
26/04/2024 08:45

Schema-agnostic progressive entity resolution / Simonini, G.; Papadakis, G.; Palpanas, T.; Bergamaschi,
S.. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - 31:6(2019),
pp. 1208-1221. [10.1109/TKDE.2018.2852763]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852763, IEEE
Transactions on Knowledge and Data Engineering

1

Schema-agnostic Progressive Entity Resolution
Giovanni Simonini, George Papadakis, Themis Palpanas, and Sonia Bergamaschi

Abstract—Entity Resolution (ER) is the task of finding entity profiles that correspond to the same real-world entity. Progressive ER
aims to efficiently resolve large datasets when limited time and/or computational resources are available. In practice, its goal is to
provide the best possible partial solution by approximating the optimal comparison order of the entity profiles. So far, Progressive ER
has only been examined in the context of structured (relational) data sources, as the existing methods rely on schema knowledge to
save unnecessary comparisons: they restrict their search space to similar entities with the help of schema-based blocking keys (i.e.,
signatures that represent the entity profiles). As a result, these solutions are not applicable in Big Data integration applications, which
involve large and heterogeneous datasets, such as relational and RDF databases, JSON files, Web corpus etc. To cover this gap, we
propose a family of schema-agnostic Progressive ER methods, which do not require schema information, thus applying to
heterogeneous data sources of any schema variety. First, we introduce two naı̈ve schema-agnostic methods, showing that
straightforward solutions exhibit a poor performance that does not scale well to large volumes of data. Then, we propose four different
advanced methods. Through an extensive experimental evaluation over 7 real-world, established datasets, we show that all the
advanced methods outperform to a significant extent both the naı̈ve and the state-of-the-art schema-based ones. We also investigate
the relative performance of the advanced methods, providing guidelines on the method selection.

Index Terms—Schema-agnostic Entity Resolution, Pay-as-you-go Entity Resolution, Similarity-based Progressive Methods,
Equality-based Progressive Methods, Data Cleaning

F

1 INTRODUCTION

When dealing with heterogeneous data, real-world entities may
have different representations; for instance, they can be records
in a relational database, sets of RDF triples, JSON objects, text
snippets in a web corpus, etc. We call entity profile (or simply
profile) each representation of a real-world entity in data sources.
The task of identifying different profiles that refer to the same
real-world entity is called Entity Resolution (ER) and constitutes
a critical process that has many applications in areas such as Data
Integration, Social Networks, and Linked Data [1], [2], [3].

ER can be distinguished into two broad categories [4], [5]: (i)
Off-line or Batch ER, which aims to provide a complete solution,
after all processing is terminated, and (ii) On-line or Progressive
ER, which aims to provide the best possible partial solution, when
the response time, or the available computational resources are
limited. The latter is driven by modern pay-as-you-go applications
that do not require the complete solution to produce useful results.

Progressive ER is becoming increasingly important [4], [5],
[6], as the number of data sources and the amount of available
data multiply. For example, the number of high-quality HTML
tables on the Web is in the hundreds of millions, while the Google
dataset search system alone has indexed ∼26 billion datasets [6].
This huge volume of data can only be resolved in a pay-as-you-go
fashion, especially for applications with strict time requirements,
e.g., the catalog update in large online retailers that is carried out
every few hours1. Most importantly, Web data abound in highly
diverse, multilingual, noisy and incomplete schemata to such an
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extent that it is practically impossible to unify them under a global
schema [6]. Inevitably, this unprecedented variety renders schema-
based progressive methods inapplicable to Web data. For these
reasons, we propose novel, schema-agnostic Progressive ER
methods that go beyond the current state-of-the-art approaches in
all respects - we outperform them significantly even when reliable
schema information is available.
Progressive Methods. A core characteristic of the existing meth-
ods for Progressive ER is that they rely on blocking in order
to scale to large datasets [4], [5]. Blocking is a typical pre-
processing step for Batch ER that aims to index together likely-
to-match profiles into buckets (called blocks), according to an
indexing criterion (called blocking key). Thus, comparisons are
limited to pairs of profiles that co-occur in at least one block,
avoiding the quadratic complexity of the naı̈ve ER solution, which
compares every profile with all others. In this way, progressive
methods generate on-line the most promising pairs of profiles to
be compared by a match function, i.e., a (usually) binary function
that decides whether two given profiles are matching, or not.

In fact, progressive methods use blocking to generate on-line
pairs of profiles in decreasing order of matching likelihood. So
far, however, they have been exclusively combined with schema-
based blocking [4], [5], which is specifically crafted for structured
(relational) data. That is, they rely on schema knowledge in order
to build blocks of low noise and high discriminativeness, assuming
implicitly that all input records abide by a schema with attributes
of known quality.
Limitations of Existing Approaches. The existing progressive
methods suffer from the following major drawbacks:
(1) In practice, their fundamental assumption that schema is a-
priori known holds for a small portion of the data we would
like to handle. For instance, Web data typically comprises large,
semi-structured, heterogeneous entities that manifest two main
challenges of Big Data [1], [2]: (i) Volume, as they involve millions
of entities that are described by billions of statements, and (ii)
Variety, since their descriptions entail thousands of different at-
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Fig. 1. The performance of Progressive Sorted Neighborhood on 4 real-
world structured datasets.

tribute names. More generally, in a Big Data integration scenario,
schema-alignment is too expensive and time consuming when
multiple heterogeneous data sources are involved [2], [6], thus
yielding a prohibitively high cost for pay-as-you-go applications.
(2) Even when the schema assumption holds, there is plenty of
room for improving the performance of existing schema-based
progressive methods. We demonstrate this in Figure 1 over four
established, real-world and diverse datasets: the state-of-the-art
schema-based method, Progressive Sorted Neighborhood (PSN)
[4], [5], finds only ∼60% and ∼85% of all matches for Cora and
US Census, respectively, after executing 10 times the number of
comparisons required by the optimal algorithm to identify 100%
of the matches (i.e., 1 comparison per pair of duplicates). For
the rest of the datasets, the performance is also far from optimal:
for Restaurant, PSN identifies almost all matches only after
performing 2 orders of magnitude more comparisons than the
optimal algorithm, while for Cddb, it detects less than 80% of
all matches with the same (excessive) number of comparisons.
Our Contributions. We propose novel and unsupervised methods
for Progressive ER that inherently address the Variety of Big
Data: they operate in a schema-agnostic fashion, which overrides
the need to search for and identify highly discriminative attributes,
rendering schema knowledge unnecessary. Our methods are also
more effective in addressing the Volume of Big Data, since
they identify matches earlier than the top-performing schema-
based method. They actually go beyond the state-of-the-art in
Progressive ER by introducing and exploiting redundancy, i.e.,
by associating every profile with multiple blocking keys. In-
stead, existing schema-based progressive methods typically rely
on highly discriminative attributes, which yield redundancy-free
keys such that two profiles appear together in at most one block.

More specifically, our redundancy-based methods rely on two
principles. The first one is called similarity principle, as it assumes
that any two matching profiles have blocking keys that are closer
in alphabetical order than those of non-matching ones. The second
one is called equality principle, since it assumes that the matching
likelihood of any two profiles is proportional to the number of
blocks they share. Both principles have been successfully applied
in Batch ER [7], but their application to the progressive context is
non-trivial, as we show empirically. For this reason, we introduce
more advanced methods for every principle.

Through an exhaustive experimental evaluation over 7 well-
known datasets, we verify that similarity-based methods ex-
cel in structured datasets, outperforming even the state-of-the-
art schema-based progressive method. These datasets typically
involve a large portion of textual information, which provides
reliable matching evidence when sorted alphabetically. In con-
trast, our equality-based method is the top-performer over semi-
structured datasets (e.g., RDF data); it can exploit the semantics
of the URIs that abound in this type of datasets, disregarding the

useless information of URI prefixes, which introduce high levels
of noise when sorted alphabetically.

On the whole, we make the following contributions:
• We introduce a schema-agnostic approach to Progressive ER,
which inherently addresses the Variety of Big Data.
•We demonstrate that adapting existing schema-based methods to
schema-agnostic Progressive ER is a non-trivial task: we intro-
duce 2 naı̈ve, schema-agnostic methods, showing experimentally
that they fail to address the Volume issue of Big Data.
• We present 4 novel advanced, schema-agnostic progressive
methods, which address both the Volume and the Variety of Big
Data. They are classified in two categories: those based on a sorted
list of profiles, leveraging the similarity principle, and those based
on a graph of profiles, leveraging the equality principle.
• We perform a series of experiments over 7 established, real-
world datasets, verifying experimentally the superiority of our
methods over the existing schema-based state-of-the-art method,
both in terms of effectiveness and time efficiency. We also investi-
gate the relative performance of our methods, highlighting the top-
performing ones, and providing guidelines for method selection.

The rest of the paper is structured as follows: Section 2
discusses the main works in the literature, while Section 3 de-
scribes the background of our methods. We present two naı̈ve
schema-agnostic solutions to Progressive ER in Section 4, and
four advanced ones in Section 5. We elaborate on our extensive
experimental evaluation in Section 7 and conclude the paper in
Section 8, along with directions for future work.

