
ar
X

iv
:1

70
9.

09
47

1v
3

 [
cs

.D
B

]
 1

 O
ct

 2
01

7

Diversified Coherent Core Search

on Multi-Layer Graphs

Rong Zhu, Zhaonian Zou, and Jianzhong Li
Harbin Institute of Technology, Harbin, Heilongjiang, China

{rzhu, znzou, lijzh}@hit.edu.cn

Abstract—Mining dense subgraphs on multi-layer graphs is an
interesting problem, which has witnessed lots of applications in
practice. To overcome the limitations of the quasi-clique-based
approach, we propose d-coherent core (d-CC), a new notion
of dense subgraph on multi-layer graphs, which has several
elegant properties. We formalize the diversified coherent core
search (DCCS) problem, which finds k d-CCs that can cover the
largest number of vertices. We propose a greedy algorithm with
an approximation ratio of 1 − 1/e and two search algorithms
with an approximation ratio of 1/4. The experiments verify that
the search algorithms are faster than the greedy algorithm and
produce comparably good results as the greedy algorithm in
practice. As opposed to the quasi-clique-based approach, our
DCCS algorithms can fast detect larger dense subgraphs that
cover most of the quasi-clique-based results.

I. INTRODUCTION

Dense subgraph mining, that is, finding vertices cohesively

connected by internal edges, is an important issue in graph

mining. In the literature, many dense subgraph notions have

been formalized [8], e.g., clique, quasi-clique, k-core, k-

truss, k-plex and k-club. Meanwhile, a large number of dense

subgraph mining algorithms have also been proposed.

In many real-world scenarios, a graph often contains various

types of edges, which represent various types of relationships

between entities. For example, in biological networks, interac-

tions between genes can be detected by different methods [6];

in social networks, users can interact through different social

media [12]. In [4] and [11], such a graph with multiple types

of edges is modelled as a multi-layer graph, where each layer

independently accommodates a certain type of edges.

Finding dense subgraphs on multi-layer graphs has wit-

nessed many real-world applications.

Application 1 (Biological Module Discovery). In biological

networks, densely connected vertices (genes or proteins), also

known as biological modules, play an important role in detect-

ing protein complexes and co-expression clusters [6]. Due to

data noise, there often exist a number of spurious biological

interactions (edges), so a group of vertices only cohesively

connected by interactions detected by a certain method may

not be a convincing biological module. To filter out the effects

of spurious interactions and make the detected modules more

reliable, biologists detect interactions using multiple methods,

i.e., build a multi-layer biological network, where each layer

contains interactions detected by a certain method. A set of

vertices is regarded as a reliable biological module if they are

simultaneously densely connected on multiple layers [6].

Application 2 (Story Identification in Social Media.) So-

cial media, such as Twitter and Facebook, is updating with

numerous new posts every day. A story in a social media is

an event capturing popular attention recently [1]. Stories can

be identified by leveraging some real-world entities involved

them, such as people, locations, companies and products. To

identify them, scientists often abstract all new posts at each

moment as a snapshot graph, where each vertex represents

an entity and each edge links two entities if they frequently

occur together in these new posts, and maintain a number of

snapshot graphs in a time window. After that, each story can

be identified by finding a group of strongly associated entities

on multiple snapshot graphs [1]. Obviously, this is an instance

of finding dense subgraphs on multi-layer graphs.

Different from dense subgraph mining on single-layer

graphs, dense subgraphs on multi-layer graphs must be eval-

uated by the following two orthogonal metrics: 1) Density:

The interconnections between the vertices must be sufficiently

dense on some individual layers. 2) Support: The vertices must

be densely connected on a sufficiently large number of layers.

In the literature, the most representative and widely used

notion of dense subgraphs on multi-layer graphs is cross-graph

quasi-clique [4], [11], [19]. On a single-layer graph, a vertex

set Q is a γ-quasi-clique if each vertex in Q is adjacent to at

least γ(|Q|−1) vertices in Q, where γ ∈ [0, 1]. Given a set of

graphs G1, G2, . . . , Gn with the same vertices (i.e., layers in

our terminology) and γ ∈ [0, 1], a vertex set Q is a cross-graph

quasi-clique if Q is a γ-quasi-clique on all of G1, G2, . . . , Gn.

Although the cross-graph quasi-clique notion considers both

density and support, it has several limitations:

1) A single cross-graph quasi-clique only characterizes a

microscopic cluster. Finding all cross-graph quasi-cliques is

computationally hard and is not scalable to large graphs [4].

2) The diameter of a cross-graph quasi-clique is often very

small. As proved in [11], the diameter of a cross-graph quasi-

clique is at most 2 if γ ≥ 0.5. Therefore, the quasi-clique-

based methods face the following dilemma: When γ is large,

some large-scale dense subgraphs may be lost; When γ is

small, some sparsely connected subgraphs may be falsely

recognized as dense subgraphs. For example, in the 4-layer

graph in Fig. 1, the vertex set Q = {a, b, c, d, e, f, g, h, i}
naturally induces a dense subgraph on all layers. However, in

terms of cross-graph quasi-clique, if γ ≥ 0.5, Q is missing

from the result; If γ < 0.5, the sparsely connected vertex set

{g, h, i, j} is recognized as a cross-graph quasi-clique.

http://arxiv.org/abs/1709.09471v3

a

b

d g

fc

Layer 1

i

he j

x y m

k

n

a

b

d g

fc

Layer 2

i

he j

x y m

k

n

a

b

d g

fc

Layer 3

i

he j

x y m

k

n

a

b

d g

fc

Layer 4

i

he j

x y m

k

n

Fig. 1. Example of 4-Layer Graph.

Hence, there naturally arises the first question:

Q1: What is a better notion of dense subgraphs on multi-layer

graphs, which can avoid the limitations of cross-graph quasi-

cliques?

Additionally, as discovered in [4], dense subgraphs on multi-

layer graphs have significant overlaps. For practical usage, it is

better to output a small subset of diversified dense subgraphs

with little overlaps. Ref. [4] proposed an algorithm to find

diversified cross-graph quasi-cliques. One of our goal in this

paper is to find dense subgraphs on even larger multi-layer

graphs. There will be even more dense subgraphs, so the

problem of finding diversified dense subgraphs will be more

critical. Hence, we face the second question:

Q2: How to design efficient algorithms to find diversified dense

subgraphs according to the new notion?

To deal with the first question Q1, we present a new notion

called d-coherent core (d-CC for short) to characterize dense

subgraphs on multi-layer graphs. It is extended from the d-

core notion on single-layer graphs [3]. Specifically, given a

multi-layer graph G, a subset L of layers of G and d ∈ N, the

d-CC with respect to (w.r.t. for short) L is the maximal vertex

subset S such that each vertex in S is adjacent to at least d
vertices in S on all layers in L. The d-CC w.r.t. L is unique.

The d-CC notion is a natural fusion of density and support. It

has the following advantages:

1) There is no limit on the diameter of a d-CC, and a d-CC

often consists of a large number of densely connected vertices.

Our experiments show that a d-CC can cover a large amount

of cross-graph quasi-cliques.

2) A d-CC can be computed in linear time in the graph size.

3) The d-CC notion inherits the hierarchy property of d-

core: The (d+1)-CC w.r.t. L is a subset of the d-CC w.r.t. L;

The d-CC w.r.t. L is a subset of the d-CC w.r.t. L′ if L′ ⊆ L.

The d-CC notion overcomes the limitations of cross-graph

quasi-cliques. Based on this notion, we formalize the diver-

sified coherent core search (DCCS) problem that finds dense

subgraphs on multi-layer graphs with little overlaps: Given

a multi-layer graph G, a minimum degree threshold d, a

minimum support threshold s, and the number k of d-CCs to

be detected, the DCCS problem finds k most diversified d-CCs

recurring on at least s layers of G. As in [2], [4], we assess the

diversity of the k discovered d-CCs by the number of vertices

they cover and try to maximize the diversity of these d-CCs.

We prove that the DCCS problem is NP-complete.

To deal with the second question Q2, we propose a series

of approximation algorithms for the DCCS problem. First, we

propose a simple greedy algorithm, which finds k d-CCs in a

greedy manner. The algorithm have an approximation ratio of

1 − 1/e. However, it must compute all candidate d-CCs and

therefore is not scalable to large multi-layer graphs.

To prune unpromising candidate d-CCs early and improve

efficiency, we propose two search algorithms, namely the

bottom-up search algorithm and the top-down search algo-

rithm. In both algorithms, the process of generating candidate

d-CCs and the process of updating diversified d-CCs interact

with each other. Many d-CCs that are unpromising to appear

in the final results are pruned in early stage. The bottom-up

and top-down algorithms adopt different search strategies. In

practice, the bottom-up algorithm is preferable if s < l/2,

and the top-down algorithm is preferable if s ≥ l/2, where

l is the number of layers. Both of the algorithms have an

approximation ratio of 1/4.

We conducted extensive experiments on a variety of datasets

to evaluate the proposed algorithms and obtain the following

results: 1) The bottom-up and top-down algorithms are 1–

2 orders of magnitude faster than the greedy algorithm for

small and large s, respectively. 2) The practical approxima-

tion quality of the bottom-up and top-down algorithms is

comparable to that of the greedy algorithm. 3) Our DCCS

algorithms outperform the quasi-clique-based dense subgraph

mining algorithm [4] on multi-layer graphs in terms of both

execution time and result quality.

II. PROBLEM DEFINITION

Multi-Layer Graphs. A multi-layer graph is a set of graphs

{G1, G2, . . . , Gl}, where l is the number of layers, and Gi is

the graph on layer i. Without loss of generality, we assume

that G1, G2, . . . , Gl contain the same set of vertices because

if a vertex is missing from layer i, we can add it to Gi as an

isolated vertex. Hence, a multi-layer graph {G1, G2, . . . , Gl}
can be equivalently represented by (V,E1, E2, . . . , El), where

V is the universal vertex set, and Ei is the edge set of Gi.

Let V (G) and E(G) be the vertex and the edge set of

graph G, respectively. For a vertex v ∈ V (G), let NG(v) =
{u|(v, u) ∈ E(G)} be the set of neighbors of v in G, and let

dG(v) = |NG(v)| be the degree of v in G. The subgraph of

G induced by a vertex subset S ⊆ V (G) is G[S] = (S,E[S]),
where E[S] is the set of edges with both endpoints in S.

Given a multi-layer graph G = (V,E1, E2, . . . , El), let l(G)
be the number of layers of G, V (G) the vertex set of G, and

Ei(G) the edge set of the graph on layer i. The multi-layer

subgraph of G induced by a vertex subset S ⊆ V (G) is G[S] =
(S,E1[S], E2[S], . . . , El[S]), where Ei[S] is the set of edges

in Ei with both endpoints in S.

d-Coherent Cores. We define the notion of d-coherent core

(d-CC) on a multi-layer graph by extending the d-core notion

on a single-layer graph [3]. A graph G is d-dense if dG(v) ≥ d
for all v ∈ V (G), where d ∈ N. The d-core of graph G,

denoted by Cd(G), is the maximal subset S ⊆ V (G) such

that G[S] is d-dense. As stated in [3], Cd(G) is unique, and

Cd(G) ⊆ Cd−1(G) ⊆ · · · ⊆ C1(G) ⊆ C0(G) for d ∈ N.

For ease of notation, let [n] = {1, 2, . . . , n}, where n ∈
N. Let G be a multi-layer graph and L ⊆ [l(G)] be a non-

empty subset of layer numbers. For S ⊆ V (G), the induced

subgraph G[S] is d-dense w.r.t. L if Gi[S] is d-dense for all

i ∈ L. The d-coherent core (d-CC) of G w.r.t. L, denoted by

Cd
L(G), is the maximal subset S ⊆ V (G) such that G[S] is

d-dense w.r.t. L. Similar to d-core, the concept of d-CC has

the following properties.

Property 1 (Uniqueness): Given a multi-layer graph G and

a subset L ⊆ [l(G)], Cd
L(G) is unique for d ∈ N.

Property 2 (Hierarchy): Given a multi-layer graph G and

a subset L ⊆ [l(G)], we have Cd
L(G) ⊆ Cd−1

L (G) ⊆ · · · ⊆
C1

L(G) ⊆ C0
L(G) for d ∈ N.

Property 3 (Containment): Given a multi-layer graph G and

two subsets L,L′ ⊆ [l(G)], if L ⊆ L′, we have Cd
L′(G) ⊆

Cd
L(G) for d ∈ N.

Note: We put all proofs in Appendix A.

Problem Statement. Given a multi-layer graph G, a minimum

degree threshold d ∈ N and a minimum support threshold

s ∈ N, let Fd,s(G) be the set of d-CCs of G w.r.t. all subsets

L ⊆ [l(G)] such that |L| = s. When G is large, |Fd,s(G)|
is often very large, and a large number of d-CCs in Fd,s(G)
significantly overlap with each other. For practical usage, it is

better to output k diversified d-CCs with little overlaps, where

k is a number specified by users. Like [2], [4], we assess the

diversity of the discovered d-CCs by the number of vertices

they cover and try to maximize the diversity of these d-CCs.

Let the cover set of a collection of sets R = {R1, R2, . . . , Rn}
be Cov(R) =

⋃n
i=1 Ri. We formally define the Diversified

Coherent Core Search (DCCS) problem as follows.

Given a multi-layer graph G, a minimum degree threshold

d, a minimum support threshold s and the number k of d-CCs

to be discovered, find the subset R ⊆ Fd,s(G) such that 1)

|R| = k; and 2) |Cov(R)| is maximized. The d-CCs in R are

called the top-k diversified d-CCs of G on s layers.

Theorem 1: The DCCS problem is NP-complete.

Let d = 3, s = 2 and k = 2. The top-2 diversified d-CCs for

the multi-layer graph in Fig. 1 is R = {Cd
{1,3}(G), C

d
{2,4}(G)},

where Cd
{1,3}(G) = {a, b, c, d, e, f, g, h, i, y,m}, Cd

{2,4}(G) =
{a, b, c, d, e, f, g, h, i,m, n, k} and |Cov(R)| = 14.

