using O(n logm) space
by a cell probe model with word size m.

For the general case of Hamming distance search, the method
by [10] is able to answer Hamming distance search in O(m+
logτ (nm) +occ) time and O(n logτ (nm)) space, where occ is
the number of results. In practice, many solutions are based on
the pigeonhole principle to convert the problem to sub-problems
with a threshold τ ′, where τ ′ < τ . In [32], [18], [25], vectors
are divided into a number of partitions such that query results
must have at least one exact match with the query in one of the
partitions. The idea of recursive partitioning was covered in [22].
Before that, a two-level partitioning idea was adopted by the
PartEnum method [1]. Song et al. [30] proposed to enumerate
the combinations within threshold τ ′ in each partition to avoid
the verification of candidates. Ong and Bober [26] proposed an
approximate method utilizing variable length hash keys. In [43],
vectors are divided into

⌊
τ+3
2

⌋
partitions, and the threshold of

a partition can be either 0 or 1. Deng et al. [11] also proposed
to use different thresholds on partitions, and the thresholds are
computed by the allocation algorithm. We briefly discuss the
differences from our method: (1) The method in [11] targets
the set similarity join problem. Although it can be converted
to Hamming distance searches, the number of dimensions are
large (usually > 10000) and the vectors are sparse (usually
< 1000 non-zero values), which are different from the datasets
in most applications of Hamming distance search. (2) Equi-
width partitioning is used in [11], and the number of partitions
is τ + 1. In GPH, we use variable partition size and the number

12

of partitions is a tunable parameter m. (3) For the thresholds
on partitions, there are three options in [11]: 0, 1, and skipped
(equivalent to −1 in GPH). We do not have this limitation, and
the thresholds may vary from −1 to τ . (4) To find candidates,
signature enumerations are performed on both data and query
vectors in [11], whereas we only enumerate on queries.

To handle the poor selectivity caused by data skewness
and dimension correlations, existing work mainly focused on
two strategies. The first is to perform a random shuffle [1]
in original dimensions to avoid highly correlated dimensions
in same partitions. The second is to perform a dimension
rearrangement [43], [36], [20] to minimize the correlation
between dimensions in each partition. These methods are able
to answer queries efficiently on slightly skewed datasets, but the
performances deteriorate on highly skewed datasets.

We note that a strong form of the pigeonhole principle was
introduced in [6] which states that given n positive integers
q1, . . . , qm, if (

∑m
i=1 qi−m+ 1) objects are distributed into m

boxes, then either the first box contains at least q1 objects, . . .,
or the n-th box contains at least qn objects. Although the general
pigeonhole principle proposed in this paper coincides with the
above strong form, by integer reduction and ε-transformation, the
general pigeonhole principle is not limited to positive integers
(this is the reason why GPH performs well on skewed data) and
the tightness of threshold allocation is proved, hence providing
a deeper understanding of the pigeonhole principle.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach to similarity
search in Hamming space. Observing the major drawbacks
of the basic pigeonhole principle adopted by many existing
methods, we developed a new form of the pigeonhole principle,
based on which the condition of candidate generation is tight.
The cost of query processing was modeled, and then an
offline dimension partitioning algorithm and an online threshold
allocation algorithm were devised on top of the model. We
conducted experiments on real datasets with various distributions,
and showed that our approach performs consistently well on all
these datasets and outperforms state-of-the-art methods.

Our future work includes extending general pigeonhole
principle to other similarity constraints. Another direction is to
explore the techniques to dealing with the parallel case.

Acknowledgements. J. Qin, Y. Wang, and W. Wang are
partially supported by ARC DP170103710, and D2DCRC
DC25002 and DC25003. C. Xiao and Y. Ishikawa are supported
by JSPS Kakenhi 16H01722. X. Lin is supported by NSFC
61672235, ARC DP170101628 and DP180103096. We thank
the authors of [11] for kindly providing their source codes.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In
VLDB, 2006.

[2] J. M. Borwein and D. H. Bailey. Mathematics by experiment - plausible
reasoning in the 21st century. A K Peters, 2003.

[3] G. S. Brodal and L. Gasieniec. Approximate dictionary queries. In CPM,
pages 65–74, 1996.

[4] G. S. Brodal and S. Venkatesh. Improved bounds for dictionary look-up
with one error. Inf. Process. Lett., 75(1-2):57–59, 2000.

[5] A. Z. Broder. On the resemblance and containment of documents. In
SEQS, 1997.