2 RELATED WORK

Schema-based Progressive Methods. The state-of-the-art pro-
gressive method is Progressive Sorted Neighborhood (PSN) [4],
[5]. Based on Batch Sorted Neighborhood [8], it associates every
profile with a schema-based blocking key. Then, it produces a
sorted list of profiles by ordering all blocking keys alphabetically.
Comparisons are progressively defined through a sliding window,
w, whose size is iteratively incremented: initially, all profiles in
consecutive positions (w=1) are compared, starting from the top
of the list; then, all profiles at distance w=2 are compared and so
on and so forth, until the processing is terminated.

However, the performance of PSN depends heavily on the
attribute(s) providing the schema-based blocking keys that form
the sorted list(s) of profiles. In case of low recall, the entire process
is repeated, using multiple blocking keys per profile. As a result,
PSN requires domain experts, or supervised learning on top of
labeled data in order to achieve high performance. In contrast, our
methods are completely unsupervised and schema-agnostic.

Two more schema-based methods were proposed in [5]: Hi-
erarchy of Record Partitions (HRP) and Ordered List of Records
(OLR). The main idea of HRP is to build a hierarchy of blocks,
such that the matching likelihood of two profiles is proportional
to the level in which they appear together for the first time: the
blocks at the bottom of the hierarchy contain the profiles with the
highest matching likelihood, and vice versa for the top hierarchy
levels. Thus, the hierarchy of blocks can be progressively resolved,
level by level, from the leaves to the root. This approach has
been improved in the literature in two ways: (i) OLR exploits
this hierarchy in order to produce a list of records sorted by
their likelihood to produce matches, involving a lower memory
consumption than HRP at the cost of a slightly worse perfor-
mance. (ii) A schema-based variation of HRP is adapted to the
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Fig. 2. Overview of all discussed progressive methods. A→B means
that method B builds on method A in order to offer a new functionality.

MapReduce parallelization framework for even higher efficiency
in [9]. It divides every block into a hierarchy of child blocks and
uses an advanced strategy for optimizing their parallel processing.

However, both HRP and OLR are difficult to apply in practice.
The hierarchies that lie at their core can be generated only when
the distance of two records can be naturally estimated through
a certain attribute (e.g., product price) [5]. The number of the
hierarchy layers, L, has to be determined a-priori, along with
L similarity thresholds and the similarity measure that compares
attribute values. Moreover, they both exhibit a performance infe-
rior to PSN [5]. For these reasons, we do not consider these two
methods any further.

Altowim et al. [10] propose a progressive joint solution in
the context of multiple datasets containing different entity types.
Similarly, in joint ER [11], the result on one dataset can be
exploited to resolve the others. As an example, let us consider a
joint ER on a movie dataset and on an actor dataset: discovering
matches among actors can help to determine whether two movies
associated to those actors are matching too (and vice versa). Both
approaches, though, are only applicable to Relational ER.
Taxonomy of Progressive Methods. We now present a taxon-
omy that organizes the existing progressive methods and those
presented in the following with respect to the granularity of their
functionality. This results in four categories, which generalize the
hint types discussed in [5]:

(1) Comparison-based methods provide a list of profile pairs
(i.e., comparisons) that are sorted in descending order of matching
likelihood (from the highest to the lowest one). With every method
call, these profile pairs are then emitted, one at a time, following
that ordered list. This category is a generalization of the category
“sorted list of record pairs” [5] and includes the methods PSN
[4], [5], SA-PSN (see Section 4.1), LS-PSN (see Section 5.1.1),
and GS-PSN (see Section 5.1.2).

(2) Block-based methods produce a list of blocks that are sorted
in descending order of the likelihood that they include duplicates
among their profiles. In every call, all the comparisons for each
block are generated, one block at a time, following that ordered
list; all comparisons in the same block have the same matching
likelihood. This is a generalization of the category “hierarchy of
record partitions” [5] and includes the homonymous method HRP
[5] together with SA-PSAB (see Section 4.2).

(3) Profile-based methods provide a list of profiles that are
sorted in descending order of duplication likelihood. Then, in

every call, all comparisons of every entity are generated, one
entity at a time, following that ordered list. This category is a
generalization of the category “ordered list of records” [5] and
includes the homonymous method OLR [5].

(4) Hybrid methods combine characteristics from two or all of
the previous categories. This category includes PBS (see Section
5.2.1), which involves both block- and comparison-based char-
acteristics, as well as PPS (see Section 5.2.2), which combines
comparison-based characteristics with profile-based ones.

We illustrate our taxonomy in Figure 2, where every column
corresponds to a different type of granularity (horizontal axis).
On the vertical axis, we consider the relation of every progressive
method to schema knowledge, with the topmost part correspond-
ing to batch methods. Every arrow from method A to method B
means that B extends A to offer a new functionality. For instance,
PBS and PPS are based on the Blocking Graph, which is the core
data structure of Batch Meta-blocking [12].
Crowdsourced (or Oracle) Methods. In Crowdsourced ER [13],
humans are asked to label candidate profile pairs as either match-
ing or non-matching, i.e., they are asked to behave like a binary
match function. Such a function is typically assumed to be perfect
(i.e., being equivalent to an oracle [14]) and transitive [15]. For
example, given three profiles (p1, p2, p3), if the crowd finds that
p1 matches with p2, and p2 with p3, then the comparison between
p1 and p3 is not crowdsourced, but is automatically deduced as a
match. Progressive crowdsourced methods [14], [15], [16] exploit
this transitivity to maximize the progressive recall of ER. In this
work, though, we propose general methods for Progressive ER
that are independent of the employed match function, i.e., we do
not assume the match function to be transitive, nor to be perfect—a
setting that is common for (non-crowdsourced) match functions
[17]. We exclusively consider progressive methods that define a
static processing order, without relying on the feedback of the
“match function” to dynamically re-adjust it, as in crowdsourced
methods or the “look-ahead strategy” that lies at the core of [4].

3 PRELIMINARIES

At the core of ER lies the notion of entity profile (or simply
profile), which constitutes a uniquely identified set of attribute
name-value pairs. An individual profile is denoted by pi, with
i standing for its id in a profile collection P . Two profiles
pi, pj ∈ P are called duplicates or matches (pi ≡ pj) if they
represent the same real-world entity.

Depending on the input data, ER takes two forms [1], [2]:
(1) Clean-clean ER receives as input two duplicate-free, but
overlapping profile collections, P1 and P2, and returns as output
all pairs of duplicate profiles they contain, P1 ∩ P2. (2) Dirty ER
takes as input a single profile collection that contains duplicates
in itself and produces a set of equivalence clusters, with each one
corresponding to a distinct profile.

To scale ER to large data collections, blocking is employed to
cluster similar profiles into blocks so that it suffices to consider
comparisons among the profiles of every block [19]. Each profile
is indexed into blocks according to one or more criteria called
blocking keys. If a blocking key depends on the schema(ta) of the
data, we call it schema-based, otherwise schema-agnostic.

An individual block is symbolized by bi, with i corresponding
to its id. The size of bi (i.e., the number of profiles it contains) is
denoted by |bi| and its cardinality (i.e., the number of comparisons
that it yields) by ‖bi‖. For instance, in Figure 3(b), |btailor|=4 and
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Fig. 3. (a) A set of profiles P that is extracted from a data lake with a variety of data formats: structured/relational data (p1, p4), semi-structured/RDF
data (p2, p3) and unstructured/free-text data (p5, p6). Note that p1≡p2≡p3 and p4≡p5. (b) The block collection B derived from P by applying Token
Blocking [18] to its profiles. (c) The Blocking Graph derived from B, with every edge representing a profile comparison that is weighted by the ARCS
function. (d) The sorted list of attribute value tokens that appear in the profiles of P . (e) The corresponding schema-agnostic Neighbor List.

‖btailor‖=
(

4
2

)
=6. A set of blocks B is called block collection,

with |B| standing for its size (i.e., total number of blocks)
and ‖B‖ for its aggregate cardinality (i.e., the total number of
comparisons entailed by B): ‖B‖=

∑
bi∈B ‖bi‖. The set of blocks

associated with a specific profile pi is denoted by Bi, and the
average number of profiles per block by ¯|b|=

∑
b∈B |b|/|B|. The

comparison between profiles pi and pj is symbolized by cij .

3.1 Progressive ER
In Batch ER, the profile comparisons entailed in block collection
B are executed without a specific order. Let To be the overall
time required for performing Batch ER on B. Based on To,
Progressive ER is formally defined by two requirements [4], [5]:
• Improved Early Quality. If both Progressive and Batch ER

are applied to B and terminated at the same time t�To, then the
former should detect significantly more matches than the latter.
• Same Eventual Quality. The result produced at time To by

Progressive and Batch ER should be identical. Even though
progressive methods rarely run for so a long time as To, this
requirement ensures their correctness, verifying that they yield the
exact same outcome as batch methods.

In the following, we break the functionality of progressive
methods into two phases:

(1) The initialization phase takes as input the profiles to be
resolved, builds the data structures needed for their processing,
and processes them to produce the overall best comparison.

(2) The emission phase returns the next best comparison from
a list of candidates that are ranked in non-increasing order of
matching likelihood. In other words, it identifies the remaining
pair of profiles that has the highest matching likelihood.

By definition, the initialization phase is activated just once,
while the emission phase is repeated whenever a new comparison
is requested for processing.