III. GREEDY ALGORITHM

A straightforward solution to the DCCS problem is to gen-

erate all candidate d-CCs and select k of them that cover the

maximum number of vertices. However, the search space of

all k-combinations of d-CCs is extremely large, so this method

is intractable even for small multi-layer graphs. Alternatively,

fast approximation algorithms with guaranteed performance

may be more preferable. In this section, we propose a simple

greedy algorithm with an approximation ratio of 1− 1/e.

Before describing the algorithm, we present the following

lemma based on Property 3. The lemma enables us to remove

irrelevant vertices early.

Lemma 1 (Intersection Bound): Given a multi-layer graph

G and two subsets L1, L2 ⊆ [l(G)], we have Cd
L1∪L2

(G) ⊆
Cd

L1
(G) ∩ Cd

L2
(G) for d ∈ N.

The Greedy Algorithm. The greedy algorithm GD-DCCS is

described in Fig. 2. The input is a multi-layer graph G and

d, s, k ∈ N. GD-DCCS works as follows. Line 1 initializes

both the d-CC collection F and the result set R to be ∅.

Algorithm GreedyDCCS(G, d, s, k)

1: F ← ∅, R ← ∅
2: for i← 1 to l(G) do

3: compute Cd(Gi) on Gi

4: for each L ⊆ [l(G)] such that |L| = s do

5: S ←
⋂

i∈L Cd(Gi)

6: Cd
L(G)← dCC(G[S], L, d)

7: F ← F ∪ {Cd
L(G)}

8: for j ← 1 to k do

9: C∗ ← argmaxC∈F (|Cov(R∪ {C})| − |Cov(R)|)
10: R ← R∪ {C∗}, F ← F − {C∗}
11: return R

Fig. 2. The GD-DCCS Algorithm.

Lines 2–3 compute the d-core Cd(Gi) on each layer Gi by the

algorithm in [3]. By definition, we have Cd
{i}(G) = Cd(Gi).

For each L ⊆ [l(G)] with |L| = s, to find Cd
L(G), we

first compute the intersection S =
⋂

i∈L Cd(Gi) (line 5). By

Lemma 1, we have Cd
L(G) ⊆ S. Thus, we compute Cd

L(G) on

the induced subgraph G[S] instead of on G by Procedure dCC
(line 6) and add Cd

L(G) to F (line 7). Procedure dCC follows

the similar procedure of computing the d-core on a single-layer

graph [3]. Whenever there exists a vertex v ∈ V (G) such that

dGi
(v) < d on some layer i ∈ L, v is removed from all layers

of G. Due to space limits, we describe the implementation

details of dCC in Appendix B.

Next, lines 8–10 select k d-CCs from F in a greedy manner.

In each time, we pick up the d-CC C∗ ∈ F that maximizes

|Cov(R∪{C∗})|−|Cov(R)|, add C∗ to R (line 9) and remove

C∗ from F (line 10). Finally, R is output as the result (line 11).

Let l = l(G), n = |V (G)| and m = |
⋃l

i=1 Ei(G)|.
Procedure dCC in line 6 runs in O(ns+ms) time as shown

in Appendix B. Line 9 runs in O(n|F|) time since computing

|Cov(R∪{C})|−|Cov(R)| takes O(n) time for each C ∈ F .

In addition, |F| =
(

l
s

)

. Therefore, the time complexity of GD-

DCCS is O((ns +ms + kn)
(

l
s

)

), and the space complexity

is O(n
(

l
s

)

).

Theorem 2: The approximation ratio of GD-DCCS is 1− 1
e .

Limitations. As verified by the experimental results in Sec-

tion VI, GD-DCCS is not scalable to very large multi-layer

graphs. This is due to the following reasons: 1) GD-DCCS
must keep all candidate d-CCs in F . As l(G) increases, |F|
grows exponentially. When F can not fit in main memory, the

algorithm incurs large amounts of I/Os. 2) The exponential

growth in |F| significantly increases the running time of

selecting k diversified d-CCs from F (lines 8–10 of GD-

DCCS). 3) The phase of candidate d-CC generation (lines 1–

7) and the phase of diversified d-CC selection (lines 8–10)

are separate. There is no guidance on candidate generation, so

many unpromising candidate d-CCs are generated in vain.

IV. BOTTOM-UP ALGORITHM

This section proposes a bottom-up approach to the DCCS

problem. In this approach, the candidate d-CC generation and

the top-k diversified d-CC selection phases are interleaved. On

one hand, we maintain a set of temporary top-k diversified d-

CCs and use each newly generated d-CC to update them. On

the other hand, we guide candidate d-CC generation by the

temporary top-k diversified d-CCs.

In addition, candidate d-CCs are generated in a bottom-

up manner. Like the frequent pattern mining algorithm [18],

we organize all d-CCs by a search tree and search candidate

d-CCs on the search tree. The bottom-up d-CC generation

has the following advantage: If the d-CC w.r.t. subset L
(|L| < s) is unlikely to improve the quality of the temporary

top-k diversified d-CCs, the d-CCs w.r.t. all L′ such that

L ⊆ L′ and |L′| = s need not be generated. As verified

by the experimental results in Section VI, the bottom-up

approach reduces the search space by 80%–90% in comparison

with the greedy algorithm and thus saves large amount of

time. Moreover, the bottom-up DCCS algorithm attains an

approximation ratio of 1/4.

A. Maintenance of Top-k Diversified d-CCs

Let R be a set of temporary top-k diversified d-CCs. In

the beginning, R = ∅. To improve the quality of R, we try

to update R whenever we find a new candidate d-CC C. In

particular, we update R with C by one of the following rules:

Rule 1: If |R| < k, C is added to R.

Rule 2: For C′ ∈ R, let ∆(R, C′) = C′ − Cov(R− {C′}),
that is, ∆(R, C′) is vertex set in Cov(R) exclusively covered

by C′. Let C∗(R) = argminC′∈R |∆(R, C′)|, that is, C∗(R)
exclusively covers the least number of vertices among all d-

CCs in R. We replace C∗(R) with C if |R| = k and

|Cov((R− {C∗(R)}) ∪ {C})| ≥ (1 + 1
k)|Cov(R)|. (1)

On input R and C, Procedure Update tries to update

R with C using the rules above. The details of Update

is described in Appendix C. By using two index structures,

Update runs in O(max{|C|, |C∗(R)|}) time.

B. Bottom-Up Candidate Generation

Candidate d-CCs Cd
L(G) with |L| = s are generated in a

bottom-up fashion. As shown in Fig. 4, all d-CCs Cd
L(G) are

conceptually organized by a search tree, in which Cd
L(G) is

the parent of Cd
L′(G) if L ⊂ L′, |L′| = |L| + 1 and the only

number ℓ ∈ L′−L satisfies ℓ > max(L), where max(L) is the

largest number in L (specially, max(∅) = −∞). Conceptually,

the root of the search tree is Cd
∅ (G) = V (G).

The d-CCs in the search tree are generated in a depth-

first order. First, we generate the d-core Cd(Gi) on each

single layer Gi. By definition, we have Cd
{i}(G) = Cd(Gi).

Then, starting from Cd
{i}(G), we generate the descendants of

Cd
{i}(G). The depth-first search is realized by recursive Pro-

cedure BU-Gen in Fig. 3. In general, given a d-CC Cd
L(G) as

input, we first expand L by adding a layer number j such that

max(L) < j ≤ l(G). Let L′ = L∪{j}. By Lemma 1, we have

Cd
L′(G) ⊆ Cd

L(G) ∩ Cd
{j}(G) = Cd

L(G) ∩ Cd(Gj). Thus, we

compute Cd
L′(G) on the induced subgraph G[Cd

L(G)∩C
d(Gj)]

by Procedure dCC described in Section III. Next, we process

Cd
L′(G) according to the following cases:

Case 1: If |L′| = s, we update R with Cd
L′(G).

Case 2: If |L′| < s and |R| < k, we recursively call BU-Gen

to generate the descendants of Cd
L′(G).

Procedure BU-Gen(G, d, s, k, L,Cd
L(G), LQ,R)

1: LP ← {j|max(L) < j ≤ l(G)} − LQ, LR ← ∅
2: if |R| < k then

3: for j ∈ LP do

4: L′ ← L ∪ {j}
5: Cd

L′(G)← dCC(G[Cd
L(G) ∩ Cd(Gj)], L

′, d)
6: if |L′| = s then

7: Update(R, Cd
L′(G))

8: else

9: LR ← LR ∪ {j}
10: else if |R| = k then

11: sort j ∈ LP in descending order of |Cd
L(G) ∩ Cd(Gj)|

12: for each j in the sorted LP do

13: if |Cd
L(G) ∩ Cd(Gj)| <

1
k
|Cov(R)| + |∆(R, C∗(R))| then

14: break

15: else

16: L′ ← L ∪ {j}
17: Cd

L′(G)← dCC(G[Cd
L(G) ∩ Cd(Gj)], L

′, d)
18: if |L′| = s then

19: Update(R, Cd
L′(G))

20: else

21: if Cd
L′(G) satisfies Eq. (1) then

22: LR ← LR ∪ {j}
23: if |L| < s then

24: for j ∈ LR do

25: L′ ← L ∪ {j}
26: BU-Gen(G, d, s, k, L′, Cd

L′(G), LQ ∪ (LP − LR),R)

Fig. 3. The BU-Gen Procedure.

Case 3: If |L′| < s and |R| = k, we check if Cd
L′(G) satisfies

Eq. (1) to update R. If not satisfied, none of the descendants

of Cd
L′(G) is qualified to be a candidate, so we prune the entire

subtree rooted at Cd
L′(G); otherwise, we recursively call BU-

Gen to generate the descendants of Cd
L′(G). The correctness

is guaranteed by the following lemma.

Lemma 2 (Search Tree Pruning): For a d-CC Cd
L(G), if

Cd
L(G) does not satisfy Eq. (1), none of the descendants of

Cd
L(G) can satisfy Eq. (1).

To further improve efficiency, if |R| = k, we order the layer

numbers j > max(L) in decreasing order of |Cd
L(G)∩C

d(Gj)|
and generate Cd

L∪{j}(G) according to this order of j. For

some j, if |Cd
L(G)∩Cd(Gj)| <

1
k |Cov(R)|+ |∆(R, C∗(R))|,

we can stop searching the subtrees rooted at Cd
L∪{j}(G)

and Cd
L∪{j′}(G) for all j′ succeeding j in the order. The

correctness is ensured by the following lemma.

Lemma 3 (Order-based Pruning): For a d-CC Cd
L(G) and

j > max(L), if |Cd
L(G) ∩ Cd(Gj)| < 1

k |Cov(R)| +
|∆(R, C∗(R))|, then Cd

L∪{j}(G) cannot satisfy Eq. (1).

Another optimization technique is called layer pruning. For

max(L) < j ≤ l(G), if |R| = k and Cd
L∪{j}(G) does not

satisfy Eq. (1), we need not generate Cd
L′(G) for all L′ such

that L ∪ {j} ⊆ L′ ⊆ [l(G)]. The correctness is guaranteed by

the following lemma.

Lemma 4 (Layer Pruning): For a d-CC Cd
L(G) and j >

max(L), if Cd
L∪{j}(G) does not satisfy Eq. (1), then

Cd
L′∪{j}(G) cannot satisfy Eq. (1) for all L′ such that L ⊆

L′ ⊆ [l(G)].
Fig. 3 describes the pseudocode of Procedure BU-Gen,

which naturally follows the steps presented above. Here, we

make a few necessary remarks. The input LQ is the set of layer

numbers that cannot be used to expand L. They are obtained

according to Lemma 4 when generating the ascendants of

Cd
L(G). Thus, the layer numbers possible to be added to L

are LP = {j|max(L) < j ≤ l(G)} − LQ (line 1). In BU-

level 0

level 1

level 2

level 3

level 4

Fig. 4. Bottom-Up Search Tree.

level 4

level 3

level 2

Fig. 5. Top-Down Search Tree.
Fig. 6. Relationships between Cd

L
(G), Ud

L
(G),

Cd

L′ (G) and Ud

L′(G).

Algorithm BU-DCCS(G, d, s, k)

1: repeat

2: for i← 1 to l(G) do

3: compute the d-core Cd(Gi) on graph Gi

4: for each v ∈ V (G) do

5: if Num(v) < s then

6: remove v from G
7: until Num(v) ≥ s for all v ∈ V (G)
8: R ← InitTopK(G, d, s, k)
9: sort all layer numbers in descending order of |Cd(Gi)|, where i ∈ [l(G)]

10: BU-Gen(G, d, s, k, ∅, V (G), ∅,R)
11: return R

Fig. 7. The BU-DCCS Algorithm.

Gen, we use set LR to record the layer numbers that can

actually be added to L (lines 9 and 22). In lines 24–26, for each

j ∈ LR, we make a recursive call to BU-Gen to generate the

descendants of Cd
L∪{j}(G). By Lemma 4, the layer numbers

that cannot be added to L′ are LQ ∪ (LP − LR).

C. Bottom-Up Algorithm

Fig. 7 describes the complete bottom-up DCCS algorithm

BU-DCCS. Given a multi-layer graph G and three parameters

d, s, k ∈ N, we can solve the DCCS problem by calling BU-
Gen(G, d, s, k, ∅, V (G), ∅,R) (line 10). To further speed up

the algorithm, we propose three preprocessing methods.

Vertex Deletion. Let Num(v) denote the support number of

layers i such that v ∈ Cd(Gi), where i ∈ [l(G)]. If Num(v) <
s, v must not be contained in any d-CCs Cd

L(G) with |L| = s.

Therefore, we can safely remove all these vertices from G and

recompute the d-cores of all layers. This process is repeated

until Num(v) ≥ s for all remaining vertices v in G. Lines 1–7

of BU-DCCS describe this preprocessing method.

Sorting Layers. We sort the layers of G in descending order of

|Cd(Gi)|, where 1 ≤ i ≤ l(G). Intuitively, the larger |Cd(Gi)|
is, the more likely Gi contains a large candidate d-CC.