[6] R. Brualdi. Introductory Combinatorics. Math Classics. Pearson, 2017.
[7] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to hash

by continuation. In ICCV, pages 5609–5618, 2017.
[8] S. Chaidaroon and Y. Fang. Variational deep semantic hashing for text

documents. In SIGIR Conference, pages 75–84, 2017.
[9] B. Chazelle, D. Liu, and A. Magen. Approximate range searching in

higher dimension. Comput. Geom., 39(1):24–29, 2008.
[10] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and

indexing with errors and don’t cares. In STOC, pages 91–100, 2004.
[11] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method

for exact set similarity joins. PVLDB, 9(4):360–371, 2015.
[12] D. R. Flower. On the properties of bit string-based measures of chemical

similarity. Journal of Chemical Information and Computer Sciences,
38(3):379–386, 1998.

[13] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one
billion vectors: re-rank with source coding. CoRR, abs/1102.3828, 2011.

[14] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for
approximate nearest neighbor in high dimensional spaces. In Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC
’98, pages 614–623, New York, NY, USA, 1998. ACM.

[15] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, 2008.

[16] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and X. Lin. Approximate
nearest neighbor search on high dimensional data - experiments, analyses,
and improvement (v1.0). CoRR, abs/1610.02455, 2016.

[17] K. Lin, H. Yang, J. Hsiao, and C. Chen. Deep learning of binary hash
codes for fast image retrieval. In CVPR Workshops, pages 27–35, 2015.

[18] A. X. Liu, K. Shen, and E. Torng. Large scale hamming distance query
processing. In ICDE, pages 553–564, 2011.

[19] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised hashing for fast
image retrieval. In CVPR Conference, pages 2064–2072, 2016.

[20] Y. Ma, H. Zou, H. Xie, and Q. Su. Fast search with data-oriented multi-
index hashing for multimedia data. TIIS, 9(7):2599–2613, 2015.

[21] U. Manber and S. Wu. An algorithm for approximate membership checking
with application to password security. Inf. Process. Lett., 50(4):191–197,
1994.

[22] G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-duplicates for
web crawling. In WWW, pages 141–150, 2007.

[23] M. Minsky and S. Papert. Perceptrons - an introduction to computational
geometry. MIT Press, 1987.

[24] R. Nasr, R. Vernica, C. Li, and P. Baldi. Speeding up chemical searches
using the inverted index: The convergence of chemoinformatics and text
search methods. J. Chem. Inf. Model, 2012.

[25] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space
with multi-index hashing. In CVPR, pages 3108–3115, 2012.

[26] E. Ong and M. Bober. Improved hamming distance search using variable
length hashing. In CVPR Conference, pages 2000–2008, 2016.

[27] H. Park and L. Stefanski. Relative-error prediction. Statistics & Probability
Letters, 40(3):227 – 236, 1998.

[28] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. In NIPS Conference, pages 1509–1517, 2009.

[29] R. Salakhutdinov and G. E. Hinton. Semantic hashing. Int. J. Approx.
Reasoning, 50(7):969–978, 2009.

[30] J. Song, H. T. Shen, J. Wang, Z. Huang, N. Sebe, and J. Wang. A
distance-computation-free search scheme for binary code databases. IEEE
Trans. Multimedia, 18(3):484–495, 2016.

[31] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong. Multiple
feature hashing for real-time large scale near-duplicate video retrieval. In
Proceedings of the 19th ACM International Conference on Multimedia,
MM ’11, pages 423–432, New York, NY, USA, 2011. ACM.

[32] Y. Tabei, T. Uno, M. Sugiyama, and K. Tsuda. Single versus multiple
sorting in all pairs similarity search. Journal of Machine Learning Research
- Proceedings Track, 13:145–160, 2010.

[33] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 30(11):1958–1970, 2008.

[34] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image
databases for recognition. In CVPR Conference, 2008.

[35] S. A. Vinterbo. A note on the hardness of the k-ambiguity problem.
Technical report, Harvard Medical School, 06 2002.

[36] J. Wan, S. Tang, Y. Zhang, L. Huang, and J. Li. Data driven multi-index
hashing. In ICIP Conference, pages 2670–2673, 2013.

13

[37] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A
survey. CoRR, abs/1408.2927, 2014.

[38] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen. A survey on learning
to hash. CoRR, abs/1606.00185, 2016.

[39] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS Conference,
pages 1753–1760, 2008.

[40] P. Willett, J. M. Barnard, and G. M. Downs. Chemical similarity searching.
Journal of Chemical Information and Computer Sciences, 38(6):983–996,

1998.
[41] A. C.-C. Yao and F. F. Yao. Dictionary look-up with one error. J.

Algorithms, 25(1):194–202, 1997.
[42] W. Zhang, K. Gao, Y. Zhang, and J. Li. Efficient approximate nearest

neighbor search with integrated binary codes. In ICMM Conference, pages
1189–1192, 2011.

[43] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu. Hmsearch: an efficient
hamming distance query processing algorithm. In SSDBM, page 19, 2013.

14