3.2 Core Data Structures
We now describe two fundamental data structures for our progres-
sive methods: the Blocking Graph and the Neighbor List. Every
method discussed in the following has at its core either the former
or the latter. Note that both data structures are known from the
literature, sometimes with different names (e.g., the Neighbor List
is called sorted list of records in [5]).
Blocking Graph — This data structure lies at the core of Batch
Meta-blocking [1], [2], [12], [20], which aims at restructuring an
existing block collection B into a new one B′ that has similar
recall, but significantly higher precision than B. Meta-blocking
relies on the assumption that the matching likelihood of any
two profiles is analogous to their degree of co-occurrence in a

block collection. This means that B has to be generated by a
blocking method that yields redundancy-positive blocks, where
the similarity of two profiles is proportional to the number of
blocks they share.

Based on redundancy, which is common for schema-agnostic
blocking methods [12], Meta-blocking represents the block col-
lection as a blocking graph. This is an undirected weighted
graph GB(VB , EB), where VB is the set of nodes, and EB is
the set of weighted edges. Every node ni ∈ VB represents a
profile pi ∈ P , while every edge ei,j represents a comparison
ci,j ∈ B ⊆ P × P . A schema-agnostic weighting function
is employed to weight the edges, leveraging the co-occurrence
patterns of profiles in B: each edge is assigned a weight that is
derived exclusively from the (characteristics of the) blocks its ad-
jacent profiles have in common. For example, the ARCS function
sums the inverse cardinality of common blocks, assigning higher
scores to pairs of profiles sharing smaller (i.e., more distinctive)
blocks: ARCS(pi, pj , B) =

∑
bk∈Bi∩Bj

1/‖bk‖. Similarly, all
other weighting functions [12], [20] assign high weights to edges
connecting profiles with strong co-occurrence patterns and low
weights to casual co-occurrences.

Example 1. Figure 3a shows a set of entity profiles, P . Figure
3b illustrates the block collection that is generated by applying
Token Blocking to P , i.e., by creating a separate block for every
token that appears in any attribute value of the input profiles (these
tokens are called attribute value tokens in the following). Figure
3c depicts the Blocking Graph that is derived from the blocks of
Figure 3b, when using the ARCS function for edge weighting.

Note that materializing and sorting all edges of a blocking
graph is impractical for large datasets, due to the resulting huge
graph size (i.e., the number of edges it contains) [12]. For this
reason, all existing Meta-blocking methods [12], [20] discard low-
weighted edges through a pruning algorithm, while building the
Blocking Graph. As a result, they retain only the most promising
comparisons, which are collected and employed for Batch ER.
Based on such a Blocking Graph, we present in Section 5.2 a
novel algorithm that generates comparisons in a progressive way.
Neighbor List — The Neighbor List is the core data structure of
Sorted Neighborhood [8] and its derived methods (i.e., PSN [4],
[5]). It is a list of profiles that is generated by sorting all profiles
alphabetically, according to the blocking keys that represent them.
This data structure is exploited to generate comparisons under the
assumption that the matching likelihood of any two profiles is
analogous to their proximity after sorting.

The Neighbor List can be built from schema-based [19] or
from schema-agnostic [18] blocking keys and is typically em-
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Fig. 4. Progressive emission of comparisons for (a) PSN, and (b)
SA-PSN; dashed boxes indicate non-matching comparisons.

ployed to generate blocks: a window slides over the Neighbor List,
and blocks correspond to groups of profiles that fall into the same
window. The size of the window is iteratively incremented. The
resulting blocks are called redundancy-neutral blocks, because
the similarity of two profiles is not related to the number of blocks
they share; the corresponding blocking keys might be close when
sorted alphabetically, but rather dissimilar.

Example 2. To understand the notion of redundancy-neutral
blocks, consider the sorted schema-agnostic blocking keys (i.e.,
the attribute value tokens) of the profiles in Figure 3a, which
are depicted in Figure 3d. The keys ‘carl’ and ‘ellen’ are
placed in consecutive positions, but the corresponding profiles
have nothing in common. Figure 3e shows the Neighbor List that
corresponds to this sorted list of schema-agnostic blocking keys.

Note that in the schema-agnostic Neighbor List, every profile
typically has multiple placements (e.g., once for each attribute
value token) [18]. Hence, multiple distances can be measured for
any pair of matching profiles. In Section 5.1, we present two
approaches that leverage this phenomenon to improve the early
quality of Progressive ER.

4 NAÏVE METHODS

Schema-based progressive methods (see Section 2) are hard to ap-
ply in a domain like Web data, where Variety renders the selection
of schema-based blocking keys into a non-trivial task. Yet, we
can convert the state-of-the-art schema-based progressive method
(PSN) into a schema-agnostic one with minor modifications,
as explained in Section 4.1. We can also adapt the established
batch blocking method (Suffix Array Blocking [7], [19], [21])
into a progressive method, based on the ideas of HLR [5], [9],
as explained in Section 4.2. However, our experimental analysis
(Section 7) shows that both methods have inherent limitations that
lead to poor performance, thus calling for the development of more
advanced schema-agnostic progressive methods.

4.1 Schema-Agnostic PSN (SA-PSN)
The gist of this approach is to combine the sliding window with
incremental size of PSN [5] with the Neighbor List of the schema-
agnostic Sorted Neighborhood [7]. The resulting method is called
Schema-Agnostic Progressive Sorted Neighborhood (SA-PSN).

Inevitably, the Neighbor List of SA-PSN may involve consec-
utive places with the same profile (i.e., a profile which contains
two alphabetically consecutive tokens), or two profiles from the
same source. The same applies to entire windows. For this reason,
the comparisons extracted from every window should involve

in 

ain oin 

gain pain join coin 

Fig. 5. An example of a suffix tree employed by SA-PSAB.

different profiles (Dirty ER), or profiles stemming from different
sources (Clean-clean ER).

Example 3. Figure 4 applies PSN and SA-PSN to the profiles
of Figure 3a. For PSN, we assume that the schema of p1 and
p4 describes all other profiles, even p5 and p6, which represent
unstructured data and would require an information extraction
preprocessing step. This assumption allows for defining a schema-
based blocking key that concatenates the surname and the first
two letters of the name. In this context, PSN in Figure 4a starts
by emitting all comparisons produced by the initial window size,
w = 1; then, it continues with those comparisons entailed by
window w = 2 etc. The final pair of matches is emitted during
the 15th comparison, i.e., after raising the window size to w = 5.
In Figure 4b, SA-PSN applies the same procedure to the schema-
agnostic Neighbor List, finding all matching profiles within the
initial window frame w = 1, after the 14th comparison.

The main advantage of SA-PSN is that it involves a
parameter-free functionality that requires no schema-based block-
ing key definition and has low space and time complexities (see
Section 6). On the flip side, SA-PSN may perform repeated
comparisons: the same pair of profiles might co-occur multiple
times in the various windows. For example, in Figure 4b, c12

is emitted as the 1st and the 9th comparison within the same
window frame, w = 1. Moreover, the proximity of two profiles in
the list may be partially random; if more than two profiles share
the same blocking key, they are inserted with a relatively random
order in the Neighbor List. We call this phenomenon coincidental
proximity. As an example, consider all 6 profiles in Figure 4b that
are associated with the token white; they are placed in random
order at the end of the Neighbor List. Note that PSN also suffers
from coincidental proximity, which is a critical point to consider
when devising the schema-based blocking keys.

4.2 Schema-Agnostic Progressive SAB (SA-PSAB)

Suffix Arrays Blocking (SAB) is a schema-based blocking tech-
nique that addresses noise at the start of blocking keys by convert-
ing them into all suffixes that contain at least lmin characters
(minimum suffix length) [19], [21]. Basically, SAB uses these
suffixes to generate hierarchical blocks such that: the lowest levels
in the hierarchy correspond to blocks generated with the initial
blocking keys (e.g., “coin”, “join”, “pain”, ”gain”), the intermedi-
ate levels correspond to blocks generated with the intermediate
suffixes (e.g., “oin”, “ain”), and the highest levels correspond
to blocks generated with the shortest allowed suffixes (e.g., “in”
for lmin=2). This hierarchy of blocks follows the corresponding
hierarchies of suffixes, which we call suffix forest. Notice that there
are as many suffix trees as the number of distinct suffixes of size
lmin. Figure 5 depicts an example of suffix tree. To address the
Variety of Big Data in a schema-agnostic fashion, every attribute
value token can be considered as a blocking key [7].

The processing of an individual suffix tree follows a “leaves
first, root last” approach. This means that the candidate pairs that
appear in a lower level block (e.g., in a “leaf block”) are emitted
before candidate pairs in a higher level block (e.g., a “root block”).
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Thus, for the entire suffix forest, the processing starts from the leaf
node of the lowest layer (i.e., the overall largest attribute value
token) and moves on to the tree roots; nodes of the same layer are
ordered in increasing number of comparisons (i.e., the smallest
nodes are processed first). We call the resulting method Schema-
Agnostic Progressive Suffix Arrays Blocking (SA-PSAB).

Despite its complex functionality, SA-PSAB is probably the
easiest-to-configure HRP or OLR progressive method. Its data-
driven functionality simply extracts from every profile all attribute
value tokens and for every such token, it considers as blocking
keys all suffixes with at least lmin characters. Therefore, lmin

is the only configuration parameter of SA-PSAB. Note also that
SA-PSAB can be considered as the schema-agnostic version of
the hierarchical progressive method proposed in [9].