Although there is no theoretical guarantee on the effectiveness

of this preprocessing method, it is indeed effective in practice.

Line 9 of BU-DCCS applies this preprocessing method.

Initialization of R. The pruning techniques in BU-Gen are

not applicable unless |R| = k, so a good initial state of

R can greatly enhance pruning power. We develop a greedy

procedure InitTopK to initialize R so that |R| = k. Due to

space limits, the details of Procedure InitTopK is described in

Appendix D. Line 8 of BU-DCCS initializes R by Procedure

InitTopK.

Theorem 3: The approximation ratio of BU-DCCS is 1/4.

V. TOP-DOWN ALGORITHM

The bottom-up algorithm must traverse a search tree from

the root down to level s. When s ≥ l(G)/2, the efficiency

of the algorithm degrades significantly. As verified by the

experiments in Section VI, the performance of the bottom-up

algorithm is close to or even worse than the greedy algorithm

when s ≥ l(G)/2. To handle this problem, we propose a top-

down approach for the DCCS problem when s ≥ l(G)/2.

In this section, we assume s ≥ l(G)/2. In the top-down

algorithm, we maintain a temporary top-k result set R and

update it in the same way as in the bottom-up algorithm.

However, candidate d-CCs are generated in a top-down man-

ner. The reverse in search direction makes the techniques in

the bottom-up algorithm no longer suitable. Therefore, we

propose a new candidate d-CC generation method and a series

of new pruning techniques suitable for top-down search. The

top-down algorithm attains an approximation ratio of 1/4.

As verified by the experiments in Section VI, the top-down

algorithm is superior to the other algorithms when s ≥ l(G)/2.

A. Top-Down Candidate Generation

We first introduce how to generate d-CCs in a top-down

manner. In the top-down algorithm, all d-CCs are conceptually

organized as a search tree as illustrated in Fig. 5, where Cd
L(G)

is the parent of Cd
L′(G) if L′ ⊂ L, |L| = |L′|+1 and the only

layer number ℓ ∈ L−L′ satisfies ℓ > max([l(G)]−L). Except

the root Cd
[l(G)], all d-CCs in the search tree has a unique

parent. We generate candidate d-CCs by depth-first searching

the tree from the root down to level s and update the temporary

result set R during search.

Let Cd
L(G) be the d-CC currently visited in DFS, where

|L| > s. We must generate the children of Cd
L(G). By

Property 3 of d-CCs, we have Cd
L(G) ⊆ Cd

L′(G) for all L′ ⊆ L.

Thus, to generate Cd
L′(G), we only have to add some vertices

to Cd
L(G) but need not to delete any vertex from Cd

L(G).
To this end, we associate Cd

L(G) with a vertex set Ud
L(G).

Ud
L(G) must contain vertices in all descendants Cd

S(G) of

Cd
L(G) such that |S| = s. Ud

L(G) serves as the scope for

searching for the descendants of Cd
L(G). We call Ud

L(G)
the potential vertex set w.r.t. Cd

L(G). Obviously, we have

Cd
L(G) ⊆ Ud

L(G). Initially, Ud
[l(G)](G) = V (G). Section V-B

will describe how to shrink Ud
L(G) to Ud

L′(G) for L′ ⊆ L,

so we have Ud
L′(G) ⊆ Ud

L(G) if L′ ⊆ L. The relationships

between Cd
L(G), U

d
L(G), C

d
L′(G) and Ud

L′(G) are illustrated in

Fig. 6. The arrows in Fig. 6 indicates that Cd
L′(G) is expanded

from Cd
L(G), and Ud

L′(G) is shrunk from Ud
L(G). Keeping

this in mind, we focus on top-down candidate generation in

this subsection. Sections V-B and V-C will describe how to

compute Ud
L′(G) and Cd

L′(G), respectively.

Procedure TD-Gen(G,d,s,k,L,Cd
L(G),Ud

L(G),R)

1: LR = {j|max([l(G)]− L) < j ≤ l(G)} ∩ L
2: for each j ∈ LR do

3: L′ ← L− {j}
4: Ud

L′ (G)← RefineU(G, d, s, Ud
L(G), L′)

5: Cd
L′(G)← RefineC(G, d, s, Ud

L′(G), L
′)

6: if |R| < k then

7: for each j ∈ LR do

8: L′ ← L− {j}
9: if |L′| = s then

10: Update(R, Cd
L′(G))

11: else

12: TD-Gen(G, d, s, k, L, Cd
L′(G), U

d
L′ (G),R)

13: else

14: sort j ∈ LR in descending order of |Ud
L−{j}(G)|

15: for each j in the sorted LR do

16: L′ ← L− {j}
17: if |Ud

L′ (G)| < |Cov(R)|/k + |∆(R, C∗(R))| then

18: break

19: else

20: if |L′| = s then

21: Update(R, Cd
L′(G))

22: else

23: if Cd
L′(G) satisfies Eq. (1) then

24: if Ud
L′ (G) satisfies Eq. (2) then

25: S ← L′−{|L′|−s numbers randomly chosen from LR}

26: Cd
S(G)← dCC(G[Ud

L′ (G)], S, d)

27: Update(R, Cd
S(G))

28: else

29: TD-Gen(G, d, s, k, L, Cd
L′(G), U

d
L′ (G),R)

Fig. 8. The TD-Gen Procedure.

The top-down candidate d-CC generation is implemented

by the recursive procedure TD-Gen in Fig. 8. Let LR =
{j|max([l(G)] − L) < j ≤ l(G)} ∩ L be the set of layer

numbers possible to be removed from L (line 1). For each

j ∈ LR, let L′ = L− {j}. We have that Cd
L′(G) is a child of

Cd
L(G). We first obtain Ud

L′(G) and Cd
L′(G) by the methods

in Section V-B (line 4) and Section V-C (line 5), respectively.

Next, we process Cd
L′(G) based on the following cases:

Case 1 (lines 9–10): If |R| < k and |L′| = s, we update R
with Cd

L′(G) by Rule 1 specified in Section IV-A.

Case 2 (lines 11–12): If |R| < k and |L′| > s, we recursively

call TD-Gen to generate the descendants of Cd
L′(G).

Case 3 (lines 20–21): If |R| = k and |L′| = s, we update R
with Cd

L′(G) by Rule 2 specified in Section IV-A.

Case 4 (lines 22–29): If |R| = k and |L′| > s, we check if

Ud
L′(G) satisfies Eq. (1) to update R (line 23). If it is not

satisfied, none of the descendants of Cd
L′(G) is qualified to

be a candidate d-CC, so we prune the entire subtree rooted at

Cd
L′(G). Otherwise, we recursively call TD-Gen to generate

the descendants of Cd
L′(G) (line 29). The correctness of the

pruning method is guaranteed by the following lemma.

Lemma 5 (Search Tree Pruning): For a d-CC Cd
L(G) and

its potential vertex set Ud
L(G), where |L| > s, if Ud

L(G) does

not satisfy Eq. (1), any descendant Cd
L′(G) of Cd

L(G) with

|L′| = s cannot satisfy Eq. (1).

To make top-down candidate d-CC generation even faster,

we further propose some methods to prune the search tree.

If |R| = k (Cases 3 and 4), we order the layer numbers

j ∈ LR in descending order of |Ud
L−{j}(G)| (line 14). For

some j ∈ LR, if |Ud
L−{j}(G)| <

|Cov(R)|
k + |∆(R, C∗(R))|,

we need not to consider all layer numbers in LR succeeding j
and can terminate searching the subtrees rooted at Cd

L−{j}(G)
immediately (lines 17–18). The correctness of this pruning

Procedure RefineU(G, d, s, Ud
L(G), L′)

1: U ← Ud
L(G)

2: ML′ ← {j|j ∈ L, j < max([l(G)]− L)}, NL′ ← L−ML′

3: repeat

4: while there exists v ∈ U and i ∈ML′ such that dGi[U](v) < d do

5: remove v from U and all layers of G
6: while there exists v ∈ U that occurs in less than s−|ML′ | of the d-cores

Cd(Gj) for j ∈ NL′ do

7: remove v from U and all layers of G
8: until no vertex in U can be removed

9: return U

Fig. 9. The RefineU Procedure.

method is ensured by the following lemma.

Lemma 6 (Order-based Pruning): For a d-CC Cd
L(G), its

potential vertex set Ud
L(G) and j > max([l(G)] − L), if

|Ud
L−{j}(G)| < |Cov(R)|

k + |∆(R, C∗(R))|, any descendant

Cd
L−{j}(G) of Cd

L(G) cannot satisfy Eq. (1).

More interestingly, for Case 4, in some optimistic cases, we

need not to search the descendants of Cd
L(G). Instead, we can

randomly select a descendant Cd
S(G) of Cd

L(G) with |S| = s
to update R (lines 25–27). The correctness is ensured by the

following lemma.

Lemma 7 (Potential Set Pruning): For a d-CC Cd
L(G) and

its potential vertex set Ud
L(G), where |L| > s, if Cd

L(G)
satisfies Eq. (1), and Ud

L(G) satisfies

|Ud
L(G)| < (1k + 1

k2)|Cov(R)|+ (1+ 1
k)|∆(R, C∗(R))|, (2)

the following proposition holds: For any two distinct descen-

dants Cd
S1
(G) and Cd

S2
(G) of Cd

L(G) such that |S1| = |S2| = s,

if |R| = k and R has already been updated by Cd
S1
(G), then

Cd
S2
(G) cannot update R any more.

B. Refinement of Potential Vertex Sets

Let Cd
L(G) be the d-CC currently visited by DFS and

Cd
L′(G) be a child of Cd

L(G). To generate Cd
L′(G), Procedure

TD-Gen first refines Ud
L(G) to Ud

L′(G) and then generates

Cd
L′(G) based on Ud

L′(G). This subsection introduces how to

shrink Ud
L(G) to Ud

L′(G).
First, we introduce some useful concepts. Given a subset of

layer numbers L ⊆ [l(G)], we can divide all layer numbers in

L into two disjoint classes:

Class 1: By the relationship of d-CCs in the top-down search

tree, for any layer number ℓ ∈ L and ℓ < max([l(G)] − L),
ℓ will not be removed from L in any descendant of Cd

L(G).
Thus, for any descendant Cd

S(G) of Cd
L(G) with |S| = s, we

have l ∈ S.

Class 2: By the relationship of d-CCs in the top-down search

tree, for any layer number ℓ ∈ L and ℓ > max([l(G)] − L),
ℓ can be removed from L to obtain a descendant of Cd

L(G).
Thus, for a descendant Cd

S(G) of Cd
L(G) with |S| = s, it is

undetermined whether ℓ ∈ S.

Let ML and NL denote the Class 1 and Class 2 of layer

numbers w.r.t. L, respectively. Procedure RefineU in Fig. 9

refines Ud
L(G) to Ud

L′(G). Let U = Ud
L(G) (line 1). First, we

obtain ML′ and NL′ w.r.t. L′ (line 2). Then, we apply them

to repeat the following two refinement methods to remove

irrelevant vertices from U until no vertices can be removed

any more (lines 3–8). Finally, U is output as Ud
L′(G) (line 9).

Refinement Method 1 (lines 4–5): For each layer number

i ∈ ML′ , we have i ∈ S for all descendants Cd
S(G) of Cd

L′(G)
with |S| = s. Note that Cd

S(G) must be d-dense in Gi. Thus,

if the degree of a vertex v in Gi[U] is less than d, we have

v 6∈ Cd
S(G), so we can remove v from U and G.

Refinement Method 2 (lines 6–7): If a vertex v ∈ U is

contained in a descendant Cd
S(G) of Cd

L(G) with |S| = s,

v must occur in all the d-cores Cd(Gi) for i ∈ ML′ and must

occur in at least s−|ML′| of the d-cores Cd(Gj) for j ∈ NL′ .

Therefore, if v occurs in less than s − |ML′ | of the d-cores

Cd(Gj) for j ∈ NL′ , we can remove v from U and G.

C. Refinement of d-CCs

Let Cd
L(G) be the d-CC currently visited by DFS and

Cd
L′(G) be a child of Cd

L(G), where |L| > s. Since Cd
L′(G) ⊆

Ud
L′(G), Procedure dCC in Section III can find Cd

L′(G) on

G[Ud
L′(G)] from scratch. However, this straightforward method

is not efficient. In this subsection, we propose an more efficient

algorithm to construct Cd
L′(G) by adopting two techniques:

1) An index structure that helps eliminate more vertices in

Ud
L′(G) irrelevant to Cd

L′(G). 2) A search strategy with early

termination to find Cd
L′(G) efficiently.

Index Structure. First, we introduce an index structure that

organizes all vertices of G hierarchically and helps filter out the

vertices irrelevant to Cd
L′(G) efficiently. Recall that Num(v) is

the number of layers whose d-cores contain v. Values Num(v)
are used to determine the vertices in Ud

L′(G) that are not in

Cd
L′(G). Specifically, for h ∈ N, let Jh be the set of vertices v

iteratively removed from G due to Num(v) ≤ h. Let Ih = Jh−
Jh−1. Obviously, I1, I2, . . . , Il(G) is a disjoint partition of all

vertices of G. Based on this partition, we can narrow down the

search scope of Cd
L′(G) from Ud

L′(G) to Ud
L′(G)∩(

⋃l(G)
h=|L′| Ih)

according to the following lemma.

Lemma 8: Cd
L′(G) ⊆ Ud

L′(G) ∩
(

⋃l(G)
h=|L′| Ih

)

.

The index structure is basically the hierarchy of vertices

following I1, I2, . . . , Il(G), that is, the vertices in Ii are placed

on a lower level than those in Ii+1. Internally, the vertices in

Ii are also placed on a stack of levels, which is determined

as follows. Suppose the vertices in I1, I2, . . . , Ii−1 have been

removed from G. Although the vertices v ∈ Ii are iteratively

removed from G due to Num(v) ≤ i, they are actually

removed in different batches. In each batch, we select all the

vertices v with Num(v) ≤ i and remove them together. After a

batch, some vertices v originally satisfying Num(v) > i may

have Num(v) ≤ i and thus will be removed in next batch.

Therefore, in Ii, the vertices removed in the same batch are

place on the same level, and the vertices removed in a later

batch are placed on a higher level than the vertices removed

in an early batch. In addition, let L(v) be the set of layer

numbers on which v is contained in the d-core just before v
is removed from G in batch. We associate each vertex v in the

index with L(v). Moreover, we add an edge between vertices

u and v in the index if (u, v) is an edge on a layer of G.

By Lemma 8, we have narrowed down the search scope

of Cd
L′(G) from Ud

L′(G) to Z = Ud
L′(G) ∩ (

⋃l(G)
h=|L′| Ih). By

exploiting the index, we can further narrow down the search

Procedure RefineC(G, d, s, Ud
L′ (G), L

′)

1: Z = Ud
L′ (G) ∩ (

⋃l(G)

h=|L′|
Ih)

2: removed all vertices not in Z from the index

3: for each vertex v ∈ Z do

4: set all vertices in Z as unexplored

5: compute d+
i
(v) of all i ∈ L′

6: for each level of the index do

7: if all vertices are unexplored or discarded on the level then

8: for each unexplored vertex v on the level do

9: if L′ 6⊆ L(v) then

10: set v as discarded

11: CascadeD(G, v, d, L′)
12: else

13: if v is not discarded then

14: set v as undetermined

15: for each unexplored neighbor u of v on a higher level do

16: set u as undetermined

17: else

18: for each undetermined vertex v on the level do

19: if d+
i
(v) < d for some i ∈ L′ then

20: set v as discarded

21: CascadeD(G, v, d, L′)
22: else

23: for each unexplored neighbor u of v on a higher level do

24: set v as undetermined

25: for each unexplored vertex v on the level do

26: set v as discarded

27: CascadeD(G, v, d, L′)
28: Cd

L′(G)← {all undetermined vertices in Z}

29: return Cd
L′(G)

Procedure CascadeD(G, v, d,L′)

1: for each undetermined neighbor u of v do

2: d+
i (u)← d+

i (u)− 1 for each i ∈ L′ and (u, v) ∈ Ei(G)
3: if d+

i
(u) < d for some i ∈ L′ then

4: set u as discarded

5: CascadeD(G, u, d, L′)

Fig. 10. The RefineC Procedure.

scope. If there is no sequence of vertices w0, w1, . . . , wn in

the index such that L′ ⊆ L(w0), wn = v, wi is on a higher

level than wi+1, and (wi, wi+1) is an edge in the index, then

v must not be contained in Cd
L′(G). The correctness of this

method is guaranteed by the following lemma.

Lemma 9: For each vertex v ∈ Cd
L′(G), there exists a

sequence of vertices w0, w1, . . . , wn in the index such that

L′ ⊆ L(w0), wn = v, wi+1 is placed on a higher level than

wi, and (wi, wi+1) is an edge in the index.

Fast Search with Early Termination. Based on the index,

Procedure RefineC in Fig. 10 searches for the exact Cd
L′(G).

First, we obtain the search scope Z = Ud
L′(G) ∩ (

⋃l(G)
h=|L′| Ih)

based on the index (line 1). By Lemma 8, we only need to

consider the vertices in Z . Thus, before the search begins, we

can remove all the vertices not in Z from the index (line 2).

Unlike Procedure dCC that only removes irrelevant vertices

from G, Procedure RefineC can find Cd
L′(G) much faster by

using two strategies: 1) Identify some vertices not in Cd
L′(G)

early; 2) Skip searching some vertices not in Cd
L′(G). To

this end, we set each vertex v ∈ Z to one of the following

three states: 1) v is discarded if it has been determined that

v 6∈ Cd
L′(G); 2) v is undetermined if v has been checked, but it

has not be determined whether v ∈ Cd
L′(G); 3) v is unexplored

if it has not been checked by the search process. During the

search process, a discarded vertex will not be involved in

the following computation, and an undetermined vertex may

become discarded due to the deletion of some edges. Initially,

all vertices in Z are set to be unexplored (line 3).

For i ∈ L′, let d+i (v) be the number of undetermined and

unexplored vertices adjacent to v in Gi[Z]. Clearly, d+i (v) is

an upper bound on the degree of v in Gi[Z]. If d+i (v) < d
on some layer i ∈ L′, we must have v 6∈ Cd

L′(G), so we

can set v as discarded. Notably, the removal of v may trigger

the removal of other vertices. The details are described in the

CascadeD procedure. Specifically, if v is discarded, for each

undetermined vertex u ∈ Z that is adjacent to v, we decrease

d+i (u) by 1 if (u, v) is an edge on a layer i ∈ L′. If d+i (u) < d
for some i ∈ L′, we also set u as discarded and recursively

invoke the CascadeD procedure to search for more discarded

vertices starting from u.

In the main search process, we check the vertices in Z in a

level-by-level fashion. In each iteration (lines 6–27), we fetch

all vertices on a level of the index and process them according

to the following two cases:

Case 1 (lines 7–16): If there are only unexplored and dis-

carded vertices on the current level, none of the vertices on

this level has been checked before by the search process. At

this point, we can check each unexplored vertex on this level.

Specifically, for each unexplored vertex v, if L′ 6⊆ L(v), we

have v 6∈ Cd
L′(G) by Lemma 9. Thus, we can immediately set v

as discarded and invoke Procedure CascadeD to explore more

discarded vertices starting from v (lines 10–11). Otherwise, if

v is not discarded, we set v as undetermined (line 14). For

each unexplored neighbor u ∈ Z of v placed on a higher level

than v in the index, we also set u as undetermined since u is

possible to be contained in Cd
L′(G) (line 16).

Case 2 (lines 17–27): If there is some undetermined vertices

on the current level, we carry out the following steps. For each

undetermined vertex v on this level, we check if d+i (v) < d
for some i ∈ L′ (line 19). If it is true, we have v 6∈ Cd

L′(G).
At this point, we set v to be discarded and invoke Procedure

CascadeD to explore more discarded vertices starting from v
(lines 20–21). Otherwise, v remains to be undetermined. For

each unexplored neighbor u ∈ Z of v placed on a higher level

than v in the index, we also set u as undetermined since u is

possible to be contained in Cd
L′(G) (line 24).

For each vertex v that is still unexplored on the current

level, none of the vertices in Cd
L′(G) on lower levels than

v in the index is adjacent to v. By Lemma 9, we have

v 6∈ Cd
L′(G). Thus, we can directly set v to be discarded

and invoke Procedure CascadeD to explore more discarded

vertices starting from v (lines 26–27).

After examining all levels in the index, Cd
L′(G) is exactly

the set of all undetermined vertices in Z (lines 28–29).

Time Complexity. Let l′ = |L′|, n′ = Ud
L′(G), m′i =

Ei[U
d
L′(G)] be the number of edges on layer i of the in-

duced multi-layer graph G[Ud
L′(G)] and m′ =

∑

i∈L′ mi. The

following lemma shows that the time cost of the RefineC
procedure is O(n′l′ + m′). Notably, if we apply Procedure

dCC on G[Ud
L′(G)] to find Cd

L′(G) from scratch, the time cost

is O(n′l′ +m′′|L′|), where m′′ = |
⋃

i∈L′ Ei[U
d
L′(G)]|. Since

m′ ≤ m′′l′ always holds, the time cost of Procedure RefineC

is no more than Procedure dCC .

Lemma 10: The time complexity of Procedure RefineC is

O(n′l′ +m′).

Algorithm TD-DCCS(G, d, s, k)

1: execute lines 1–8 of the BU-DCCS algorithm

2: sort all layer numbers i in ascending order of |Cd(Gi)|, where i ∈ [l(G)]
3: construct the index of G
4: Cd

[l(G)] ← dCC(G, [l(G)], d)

5: TD-Gen(G, d, s, k, [l(G)], Cd
[l(G)], V (G),R)

6: return R

Fig. 11. The TD-DCCS Algorithm.

Graph G |V (G)|
∑l(G)

i=1 |E(Gi)| |
⋃l(G)

i=1 E(Gi)| l(G)
PPI 328 4,745 3,101 8

Author 1,017 15,065 11,069 10

German 519,365 7,205,624 1,653,621 14

Wiki 1,140,149 7,833,140 3,309,592 24

English 1,749,651 18,951,428 5,956,877 15

Stack 2,601,977 63,497,050 36,233,450 24

Fig. 12. Statistics of Graph Datasets Used in Experiments.

Parameter Range Default Value

k {5, 10, 15, 20, 25} 10
d {2, 3, 4, 5, 6} 4
s (small) {1, 2, 3, 4, 5} 3
s (large) {l(G) − 4, l(G) − 3, l(G) − 2, l(G)− 1, l(G)} l(G) − 2
p {0.2, 0.4, 0.6, 0.8, 1.0} 1.0
q {0.2, 0.4, 0.6, 0.8, 1.0} 1.0

Fig. 13. Parameter Configuration.

D. Top-Down Algorithm

The preprocessing methods proposed in Section IV-C can

also be applied to the top-down DCCS algorithm. The method

of vertex deletion and the method of initializing R can be

directly applied. For the method of sorting layers, we sort all

layers i of G in ascending order of |Cd(Gi)| since a layer

whose d-core is small is less likely to support a large d-CC.

We present the complete top-down DCCS algorithm called

TD-DCCS in Fig. 11. The input is a multi-layer graph G and

parameters d, s, k ∈ N. First, we execute lines 1–8 of the

bottom-up algorithm BU-DCCS to remove irreverent vertices

and initialize R. Then, we sort all layers i of G in ascending

order of |Cd(Gi)| at line 2. We construct the index for G
(line 3). Next, we invoke recursive Procedure TD-Gen to

generate candidate d-CCs and update the result set R (line 5).

Finally, R is returned as the result (line 6).

Theorem 4: The approximation ratio of TD-DCCS is 1/4.

VI. PERFORMANCE EVALUATION

This section experimentally evaluates of the proposed al-

gorithms GD-DCCS, BU-DCCS and TD-DCCS. We im-

plemented these algorithms in C++. We did not implement

the brute-force exact algorithm mentioned in the beginning

of Section III since it cannot terminate in reasonable time

on the graph datasets used in the experiments. For fairness,

all the algorithms exploit the preprocessing methods given in

Section IV-C. In the experiments, we designate GD-DCCS

as the baseline. Every algorithm is evaluated by its execution

time (efficiency) and the cover size |Cov(R)| of the result

R (accuracy). All the experiments were run on a machine

installed with an Intel Core i5-2400 CPU (3.1GHz and 4 cores)

and 22GB of RAM, running 64-bit Ubuntu 14.04.

Datasets. We use 6 real-world graph datasets of various types

and sizes in the experiments. The statistics of the graph

datasets are summarized in Fig. 12. PPI is a protein-protein

interaction network extracted from the STRING database

1 2 3 4 5
100

101

102

103

104

105

 GD-DCCS
 BU-DCCS

T
im

e
(S

ec
)

(a) English (Vary s)
1 2 3 4 5

100

101

102

103

104

105

 GD-DCCS
 BU-DCCS

T
im

e
(S

ec
)

(b) Stack (Vary s)

Fig. 14. Execution Time vs Small s.

11 12 13 14 15
100

101

102

103

104

T
im

e
(S

ec
)

 GD-DCCS
 BU-DCCS
 TD-DCCS

(a) English (Vary s)
20 21 22 23 24

100

101

102

103

104

105

 GD-DCCS
 BU-DCCS
 TD-DCCS

T
im

e
(S

ec
)

(b) Stack (Vary s)

Fig. 15. Execution Time vs Large s.

1 2 3 4 5103

104

105

106

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 BU-DCCS

(a) English (Vary s)

1 2 3 4 5103

104

105

106

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 BU-DCCS

(b) Stack (Vary s)

Fig. 16. Result Cover Size vs Small s.

11 12 13 14 15102

103

104

105

R
es

ul
t C

ov
er

 S
iz

e

 GD-DCCS
 BU-DCCS
 TD-DCCS

(a) English (Vary s)

20 21 22 23 24100

101

102

103
R

es
ul

t C
ov

er
 S

iz
e

 GD-DCCS
 BU-DCCS
 TD-DCCS

(b) Stack (Vary s)

Fig. 17. Result Cover Size vs Large s.

2 3 4 5 6
0
5

10
15
20
25
60
80

100
120
140

T
im

e
(S

ec
)

 GD-DCCS
 BU-DCCS

(a) German (Vary d)
2 3 4 5 6

60
90

120
150
600

800

1000

1200

T
im

e
(S

ec
)

 GD-DCCS
 BU-DCCS

(b) English (Vary d)

Fig. 18. Execution Time vs d (Small s).

2 3 4 5 6
0

3

6

40

45

50

55

T
im

e
(S

ec
)

 GD-DCCS
 TD-DCCS

(a) German (Vary d)
2 3 4 5 6

0
10
20
30
40500

600
700
800
900

1000

T
im

e
(S

ec
)

 GD-DCCS
 TD-DCCS

(b) English (Vary d)

Fig. 19. Execution Time vs d (Large s).

(http://string-db.org). It contains 8 layers represent-

ing the interactions between proteins detected by different

methods. Author is a co-authorship network obtained from

AMiner (http://cn.aminer.org). It contains 10 layers

representing the collaboration between authors in 10 differ-

ent years. PPI and Author are very small datasets. They

are used in the comparisons between the notions of d-CC

and quasi-clique. The other datasets were obtained from

KONECT (http://konect.uni-koblenz.de) and SNAP

(http://snap.stanford.edu), where each layer contains

the connections generated in a specific time period. Specif-

ically, in German and English, each layer consists of the

interactions between users in a year; in Wiki and Stack, each

layer contains the connections generated in an hour.

Parameters. We set 5 parameters in the experiments, namely

k, d and s in the DCCS problem and p, q ∈ [0, 1]. Parameters

p and q are varied in the scalability test of the algorithms.