5 ADVANCED METHODS

We now introduce more elaborate methods for schema-agnostic
Progressive ER, using a broad spectrum of techniques. We
distinguish them into two categories: the similarity-based ones
(Section 5.1), which employ a weighted Neighbor List, and the
equality-based ones (Section 5.2), which employ a Blocking
Graph. The former are based on the similarity principle, the latter
on the equality principle (see Section 1).

Note that all our methods employ a data structure called Com-
parison List, which essentially constitutes a list of comparisons
sorted in non-increasing order of matching likelihood. Its purpose
is to store the best comparisons that were detected during the
initialization phase so that they are efficiently emitted during the
emission phase. Whenever the Comparison List gets empty, it is
refilled with the next batch of the best remaining comparisons,
during the next emission phase.

5.1 Similarity-based Methods
These methods extend the similarity principle of SA-PSN, as-
suming that the closer the blocking keys of two profiles are, when
sorted alphabetically, the more likely they are to be matching. As
explained above, SA-PSN suffers from two drawbacks: it contains
numerous repeated comparisons and it defines a processing order
of comparisons that is partially random, due to coincidental
proximity. To address both disadvantages, we propose the use of
a weighted Neighbor List, which employs a weighting scheme in
order to associate every comparison with a numerical estimation
of the likelihood that it involves a pair of matching profiles. This
weighting scheme leverages the Neighbor List, with a functional-
ity that is both schema- and domain-agnostic. Consequently, our
approach addresses inherently the Variety of Web data.

To this end, we propose the Relative Co-occurrence Frequency
(RCF) weighting scheme. RCF counts how many times a pair of
profiles lies at a distance of w positions in the Neighbor List
and then normalizes it by the number of positions corresponding
to each profile. To efficiently implement RCF and weighted
Neighbor List, we go beyond Neighbor List by introducing a
new data structure called Position Index. In essence, this is an
inverted index that associates every profile (id) with its positions
in the Neighbor List. Thus, it is generic enough to accommodate
any weighting scheme that similarly to RCF relies on the co-
occurrence frequency of profile pairs.

Below, we present two algorithms that exploit the RCF
weighting scheme. Both of them are compatible with any other
schema-agnostic weighting scheme that infers the similarity of
profiles exclusively from their co-occurrences in the incremental

Algorithm 1: Initialization phase for LS-PSN.
Input: (i) Profile collection P , (ii) Weighting scheme, wScheme
Output: The overall best comparison

1 windowSize = 1;
2 ComparisonList← ∅;
3 NL[]← buildNeighborList(P );
4 PI[]← buildPositionIndex(NL[]);

5 foreach pi ∈ P do
6 distinctNeighbors← ∅; // a set containing distinct neighbors;
7 frequency[]← ∅;
8 foreach position ∈ PI[i] do
9 pj ← NL[position+windowSize];

10 if isValidNeighbor(pj ) then
11 frequency[j]++;
12 distinctNeighbors.add(j);

13 pk ← NL[position-windowSize];
14 if isValidNeighbor(pk) then
15 frequency[k]++;
16 distinctNeighbors.add(k);

17 foreach j ∈ distinctNeighbors do
18 weighti,j ← wScheme(frequency[j], j, i);
19 ComparisonList.add(getComparison(i, j, weighti,j );

20 sortInDescreasingWeight(ComparisonList);
21 return ComparisonList.removeFirst();

Algorithm 2: Emission phase for LS-PSN.
Output: The next best comparison

1 while ComparisonList.isEmpty() do
2 windowSize++;
3 if NL.size() < windowSize then
4 return null;

/* repeat lines 5 - 20 in Algorithm 1 */

5 return ComparisonList.removeFirst();

sliding window. The core idea of these algorithms is to trade a
higher computational cost of the initialization phase, and probably
the emission phase, for a significantly better comparison order.

5.1.1 Local Schema-Agnostic PSN (LS-PSN)
This approach applies the selected weighting scheme only to
the comparisons of a specific window size, thus defining a local
execution order. At its core lie two data structures:

i) NL, which is an array that encapsulates the Neighbor List
such that NL[i] denotes the profile id that is placed in the ith

position of the Neighbor List. An exemplary NL array is shown
in Step 1.i of Figure 6.

ii) PI , which stands for Position Index, is an inverted index
that points from profile ids to positions in NL. It is implemented
with an array that uses profile ids as indexes, such that PI[i]
returns the list of the positions associated with profile pi in NL.
This array accelerates the estimation of comparison weights, since
it minimizes the computational cost of retrieving the neighbors of
any profile in the current window, as described below. Note that
instead of a Position Index, LS-PSN could use a hash index that
has comparisons as keys and weights as values. This approach,
however, would increase both the space and the time complexity
of comparison weighting.

Based on these data structures, the initialization phase of LS-
PSN is outlined in Algorithm 1. Initially, it sets the window
size to 1 (Line 1), considering only consecutive profiles. Then,
it creates its data structures (Lines 2-4) and for every profile pi
(Line 5), it iterates over all its positions in the Position Index
(Line 8). In every position, LS-PSN checks the neighbors in both
directions, i.e., the profiles located windowSize places before
and after pi (Lines 13 and 9, respectively) - provided that the
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Fig. 6. Applying LS-PSN to the profiles of Figure 3a.

corresponding positions are within the limits of the Neighbor List.
For every neighbor pj , LS-PSN checks if j<i (Line 10) and
k<i (Line 14) to avoid repeated comparisons. For every valid
neighbor, LS-PSN increases its frequency (Lines 11 and 15) and
adds it into the set of neighbors (Lines 12 and 16). Then, the
overall weight for every comparison is computed according to the
selected weighting scheme (Line 18) - assuming a comparison
between pi and pj , i.e., ci,j , the corresponding RCF weight
is equal to frequency[j]

PI[i].length()+PI[j].length()−frequency[j] . Finally, all
comparisons are aggregated and sorted from the highest weight to
the lowest (Line 20) and the top one is returned (Line 21).

Note that Algorithm 1 pertains to Dirty ER. Yet, it can be
adapted to Clean-clean ER with two minor modifications: (i)
Line 5 iterates over the profiles of P1, and (ii) in Lines 10 and 14,
a neighbor pj is considered valid only if pj ∈ P2.

The emission phase of LS-PSN is illustrated in Algorithm
2 and is common for both Clean-clean and Dirty ER: if the
Comparison List corresponding to the current window is not
empty, the top weighted one is removed and returned as output
(Line 3). If the list is empty, the window size is incremented
(Line 2) and the process for extracting all comparisons of the
new window (Lines 5 - 20 in Algorithm 1) is repeated. After each
emission, the processing can be interrupted. In the worst case, the
emission phase is terminated when the window size is equal to the
size of the Neighbor List (Lines 3-4). This means that the window
is so large that it ends up comparing every profile with all others.

Example 4. We demonstrate the functionality of LS-PSN by
applying it to the profiles of Figure 3a. The result appears in
Figure 6. Step 0 extracts all blocking keys and sorts them alphabet-
ically, while Step 1.i forms NL and slides a window of size 1 over
it. In Step 1.ii, we see the result of the nested loops in Lines 5 - 16
for the RCF weighting scheme for windowSize=1. In Step 1.iii,
all comparisons are weighted and sorted from the highest to the
lowest weight. Finally, the sorted comparisons are emitted one by
one in Step 1.iv. Note that the first three comparisons correspond
to the three pairs of duplicate profiles.

5.1.2 Global Schema-Agnostic PSN (GS-PSN)
The main drawback of LS-PSN is the local execution order it
defines for a specific window size. This means that LS-PSN is
likely to emit the same comparison(s) multiple times, for two
or more different window sizes, since it does not remember
past emissions. GS-PSN aims to overcome this drawback by
defining a global execution order for all the comparisons in a
range of window sizes [1, wmax]. To this end, its initialization
phase differs from Algorithm 1 in that Line 1 is converted into
an iteration over all window sizes in [1, wmax]; this loop starts
before Line 8 and ends before Line 20. This allows for a simpler
emission phase, which just returns the next best comparison, until
the Comparison List gets empty.

Compared to LS-PSN, GS-PSN takes into account more
co-occurrence patterns, when determining comparison weights.

Consequently, its matching likelihood estimations are expected to
be more accurate than those of LS-PSN. This is achieved through
an additional configuration parameter, wmax, which eliminates all
repeated comparisons in a particular range of windows.

5.2 Equality-based Methods
These methods rely on the equality principle of the redundancy-
positive blocks that are derived from any schema-agnostic block-
ing method or workflow [12]: they assume that the more blocks
two entities share, the more likely they are to be matching. From
these blocks, we extract the Blocking Graph of Meta-blocking,
using the weights of its edges as approximations for the matching
likelihood of the corresponding comparison. In particular, we
order the graph edges in decreasing weight in order to produce
a sorted list of comparisons at the level of individual blocks or
profiles. Below, we propose two novel algorithms of this type.

5.2.1 Progressive Block Scheduling (PBS)
This algorithm is specifically designed for Progressive ER, but
relies on a Batch ER technique. Indeed, Block Scheduling has
been proposed in order to optimize the processing order of blocks
in the context of Batch ER, based on the probability that they
contain duplicates [1]. It assigns to every block a weight that is
proportional to the likelihood that it contains duplicates and then,
it sorts all blocks in descending weight order. Even though we
would like to use such a functionality for Progressive ER, it
is not applicable, because: (i) its weighting cannot generalize to
Dirty ER, applying exclusively to Clean-clean ER, and (ii) it
does not specify the execution order of comparisons inside blocks
with more than two profiles.