Specifically, p and q controls the proportion of vertices and

layers extracted from the graphs, respectively. The ranges and

the default values of the parameters are shown in Fig. 13.

We adopt two configurations for parameter s. When testing

for small s, we select s from {1, 2, 3, 4, 5}; when testing for

large s, we select s from {l(G)− 4, l(G)− 3, l(G)− 2, l(G)−
1, l(G)}. Without otherwise stated, when varying a parameter,

other parameters are set to their default values.

Execution Time w.r.t. Parameter s. We evaluate the execu-

tion time of the algorithms w.r.t. s. First, we experiment for

small s. Since the TD-DCCS algorithm is not applicable when

s < l(G)/2, we only test the other three algorithms for small

s. Fig. 14 shows the execution time of the algorithms on the

datasets English and Stack. We have two observations: 1) The

execution time of all the algorithms substantially increases

with s. This is simply because the search space of the DCCS

problem fast grows with s when s < l(G)/2. 2) The BU-

DCCS algorithm outperforms GD-DCCS by 1–2 orders of

magnitude. For example, when s = 4, BU-DCCS is 39X and

30X faster than GD-DCCS on English and Stack, respectively.

The main reason is that the pruning techniques adopted by BU-
DCCS reduce the search space of the DCCS by 80%–90%.

We also examine the algorithms for large s and show results

in Fig. 15. At this time, we also test the TD-DCCS algorithm.

We have the the following observations: 1) The execution

time of all the algorithms decreases when s grows. This is

because the search space of the DCCS problem decreases

with s when s ≥ l(G)/2. 2) BU-DCCS is not efficient for

large s. Sometimes, it is even worse than GD-DCCS. When

s is large, the sizes of the d-CCs significantly decreases. BU-

DCCS has to search down deep the search tree until the

pruning techniques start to take effects. In some cases, BU-

DCCS searches even more d-CCs than GD-DCCS. 3) TD-

DCCS runs much faster than all the others. For example, when

s = 13, TD-DCCS is 50X faster than GD-DCCS on English.

This is because d-CCs are generated in a top-down manner in

TD-DCCS, so the number of d-CCs searched by TD-DCCS

must be less than BU-DCCS. Moreover, many unpromising

candidates d-CCs are pruned earlier in TD-DCCS.

Cover Size of Result w.r.t. Parameter s. We evaluate the

cover size |Cov(R)| of result R w.r.t. parameter s. Fig. 16

and Fig. 17 show the experimental results for small s and

large s, respectively. We have two observations: 1) For all

the algorithms, |Cov(R)| decreases with s. This is because

while s increases, the size of d-CCs never increases due to

Property 3, so R cannot cover more vertices. 2) In most

cases, the results of the algorithms cover similar amount of

vertices for either small s or large s. Sometimes, the result

of GD-DCCS covers slightly more vertices than the results

of BU-DCCS and TD-DCCS. This is because GD-DCCS is

(1− 1/e)-approximate; while BU-DCCS and TD-DCCS are

1/4-approximate. It verifies that the practical approximation

quality of BU-DCCS and TD-DCCS is close to GD-DCCS.

Effects of Parameter d. We examine the effects of parameter

d on the performance of the algorithms. By varying d, Fig. 18

shows the execution time of BU-DCCS and GD-DCCS on

datasets German and English for s = 3, and Fig. 19 shows the

execution time of TD-DCCS and GD-DCCS on German and

English for s = l(G)− 2. We observe that the execution time

of all the algorithms decreases as d grows. The reasons are

as follows: 1) Due to Property 2, the size of d-CCs decreases

as d grows. Thus, GD-DCCS takes less time in selecting d-

CCs, and BU-DCCS and TD-DCCS take less time in updating

temporary results. 2) While d increases, the size of the d-core

on each layer decreases. By Lemma 1, the algorithms spend

2 3 4 5 60

500

1000

1500

2000

2500

3000

3500
R

es
ul

t C
ov

er
 S

iz
e GD-DCCS

 BU-DCCS

(a) German (Vary d)

2 3 4 5 60

3000

6000

9000

12000

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 BU-DCCS

(b) English (Vary d)

Fig. 20. Result Cover Size vs d (Small s).

2 3 4 5 6

160

180

200

220

240

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 TD-DCCS

(a) German (Vary d)

2 3 4 5 6500

1000

1500

2000

2500

3000

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 TD-DCCS

(b) English (Vary d)

Fig. 21. Result Cover Size vs d (Large s).

5 10 15 20 25
25

30

35

40
1300
1400
1500
1600
1700
1800

T
im

e
(S

ec
)

 GD-DCCS
 BU-DCCS

(a) Wiki (Vary k)
5 10 15 20 25

60

80

100

120600

800

1000

1200

T
im

e
(S

ec
)

 GD-DCCS
 BU-DCCS

(b) English (Vary k)

Fig. 22. Execution Time vs k (Small s).

5 10 15 20 25
25

30

35

40
1200

1300

1400

1500

T
im

e
(S

ec
)

 GD-DCCS
 TD-DCCS

(a) Wiki (Vary k)
5 10 15 20 25

10
15
20
25
30

600

700

800

900
T

im
e

(S
ec

)
 GD-DCCS
 TD-DCCS

(b) English (Vary k)

Fig. 23. Execution Time vs k (Large s).

5 10 15 20 255000

6000

7000

8000

9000

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 BU-DCCS

(a) Wiki (Vary k)

5 10 15 20 252000

3000

4000

5000

6000

7000

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 BU-DCCS

(b) English (Vary k)

Fig. 24. Result Cover Size vs k (Small s).

5 10 15 20 250

300

600

900

1200

1500

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 TD-DCCS

(a) Wiki (Vary k)

5 10 15 20 25500

1000

1500

2000

2500

R
es

ul
t C

ov
er

 S
iz

e GD-DCCS
 TD-DCCS

(b) English (Vary k)

Fig. 25. Result Cover Size vs k (Large s).

0.2 0.4 0.6 0.8 1
0

100
200
300
400

10k
20k
30k
40k

T
im

e
(S

ec
)

 GD-DCCS
 BU-DCCS

(a) Stack (Vary p)

0.2 0.4 0.6 0.8 1
0

100
200
300
400

1000

2000

3000

T
im

e
(S

ec
)

 GD-DCCS
 TD-DCCS

(b) Stack (Vary p)

Fig. 26. Execution Time vs p.

0.2 0.4 0.6 0.8 1
0

100
200
300
400

10k
20k
30k
40k

T
im

e
(S

ec
)

 GD-DCCS
 BU-DCCS

(a) Stack (Vary q)

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

T
im

e
(S

ec
)

 GD-DCCS
 TD-DCCS

(b) Stack (Vary q)

Fig. 27. Execution Time vs q.

Wiki English
0
30
60
90
120
150
180
210
240
270

T
im

e
(S

ec
)

 BU-DCCS
 No-SL No-IR
 No-VD No-Pre

(a) Small s
Wiki English

0

20

40

60

80

100

T
im

e
(S

ec
)

 TD-DCCS
 No-SL
 No-IR
 No-VD
 No-Pre

(b) Large s

Fig. 28. Effects of Preprocessing.

less time on d-CC computation. Moreover, both BU-DCCS

and TD-DCCS are much faster than GD-DCCS.

Fig. 20 and Fig. 21 show the effects of d on the cover

size of the results of BU-DCCS, TD-DCCS and GD-DCCS

for small s and large s, respectively. We find that the cover

size of the results decreases w.r.t. d for all the algorithms.

This is simply because that the size of d-CCs decreases as d
increases. Therefore, the results cover less vertices for larger d.

Moreover, the practical approximation quality of BU-DCCS
and TD-DCCS is close to GD-DCCS.

Effects of Parameter k. We examine the effects of parameter

k on the performance of the algorithms. By varying k, Fig. 22

shows the execution time of BU-DCCS and GD-DCCS on

datasets Wiki and English for s = 3, and Fig. 23 shows the

execution time of TD-DCCS and GD-DCCS on Wiki and

English for s = l(G)−2. We have the following observations:

1) The execution time of GD-DCCS increases with k because

the time cost for selecting d-CCs in GD-DCCS is proportional

to k. 2) Both BU-DCCS and TD-DCCS run much faster

than GD-DCCS. 3) The execution time of BU-DCCS and

TD-DCCS is insensitive to k. This is because the power of

the pruning techniques in BU-DCCS and TD-DCCS relies

on |Cov(R)| according to Eq. (1). As k grows, |Cov(R)|
increases insignificantly, so k has little effects on the execution

time of BU-DCCS and TD-DCCS.

Fig. 24 and Fig. 25 show the effects of k on the cover

size of the results of BU-DCCS, TD-DCCS and GD-DCCS

for small s and large s, respectively. We find that the cover

size grows w.r.t. k; however, insignificantly for k ≥ 20.

From another perspective, it shows that there exists substantial

overlaps among d-CCs. To reduce redundancy, it is meaningful

to find top-k diversified d-CCs on a multi-layer graph.

Scalability w.r.t. Parameters p and q. We evaluate the scal-

ability of the algorithms w.r.t. the input multi-layer graph size.

We control the graph size by randomly selecting a fraction p
of vertices or a fraction q of layers from the original graph.

Fig. 26 shows the execution time of BU-DCCS, TD-DCCS

and GD-DCCS on the largest dataset Stack by varying p from

0.2 to 1.0. All the algorithms scale linearly w.r.t. p because

the time cost of computing d-CCs is linear to the vertex count.

Fig. 27 shows the execution time of BU-DCCS, TD-DCCS

and GD-DCCS on Stack w.r.t. q. We observed that: 1) The

execution time of all algorithms grows with q. This is simply

because the search space of the DCCS problem increases

when the input multi-layer graph contains more layers. 2) The

execution time of GD-DCCS grows much faster than BU-
DCCS and TD-DCCS. The main reason is that both BU-

DCCS and TD-DCCS adopt the effective pruning techniques

to significantly reduce the search space. The number of

candidate d-CCs examined by GD-DCCS grows much faster

than those examined by BU-DCCS and TD-DCCS.

Effects of Preprocessing Methods. We evaluate the effects

of the preprocessing methods by disabling each (or all) of

them in BU-DCCS (or TD-DCCS) and compare the exe-

cution time. Fig. 28 shows the comparison results for BU-

DCCS and TD-DCCS, respectively, where No-VD means

“vertex deletion is disabled”, No-SL means “sorting layers is

disabled”, No-IR means “result initialization is disabled”, and

No-Pre means “all the preprocessing methods are disabled”.

We have the following observations: 1) Every preprocessing

method can improve the efficiency of BU-DCCS and TD-
DCCS. It verifies that the preprocessing methods can reduce

the size of the input graph (by vertex deletion) and enhance

the pruning power of the algorithms (by sorting layers and

result initialization). 2) A preprocessing method may have

different effects for different algorithms. For example, the

result initialization method has more significant effects in BU-
DCCS than in TD-DCCS. This is because for smaller s, the

cover size of the result is much larger according to Property 3.

By Eq. (1), the initial result can eliminate more candidates d-

CCs in BU-DCCS.

Graph d Algorithm Time (Sec) Size Precision Recall F1-score

PPI

2
MiMAG 6.28 58

0.598 1 0.748
BU-DCCS 0.078 97

3
MiMAG 5.93 59

0.652 0.796 0.718
BU-DCCS 0.051 72

4
MiMAG 5.16 55

0.631 0.745 0.683
BU-DCCS 0.02 65

Author

2
MiMAG 13.90 122

0.682 1 0.811
BU-DCCS 0.091 179

3
MiMAG 12.83 117

0.731 0.838 0.781
BU-DCCS 0.081 134

4
MiMAG 12.89 72

1 0.828 0.906
BU-DCCS 0.035 87

Fig. 29. Comparison between MiMAG and BU-DCCS.

|Q ∩ Cov(Rc)|
Graph |Q| 0 1 2 3 4 5

PPI

3 0 0 0 1.0 — —

4 0 0.0045 0 0.1216 0.8739 —

5 0 0 0 0 0.2759 0.7241

Author

3 0 0 0 1.0 — —

4 0 0.0045 0 0.0861 0.9139 —

5 0 0.0506 0 0 0.1772 0.7722

Fig. 30. Distribution of |Q ∩ Cov(Rc)|.

Comparison with Quasi-Clique Mining. We compare our

DCCS algorithms with the quasi-clique-based algorithm

MiMAG [4] for mining coherent subgraphs on a multi-layer

graph. A set Q of vertices in a graph is a γ-quasi-clique if

each vertex in Q is adjacent to γ(|Q|−1) other vertices in Q,

where γ ∈ [0, 1]. Given a multi-layer graph G and parameters

γ ∈ [0, 1] and d′, s ∈ N, MiMAG finds a set of diversified

vertex subsets Q such that |Q| ≥ d′ and Q is a γ-quasi-

clique on at least s layers of G. Since the datasets in our

experiments are unlabelled graphs, the distance function of

labels in MiMAG is disabled.

In the experiment, we set the parameters as follows. For

the MiMAG algorithm, we set γ = 0.8 and s = l(G)/2.

For the BU-DCCS algorithm, we set s = l(G)/2, k = 10.

For fairness, BU-DCCS and MiMAG use the same parameter

s. More over, when comparing MiMAG with BU-DCCS, we

set d′ = d + 1. We vary d = 2, 3, 4. Under this setting, the

minimum degree constraints of a vertex in a dense subgraph

generated by BU-DCCS and MiMAG are d and ⌈γd⌉, which

have the same value for d = 2, 3, 4 and γ = 0.8.

Let RQ and RC be the output of MiMAG and BU-DCCS,

respectively. We compare them by five evaluation metrics: 1)

execution time; 2) cover sizes |Cov(RQ)| and |Cov(RC)|; 3)

precision
|Cov(RQ)∩Cov(RC)|

|Cov(RC)| ; 4) recall
|Cov(RQ)∩Cov(RC)|

|Cov(RQ)| ; 5)

F1-score, i.e. the harmonic mean of the precision and recall.

The metrics 2–5 assess the similarity between RQ and RC .