Our algorithm, PBS, deals with both issues in two ways:
(1) PBS introduces a weighting mechanism that applies

uniformly to Clean-clean and Dirty ER. In fact, it relies on
the reasonable hypothesis that the smaller a block is, the more
distinctive information it encapsulates and the more likely it is to
contain duplicate profiles, and vice versa: the larger a block is,
the more frequent is the corresponding blocking key/token and the
more likely it corresponds to a stop word, thus ingesting noise into
the matching likelihood of two entities. Therefore, our scheme sets
weights inversely proportional to block cardinalities (i.e., 1/‖bi‖)
and sorts blocks in decreasing weights; the fewer comparisons a
block entails, the higher it is ranked.

(2) PBS defines the processing order of comparisons inside
every block using the Blocking Graph. For each block bi with
‖bi‖>1, PBS associates all comparisons with a weight derived
from any schema-agnostic weighting scheme of Meta-blocking.
Then, it sorts them from the highest weight to the lowest one.

It is worth noting that all repeated comparisons are discarded
before computing their weight. In fact, the efficient detection of
repeated comparisons is crucial for PBS. This functionality is
based on a data structure called Profile Index, which constitutes
an inverted index that associates every profile with the ids of
the blocks that contain it. In this way, it facilitates the efficient
computation of comparison weights, similar to the Position Index
of LS/GS-PSN. Note that the Profile Index is generic enough to
accommodate any weighting scheme that is based on the block
co-occurrence frequency of profile pairs.

In practice, the Profile Index is implemented as a two-
dimensional array. The first dimension is of size |P | such that
ProfileIndex[i] points to an array that contains all ids of the
blocks involving profile pi. As a result, the second dimension



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2852763, IEEE
Transactions on Knowledge and Data Engineering

8

Algorithm 3: Initialization phase for PBS.
Input: (i) Profile collection P , (ii) Weighting scheme, wScheme
Output: The overall best comparison

1 B← buildRedundancyPositiveBlocks(P );
2 B′ ← blockScheduling(B);
3 ProfileIndex← buildProfileIndex(B′);
4 bk ← B′.removeFirst();
5 ComparisonList← ∅;
6 foreach cij ∈ bk do
7 Bi ← ProfileIndex.getBlocks(pi);
8 Bj ← ProfileIndex.getBlocks(pj );
9 if nonRepeated(k, Bi, Bj ) then

10 wi,j ← wScheme(k, Bi, Bj );
11 ComparisonList.add(getComparison(i, j, wi,j ));

12 sortInDescreasingWeight(ComparisonList);
13 return ComparisonList.removeFirst();

Algorithm 4: Emission phase for PBS.
Output: The next best comparison

1 if ComparisonList.isEmpty() then
/* repeat lines 4 - 12 in Algorithm 3 */

2 return ComparisonList.removeFirst();

contains arrays of variable length. The block ids in every such
array are sorted from the lowest to the highest one in order to
ensure high efficiency for the two operations that are built on top
of the Profile Index.

The first operation is the Least Common Block Index
(LeCoBI) condition, which checks whether a comparison is
repeated in Line 9 of Alg. 3: given a comparison cij in block
bY , the LeCoBI condition identifies the least common block id,
X, between the profiles pi and pj and compares it with the id
of bY , Y. If the two ids match (X = Y ), cij corresponds to a
new comparison. Otherwise X < Y , which means that cij has
already been compared in block bX , but is repeated in block bY .
Note that X > Y is impossible, because the id of every block
indicates its position in the processing list after sorting all blocks
in increasing cardinalities (i.e., bk denotes the block placed in the
kth position after sorting). Note also that by ordering the block
ids of the second dimension in increasing order, the Profile Index
minimizes the checks required for detecting the least common
block id, thus accelerating the LeCoBI condition.

The second operation is Edge Weighting, which in Line 10
of Alg. 3 infers the matching likelihood of every comparison
from the weight of the corresponding edge in the blocking graph.
Given a non-repeated comparison cij , it compares the block lists
associated with profiles pi and pj in order to estimate the number
of blocks they share. This number, which lies at the core of
practically all Meta-blocking weighting schemes [12], can be
derived from the evidence provided by the Profile Index. Note that
by ordering the block ids of its second dimension in increasing
order, the Profile Index allows for accelerating Edge Weighting by
traversing the two block lists in parallel.

On the whole, the initialization phase of PBS appears in Algo-
rithm 3. Initially, it creates a redundancy-positive block collection
and sorts its elements in non-decreasing order of comparisons
(Lines 1-2). Then, it builds the corresponding Profile Index (Line
3) and goes on to remove the first (i.e., smallest) block, iterating
over its comparisons (Lines 4-6). For every comparison cij , PBS
gets the block lists that are associated with profiles pi and pj from
the Profile Index (Lines 7-8). Based on these lists, it evaluates the
LeCoBI condition, checking whether cij is repeated or not (Line
9). If cij is a new comparison, it is placed in the Comparison
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Fig. 7. Applying PBS to the blocks of Figure 3b.

List along with the weight of the corresponding Blocking Graph
edge (Lines 10-11). After processing all comparisons in the
current block, the elements of the Comparison List are sorted in
decreasing weight and the first one is emitted (Lines 12-13).

The emission phase of PBS appears in Algorithm 4. If the
Comparison List is empty, it processes the next block b′∈B′,
applying the Lines 4-12 of Algorithm 3 to it. Otherwise, the next
best comparison is emitted from the Comparison List.

Example 5. Figure 7 illustrates the functionality of PBS by
applying it to the blocks of Figure 3b. First, it sorts them in non-
decreasing cardinality and assigns to each one an incremental
block id that indicates its processing order (note that we chose
a random permutation of the blocks that have the same number
of comparisons, without affecting the end result). Then, PBS
processes the sorted list of blocks one block at a time, emitting
iteratively the comparisons entailed in every block. Inside every
block, all comparisons that satisfy the LeCoBl condition (i.e., non-
repeated comparisons) are sorted according to the corresponding
edge weight in the Blocking Graph of Figure 3c. For instance,
when PBS processes b2, the comparison c45 satisfies the LeCoBl
condition, since the least common block id shared by p4 and p5
is 2. This means that PBS encounters c45 for the first time in
b2, assigning the edge weight 1.33 to it. In contrast, when PBS
processes b3, the comparison c45 does not satisfy the LeCoBl
condition anymore and is thus discarded.

5.2.2 Progressive Profile Scheduling (PPS)
The block-centric functionality of PBS is crafted for an Edge
Weighting approach that operates at the level of individual com-
parisons. We now propose a novel progressive method with entity-
centric functionality, called Progressive Profile Scheduling (PPS).

PPS is based on the concept of duplication likelihood, i.e., the
likelihood of an individual profile pi to have matches. In Clean-
clean ER, the duplication likelihood of pi ∈ P1 corresponds to
its likelihood to have a match in P2, since there can be up to one
matching profile per entity in every profile collection. In Dirty ER,
though, the duplication likelihood of pi is analogous to the size of
its equivalence cluster, i.e., high values indicate that pi matches
with many other profiles, and vice versa for low values.

In fact, PPS aims to sort all profiles in decreasing duplication
likelihood, forming a data structure that is called Sorted Profile
List. Then, moving from the top to the bottom of this list, PPS
goes iteratively through every profile, emitting the top-k weighted
comparisons that entail it in decreasing matching likelihood.

To build the Sorted Profile List, PPS derives the duplication
likelihood of every profile from a given Blocking Graph. The
underlying assumption is the same as for all methods based on
a Blocking Graph: the weight of a blocking graph edge captures
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Algorithm 5: Initialization phase for PPS.
Input: (i) Profile collection: P , (ii) Weighting scheme, wScheme
Output: The overall best comparison

1 B← buildRedundancyPositiveBlocks(P );
2 ProfileIndex← buildProfileIndex(B);
3 SortedProfileList← ∅;
4 topComparisonsSet← ∅;
5 foreach pi ∈ P do
6 weights[]← ∅;
7 distinctNeighbors← ∅;
8 foreach bk ∈ ProfileIndex.getBlocks(pi) do
9 foreach pj (6=pi) ∈ bk do

10 weights[j] += wScheme(pj , pi, bk);
11 distinctNeighbors.add(j);

12 topComparison← null;
13 duplicationLikelihood← 0;
14 foreach j ∈ distinctNeighbors do
15 duplicationLikelihood += weights[j];
16 if topComparison.getWeight() < weights[j] then
17 topComparison← getComparison(i, j, weights[j];

18 topComparisonsSet.add(topComparison);
19 duplicationLikelihood /= distinctNeighbors.size();
20 SortedProfileList.add(pi, duplicationLikelihood);

21 ComparisonList.addAll(topComparisonsSet);
22 sortInDescreasingWeight(ComparisonList);
23 sortInDescreasingWeight(SortedProfileList);
24 return ComparisonList.removeFirst();

Algorithm 6: Emission phase for PPS.
Output: The next best comparison

1 checkedEntities← ∅;
2 if ComparisonList.isEmpty() then
3 if SortedProfileList.isNotEmpty() then
4 pi = SortedProfileList.removeFirst();
5 checkedEntities.add(i);
6 weights[]← ∅;
7 distinctNeighbors← ∅;
8 SortedStack← ∅;
9 foreach bk ∈ ProfileIndex.getBlocks(pi) do

10 foreach pj (6=pi) ∈ bk do
11 if checkedEntities.contains(j) then
12 continue;

13 weights[j] += wScheme(pj , pi, bk);
14 distinctNeighbors.add(j);

15 foreach j ∈ distinctNeighbors do
16 SortedStack.push(getComparison(i, j, weights[j]);
17 if Kmax < SortedStack.size() then
18 SortedStack.pop();

19 ComparisonList← sortInDescreasingWeight(SortedStack);

20 return ComparisonList.removeFirst();

the matching likelihood between the adjacent profiles. Thus, the
duplication likelihood of each node (i.e., profile) is estimated by
aggregating the weights of its incident edges. In particular, our
implementation of PPS approximates the duplication likelihood
of a profile through the average weight of the edges that are inci-
dent to the corresponding node - other aggregation functions can
be employed instead, but the average one consistently exhibited
high performance across different datasets.