We ran MiMAG and BU-DCCS on datasets PPI and Author.

The experimental results are shown in Fig. 29. We have three

observations: 1) BU-DCCS runs much faster than MiMAG.

This is because the search tree of BU-DCCS contains 2l(G)

vertex subsets; while the search tree of MiMAG contains

2|V (G)| vertex subsets, where l(G) ≪ |V (G)|. 2) The vertices

covered by RQ and RC are significantly overlapped. Specif-

ically, Cov(RQ) ∩ Cov(RC) contains 70%+ of vertices in

Cov(RQ) and 50%+ of vertices in Cov(RC). 3) The quasi-

cliques in RQ are largely contained in the d-CCs in RC

(entirely contained for most of the quasi-cliques). Fig. 30

shows the detailed experimental results.

We also analyze the differences between RQ and RC .

Fig. 31 shows the subgraphs induced by Cov(RC) and

Cov(RQ) on all layers of the Author graph for d = 3. The

Fig. 31. Induced Coherent Dense Subgraphs on Author.

Algorithm d = 2 d = 3 d = 4
MiMAG 69.7% 67.2% 65.3%

BU-DCCS 83.6% 80.1% 77.9%

Fig. 32. Proportion of Protein Complexes Found by MiMAG and BU-DCCS.

vertices in Cov(RC)∩Cov(RQ), Cov(RC)−Cov(RQ) and

Cov(RQ) − Cov(RC) are colored in red, green and blue,

respectively. We have two observations: 1) The vertices in

Cov(RQ) − Cov(RC) (blue vertices) are sparsely connected

compared with the vertices in Cov(RQ) ∩ Cov(RC) (red

vertices). 2) The vertices in Cov(RC) − Cov(RQ) (green

vertices) are densely connected with themselves and with the

vertices in Cov(RC) ∩ Cov(RQ) (red vertices). The dense

portion constituted by the vertices in Cov(RC) − Cov(RQ)
found by BU-DCCS is missing from the result of MiMAG.

Moreover, we compared protein complexes found by

MiMAG and BU-DCCS on PPI. We use the MIPS database

(http://mips.helmholtz-muenchen.de) as ground truth.

For each protein complex on PPI, if it is entirely contained in

a dense subgraph, we say this protein complex is found. The

proportion of protein complexes found by MiMAG and BU-

DCCS with different d is shown in Fig. 32. We observe that: 1)

When d increases, the proportion of found protein complexes

decreases. This is because when d increases, both the cover

sizes |Cov(RC)| and |Cov(RQ)| become smaller. Thus, the

dense subgraphs cover less number of protein complexes. 2)

The proportion of protein complexes found by BU-DCCS

is much higher than MiMAG. This is because the dense

subgraphs generated by BU-DCCS cover more vertices than

MiMAG. As we show before, some dense portions are missing

from the result of MiMAG, so some protein complexes cannot

be found by MiMAG. This result verifies that BU-DCCS is

more preferable than MiMAG for protein complex detection

on biological networks.

In summary, BU-DCCS is much faster than MiMAG and

produces larger coherent dense subgraphs than MiMAG (cov-

ering most of the quasi-cliques).

VII. RELATED WORK

Dense subgraph mining is a fundamental graph mining task,

which has been extensively studied on single-layer graphs.

Recently, mining dense subgraphs on graphs with multiple

types of edges has attracted much attention. A detailed survey

can be found in [7]. Basically, existing work can be categorized

into two classes: dense subgraph mining on two-layer graphs

and dense subgraph mining on general multi-layer graphs.

Dense Subgraph Mining on Two-layer Graphs. Two-layer

graph, is a special multi-layer graph. In a two-layer graph,

one layer represents physical link structures, and the other

represents conceptual connections between vertices derived

from physical structures. The dense subgraph mining algo-

rithms on two-layer graphs take both physical and conceptual

connections into account. The algorithm in [9] finds dense

subgraphs by expanding from initial seed vertices. The algo-

rithm [12] adopts edge-induced matrix factorization. In [20],

structural and attribute information are combined to form a

unified distance measure, and a clustering algorithm is applied

to detect dense subgraphs. In [17], structures and attributes are

fused by a probabilistic model, and a model-based algorithm

is proposed to find dense subgraphs. Other work on two-

layer graphs includes the method based on correlation pattern

mining [14] and graph merging [13]. All the algorithms are

tailored to fit two-layer graphs. They only support the input

where one layer represents physical connections, and the other

represents conceptual connections. Therefore, they cannot be

adapted to process general multi-layer graphs.

Dense Subgraph Mining on General Multi-layer Graphs.

A general multi-layer graph is composed by many layers

representing different types of edges between vertices.

Ref. [16] and [5] study dense subgraph mining using matrix

factorization. The goal is to approximate the adjacency

matrix and the Laplacian matrix of the graph on each layer.

However, the matrix-based methods require huge amount of

memory and are not scalable to large graphs. Alternatively,

other work [4], [11], [19] focus on finding dense subgraph

patterns by extending the quasi-clique notion defined on

single-layer graphs. In [19] and [11], the algorithms find

cross-graph quasi-cliques. In [4], the method is adapted to

find diversified result to avoid redundancy. However, all these

work has inherent limitations: 1) Quasi-clique-based methods

are computationally costly. 2) The diameter of the discovered

dense subgraphs are often very small. As verified by the

experimental results in Section VI, the quasi-clique-based

methods tend to miss large dense subgraphs.

We also discuss on some other related work.

Frequent Subgraph Pattern Mining. Given a set D of la-

belled graphs, frequent subgraph pattern mining discovers all

subgraph patterns that are subgraph isomorphic to at least a

fraction minsup of graphs in D (i.e., frequent) [18]. Our work

is different from frequent subgraph pattern mining in two main

aspects: 1) The graphs in D are labelled graphs. A vertex in

a graph may not be identical to any vertex in other graphs.

Hence, the graphs in D usually do not form a multi-layer

graph. Inversely, a multi-layer graph is not necessary to be

labelled. 2) A frequent subgraph pattern represents a common

substructure recurring in many graphs in D. However, a d-CC

is a set of vertices, and they are not required to have the same

link structure on different layers of a multi-layer graph.

Clustering on Heterogeneous Information Networks. Het-

erogeneous Information Network (HIN for short) is a logical

network composed by multiple types of links between multiple

types of objects. The clustering problem on HINs has been

well studied in [15]. This work is different from our work in

two aspects: 1) HIN characterizes the relationships between

different types of objects. Normally, only one type of edges

between two different types of vertices is considered. However,

a multi-layer graph models multiple types of relationships

between homogenous objects of the same type. 2) HIN is

single-layer graph. The clustering algorithm only consider the

cohesiveness of a vertex subset rather than its support.

d-Cores on Single-Layer Graphs. The notion of d-core is

widely used to represent dense subgraphs on single-layer

graphs. It has many useful properties and has been applied

to community detection [10]. However, the d-core notion only

considers density of but ignores support. In this paper, we

propose the d-CC notion, which extends the d-core notion by

1) considering both density and support of dense subgraphs

and 2) inheriting the elegant properties of d-cores.

VIII. CONCLUSIONS

This paper addresses the diversified coherent core search

(DCCS) problem on multi-layer graphs. The new notion of

d-coherent core (d-CC) has three elegant properties, namely

uniqueness, hierarchy and containment. The greedy algorithm

is (1− 1/e)-approximate; however, it is not efficient on large

multi-layer graphs. The bottom-up and the top-down DCCS

algorithms are 1/4-approximate. For s < l(G)/2, the bottom-

up algorithm is faster than the other ones; for s ≥ l(G)/2,

the top-down algorithm is faster than the other ones. The

DCCS algorithms outperform the quasi-clique-based cohesive

subgraph mining algorithm in terms of both time efficiency

and result quality.

REFERENCES

[1] A. Angel, N. Koudas, N. Sarkas, D. Srivastava, M. Svendsen, and
S. Tirthapura. Dense subgraph maintenance under streaming edge weight
updates for real-time story identification. PVLDB, 5(6):574–585, 2012.

[2] G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos.
Online maximum k-coverage. In International Conference on Funda-

mentals of Computation Theory, pages 181–192, 2011.

[3] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decompo-
sition of networks. Computer Science, 1(6):34–37, 2003.

[4] B. Boden, S. Nnemann, H. Hoffmann, and T. Seidl. Mining coherent
subgraphs in multi-layer graphs with edge labels. In KDD, pages 1258–
1266, 2012.

[5] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov. Clustering
with multi-layer graphs: A spectral perspective. IEEE Transactions on

Signal Processing, 60(11):5820–5831, 2011.

[6] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense
subgraphs across massive biological networks for functional discovery.
Bioinformatics, 21(suppl 1):i213, 2005.

[7] J. Kim and J. G. Lee. Community detection in multi-layer graphs: A
survey. ACM SIGMOD Record, 44(3):37–48, 2015.

[8] V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. A survey of algorithms
for dense subgraph discovery. In Managing and Mining Graph Data,
pages 303–336. Springer, 2010.

[9] H. Li, Z. Nie, W. C. Lee, L. Giles, and J. R. Wen. Scalable community
discovery on textual data with relations. In CIKM, pages 1203–1212,
2008.

[10] R. H. Li, L. Qin, J. X. Yu, and R. Mao. Influential community search
in large networks. PVLDB, 8(5):509–520, 2015.

[11] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques.
In KDD, pages 228–238, 2005.

[12] G. J. Qi, C. C. Aggarwal, and T. Huang. Community detection with
edge content in social media networks. In ICDE, pages 534–545, 2012.

[13] Y. Ruan, D. Fuhry, and S. Parthasarathy. Efficient community detection
in large networks using content and links. In WWW, pages 1089–1098,
2012.

[14] A. Silva, W. M. Jr, and M. J. Zaki. Mining attribute-structure correlated
patterns in large attributed graphs. PVLDB, 5(5):466–477, 2012.

[15] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous
information networks with star network schema. In KDD, pages 797–
806, 2009.

[16] W. Tang, Z. Lu, and I. S. Dhillon. Clustering with multiple graphs. In
ICDM, pages 1016–1021, 2009.

[17] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based
approach to attributed graph clustering. In SIGMOD, pages 505–516,
2012.

[18] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
ICDM, pages 721 – 724, 2002.

[19] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique
discovery from large dense graph databases. In KDD, pages 797–802,
2006.

[20] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on struc-
tural/attribute similarities. PVLDB, 2(1):718–729, 2009.

APPENDIX

A. PROOFS

1. Proof of Property 1

Property 1 (Uniqueness): Given a multi-layer graph G and

a subset L ⊆ [l(G)], Cd
L(G) is unique for d ∈ N.

Proof: Suppose Cd
L(G) is not unique. Let C1, C2, . . . , Cn

be the distinct instances of Cd
L(G). Due to the maximality of

d-CC, we have Ci 6⊆ Cj for i 6= j. Let C =
⋃n

j=1 Cj . For

each layer number l ∈ L, Gl[Ci] is a subgraph of Gl[C] for

all 1 ≤ i ≤ n. Thus, for each vertex v ∈ C, we have

dGl[C](v) ≥ max
1≤i≤n

dGl[Ci](v) ≥ d

for every layer number l ∈ L. By definition, C is also

a d-CC of G w.r.t. L. Due to the maximality of d-CC,

none of C1, C2, . . . , Cn is a d-CC of G w.r.t. L. It leads to

contradiction. Hence, Cd
L(G) is unique.

2. Proof of Property 2

Property 2 (Hierarchy): Given a multi-layer graph G and

a subset L ⊆ [l(G)], we have Cd
L(G) ⊆ Cd−1

L (G) ⊆ · · · ⊆
C1

L(G) ⊆ C0
L(G) for d ∈ N.

Proof: Let d1, d2 ∈ N and d1 > d2. For each vertex

v ∈ Cd1

L (G), we have

d
Gl[C

d1
L

(G)]
(v) ≥ d1 > d2

for every layer number l ∈ L. By the definition of d-CC,

Cd1

L (G) ⊆ Cd2

L (G). Thus, the property holds.

3. Proof of Property 3

Property 3 (Containment): Given a multi-layer graph G and

two subsets L,L′ ⊆ [l(G)], if L ⊆ L′, we have Cd
L′(G) ⊆

Cd
L(G) for d ∈ N.

Proof: For each vertex v ∈ Cd
L′(G), we have

dGl[Cd
L′(G)]

(v) ≥ d

for each layer number l ∈ L. Based on the definition of d-CC,

we have Cd
L′(G) ⊆ Cd

L(G). Hence, the property holds.

4. Proof of Lemma 1

Lemma 1 (Intersection Bound): Given a multi-layer graph

G and two subsets L1, L2 ⊆ [l(G)], we have Cd
L1∪L2

(G) ⊆
Cd

L1
(G) ∩ Cd

L2
(G) for d ∈ N.

Proof: First, we have L1∪L2 ⊆ L1 and L1∪L2 ⊆ L2. By

Property 3, we have Cd
L1∪L2

(G) ⊆ Cd
L1
(G) and Cd

L1∪L2
(G) ⊆

Cd
L2
(G). Thus, Cd

L1∪L2
(G) ⊆ Cd

L1
(G) ∩ Cd

L2
(G).

5. Proof of Lemma 2

Lemma 2 (Search Tree Pruning): For a d-CC Cd
L(G), if

Cd
L(G) does not satisfy Eq. (1), none of the descendants of

Cd
L(G) can satisfy Eq. (1).

Proof: For any descendant Cd
L′(G) of Cd

L(G), we have

L ⊆ L′. By Property 3, we have Cd
L′(G) ⊆ Cd

L(G). Thus,

Cov((R− {C∗(R)}) ∪ {Cd
L′(G)})

⊆ Cov((R− {C∗(R)}) ∪ {Cd
L(G)}).

Fig. 33. Relationships between Cov(R), C∗(R) and C.

Obviously, if

|Cov((R− {C∗(R)}) ∪ {Cd
L(G)})| <

(

1 +
1

k

)

|Cov(R)|,

we have

|Cov((R− {C∗(R)}) ∪ {Cd
L′(G)})| <

(

1 +
1

k

)

|Cov(R)|.

Thus, Cd
L′(G) cannot satisfy Eq. (1).

6. Proof of Lemma 3

Lemma 3 (Order-based Pruning): For a d-CC Cd
L(G) and

j > max(L), if |Cd
L(G) ∩ Cd(Gj)| < 1

k |Cov(R)| +
|∆(R, C∗(R))|, then Cd

L∪{j}(G) cannot satisfy Eq. (1).

Proof: According to the definitions of d-CC and d-core,

we have Cd(Gj) = Cd
{j}(G). For ease of presentation, let

C = Cd
L(G)∩Cd(Gj). We illustrate the relationships between

Cov(R), C∗(R) and C in Fig. 33 with 7 disjoint subsets

A,B,D,E, F,G and H . We have

|Cov(R)| = |A|+ |B|+ |D|+ |F |+ |G|+ |H |,

|C∗(R)| = |B|+ |D|+ |G|+ |H |,

|C| = |D|+ |E|+ |F |+ |G|,

|∆(R, C∗(R))| = |D|+ |H |.

Since |C| < 1
k |Cov(R)| + |∆(R, C∗(R))|, we have

|D|+ |E|+ |F |+ |G|

<
1

k
(|A|+ |B|+ |D|+ |F |+ |G|+ |H |) + |D|+ |H |.

Thus,

|Cov((R− {C∗(R)}) ∪ {C})|

= |A|+ |B|+ |D|+ |E|+ |F |+ |G|

<
1

k
(|A|+ |B|+ |D|+ |G|+ |F |+ |H |)

+|A|+ |B|+ |D|+ |H |

≤

(

1 +
1

k

)

(|A|+ |B|+ |D|+ |G|+ |F |+ |H |)

=

(

1 +
1

k

)

|Cov(R)|.

By Lemma 1, we have Cd
L∪{j}(G) ⊆ C, so

Cov((R− {C∗(R)}) ∪ {Cd
L(G)})

⊆ Cov((R− {C∗(R)}) ∪ {C}).

Then, we have

|Cov((R− {C∗(R)}) ∪ {Cd
L(G)})|

≤|Cov((R− {C∗(R)}) ∪ {C})| <

(

1 +
1

k

)

|Cov(R)|.

The lemma thus holds.

7. Proof of Lemma 4

Lemma 4 (Layer Pruning): For a d-CC Cd
L(G) and j >

max(L), if Cd
L∪{j}(G) does not satisfy Eq. (1), then

Cd
L′∪{j}(G) cannot satisfy Eq. (1) for all L′ such that L ⊆

L′ ⊆ [l(G)].
Proof: Since L ⊆ L′, we have L ∪ {j} ⊆ L′ ∪ {j}.

According to Property 3, we have Cd
L′∪{j}(G) ⊆ Cd

L∪{j}(G).
Therefore,

Cov((R− {C∗(R)}) ∪ {Cd
L′∪{j}(G)})

⊆ Cov((R− {C∗(R)}) ∪ {Cd
L∪{j}(G)}).

Since Cd
L∪{j}(G) does not satisfy Eq. (1), we have

|Cov((R− {C∗(R)}) ∪ {Cd
L′∪{j}(G)})|

≤|Cov((R− {C∗(R)}) ∪ {Cd
L∪{j}(G)})|

<

(

1 +
1

k

)

|Cov(R)|.

Thus, the lemma holds.

8. Proof of Lemma 5

Lemma 5 (Search Tree Pruning): For a d-CC Cd
L(G) and

its potential vertex set Ud
L(G), where |L| > s, if Ud

L(G) does

not satisfy Eq. (1), any descendant Cd
L′(G) of Cd

L(G) with

|L′| = s cannot satisfy Eq. (1).

Proof: According to the usage of potential sets, for

any descendant Cd
L′(G) of Cd

L(G) with |L′| = s, we have

Cd
L′(G) ⊆ Ud

L(G). Thus, we have

Cov((R− {C∗(R)}) ∪ {Cd
L′(G)})

⊆ Cov((R− {C∗(R)}) ∪ {Ud
L(G)}).

Since Ud
L(G) does not satisfy Eq. (1), we have

|Cov((R− {C∗(R)}) ∪ {Cd
L′(G)})|

<|Cov((R− {C∗(R)}) ∪ {Ud
L(G)})| <

(

1 +
1

k

)

|Cov(R)|.

The lemma thus holds.

9. Proof of Lemma 6

Lemma 6 (Order-based Pruning): For a d-CC Cd
L(G), its

potential vertex set Ud
L(G) and j > max([l(G)] − L), if

|Ud
L−{j}(G)| < |Cov(R)|

k + |∆(R, C∗(R))|, any descendant

Cd
L−{j}(G) of Cd

L(G) cannot satisfy Eq. (1).

Proof: Similar to the proof of Lemma 3, if |Ud
L−{j}(G)| <

1
k |Cov(R)|+ |∆(R, C∗(R))|, we have

|Cov((R− {C∗(R)}) ∪ {Ud
L−{j}(G)})| <

(

1 +
1

k

)

|Cov(R)|.

According to the usage of potential sets, for any descendant

Cd
L′(G) of Cd

L(G) with |L′| = s, we have Cd
L′(G) ⊆ Ud

L(G).
Thus, we have

|Cov((R− {C∗(R)}) ∪ {Cd
L′(G)})|

Fig. 34. Relationships between Cd

L
(G), Cd

L1
(G), Cd

L2
(G) and Ud

L
(G).

≤|Cov((R− {C∗(R)}) ∪ {Ud
L−{j}(G)})|

<

(

1 +
1

k

)

|Cov(R)|.

Therefore, the lemma holds.

10. Proof of Lemma 7

Lemma 7 (Potential Set Pruning): For a d-CC Cd
L(G) and

its potential vertex set Ud
L(G), where |L| > s, if Cd

L(G)
satisfies Eq. (1), and Ud

L(G) satisfies

|Ud
L(G)| < (1k + 1

k2)|Cov(R)|+ (1+ 1
k)|∆(R, C∗(R))|, (2)

the following proposition holds: For any two distinct descen-

dants Cd
S1
(G) and Cd

S2
(G) of Cd

L(G) such that |S1| = |S2| = s,

if |R| = k and R has already been updated by Cd
S1
(G), then

Cd
S2
(G) cannot update R any more.

Proof: We illustrate the relationships between Cd
L(G),

Cd
S1
(G), Cd

S2
(G) and Ud

L(G) in Fig. 34 with five disjoint subset

A, B, C, D and E. We have

|Cd
S1
(G)| = |A|+ |B|+ |C|,

|Cd
S2
(G)| = |A|+ |C|+ |D|,

|Ud
L(G)| = |A|+ |B|+ |C|+ |D|+ |E|,

|Cd
S1
(G) ∩ Cd

S2
(G)| = |A|.

Since Cd
S1
(G) can update R, Lemma 3 implies that

|Cd
S1
(G)| ≥

1

k
|Cov(R)|+ |∆(R, C∗(R))|.

Let R′ be the resulting R after updating R with Cd
S1
(G). We

have

|Cov(R′)| ≥

(

1 +
1

k

)

|Cov(R)|.

Suppose that Cd
S2
(G) can update R′ again. We have

|Cov((R′ − {C∗(R′)}) ∪ {Cd
S2
(G)})|

≥

(

1 +
1

k

)

|Cov(R′)| ≥

(

1

k
+

1

k2

)

|Cov(R)|.

Since A ∪ C ⊂ Cd
S2
(G), we have

Cov((R′ − {C∗(R′)}) ∪ {Cd
S2
(G)})

=Cov(R′)−∆(R′, C∗(R′)) +D ⊆ Cov(R′) +D.

Putting the discussions together, we have

|Cov(R′)|+ |D| ≥ |Cov((R′ − {C∗(R′)}) ∪ {Cd
S2
(G)})|

≥

(

1 +
1

k

)

|Cov(R′)|,

that is, |D| ≥ 1
k |Cov(R′)|. Thus, for Ud

L(G), we have

|Ud
L(G)| = |A|+ |B|+ |C|+ |D|+ |E|

≥ |Cd
S1
(G)|+ |D|

≥
1

k
|Cov(R)| + |∆(R, C∗(R))| +

1

k
|Cov(R′)|

=

(

1

k
+

1

k2

)

|Cov(R)|+ |∆(R, C∗(R))|+
1

k
|Cov(R)|

≥

(

1

k
+

1

k2

)

|Cov(R)|+

(

1 +
1

k

)

|∆(R, C∗(R))|.

The last equation holds due to the pigeonhole principle. For

each C′ ∈ R, we must have |∆(R, C′)| ≤ 1
k |Cov(R)|.

The size of Ud
L(G) contradicts with Eq. (2). Thus, if Ud

L(G)
satisfies Eq. (2), Cd

S2
(G) cannot update R any more.

11. Proof of Lemma 8

Lemma 8: Cd
L′(G) ⊆ Ud

L′(G) ∩
(

⋃l(G)
h=|L′| Ih

)

.

Proof: By the definition of potential set Ud
L′(G), we have

Cd
L′(G) ⊆ Ud

L′(G). Obviously, if a vertex v ∈
⋃|L′|−1

h=0 Ih,

the support of v is less than |L′|. Thus, v is unlikely to exist

in a d-CC on at least |L′| layers. Therefore, we must have

v ∈
⋃l(G)

h=|L′| Ih. Hence, the lemma holds.

12. Proof of Lemma 9

Lemma 9: For each vertex v ∈ Cd
L′(G), there exists a

sequence of vertices w0, w1, . . . , wn such that L′ ⊆ L(w0),
wn = v, wi+1 is placed on a higher level than wi, and

(wi, wi+1) is an edge in the index.

Proof: We prove that if a vertex v does not satisfies this

condition, v must not exist in Cd
L′(G). Obviously, we only

need to consider vertices in
⋃l(G)

h=|L′| Ih by Lemma 8.

First, we consider the vertex v in the lowest level in the

index. Obviously, if L′ 6⊆ L(v), there must exist a layer

number j ∈ L′ such that v /∈ Cd(Gj). By Lemma 1, v cannot

be contained in Cd
L′(G). Thus, we can remove v from the

graph G. After that, we consider the vertices in next level of

the lowest level. If L′ 6⊆ L(u), there must exist a layer number

j′ ∈ L′ such that u /∈ Cd(Gj′). At this time, if none of u’s

neighbors w in the lowest level such that L′ ⊆ L(w), they

have already been removed from G, so vertex u has the same

neighbors as we build the index. Therefore, for layer number

j′ ∈ L′, we still have u /∈ Cd(Gj′). By Lemma 1, u cannot

be contained in Cd
L′(G). We can continue this process level

by level. This implies that all the vertices that do not satisfy

this condition cannot exist in Cd
L′(G).

13. Proof of Lemma 10

Lemma 10: The time complexity of Procedure RefineC is

O(n′l′ +m′).
Proof: To prove the time complexity of RefineC, we at

first analyze the cases when an edge can be accessed. Notably,

any edge (u, v) on a layer of G[Ud
L′(G)] can be accessed at

most three times in the following cases:

1) At line 5 of the RefineC procedure, when computing

d+i (v) of all i ∈ L′ for each vertex v ∈ Z , each edge (u, v)
on a layer i ∈ L′ will be accessed exactly once.

2) At line 16 or line 27 of the RefineC procedure, when

vertex u accesses a vertex v on a higher level, each edge (u, v)
on a layer i ∈ L′ will be accessed exactly once.

3) At line 2 of the CascadeD procedure, when updating

d+i (u), the edge (u, v) on a layer i ∈ L′ will be accessed.

Note that, (u, v) on a layer i ∈ L′ will be accessed only once.

This is because, when updating d+i (u), u is already been set

to discarded. Thus, u will never have opportunity to visit v
any more. Meanwhile, since u is discarded, v will also not

visit vertex u in the CascadeD procedure afterwards. As a

result, each edge in G[Ud
L′(G)] will be accessed at most once.

Putting them together, the edge access time is at most

O(
∑

i∈L′ Ei(U
d
L′(G))) = O(3m′) = O(m′). Meanwhile, at

line 19, for each undetermined vertex v, we need to check

whether d+i (d)(v) < d for all i ∈ L′. So the maximum time

cost is O(|Ud
L′(G)||L′|) = O(n′|L′|). As a result, the total

time cost of Procedure RefineC is O(n′l′ +m′).

14. Proof of Theorem 1

Theorem 1: The DCCS problem is NP-complete.

Proof: Given a collection of sets F = {C1, C2, . . . , Cn}
and k ∈ N, the max-k-cover problem is to find a subset R ⊆ F
such that |R| = k and that |Cov(R)| is maximized. The max-

k-cover problem has been proved to be NP-complete unless P

= NP [2].

It is easy to show that the DCCS problem is in NP. We prove

the theorem by reduction from the max-k-cover problem in

polynomial time. Given an instance (F , k) of the max-k-cover

problem, we first construct a multi-layer graph G. The vertex

set of G is
⋃n

i=1 Ci. There are n layers in G. An edge (u, v)
exists on layer i if and only if u, v ∈ Ci and u 6= v. Then, we

construct an instance of the DCCS problem (G, d, s, k), where

d = 1 and s = 1. The result of the DCCS problem instance

(G, d, s, k) is exactly the result of the max-k-cover problem

instance (F , k). The reduction can be done in polynomial time.

Thus, the DCCS problem is NP-complete.

15. Proof of Theorem 2

Theorem 2: The approximation ratio of GD-DCCS is 1− 1
e .

Proof: The approximation ratio of the greedy algo-

rithm [2] for the max-k-cover problem is 1− 1/e. In the GD-

DCCS algorithm, after obtaining the set F of all candidate d-

CCs (lines 4–7), lines 8–10 select k d-CCs from F in the same

way as in the greedy algorithm [2]. Thus, the approximation

ratio of the GD-DCCS algorithm is also 1− 1/e.