During the creation of the Sorted Profile List, PPS also
initializes the Comparison List with the set of the top-weighted
comparisons of each node. This step does not require any addi-
tional computational cost. While investigating the neighborhood of
a particular node, PPS retains in a local variable the highest edge
weight along with the corresponding comparison. After traversing
all edges in the neighborhood, the overall best comparison is added
to the set topComparisonsSet. As soon as all nodes have been
processed, PPS sorts the elements of topComparisonsSet in
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the top-weighted comparison of every node in the Blocking Graph of
Figure 3c. (b) The corresponding Sorted Profile List. (c) The node
neighborhood of p2 in the same Blocking Graph. (d) The Comparison
List after processing p2 during the emission phase.

decreasing matching likelihood and adds them to the Comparison
List. In the end, this process allows for emitting the comparison
with the highest weight across the entire Blocking Graph, i.e., the
comparison placed in the first position of the Comparison List.

In more detail, the initialization phase of PPS is outlined in
Algorithm 5. First, a redundancy block collection is created along
with the corresponding ProfileIndex (Lines 1-2). Subsequently,
PPS iterates over all input profiles (Line 5) and for every profile
pi, it goes through the blocks that contain it, Bi, which are
derived from the Profile Index (Line 8). For every such block,
it iterates over the co-occurring profiles, placing them into the set
of neighbor ids and updating their overall weight (Lines 9-11).
After examining all blocks, it goes through the set of neighbor
profiles in order to estimate the overall duplication likelihood and
identify the top-weighted comparison (Lines 12-17). The selected
comparison is then added to the set of top-weighted comparisons,
which makes sure that none of them is repeated, while the
current profile is added to the Sorted Profile List along with its
duplication likelihood (Lines 18-20). After processing all profiles,
the top-weighted comparisons are added to the Comparison List
to be sorted in decreasing order of weights; the same applies to
Sorted Profile List (Lines 21-23). Finally, the overall top-weighted
comparison is emitted (Line 24).

The emission phase of PPS relies on two pillars:
(i) A data structure called SortedStack, which contains a

set of comparisons such that they are constantly sorted in non-
decreasing weight, from the lowest to the highest one. Thus, its
head always corresponds to the comparison with the lowest weight
and can be efficiently removed with the a pop operation of constant
computational cost, O(1).

(ii) A custom mechanism for avoiding repeated comparisons
that relies on a set with all entities that have already been
processed, called checkedEntities. Before considering the com-
parison of the current profile pi with a co-occurring one pj , cij , we
investigate whether checkedEntities contains the id j. If yes, cij
is skipped, based on the observation that the most important com-
parisons of pj have already been emitted. In this way, we disregard
even comparisons that are among the Kmax top-weighted ones for
the current entity, pi, but not for the previously examined one, pj .
The reason is that pj’s higher duplication likelihood provides more
reliable evidence for cij’s low matching likelihood.

In more detail, the emission phase of PPS is outlined in
Algorithm 6. Initially, it emits the top-weighted comparisons that
were placed in the Comparison List during initialization. As soon
as this list gets empty, PPS iterates over the individual profiles
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TABLE 1
Space and time complexities of our methods. In some cases, the emission phase complexity depends on the status of the Comparison List.

Method Acronym
Space Time complexity

Complexity Initialization Phase Emission Phase

Schema-agnostic Progressive Sorted Neighborhood SA-PSN O( ¯|p|·|P |) O( ¯|p|·|P |·log( ¯|p|·|P |)) O(1)

Schema-agnostic Progressive Suffix Arrays Blocking SA-PSAB O(s̄e·|P |) O(s̄e·|P |·log(s̄e·|P |)) O(1)

Global Scheam-agnostic Progressive Sorted Neighborhood GS-PSN O(wmax· ¯|p|·|P |) O( ¯|p|·|P |·log( ¯|p|·|P |)) O(1)

Local Scheam-agnostic Progressive Sorted Neighborhood LS-PSN O( ¯|p|·|P |) O( ¯|p|·|P |·log( ¯|p|·|P |)) O(1) or O( ¯|p|·|P |)
Progressive Profile Scheduling PPS O( ¯|p|·|P |) O(|VB |+ |EB |) O(1) or O( ¯|p|· ¯|b|)
Progressive Block Scheduling PBS O( ¯|p|·|P |) O(|B|·log |B|) O(1) or O(‖b̄‖·log ‖b̄‖)

according to their duplication likelihood, from the highest to
the lowest one (Lines 2-4). For the next available profile, PPS
retrieves the associated blocks from the Profile Index (Line 9) and
iterates over their contents in order to gather their Kmax top-
weighted comparisons (Lines 10-19): initially, PPS goes through
the co-occurring profiles, skipping the already examined ones
(Lines 10-12). The non-examined ones are then added to the set
of neighbor ids and their overall weight is updated (Lines 13-
14). After examining all blocks, PPS estimates the overall weight
for every neighbor, pushing the corresponding comparison in the
sorted stack (Lines 15-16). If the size of the stack exceeds Kmax,
the comparison with the lowest weight is popped (Lines 17-18).

Finally, the remaining comparisons are sorted in decreasing
weights and placed in the Comparison List (Line 19), followed by
emission of the top-weighted comparison (Line 20).

Example 6. To illustrate the functionality of PPS, consider the
example in Figure 8. During the initialization phase, PPS iterates
over all nodes of the Blocking Graph to compute the average
weight of the incident edges along with the top-weighted com-
parison in every node neighborhood. At the end of this iteration,
all top-weighted comparisons and all profiles are sorted in non-
increasing weights, from the highest to the lowest one, in order
to form the Comparison List in Figure 8a and the Sorted Profile
List in Figure 8b, respectively. During the emission phase, PPS
initially emits all comparisons in the Comparison List of Figure
8a. Then, it goes through the Sorted Profile List, one node at a
time, gathering the top-k comparisons in the corresponding node
neighborhood. For instance, Figure 8c shows the neighborhood
of p2, whose top-2 edges are inserted in the Comparison List of
Figure 8d. Note that p1 has already been processed, since it was
placed first in the Sorted Profile List of Figure 8b. As a result,
the control in Line 11 in Algorithm 6, checkedEntities.contains(1),
returns true and c12 is not inserted in the Comparison List of
Figure 8d, despite its high edge weight.

6 COMPLEXITY ANALYSIS

We now elaborate on the space and time complexities of all
algorithms presented in Sections 4 and 5. All complexities are
summarized in Table 1.

6.1 Space Complexity.
We observe that for most methods, the space complexity is linear
with respect to the size of the input dataset, |P |. For SA-PSN and
LS-PSN, it is just O( ¯|p|·|P |), where ¯|p| is the average number
of name-value pairs (∼ blocking keys per entity), because they
mainly keep in memory the Profile List. LS-PSN additionally
maintains the Position Index, but it has exactly the same complex-
ity. The same holds for the Profile Index, which dominates the
space requirements of PPS and PBS. GS-PSN occupies more
space, O(wmax· ¯|p|·|P |), due to the Comparison List, which, in

the worst case, contains 1 comparison per position in the Profile
List for every window size. To keep the suffix forest in memory,
SA-PSAB has a space complexity of O(s̄e·|P |), where s̄e is the
average number of suffixes per profile. Thus, we can conclude that
all methods scale well to the Volume of Web data.
6.2 Time Complexity
Initialization phase. All methods are also scalable with respect
to the time complexity of their initialization phase. For the
similarity-based methods, SA-PSN, LS-PSN and GS-PSN, the
time complexity is dominated by the sorting of blocking keys
in alphabetical order, O( ¯|p|·|P |·log( ¯|p|·|P |)). For SA-PSAB,
it is O(s̄e·|P |·log(s̄e·|P |)), as it sorts all suffixes (i.e., tree
nodes) in non-increasing order of length and non-decreasing order
of comparisons. For PPS, the initialization time complexity is
O(|VB |+ |EB |), as this method iterates over all nodes and edges
of the blocking graph GB , without any pruning. Finally, the time
complexity of PBS is dominated by the sorting of blocks in non-
decreasing comparisons, i.e., O(|B|· log |B|). Note that for both
equality-based methods, the cost of building the block collection
B is insignificant, as it typically requires a single iteration over
the input profiles, O(|P |).

Emission phase. We distinguish all methods into three cate-
gories with respect to the time complexity of this phase. The first
one includes the naı̈ve methods, SA-PSN and SA-PSAB, which
simply return the next comparison in a window or tree node, thus
exhibiting a constant time complexity, O(1). Yet, a large part of
the emitted comparisons is repeated, as every profile is associated
with multiple keys. Due to their simplicity, though, these methods
make no provision for detecting repeated comparisons.

The second category includes GS-PSN, which exhibits a
constant time complexity, O(1), without emitting repeated com-
parisons. The reason is that it precomputes all comparisons,
discarding the repeated ones.

The third category involves all methods with unstable response
time, namely LS-PSN, PPS and PBS. In most cases, their
time complexity is constant, but whenever their Comparison List
gets empty, they renew its contents by repeating (part of) their
initialization phase. In fact, the emission time complexity of LS-
PSN is equal to that of the initialization phase, as the same process
is applied to the entire Sorted Profile List; the only difference is the
incremented window size. PBS also applies the same procedure
as the initialization phase in order to refill its Comparison List.
Yet, the time complexity is now much lower, as it is dominated
by the sorting of all comparisons in an individual block, i.e.,
O(‖b̄‖·log ‖b̄‖), on average, rather than by the sorting of the
entire block collection, B. Finally, the emission phase of PPS is
significantly more efficient than its initialization phase: it merely
sorts the comparisons associated with a single entity in non-
increasing matching likelihood, O( ¯|p|·|P |), on average, instead
of sorting all profiles in non-increasing duplication likelihood.
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TABLE 2
Dataset characteristics: ER type, number of entity profiles (|P |),

number of attribute names, number of existing matches (|DP |) and
average number of name-value pairs per entity (|p̄|).

ER type |P | #attr. |DP | |p̄|
Structured Datasets

census Dirty ER 841 5 344 4.65
restaurant Dirty ER 864 5 112 5.00

cora Dirty ER 1.3k 12 17k 5.53
cddb Dirty ER 9.8k 106 300 18.75

Large, Heterogeneous Datasets
movies Clean-clean ER 28k—23k 4—7 23k 7.11
dbpedia Clean-clean ER 1.2M—2.2M 30k—50k 893k 15.47
freebase Clean-clean ER 4.2M—3.7M 37k—11k 1.5M 24.54

7 EXPERIMENTS

Datasets. For the experimental evaluation, we employ 7 di-
verse real-world datasets that are widely adopted in the liter-
ature as benchmark data for ER [12], [19], [20], [22], [23].
Their characteristics are reported in Table 2. The census,
restaurant, cora, and cddb datasets are extracted from
a single data source containing duplicated profiles, hence they
are meant to test Dirty ER tasks. The remaining datasets
(movies, dbpedia, and freebase) are suitable for test-
ing scalability, as well as Clean-clean ER, since they are
extracted from two different data sources, where matching
profiles exist only between a source and another: movies
from imdb.com and dbpedia.org; dbpedia from two
different snapshots of DBpedia (dbpedia.org 2007-2009)2;
freebase from developers.google.com/freebase/
and dbpedia.org (extracted from [23]). For all the datasets,
the ground truth is known and provided with the data.

For the structured datasets, the best schema-based blocking
keys for PSN are known from the literature [7], [19]3. Note that
the schema-based methods are inapplicable to the large, hetero-
geneous datasets. This is due to the size of the attribute set and
the lack of a schema-alignment for Clean-clean datasets. Finally,
in dbpedia and freebase, there is a very small overlap in the
attributes describing their profile collections.
System setup. All methods are implemented in Java 8 and the
code is publicly available4. All experiments have been performed
on a server running Ubuntu 14.04, with 80GB RAM, and an
Intel Xeon E5-2670 v2 @ 2.50GHz CPU. Note that we limited
the maximum heap size parameter of the JVM to 8GB for the
structured datasets and for movies, while for DBPedia and
Freebase we set that parameter to 80GB.
Parameter configuration. We apply the following settings to all
datasets. For GS-PSN, we set wmax=20 for structured datasets
and wmax=200 for large, heterogeneous datasets—preliminary
experiments have shown that these values work for all the datasets.
For PBS and PPS, we can use any schema-agnostic blocking
method that produces redundancy-positive blocks, like DisNGram
[24]. We opted for the Token Blocking Workflow, which has been
experimentally verified to address effectively and efficiently the
Volume and Variety of Web data [12]. It consists of the follow-
ing steps: (1) Schema-agnostic Standard Blocking [7] creates a
separate block for every attribute value token that stems from at
least two profiles. (2) Block Purging [12] discards large blocks

2. Due to the constant changes in DBpedia, the two versions share only 25%
of the name-value pairs, forming an non-trivial ER task [7], [12].

3. See also the code at: https://sourceforge.net/projects/febrl and
https://sourceforge.net/projects/erframework.

4. https://stravanni.github.io/progressiveER/

that correspond to stop words, involving more than 10% of the
input profiles. (3) Block Filtering [12] retains every profile in 80%
of its most important (i.e., smallest) blocks. (4) ARCS performs
edge weighting on the Blocking Graph.

Metrics. Recall is typically employed to evaluate the effectiveness
of a Batch ER method m over a profile collection P . It measures
the portion of detected matches: recall=|Dm|/|DP |, where Dm

is the set of matches detected (emitted) by m, while DP is the set
of all matches in P .

In Progressive ER, we are interested in how fast matches
are emitted. To illustrate this, we consider recall progressiveness
by plotting the evolution of recall (vertical axis) with respect to
the normalized number of emitted comparisons (horizontal axis):
ec∗=ec/|DP |, where ec is the number of emitted comparisons
at a certain time during the processing. The purpose of this
normalization is twofold: (i) it allows for using the same scale
among different datasets, and (ii) it facilitates the comparison of all
progressive methods with the ideal one, which achieves recall=1
after emitting just the first |DP | comparisons, i.e., at ec∗=1.

To facilitate the comparisons between progressive methods, we
quantify their progressive recall using the area under the curve
(AUC) of the above plot (the AUC expressed in function of ec - not
the normalized ec∗ - is known in the literature as progressive recall
[16], and is employed for the same purpose). For a method m, we
indicate with AUCm@ec∗ the value of AUC for a given ec∗; for
instance, AUCPSN@5 is the area under the recall curve of the
method PSN after the emission of ec=5·|DP | comparisons. To
restrict AUCm@ec∗ to the interval [0, 1], we normalize it with the
performance of the ideal method: AUC∗m@ec∗ = AUCm@ec∗

AUCideal@ec∗ .
AUC∗m@ec∗ is called normalized area under the curve: higher
values correspond to a better progressiveness, with the ideal
method having AUC∗ideal=1 for any value of ec∗.

For the time performance evaluation of a method m, we con-
sider the initialization time and the comparison time: the former
is the time required to emit the first comparison, considering all the
pre-processing steps (e.g., Schema-agnostic Standard Blocking,
Block Purging, Block Filtering for PBS); the comparison time is
the average time between two consecutive comparison emissions.
It includes both the emission time (i.e., the time required for
generating the next best comparison) and the time required for
applying the selected match function to that comparison.

Baselines. In the following, we use PSN and SA-PSN as baseline
methods. As explained above, the best schema-based blocking
keys, which are necessary for PSN, are only known for the Dirty
ER datasets. For the Clean-clean ER ones, no such blocking
keys have been reported in the literature. As a result, we consider
only SA-PSN as baseline method for Clean-clean ER datasets.

7.1 Structured Datasets

We now compare our schema-agnostic methods against the state-
of-the-art schema-based method, i.e. PSN [4], [5], on the struc-
tured datasets. We assess the relative effectiveness of all methods
with respect to recall progressiveness. The corresponding plots
appear in Figure 9. They depict the performance of all methods
for up to ec∗=30, i.e., we measure the recall for a number of
comparisons thirty times the comparisons required by the ideal
method to complete each ER task. We focus, though, on the
interval [0,10] so as to highlight the behavior of the methods in the
early stage of ER, the most critical for pay-as-you-go applications.

https://sourceforge.net/projects/febrl
https://sourceforge.net/projects/erframework
https://stravanni.github.io/progressiveER/
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Fig. 9. Recall progressiveness over the structured datasets.
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Fig. 10. Mean AUC∗
m over the structured datasets.

We observe that the advanced schema-agnostic methods out-
perform PSN, SA-PSN and SA-PSAB across all datasets5. Only
for census does PSN perform better than PBS (but not better
that LS/GS-PSN) – see Figure 9a. This is because census con-
tains very discriminative attributes, whose values are employed as
blocking keys for PSN6, identifying its duplicates with very high
precision. Moreover, the profiles of census have short strings
as attribute values: on average, every profile contains just 4-5
distinct tokens in its values. Inevitably, this sparse information has
significant impact on the performance of similarity- and equality-
based methods, restricting the co-occurrence patterns that lie at
their core, i.e., the co-occurrences in windows for the former, and
in blocks for the latter. The impact is larger in the latter case,
due to the stricter definition of co-occurrence, which requires the
equality of tokens, not just their similarity.