16. Proof of Theorem 3

To prove Theorem 3, we first state the following claim. The

correctness of the claim has been proved in [2].

Claim 1: Let F = {C1, C2, . . . , Cn} and k ∈ N. Let

R∗ the subset of F such that |R∗| = k and |Cov(R∗)| is

maximized. Let R ⊆ F be a set obtained in the following

way. Initially, R = ∅. We repeat taking an element C out

of F randomly and updating R with C according to the two

rules specified in Section IV-A until F = ∅. Finally, we have

|Cov(R)| ≥ 1
4 |Cov(R∗)|.

Theorem 3: The approximation ratio of BU-DCCS is 1/4.

Proof: Note that the BU-DCCS algorithm uses the same

procedure described in Claim 1 to update R except that some

pruning techniques are applied as well. Therefore, we only

need to show that the pruning techniques will not affect the

approximation ratio stated in Claim 1. Let C be a d-CC pruned

by a pruning method and DC be the set of descendant candi-

date d-CCs of C in the search tree. For all C′ ∈ DC , according

to Lemma 2, Lemma 3 or Lemma 4, C′ must not update R. By

Claim 1, candidate d-CCs can be taken in an arbitrary order

without affecting the approximation ratio. Therefore, we can

safely ignore all the d-CCs in DC without affecting the quality

of R. Finally, we have |Cov(R)| ≥ 1
4 |Cov(R∗)|. Thus, the

theorem holds.

17. Proof of Theorem 4

Theorem 4: The approximation ratio of TD-DCCS is 1/4.

Proof: The TD-DCCS algorithm uses the same procedure

described in Claim 1 to update R and applies some pruning

techniques in addition. By the same arguments in the proof of

Theorem 3, this theorem holds.

B. THE DCC PROCEDURE

We present the dCC procedure in Fig. 35. It takes as input a

multi-layer graph G, a subset L ⊆ [l(G)] and an integer d ∈ N

and outputs Cd
L(G), the d-CC w.r.t. L on G. For each vertex

v ∈ V (G), let m(v) = mini∈L dGi
(v) be the minimum degree

of v on all layers in L. First, we compute m(v) for each vertex

v ∈ V (G) (line 1). Let M = maxv∈V (G) m(v) (line 2). For

each vertex v ∈ V (G), we have 0 ≤ m(v) ≤ M . Therefore,

we can assign all vertices of G into M + 1 bin according to

m(v). To facilitate the computation of Cd
L(G), we set up three

arrays in the dCC procedure:

• Array ver stores all vertices in V (G), which are sorted

in ascending order of m(v);
• Array pos records the position of each vertex v in array

ver, i.e., ver[pos[v]] = v;

• Array bin records the starting position of each bin, i.e.,

bin[i] is the offset of the first vertex v in ver such that

m(v) = i.

To build the arrays, we first scan all vertices in V (G) to deter-

mine the size of each bin (lines 4–5). Then, by accumulation

from 0, each element in bin can be easily obtained (lines 6–

10). Based on array bin, we set ver[v] and pos[v] for each

vertex v ∈ V (G) (lines 11–14). Since the elements of bin are

changed at line 14, we recover bin at lines 15–17.

The main loop (lines 18–31) works as follows: Each time

we retrieve the first vertex v remaining in array ver (line 19).

If m(v) < d, v cannot exist in Cd
L(G), so we remove v and

its incident edges from G (line 21). For each vertex u adjacent

to v on some layers, we must update m(u) after removing v.

Note that m(v) can be decreased at most by 1 since we remove

at most one neighbor of u from G. If m(u) is changed, arrays

ver, pos and bin also need to be updated. Specifically, let w be

the first vertex in array ver such that m(w) = m(u) (line 25).

We exchange the position of w and u in array ver (line 27).

Procedure dCC(G, L, d)

1: compute m(v) for each vertex v of G
2: M ← maxv∈V (G) m(v)
3: initialize arrays bin, ver and pos
4: for each vertex v ∈ V do

5: bin[m(v)]← bin[m(v)] + 1
6: start← 1
7: for i← 0 to M do

8: num← bin[i]
9: bin[i] ← start

10: start← start + num
11: for each vertex v ∈ V do

12: pos[v]← bin[m(v)]
13: ver[pos[v]]← v
14: bin[m(v)] ← bin[m(v)] + 1
15: for i←M to 1 do

16: bin[i] ← bin[i− 1]
17: bin[0] = 1
18: repeat

19: v ← the first vertex remaining in array ver
20: if m(v) < d then

21: remove v and its incident edges from G
22: for each remaining vertex u adjacent to v on some layers do

23: compute m(u)
24: if m(u) is changed then

25: w ← bin[m(u)]
26: pw ← pos[w], pu← pos[u]
27: ver[u] ← w, ver[w]← u
28: pos[u]← pw, pos[w]← pu
29: bin[m(u)] ← bin[m(u)] + 1
30: m(u)← m′(u)
31: until m(v) ≥ d
32: return V (G)

Fig. 35. The dCC Procedure.

Accordingly, pos[w] and pos[v] are updated (line 28). After

that, we increase bin[m(u)] by 1 (line 29) since u is removed.

The main loop is repeated until m(v) ≥ d (line 31).

Finally, the vertices remaining in V (G) are outputted as Cd
L(G)

(line 32).

Complexity Analysis. Let n = |V (G)|, mi = |Ei(G)| and

m = |
⋃

i∈L Ei(G)|, the time for computing m(v) for all

vertices v ∈ V (G) is O(n|L|). The time for setting up

arrays ver, pos and bin is O(n). In the main loop, the time

for updating m(u) of a neighbor vertex u is O(|L|). Let

NG(u) =
⋃l

i=1 NGi
(u). Since vertex u can be updated by

at most |NG(u)| times, the maximum number of updating

is O(
∑

u∈V (G) |NG(u)|) = O(m). Consequently, the time

complexity of dCC is O(n|L|+n+m|L|) = O((n+m)|L|).
The space complexity of dCC is O(n) since it only stores

three arrays.

C. THE UPDATE PROCEDURE

We present the Update procedure in Fig. 36. The input

of the procedure includes the set R of temporary top-k
diversified d-CCs, a newly generated d-CC C and k ∈ N. The

procedure updates R with C according to the rules specified

in Section IV-A.

For each d-CC C′ ∈ R, we store both C′ and the size

|∆(R, C′)|. To facilitate fast updating of R, we build some

auxiliary data structures. Specifically, we store R in two hash

tables M and H . For each entry in M , the key of the entry

is a vertex v, and the value of the entry is M [v] = {C′|C′ ∈
R, v ∈ C′}, that is, the set of d-CCs C′ ∈ R containing vertex

v. For each entry in H , the key of the entry is an integer i,
and the value of the entry H [i] is the set of d-CCs C′ ∈ R
such that |∆(R, C′)| = i. Obviously, C∗(R) can be easily

Procedure Update(R, C, k)

1: if |R| < k then

2: Insert(R, C)
3: else

4: |Cov(R)| = size(M)
5: if Size(R, C) ≥ (1 + 1/k)|Cov(R)| then

6: Delete(R)
7: Insert(R, C)

Procedure Size(R, C)

1: obtain C∗(R) and |∆(R, {C∗(R)}| from H
2: c← 0
3: for each vertex v ∈ C do

4: if v is not a key in M then

5: c← c + 1
6: else if v ∈ C∗(R) and size(M [v]) = 1 then

7: c← c + 1
8: c← c + size(M) − |∆(R, C∗(R))|
9: return c

Procedure Delete(R)

1: remove C∗(R) from H
2: for each vertex v ∈ C∗(R) do

3: remove C∗(R) from M [v]
4: if size(M [v]) then

5: let C′ be the element in M [v]
6: move C′ in H from H[|∆(R, C′)|] to H[|∆(R, C′)| + 1]
7: increase |∆(R, C′)| by 1
8: else if size(M [v]) = 0 then

9: remove v from M

Procedure Insert(R, C)

1: add C into R
2: set |∆(R, C)| to 0
3: for each vertex v ∈ C do

4: if v is not a key in M then

5: add v into M
6: insert C into M [v]
7: increase |∆(R, C)| by 1
8: else

9: if size(M [v]) = 1 then

10: let C′ be the element in M [v]
11: move C′ in H from H[|∆(R, C′)|] to H[|∆(R, C′)| − 1]
12: decrease |∆(R, C)| by 1
13: insert C into M [v]
14: insert C into H based on |∆(R, C)|

Fig. 36. The Update Procedure.

obtained from H by retrieving the entry of H indexed by the

smallest key.

Given the temporary result set R and a new d-CC C, the

procedure relies on three key operations to update R, namely

Size(R, C) that returns the size |Cov((R−{C∗(R)})∪{C})|,
Delete(R) that removes C∗(R) from R, and Insert(R, C)
that inserts C to R. We describe these procedures as follows.

Operation Size(R, C). Note that, Cov((R−{C∗(R)})∪{C}
can be decomposed into three disjoint subsets Cov(R −
{C∗(R)}), C − Cov(R) and C ∩ ∆(R, C∗(R)). In the

beginning, we can obtain C∗(R) and |∆(R, C∗(R))| from

H (line 1) and initialize the counter c to 0 (line 1). For

each vertex v ∈ C, if v is not a key in M , we have

v ∈ C − Cov(R), so we increase c by 1 (line 5). Otherwise,

if v ∈ C∗(R) and M [v] only contains C∗(R), c is also

increased by 1 (line 7) since v ∈ C ∩ ∆(R, C∗(R)). Since

|Cov(R−{C∗(R)})| is equal to size(M)− |∆(R, C∗(R))|,
we accumulate size(M) − |∆(R, C∗(R))| to c (line 8) and

return c as the result (line 9).

Operation Delete(R). First, we retrieve C∗(R) from H
(line 1). For each vertex v ∈ C∗(R), C∗(R) is removed

from M [v] (line 3). Note that, if M [v] contains a single

element C′ after removing C∗(R), v is a vertex only cov-

ered by C′. Therefore, we move C′ from H [|∆(R, C′)|] to

Procedure InitTopK(G, d, s, k,R)

1: R ← ∅
2: for p← 1 to k do

3: i← argmaxi∈[l(G)] |Cov(R∪ {Cd(Gi)})| − |Cov(R)|
4: L← {i}
5: C ← Cd(Gi)
6: for q ← 1 to s− 1 do

7: j ← argmaxj∈[l(G)]−L |C ∩ Cd(Gj)|
8: L← L ∪ {j}
9: C ← C ∩ Cd(Gj)

10: C′ ← dCC(G[C], L, d)
11: Update(R, C′)
12: return R

Fig. 37. The InitTopK Procedure.

H [|∆(R, C′)| + 1] (line 6) and increase |∆(R, C′)| by 1
(line 7). If M [v] is empty, v is no longer covered by R, so v
is removed from M (line 9).

Operation Insert(R, C). First, we insert C to R (line 1) and

set |∆(R, C)| to 0 (line 2). For each vertex v ∈ C, if v is not

a key in M , we insert an entry with key v and value C to

hash table M (lines 5–6). At this moment, v is only covered

by C, so |∆(R, C)| is increased by 1(line 7). If v is a key in

M , C can be directly inserted to M [v] (line 12). Note that,

if M [v] contains a single element C′ before insertion, v will

not be covered only by C′ after inserting C, so C′ is moved

in H from H [|∆(R, C′)|] to H [|∆(R, C′)|−1] (line 11), and

|∆(R, C′)| is decreased by 1 (line 12). After updating M , we

obtain |∆(R, C)| and insert C to H accordingly (line 14).

By putting them altogether, we have the Update procedure.

If |R| < k, we directly insert C to R (line 2). If |R| ≥ k, the

Size(R, C) procedure is invoked to check if C satisfies Rule 2

(line 5). If so, R is updated with C by invoking Delete(R)
(line 6) and Insert(R, C) (line 7).

Complexity Analysis. The space cost for storing R and

maintaining M is O(
∑

C′∈R |C′|), and the space cost for

storing |∆(R, C′)| and maintaining H is O(k). Thus, the

space complexity of Update is O(2
∑

C′∈R |Cj | + 2k) =
O(

∑

C′∈R |C′|).
Assume that an entry can be inserted to or deleted from

a hash table in constant time. Thus, the time complexity

of Size(R, C), Delete(R) and Insert(R, C) is O(|C|),
O(|C∗(R)|) and O(|C|), respectively. Consequently, the time

complexity of Update is O(max{|C|, |C∗(R)|}).

D. THE INITTOPK PROCEDURE

We present the InitTopK procedure in Fig. 37. The input

of the procedure includes the multi-layer graph G, d, s, k ∈ N

and set R of temporary top-k diversified d-CCs. The InitTopK

procedure in Section IV.C initializes R so that |R| = k.

At first, we set R as an empty set (line 1). The for loop

(lines 2–11) executes k times. In each loop, a candidate d-CC

is added to R in the following way: First, we select layer i
such that the d-core Cd(Gi) can maximumly enlarges Cov(R)
(line 3). Let C = Cd(Gi) and L = {i} (line 4–5). Then, we

add s − 1 other layer numbers to L in a greedy manner. In

each time, we choose layer j ∈ [l(G)] − L that maximizes

|C∩Cd(Gj)|, update L to L∪{j} and update C to C∩Cd(Gj)
(lines 7–9). When |L| = s, we compute the d-CC Cd

L(G) and

update R with Cd
L(G) (lines 11–12).

	I Introduction
	II Problem Definition
	III Greedy Algorithm
	IV Bottom-Up Algorithm
	IV-A Maintenance of Top-k Diversified d-CCs
	IV-B Bottom-Up Candidate Generation
	IV-C Bottom-Up Algorithm

	V Top-Down Algorithm
	V-A Top-Down Candidate Generation
	V-B Refinement of Potential Vertex Sets
	V-C Refinement of d-CCs
	

	VI Performance Evaluation
	VII Related Work
	VIII Conclusions
	References
	A Proofs
	B The dCC Procedure
	C The Update Procedure
	D The InitTopK Procedure