On the other hand, for datasets with high token overlap
between matching profiles (i.e., they share many attribute value
tokens) and non-discriminative attributes, which have the same
value for many different profiles, our methods significantly out-
perform the schema-based PSN. For instance, the performance
of PPS in the restaurant dataset (Figure 9b) is very close to
the ideal method: AUC∗

PPS@1=0.93, i.e., 104 out of the first 112
emitted comparisons are matches7.

Among the advanced methods, we now list the best performer
for each dataset. On census (Figure 9a), GS-PSN is the best
performer, but LS-PSN is only slightly worse. On restaurant
(Figure 9b), PPS has the best progressiveness until recall 98%, but
LS-PSN has a similar progressiveness and reaches 100% earlier
than PPS (due to the plot scale, though, this is not evident in
Figure 9). On cora (Figure 9c), GS-PSN has the best initial
progressiveness, but equality-based methods reach the highest
recall from ec∗=4 on—note that the final recall of PBS and
PPS is lower than 100%, because the underlying Token Blocking
cannot identify all duplicates in cora. On cddb (Figure 9d),
PPS has the best progressiveness for recall up to 65%, but for

5. In Figure 9d, the curve of SA-PSN is too low to be visible, almost
coinciding with the horizontal axis.

6. Soundex encoded surnames concatenated to initials and zipcodes.
7. 104 is 93% of 112, which is the number of existing duplicates in

restaurant.

higher recall, LS-PSN is the best performer.
We now compare all the methods with respect to their mean

value of normalized area under the curve. Figure 10 shows the
mean AUC∗ of all methods across all structured datasets for
four different values of ec∗: 1, 5, 10 and 20. We observe that, on
average, for any level of AUC∗, LS-PSN and GS-PSN are the
top performers, in particular for the earliest phase of Progressive
ER: their AUC∗@1 is three times the AUC∗@1 of PSN and
PBS, and ∼18% higher than that of PPS.

Overall, we conclude that the best performing methods for
structured datasets are LS-PSN and GS-PSN (the difference in
their performance is insignificant8). Thus, the selection of one
method over the other should be driven by the differences in their
space and time complexities for the initialization and emission
phases, depending on wmax. The higher wmax is, the higher
gets the space complexity of GS-PSN in comparison to LS-PSN;
thus, LS-PSN should be preferred when the availability of memory
may be a issue. Yet, if memory is not an issue, GS-PSN should be
preferred, as it avoids multiple emissions of the same comparisons.

7.2 Large, Heterogeneous Datasets
We now assess the relative performance of all methods with
respect to recall progressiveness over the large, heterogeneous
datasets movies, dbpedia, freebase. The corresponding
plots appear in Figure 11.

The results confirm our intuition about the ineffectiveness of
the naı̈ve SA-PSN and SA-PSAB, since all advanced methods
outperform it to a significant extent across all datasets. SA-PSAB
also cannot scale to the largest datasets (see Figure 11b-c) due
to the huge blocks in the highest layers of its suffix trees, which
entail too many comparisons.

The only exceptions are LS-PSN and GS-PSN9 on
freebase (Figure 11c), which perform poorly: the performance
of LS-PSN is similar to that of SA-PSN, while GS-PSN has
lower recall progressiveness than SA-PSN, terminating before
achieving a recall greater that 20%. The performance of these two
advanced methods can be explained by the characteristics of the
dataset. Freebase is composed of RDF triples. The extracted
tokens consist of RDF keywords, URI, and other RDF properties,
which generate a noisy Neighbor List, since their alphabetical
ordering is often meaningless. Thus, the RCF weighting scheme
cannot approximate correctly the similarity of the profiles. On the
other hand, PBS is able to get the most of the semantics in URI
tokens, due to the equality requirement, thus being more robust on
freebase than the similarity-based methods.

8. Employing the t-test for assessing the significance of the difference of the
means: p-value = 0.95.

9. On freebase, we limited the number of maximum comparisons of GS-
PSN according to the available memory, i.e., 80GB.
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Fig. 11. Recall progressiveness over the large, heterogeneous datasets.
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Fig. 12. Mean AUC∗
m over the large, heterogeneous datasets.

Overall, PPS is the best performer on movies (Figure 11a)
and dbpedia (Figure 11b); while, on freebase (Figure 11c),
PBS achieves the highest recall progressiveness for ec∗<2 and
ec∗>12 (PPS is the best performer for 2<ec∗<12). Again, to
understand which method is the top performer, we compare them
with respect to their mean value of normalized area under the
curve. Figure 12 shows the mean AUC∗m of all methods across
all datasets for four different values of ec∗: 1, 5, 10 and 20. We
observe that PPS is the best performer for any level of AUC∗m,
and conclude that, overall, it is the best performing progressive
method over large, heterogeneous datasets.

7.3 Time Efficiency Evaluation.
We note that our methods are general and decoupled from the
match function employed to determine whether two profiles are
matching or not. Yet, to assess their efficiency in terms of ex-
ecution time, we evaluate them in combination with two match
functions: edit distance (ED) [25] and Jaccard similarity (JS)
[26]10. The former is meant to test the performance of our methods
with an expensive match function, while the latter with a cheap
one. The time complexities of edit-distance and jaccard-sim are
O(s·t) and O(s+t), respectively, where s and t are the lengths
of the two strings to be compared (i.e., the two profiles compared
with the match function).

The schema-based methods are not considered in this evalua-
tion, since they inherently require an additional overhead time to
select the blocking keys (and to perform the schema-alignment in
the case of Clean-clean ER). There is a plethora of techniques
to perform these two tasks [27], [28], [29], but it is out of the
scope of this work to determine which one is the best, since our
proposed methods do not rely on them.

In Figure 13, we report the result of the time experiments
on the datasets movies and dbpedia. (We do not consider
freebase for this test, because Entity Matching for Linked

10. In a real-world scenario, each match function would require a threshold
parameter to discriminate between matching and non-matching pairs, on the
basis of their edit distance (or Jaccard similarity). Here, we are only interested
in measuring the time performance, not the effectiveness of the match function;
hence, we do not employ any threshold, and the outcome of the match function
is assumed to be identical to the known ground truth.

Data typically requires more advanced, iterative algorithms like
SiGMa [30].11) In particular, Figures 13a-d plot the performance
of all methods, considering both the initialization time and the
comparison time. We did not plot the execution time for SA-
PSAB because it is more than an order of magnitude slower than
the other methods. The initialization times are listed in Figure 13e
and are independent of the match function. Note that we do not
report the emission time, as it is at least two orders of magnitude
smaller than that required by the match functions to compare two
profiles - this applies to all methods and datasets.

The results in Figure 13 clearly show that our advanced
methods produce most of the matches much earlier than the
baseline, in combination with both the expensive and the cheap
match functions. Similarity- and equality-based methods show
different performance characteristics, though. The difference in the
initialization times between PBS/LS-PSN and the baseline is neg-
ligible for both match functions (see the left part of Figures 13a-
d); hence, they are able to outperform the baseline since the early
stages of the process. For PPS, the same consideration is valid
only in case the expensive match function is employed (see the
left part of Figures 13b,d). In fact, when the cheap match function
is employed, its initialization time (55 minutes over DBPedia) may
slightly affect the early stages of the process (Figures 13a,c);

8 CONCLUSIONS AND FUTURE WORK

We have introduced schema-agnostic methods to maximize the
recall progressiveness of Entity Resolution for pay-as-you-go
applications, while addressing the Volume and Variety dimensions
of Big Data. They can be distinguished into equality-based (PBS
and PPS) and similarity-based methods (LS-PSN and GS-PSN).
Our experimental evaluation with several real, structured datasets
demonstrates that the proposed methods significantly outperform
the schema-based state-of-the-art method in the field, PSN, iden-
tifying most of the matches much earlier.

Our experiments also indicate that both equality-based meth-
ods exhibit a quite robust performance across both structured
and semi-structured (heterogeneous) datasets. In contrast, both
similarity-based techniques achieve very high performance over
structured datasets and very low over semi-structured datasets. The
reason is the structured datasets are usually curated, principally
containing character-level errors, whereas the semi-structured
datasets abound in both character- and token-level noise (e.g.,
URIs as attribute values). In the latter cases, it is harder for two

11. State-of-the-art entity matching methods use string similarity as the a-
priori similarity of two entities. Due to high levels of noise and sparsity, they
enrich it with contextual information in the form of matching neighbors, i.e.,
entities whose URIs are contained in an entity profile as attribute values. This
process is typically iterative, constantly updating the overall similarity of two
entities with the evidence gathered from the latest matches [30].
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time

0.170.12

0.23 0.31

0.16 0.34

0.35 0.91

0.19 0.76

(c) (d) (e)

movies (JS) movies (ED) dbpedia (JS) dbpedia (ED)

Fig. 13. Time experiments with jaccard-sim (a,c) and edit-dist (b,d); initialization times (e).

matching entities with similar attribute values to be placed in con-
secutive positions. We can conclude, therefore, that the similarity-
based techniques can only be used over structured datasets, while
the equality-based techniques perform well under all settings. In
fact, PBS is suited for ER tasks involving cheap match functions
and with very limited time budget (its initialization time is the
lowest among the advanced methods). Otherwise, PPS achieves
the best performance, both in terms of recall progressiveness
(Figure 12) and execution time (Figure 13).

An interesting direction for extending our work is to examine
the massive parallelization of our approach based on existing
methods for parallelizing Sorted Neighborhood [31], [32] and
Meta-blocking [33] in the context of MapReduce.
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